1
|
Delgado-Román I, Muñoz-Centeno MC. Coupling Between Cell Cycle Progression and the Nuclear RNA Polymerases System. Front Mol Biosci 2021; 8:691636. [PMID: 34409067 PMCID: PMC8365833 DOI: 10.3389/fmolb.2021.691636] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Eukaryotic life is possible due to the multitude of complex and precise phenomena that take place in the cell. Essential processes like gene transcription, mRNA translation, cell growth, and proliferation, or membrane traffic, among many others, are strictly regulated to ensure functional success. Such systems or vital processes do not work and adjusts independently of each other. It is required to ensure coordination among them which requires communication, or crosstalk, between their different elements through the establishment of complex regulatory networks. Distortion of this coordination affects, not only the specific processes involved, but also the whole cell fate. However, the connection between some systems and cell fate, is not yet very well understood and opens lots of interesting questions. In this review, we focus on the coordination between the function of the three nuclear RNA polymerases and cell cycle progression. Although we mainly focus on the model organism Saccharomyces cerevisiae, different aspects and similarities in higher eukaryotes are also addressed. We will first focus on how the different phases of the cell cycle affect the RNA polymerases activity and then how RNA polymerases status impacts on cell cycle. A good example of how RNA polymerases functions impact on cell cycle is the ribosome biogenesis process, which needs the coordinated and balanced production of mRNAs and rRNAs synthesized by the three eukaryotic RNA polymerases. Distortions of this balance generates ribosome biogenesis alterations that can impact cell cycle progression. We also pay attention to those cases where specific cell cycle defects generate in response to repressed synthesis of ribosomal proteins or RNA polymerases assembly defects.
Collapse
Affiliation(s)
- Irene Delgado-Román
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Mari Cruz Muñoz-Centeno
- Instituto de Biomedicina de Sevilla, Universidad de Sevilla-CSIC-Hospital Universitario V. Del Rocío, Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
2
|
Kofuji S, Hirayama A, Eberhardt AO, Kawaguchi R, Sugiura Y, Sampetrean O, Ikeda Y, Warren M, Sakamoto N, Kitahara S, Yoshino H, Yamashita D, Sumita K, Wolfe K, Lange L, Ikeda S, Shimada H, Minami N, Malhotra A, Morioka S, Ban Y, Asano M, Flanary VL, Ramkissoon A, Chow LML, Kiyokawa J, Mashimo T, Lucey G, Mareninov S, Ozawa T, Onishi N, Okumura K, Terakawa J, Daikoku T, Wise-Draper T, Majd N, Kofuji K, Sasaki M, Mori M, Kanemura Y, Smith EP, Anastasiou D, Wakimoto H, Holland EC, Yong WH, Horbinski C, Nakano I, DeBerardinis RJ, Bachoo RM, Mischel PS, Yasui W, Suematsu M, Saya H, Soga T, Grummt I, Bierhoff H, Sasaki AT. IMP dehydrogenase-2 drives aberrant nucleolar activity and promotes tumorigenesis in glioblastoma. Nat Cell Biol 2019; 21:1003-1014. [PMID: 31371825 PMCID: PMC6686884 DOI: 10.1038/s41556-019-0363-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 06/18/2019] [Indexed: 12/17/2022]
Abstract
In many cancers, high proliferation rates correlate with elevation of rRNA and tRNA levels, and nucleolar hypertrophy. However, the underlying mechanisms linking increased nucleolar transcription and tumorigenesis are only minimally understood. Here we show that IMP dehydrogenase-2 (IMPDH2), the rate-limiting enzyme for de novo guanine nucleotide biosynthesis, is overexpressed in the highly lethal brain cancer glioblastoma. This leads to increased rRNA and tRNA synthesis, stabilization of the nucleolar GTP-binding protein nucleostemin, and enlarged, malformed nucleoli. Pharmacological or genetic inactivation of IMPDH2 in glioblastoma reverses these effects and inhibits cell proliferation, whereas untransformed glia cells are unaffected by similar IMPDH2 perturbations. Impairment of IMPDH2 activity triggers nucleolar stress and growth arrest of glioblastoma cells even in the absence of functional p53. Our results reveal that upregulation of IMPDH2 is a prerequisite for the occurance of aberrant nucleolar function and increased anabolic processes in glioblastoma, which constitutes a primary event in gliomagenesis.
Collapse
Affiliation(s)
- Satoshi Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Akiyoshi Hirayama
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Alexander Otto Eberhardt
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Jena, Germany
- Leibniz-Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Risa Kawaguchi
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Yuki Sugiura
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Oltea Sampetrean
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshiki Ikeda
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mikako Warren
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Naoya Sakamoto
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shuji Kitahara
- Department of Anatomy and Developmental Biology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Hirofumi Yoshino
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Daisuke Yamashita
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kazutaka Sumita
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kara Wolfe
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Lisa Lange
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Jena, Germany
- Leibniz-Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Satsuki Ikeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Hiroko Shimada
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Noriaki Minami
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Akshiv Malhotra
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Shin Morioka
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Ban
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Maya Asano
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Victoria L Flanary
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Annmarie Ramkissoon
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Lionel M L Chow
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Juri Kiyokawa
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tomoyuki Mashimo
- Department of Internal Medicine; Harold C. Simmons Comprehensive Cancer Center; Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Greg Lucey
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Sergey Mareninov
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Tatsuya Ozawa
- Division of Human Biology, Solid Tumor and Translational Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nobuyuki Onishi
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Okumura
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jumpei Terakawa
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Takiko Daikoku
- Division of Transgenic Animal Science, Advanced Science Research Center, Kanazawa University, Kanazawa, Japan
| | - Trisha Wise-Draper
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nazanin Majd
- Department of Neurology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kaori Kofuji
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mika Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Eric P Smith
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Hiroaki Wakimoto
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Eric C Holland
- Division of Human Biology, Solid Tumor and Translational Research, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - William H Yong
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Craig Horbinski
- Department of Pathology, University of Kentucky College of Medicine, Lexington, KY, USA
- Departments of Pathology and Neurosurgery, Northwestern University, Chicago, IL, USA
| | - Ichiro Nakano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ralph J DeBerardinis
- Howard Hughes Medical Institute; Children's Medical Center Research Institute; Department of Pediatrics and Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert M Bachoo
- Department of Internal Medicine; Harold C. Simmons Comprehensive Cancer Center; Annette G. Strauss Center for Neuro-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul S Mischel
- Ludwig Institute for Cancer Research; Department of Pathology; Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Wataru Yasui
- Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- AMED-CREST, AMED, Tokyo, Japan
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Holger Bierhoff
- Institute of Biochemistry and Biophysics, Center for Molecular Biomedicine, Friedrich Schiller University Jena, Jena, Germany
- Leibniz-Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Atsuo T Sasaki
- Division of Hematology and Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan.
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
- Department of Neurosurgery, Brain Tumor Center at UC Gardner Neuroscience Institute, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Nguyen D, Liao W, Zeng SX, Lu H. Reviving the guardian of the genome: Small molecule activators of p53. Pharmacol Ther 2017; 178:92-108. [PMID: 28351719 DOI: 10.1016/j.pharmthera.2017.03.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/20/2017] [Indexed: 02/07/2023]
Abstract
The tumor suppressor p53 is one of the most important proteins for protection of genomic stability and cancer prevention. Cancers often inactivate it by either mutating its gene or disabling its function. Thus, activating p53 becomes an attractive approach for the development of molecule-based anti-cancer therapy. The past decade and half have witnessed tremendous progress in this area. This essay offers readers with a grand review on this progress with updated information about small molecule activators of p53 either still at bench work or in clinical trials.
Collapse
Affiliation(s)
- Daniel Nguyen
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Wenjuan Liao
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States
| | - Hua Lu
- Department of Biochemistry and Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, 1430 Tulane Ave, LA 70012, United States.
| |
Collapse
|
4
|
Myc-dependent purine biosynthesis affects nucleolar stress and therapy response in prostate cancer. Oncotarget 2016; 6:12587-602. [PMID: 25869206 PMCID: PMC4494960 DOI: 10.18632/oncotarget.3494] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 03/07/2015] [Indexed: 11/25/2022] Open
Abstract
The androgen receptor is a key transcription factor contributing to the development of all stages of prostate cancer (PCa). In addition, other transcription factors have been associated with poor prognosis in PCa, amongst which c-Myc (MYC) is a well-established oncogene in many other cancers. We have previously reported that the AR promotes glycolysis and anabolic metabolism; many of these metabolic pathways are also MYC-regulated in other cancers. In this study, we report that in PCa cells de novo purine biosynthesis and the subsequent conversion to XMP is tightly regulated by MYC and independent of AR activity. We characterized two enzymes, PAICS and IMPDH2, within the pathway as PCa biomarkers in tissue samples and report increased efficacy of established anti-androgens in combination with a clinically approved IMPDH inhibitor, mycophenolic acid (MPA). Treatment with MPA led to a significant reduction in cellular guanosine triphosphate (GTP) levels accompanied by nucleolar stress and p53 stabilization. In conclusion, targeting purine biosynthesis provides an opportunity to perturb PCa metabolism and enhance tumour suppressive stress responses.
Collapse
|
5
|
Jung JH, Liao JM, Zhang Q, Zeng S, Nguyen D, Hao Q, Zhou X, Cao B, Kim SH, Lu H. Inauhzin(c) inactivates c-Myc independently of p53. Cancer Biol Ther 2016; 16:412-9. [PMID: 25692307 DOI: 10.1080/15384047.2014.1002698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Oncogene MYC is deregulated in many human cancers, especially in lymphoma. Previously, we showed that inauhzin (INZ) activates p53 and inhibits tumor growth. However, whether INZ could suppress cancer cell growth independently of p53 activity is still elusive. Here, we report that INZ(c), a second generation of INZ, suppresses c-Myc activity and thus inhibits growth of human lymphoma cells in a p53-independent manner. INZ(c) treatment decreased c-Myc expression at both mRNA and protein level, and suppressed c-Myc transcriptional activity in human Burkitt's lymphoma Raji cells with mutant p53. Also, we showed that overexpressing ectopic c-Myc rescues the inhibition of cell proliferation by INZ(c) in Raji cells, implicating c-Myc activity is targeted by INZ(c). Interestingly, the effect of INZ(c) on c-Myc expression was impaired by disrupting the targeting of c-Myc mRNA by miRNAs via knockdown of ribosomal protein (RP) L5, RPL11, or Ago2, a subunit of RISC complex, indicating that INZ(c) targets c-Myc via miRNA pathways. These results reveal a new mechanism that INZ
Collapse
Key Words
- Dox, doxorubicin
- FACS, Fluorescence-activated cell sorting
- GTP, guanosine triphosphate
- INZ, inauhzin
- Inauhzin
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- PBS, Phosphate Buffered Saline
- PI, propidium iodide
- RISC, RNA-induced silencing complex
- RP, ribosomal protein
- RPL11
- RPL5
- UTR, untranslated region
- c-Myc
- lymphoma
- microRNA
- q-RT-PCR, Real-time reverse transcription polymerase chain reaction
Collapse
Affiliation(s)
- Ji Hoon Jung
- a Department of Biochemistry & Molecular Biology and Cancer Center ; Tulane University School of Medicine ; New Orleans , LA USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Meshkini A. Fine-tuning of the cellular signaling pathways by intracellular GTP levels. Cell Biochem Biophys 2015; 70:27-32. [PMID: 24643502 DOI: 10.1007/s12013-014-9897-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It has become increasingly evident that among purine nucleotides, guanine based nucleotides specially guanosine-5'-triphosphate (GTP) serve as an important and independent regulatory factors for development and diverse cellular functions such as differentiation, metabolism, proliferation and survival in multiple tissues. In this brief review, it has been provided selective outline related to delicate regulation of signaling pathways by guanosine based nucleotides as intracellular signaling molecules. Although the exact mode of action of theses nucleotides in many biological processes and signaling pathways is still elusive, it has become well clear that intracellular guanosine based nucleotides content rather than adenosine based nucleotides could modulate the intensity and duration of signaling which ultimately impact on cell's fate. It opens an entirely new perspective for developing new and potential therapeutic strategies to combat diseases like cancer, hypoxia, etc.
Collapse
Affiliation(s)
- Azadeh Meshkini
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran,
| |
Collapse
|
7
|
Abstract
A veritable explosion of primary research papers within the past 10 years focuses on nucleolar and ribosomal stress, and for good reason: with ribosome biosynthesis consuming ~80% of a cell’s energy, nearly all metabolic and signaling pathways lead ultimately to or from the nucleolus. We begin by describing p53 activation upon nucleolar stress resulting in cell cycle arrest or apoptosis. The significance of this mechanism cannot be understated, as oncologists are now inducing nucleolar stress strategically in cancer cells as a potential anti-cancer therapy. We also summarize the human ribosomopathies, syndromes in which ribosome biogenesis or function are impaired leading to birth defects or bone narrow failures; the perplexing problem in the ribosomopathies is why only certain cells are affected despite the fact that the causative mutation is systemic. We then describe p53-independent nucleolar stress, first in yeast which lacks p53, and then in other model metazoans that lack MDM2, the critical E3 ubiquitin ligase that normally inactivates p53. Do these presumably ancient p53-independent nucleolar stress pathways remain latent in human cells? If they still exist, can we use them to target >50% of known human cancers that lack functional p53?
Collapse
Affiliation(s)
- Allison James
- a Department of Biological Sciences; Louisiana State University; Baton Rouge, LA USA
| | | | | | | | | |
Collapse
|
8
|
Tancioni I, Miller NLG, Uryu S, Lawson C, Jean C, Chen XL, Kleinschmidt EG, Schlaepfer DD. FAK activity protects nucleostemin in facilitating breast cancer spheroid and tumor growth. Breast Cancer Res 2015; 17:47. [PMID: 25880415 PMCID: PMC4407832 DOI: 10.1186/s13058-015-0551-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/11/2015] [Indexed: 12/17/2022] Open
Abstract
Introduction Focal adhesion kinase (FAK) controls cell growth and survival downstream of integrin-matrix receptors. Upon adhesion loss or FAK inhibition, FAK can translocate to the nucleus. The nucleolus is a non-membrane nuclear structure that regulates ribosome biogenesis and cell proliferation. Nucleostemin (NS), a nucleolar-localized protein, modulates cell cycle progression, stemness, and three-dimensional tumor spheroid formation. The signaling pathways that regulate NS levels in tumors remain undefined. Methods Human breast carcinoma cells were evaluated for growth in culture (adherent and anchorage-independent spheroid) and as orthotopic tumors. FAK signaling was evaluated by pharmacological FAK inhibitor addition (PF-271, IC50 ~ 0.1 μM) and by small hairpin RNA (shRNA) knockdown followed by re-expression of FAK wildtype (WT) or a kinase-dead (KD, K454R) FAK point mutant. Immunoblotting was used to evaluate FAK, NS, nucleolar phosphoprotein B23, and nucleolin levels. Total and phosphospecific antibody imunoblotting were used to detect changes in FAK, Akt kinase (Akt also known as protein kinase B), and 4E-binding protein 1 (4E-BP1) phosphorylation, a translation repressor protein and target of the mammalian target of rapamycin (mTOR) complex. Immunohistochemical, co-immunoprecipitation, and cellular fractionation analyses were used to evaluate FAK association with nucleoli. Results Pharmacological (0.1 μM PF-271) or genetic inhibition of FAK activity prevents MDA-MB-231 and 4T1L breast carcinoma growth as spheroids and as orthotopic tumors. FAK inhibition triggers proteasome-mediated decreased NS levels but no changes in other nucleolar proteins such as B23 (nucleophosmin) or nucleolin. Active FAK was associated with purified nucleoli of anchorage-independent cells and present within nucleoli of human invasive ductal carcinoma tumor samples. FAK co-immunoprecipitated with B23 that binds NS and a complex between FAK, NS, Akt, and mTOR was detected. Constitutively-active Akt kinase promoted tumor spheroid growth, stabilized NS levels, and promoted pS65 4E-BP1 phosphorylation in the presence of inhibited FAK. Rapamycin lowered NS levels and inhibited pS65 4E-BP1 phosphorylation in cells with activated Akt-mTOR signaling. Conclusions FAK signaling occurs in the nucleolus, active FAK protects NS, and Akt-mTOR pathway regulates NS protein stability needed for breast carcinoma spheroid and tumor growth. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0551-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Isabelle Tancioni
- Department of Reproductive Medicine, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA, 92093, USA.
| | - Nichol L G Miller
- Department of Reproductive Medicine, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA, 92093, USA. .,Current address: Pfizer, La Jolla, CA, 92121, USA.
| | - Sean Uryu
- Department of Reproductive Medicine, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA, 92093, USA.
| | - Christine Lawson
- Department of Reproductive Medicine, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA, 92093, USA.
| | - Christine Jean
- Department of Reproductive Medicine, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA, 92093, USA. .,Current address: INSERM U1037 - Cancer Research Center, Toulouse, France.
| | - Xiao Lei Chen
- Department of Reproductive Medicine, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA, 92093, USA.
| | - Elizabeth G Kleinschmidt
- Department of Reproductive Medicine, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA, 92093, USA.
| | - David D Schlaepfer
- Department of Reproductive Medicine, University of California San Diego, Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
9
|
Maehama T, Kawahara K, Nishio M, Suzuki A, Hanada K. Nucleolar stress induces ubiquitination-independent proteasomal degradation of PICT1 protein. J Biol Chem 2015; 289:20802-12. [PMID: 24923447 DOI: 10.1074/jbc.m114.571893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The nucleolar protein PICT1 regulates tumor suppressor p53 by tethering ribosomal protein L11 within the nucleolus to repress the binding of L11 to the E3 ligase MDM2. PICT1 depletion results in the release of L11 to the nucleoplasm to inhibit MDM2, leading to p53 activation. Here, we demonstrate that nucleolar stress induces proteasome-mediated degradation of PICT1 in a ubiquitin-independent manner. Treatment of H1299 cells with nucleolar stress inducers, such as actinomycin D, 5-fluorouridine, or doxorubicin, induced the degradation of PICT1 protein. The proteasome inhibitors MG132, lactacystin, and epoxomicin blocked PICT1 degradation, whereas the inhibition of E1 ubiquitin-activating enzyme by a specific inhibitor and genetic inactivation fail to repress PICT1 degradation. In addition, the 20 S proteasome was able to degrade purified PICT1 protein in vitro. We also found a PICT1 mutant showing nucleoplasmic localization did not undergo nucleolar stress-induced degradation, although the same mutant underwent in vitro degradation by the 20 S proteasome, suggesting that nucleolar localization is indispensable for the stress-induced PICT1 degradation. These results suggest that PICT1 employs atypical proteasome-mediated degradation machinery to sense nucleolar stress within the nucleolus.
Collapse
|
10
|
Sánchez-Lanzas R, Castaño JG. Proteins directly interacting with mammalian 20S proteasomal subunits and ubiquitin-independent proteasomal degradation. Biomolecules 2014; 4:1140-54. [PMID: 25534281 PMCID: PMC4279173 DOI: 10.3390/biom4041140] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 11/25/2014] [Accepted: 12/11/2014] [Indexed: 12/12/2022] Open
Abstract
The mammalian 20S proteasome is a heterodimeric cylindrical complex (α7β7β7α7), composed of four rings each composed of seven different α or β subunits with broad proteolytic activity. We review the mammalian proteins shown to directly interact with specific 20S proteasomal subunits and those subjected to ubiquitin-independent proteasomal degradation (UIPD). The published reports of proteins that interact with specific proteasomal subunits, and others found on interactome databases and those that are degraded by a UIPD mechanism, overlap by only a few protein members. Therefore, systematic studies of the specificity of the interactions, the elucidation of the protein regions implicated in the interactions (that may or may not be followed by degradation) and competition experiments between proteins known to interact with the same proteasomal subunit, are needed. Those studies should provide a coherent picture of the molecular mechanisms governing the interactions of cellular proteins with proteasomal subunits, and their relevance to cell proteostasis and cell functioning.
Collapse
Affiliation(s)
- Raúl Sánchez-Lanzas
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas 'Alberto Sols', UAM-CSIC, Facultad de Medicina de la Universidad Autónoma de Madrid, Madrid 28029, Spain.
| | - José G Castaño
- Departamento de Bioquímica, Instituto de Investigaciones Biomédicas 'Alberto Sols', UAM-CSIC, Facultad de Medicina de la Universidad Autónoma de Madrid, Madrid 28029, Spain.
| |
Collapse
|
11
|
Zhang Q, Zhou X, Wu R, Mosley A, Zeng SX, Xing Z, Lu H. The role of IMP dehydrogenase 2 in Inauhzin-induced ribosomal stress. eLife 2014; 3. [PMID: 25347121 PMCID: PMC4209374 DOI: 10.7554/elife.03077] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 10/06/2014] [Indexed: 11/13/2022] Open
Abstract
The 'ribosomal stress (RS)-p53 pathway' is triggered by any stressor or genetic alteration that disrupts ribosomal biogenesis, and mediated by several ribosomal proteins (RPs), such as RPL11 and RPL5, which inhibit MDM2 and activate p53. Inosine monophosphate (IMP) dehydrogenase 2 (IMPDH2) is a rate-limiting enzyme in de novo guanine nucleotide biosynthesis and crucial for maintaining cellular guanine deoxy- and ribonucleotide pools needed for DNA and RNA synthesis. It is highly expressed in many malignancies. We previously showed that inhibition of IMPDH2 leads to p53 activation by causing RS. Surprisingly, our current study reveals that Inauzhin (INZ), a novel non-genotoxic p53 activator by inhibiting SIRT1, can also inhibit cellular IMPDH2 activity, and reduce the levels of cellular GTP and GTP-binding nucleostemin that is essential for rRNA processing. Consequently, INZ induces RS and the RPL11/RPL5-MDM2 interaction, activating p53. These results support the new notion that INZ suppresses cancer cell growth by dually targeting SIRT1 and IMPDH2.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Xiang Zhou
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - RuiZhi Wu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Amber Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, United States
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| | - Zhen Xing
- Department of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, Houston, United States
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, United States
| |
Collapse
|
12
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
13
|
Lo D, Zhang Y, Dai MS, Sun XX, Zeng SX, Lu H. Nucleostemin stabilizes ARF by inhibiting the ubiquitin ligase ULF. Oncogene 2014; 34:1688-97. [PMID: 24769896 PMCID: PMC4212020 DOI: 10.1038/onc.2014.103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 02/02/2014] [Accepted: 03/13/2014] [Indexed: 12/18/2022]
Abstract
Up-regulated expression of nucleolar GTPase Nucleostemin (NS) has been associated with increased cellular proliferation potential and tumor malignancy during cancer development. Recent reports attribute the growth regulatory effects of NS protein to its role in facilitating ribosome production. However, the oncogenic potential of NS remains unclear since imbalanced levels of NS have been reported to exert growth inhibitory effect by modulating p53 tumor suppressor activity. It also remains in questions if aberrant NS levels might play a p53-independent role in regulation of cell proliferation and growth. In this study, we performed affinity purification and mass spectrometry analysis to explore protein-protein interactions influencing NS growth regulatory properties independently of p53 tumor suppressor. We identified the Alternative Reading Frame (ARF) protein as a key protein associating with NS and further verified the interaction through in vitro and in vivo assays. We demonstrated that NS is able to regulate cell cycle progression by regulating the stability of the ARF tumor suppressor. Furthermore, overexpression of NS suppressed ARF polyubiquitination by its E3 ligase ULF and elongated its half-life, while knockdown of NS led to the decrease of ARF levels. Also, we found that NS can enhance NPM stabilization of ARF. Thus, we propose that in the absence of p53, ARF can be stabilized by NS and NPM to serve as an alternative tumor suppressor surveillance, preventing potential cellular transformation resulting from the growth inducing effects of NS overexpression.
Collapse
Affiliation(s)
- D Lo
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Y Zhang
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - M-S Dai
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - X-X Sun
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - S X Zeng
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - H Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
14
|
Uema N, Ooshio T, Harada K, Naito M, Naka K, Hoshii T, Tadokoro Y, Ohta K, Ali MAE, Katano M, Soga T, Nakanuma Y, Okuda A, Hirao A. Abundant nucleostemin expression supports the undifferentiated properties of germ cell tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:592-603. [PMID: 23885716 DOI: 10.1016/j.ajpath.2013.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 03/21/2013] [Accepted: 04/30/2013] [Indexed: 12/23/2022]
Abstract
Nucleostemin (NS) is a nucleolar GTP-binding protein that is involved in ribosomal biogenesis and protection of telomeres. We investigated the expression of NS in human germ cell tumors and its function in a mouse germ cell tumor model. NS was abundantly expressed in undifferentiated, but not differentiated, types of human testicular germ cell tumors. NS was expressed concomitantly with OCT3/4, a critical regulator of the undifferentiated status of pluripotent stem cells in primordial germ cells and embryonal carcinomas. To investigate the roles of NS in tumor growth in vivo, we used a mouse teratoma model. Analysis of teratomas derived from embryonic stem cells in which the NS promoter drives GFP expression showed that cells highly expressing NS were actively proliferating and exhibited the characteristics of tumor-initiating cells, including the ability to initiate and propagate tumor cells in vivo. NS-expressing cells exhibited higher levels of GTP than non-NS-expressing cells. Because NS protein is stabilized by intracellular GTP, metabolic changes may contribute to abundant NS expression in the undifferentiated cells. OCT3/4 deficiency in teratomas led to loss of NS expression, resulting in growth retardation. Finally, we found that teratomas deficient in NS lost their undifferentiated characteristics, resulting in defective tumor proliferation. These data indicate that abundant expression of NS supports the undifferentiated properties of germ cell tumors.
Collapse
Affiliation(s)
- Noriyuki Uema
- Division of Molecular Genetics, Cancer and Stem Cell Program, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Gómez-Herreros F, Rodríguez-Galán O, Morillo-Huesca M, Maya D, Arista-Romero M, de la Cruz J, Chávez S, Muñoz-Centeno MC. Balanced production of ribosome components is required for proper G1/S transition in Saccharomyces cerevisiae. J Biol Chem 2013; 288:31689-700. [PMID: 24043628 DOI: 10.1074/jbc.m113.500488] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Cell cycle regulation is a very accurate process that ensures cell viability and the genomic integrity of daughter cells. A fundamental part of this regulation consists in the arrest of the cycle at particular points to ensure the completion of a previous event, to repair cellular damage, or to avoid progression in potentially risky situations. In this work, we demonstrate that a reduction in nucleotide levels or the depletion of RNA polymerase I or III subunits generates a cell cycle delay at the G1/S transition in Saccharomyces cerevisiae. This delay is concomitant with an imbalance between ribosomal RNAs and proteins which, among others, provokes an accumulation of free ribosomal protein L5. Consistently with a direct impact of free L5 on the G1/S transition, rrs1 mutants, which weaken the assembly of L5 and L11 on pre-60S ribosomal particles, enhance both the G1/S delay and the accumulation of free ribosomal protein L5. We propose the existence of a surveillance mechanism that couples the balanced production of yeast ribosomal components and cell cycle progression through the accumulation of free ribosomal proteins. This regulatory pathway resembles the p53-dependent nucleolar-stress checkpoint response described in human cells, which indicates that this is a general control strategy extended throughout eukaryotes.
Collapse
Affiliation(s)
- Fernando Gómez-Herreros
- From the Departamento de Genética, Universidad de Sevilla and Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Proteasome activity influences UV-mediated subnuclear localization changes of NPM. PLoS One 2013; 8:e59096. [PMID: 23554979 PMCID: PMC3595268 DOI: 10.1371/journal.pone.0059096] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 02/12/2013] [Indexed: 01/08/2023] Open
Abstract
UV damage activates cellular stress signaling pathways, causes DNA helix distortions and inhibits transcription by RNA polymerases I and II. In particular, the nucleolus, which is the site of RNA polymerase I transcription and ribosome biogenesis, disintegrates following UV damage. The disintegration is characterized by reorganization of the subnucleolar structures and change of localization of many nucleolar proteins. Here we have queried the basis of localization change of nucleophosmin (NPM), a nucleolar granular component protein, which is increasingly detected in the nucleoplasm following UV radiation. Using photobleaching experiments of NPM-fluorescent fusion protein in live human cells we show that NPM mobility increases after UV damage. However, we show that the increase in NPM nucleoplasmic abundance after UV is independent of UV-activated cellular stress and DNA damage signaling pathways. Unexpectedly, we find that proteasome activity affects NPM redistribution. NPM nucleolar expression was maintained when the UV-treated cells were exposed to proteasome inhibitors or when the expression of proteasome subunits was inhibited using RNAi. However, there was no evidence of increased NPM turnover in the UV damaged cells, or that ubiquitin or ubiquitin recycling affected NPM localization. These findings suggest that proteasome activity couples to nucleolar protein localizations in UV damage stress.
Collapse
|
17
|
Chen F, Yu Y, Qian J, Wang Y, Cheng B, Dimitropoulou C, Patel V, Chadli A, Rudic RD, Stepp DW, Catravas JD, Fulton DJR. Opposing actions of heat shock protein 90 and 70 regulate nicotinamide adenine dinucleotide phosphate oxidase stability and reactive oxygen species production. Arterioscler Thromb Vasc Biol 2012; 32:2989-99. [PMID: 23023377 DOI: 10.1161/atvbaha.112.300361] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Excessive reactive oxygen species contribute to vascular dysfunction. We have previously shown that heat shock protein (Hsp90) inhibitors potently suppress Nox 1 to 3 and 5, and the goals of this study were to identify how molecular chaperones regulate Nox function. METHODS AND RESULTS In vitro, protein expression of Nox 1 to 2, 5 was decreased by Hsp90 inhibitors in multiple cell types (human pulmonary artery endothelial cells, neutrophils, macrophages, and human saphenous vein). In mice treated with Hsp90 inhibitors, Nox1 expression was reduced in lung along with reduced reactive oxygen species from leukocytes. Elevated reactive oxygen species production in obese (db/db) aorta was suppressed by Hsp90 inhibition. Hsp90 inhibitors did not alter Nox5 micro RNA levels, and proteasome inhibition prevented Nox2 and 5 protein degradation and increased ubiquitin incorporation. Inhibition of Hsp90 upregulated the expression of Hsp70 and Hsp70-bound Nox2, 5 and promoted degradation. Silencing Hsp70 prevented Hsp90 inhibitor-mediated degradation of Nox5. The Hsp70-regulated ubiquitin ligase, carboxyl terminus of Hsp70-interacting protein (CHIP), also bound Nox5 and promoted increased Nox5 ubiquitination and degradation. The chaperone binding and ubiquitination domains of CHIP were required, and the silencing of CHIP blunted Hsp90 inhibitor-mediated degradation of Nox2 and 5. CONCLUSIONS We conclude that Hsp90 binds to and regulates Nox protein stability. These actions are opposed by Hsp70 and CHIP, which promote the ubiquitination and degradation of Nox proteins and reduce reactive oxygen species production.
Collapse
Affiliation(s)
- Feng Chen
- Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|