1
|
Mittal A, Kakkar R. Nitric Oxide Synthases and Their Inhibitors: A Review. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190222154457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric Oxide (NO), an important biological mediator, is involved in the regulation of the cardiovascular, nervous and immune systems in mammals. Synthesis of NO is catalyzed by its biosynthetic enzyme, Nitric Oxide Synthase (NOS). There are three main isoforms of the enzyme, neuronal NOS, endothelial NOS and inducible NOS, which have very similar structures but differ in their expression and activities. NO is produced in the active site of the enzyme in two distinct cycles from oxidation of the substrate L-arg (L-arginine) in nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reaction. NOS has gained considerable attention of biochemists due to its complexity and unique catalytic mechanism. The review focuses on NOS structure, its function and catalytic reaction mechanism. In particular, the review is concluded with a discussion on the role of all three isoforms of NOS in physiological and pathological conditions and their inhibitors with a focus on the role of computational techniques in their development.
Collapse
Affiliation(s)
- Anshika Mittal
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
2
|
Gunasekera B, Abou Diwan C, Altawallbeh G, Kalil H, Maher S, Xu S, Bayachou M. Functional Layer-by-Layer Thin Films of Inducible Nitric Oxide (NO) Synthase Oxygenase and Polyethylenimine: Modulation of Enzyme Loading and NO-Release Activity. ACS APPLIED MATERIALS & INTERFACES 2018; 10:7745-7755. [PMID: 29359547 DOI: 10.1021/acsami.7b17575] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nitric oxide (NO) release counteracts platelet aggregation and prevents the thrombosis cascade in the inner walls of blood vessels. NO-release coatings also prevent thrombus formation on the surface of blood-contacting medical devices. Our previous work has shown that inducible nitric oxide synthase (iNOS) films release NO fluxes upon enzymatic conversion of the substrate l-arginine. In this work, we report on the modulation of enzyme loading in layer-by-layer (LbL) thin films of inducible nitric oxide synthase oxygenase (iNOSoxy) on polyethylenimine (PEI). The layer of iNOSoxy is electrostatically adsorbed onto the PEI layer. The pH of the iNOSoxy solution affects the amount of enzyme adsorbed. The overall negative surface charge of iNOSoxy in solution depends on the pH and hence determines the density of adsorbed protein on the positively charged PEI layer. We used buffered iNOSoxy solutions adjusted to pHs 8.6 and 7.0, while saline PEI solution was used at pH 7.0. Atomic force microscopy imaging of the outermost layer shows higher protein adsorption with iNOSoxy at pH 8.6 than with a solution of iNOSoxy at pH 7.0. Graphite electrodes with PEI/iNOSoxy films show higher catalytic currents for nitric oxide reduction mediated by iNOSoxy. The higher enzyme loading translates into higher NO flux when the enzyme-modified surface is exposed to a solution containing the substrate and a source of electrons. Spectrophotometric assays showed higher NO fluxes with iNOSoxy/PEI films built at pH 8.6 than with films built at pH 7.0. Fourier transform infrared analysis of iNOSoxy adsorbed on PEI at pH 8.6 and 7.0 shows structural differences of iNOSoxy in films, which explains the observed changes in enzymatic activity. Our findings show that pH provides a strategy to optimize the NOS loading and enzyme activity in NOS-based LbL thin films, which enables improved NO release with minimum layers of PEI/NOS.
Collapse
Affiliation(s)
- Bhagya Gunasekera
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Charbel Abou Diwan
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Ghaith Altawallbeh
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Haitham Kalil
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Shaimaa Maher
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
| | - Song Xu
- Keysight Technologies , 1400 Foutaingrove Parkway , Santa Rosa 95403 , California , United States
| | - Mekki Bayachou
- Department of Chemistry , Cleveland State University , 2399 Euclid Avenue SR 397 , Cleveland , Ohio 44120 , United States
- Department of Pathobiology , Lerner Research Institute , The Cleveland Clinic , Cleveland , Ohio 44106 , United States
| |
Collapse
|
3
|
Weisslocker-Schaetzel M, Lembrouk M, Santolini J, Dorlet P. Revisiting the Val/Ile Mutation in Mammalian and Bacterial Nitric Oxide Synthases: A Spectroscopic and Kinetic Study. Biochemistry 2017; 56:748-756. [PMID: 28074650 DOI: 10.1021/acs.biochem.6b01018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nitric oxide is produced in mammals by the nitric oxide synthase (NOS) isoforms at a catalytic site comprising a heme associated with a biopterin cofactor. Through genome sequencing, proteins that are highly homologous to the oxygenase domain of NOSs have been identified, in particular in bacteria. The active site is highly conserved except for a valine residue in the distal pocket that is replaced with an isoleucine in bacteria. This switch was previously reported to influence the kinetics of the reaction. We have used the V346I mutant of the mouse inducible NOS (iNOS) as well as the I224V mutant of the NOS from Bacillus subtilis (bsNOS) to study their spectroscopic signatures in solution and look for potential structural differences compared to their respective wild types. Both mutants seem destabilized in the absence of substrate and cofactor. When both substrate and cofactor are present, small differences can be detected with Nω-hydroxy-l-arginine compared to arginine, which is likely due to the differences in the hydrogen bonding network of the distal pocket. Stopped-flow experiments evidence significant changes in the kinetics of the reaction due to the mutation as was already known. We found these effects particularly marked for iNOS. On the basis of these results, we performed rapid freeze-quench experiments to trap the biopterin radical and found the same results that we had obtained for the wild types. Despite differences in kinetics, a radical could be trapped in both steps for the iNOS mutant but only for the first step in the mutant of bsNOS. This strengthens the hypothesis that mammalian and bacterial NOSs may have a different mechanism during the second catalytic step.
Collapse
Affiliation(s)
- Marine Weisslocker-Schaetzel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay , F-91198 Gif-sur-Yvette cedex, France
| | - Mehdi Lembrouk
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay , F-91198 Gif-sur-Yvette cedex, France
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay , F-91198 Gif-sur-Yvette cedex, France
| | - Pierre Dorlet
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay , F-91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
4
|
Haque MM, Tejero J, Bayachou M, Wang ZQ, Fadlalla M, Stuehr DJ. Thermodynamic characterization of five key kinetic parameters that define neuronal nitric oxide synthase catalysis. FEBS J 2013; 280:4439-53. [PMID: 23789902 DOI: 10.1111/febs.12404] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/30/2022]
Abstract
NO synthase (NOS) enzymes convert L-arginine to NO in two sequential reactions whose rates (k(cat1) and k(cat2)) are both limited by the rate of ferric heme reduction (k(r)). An enzyme ferric heme-NO complex forms as an immediate product complex and then undergoes either dissociation (at a rate that we denote as k(d)) to release NO in a productive manner, or reduction (k(r)) to form a ferrous heme-NO complex that must react with O2 (at a rate that we denote as k(ox)) in a NO dioxygenase reaction that regenerates the ferric enzyme. The interplay of these five kinetic parameters (k(cat1), k(cat2), k(r), k(d) and k(ox)) determines NOS specific activity, O2 concentration response, and pulsatile versus steady-state NO generation. In the present study, we utilized stopped-flow spectroscopy and single catalytic turnover methods to characterize the individual temperature dependencies of the five kinetic parameters of rat neuronal NOS. We then incorporated the measured kinetic values into computer simulations of the neuronal NOS reaction using a global kinetic model to comprehensively model its temperature-dependent catalytic behaviours. The results obtained provide new mechanistic insights and also reveal that the different temperature dependencies of the five kinetic parameters significantly alter neuronal NOS catalytic behaviours and NO release efficiency as a function of temperature.
Collapse
|
5
|
Tejero J, Stuehr D. Tetrahydrobiopterin in nitric oxide synthase. IUBMB Life 2013; 65:358-65. [PMID: 23441062 DOI: 10.1002/iub.1136] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 12/25/2012] [Indexed: 11/10/2022]
Abstract
SUMMARY Nitric oxide synthase (NOS) is a critical enzyme for the production of the messenger molecule nitric oxide (NO) from L-arginine. NOS enzymes require tetrahydrobiopterin as a cofactor for NO synthesis. Besides being one of the few enzymes to use this cofactor, the role of tetrahydrobiopterin in NOS catalytic mechanism is different from other enzymes: during the catalytic cycle of NOS, tetrahydrobiopterin forms a radical species that is again reduced, thus effectively regenerating after each NO synthesis cycle. In this review, we summarize our current knowledge about the role of tetrahydrobiopterin in the structure, function, and catalytic mechanism of NOS enzymes.
Collapse
Affiliation(s)
- Jesús Tejero
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
6
|
Wang ZQ, Tejero J, Wei CC, Haque MM, Santolini J, Fadlalla M, Biswas A, Stuehr DJ. Arg375 tunes tetrahydrobiopterin functions and modulates catalysis by inducible nitric oxide synthase. J Inorg Biochem 2012; 108:203-15. [PMID: 22173094 PMCID: PMC3306459 DOI: 10.1016/j.jinorgbio.2011.11.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Revised: 11/12/2011] [Accepted: 11/14/2011] [Indexed: 10/15/2022]
Abstract
NO synthase enzymes (NOS) support unique single-electron transitions of a bound H(4)B cofactor during catalysis. Previous studies showed that both the pterin structure and surrounding protein residues impact H(4)B redox function during catalysis. A conserved Arg residue (Arg375 in iNOS) forms hydrogen bonds with the H(4)B ring. In order to understand the role of this residue in modulating the function of H(4)B and overall NO synthesis of the enzyme, we generated and characterized three mutants R375D, R375K and R375N of the oxygenase domain of inducible NOS (iNOSoxy). The mutations affected the dimer stability of iNOSoxy and its binding affinity toward substrates and H(4)B to varying degrees. Optical spectra of the ferric, ferrous, ferrous dioxy, ferrous-NO, ferric-NO, and ferrous-CO forms of each mutant were similar to the wild-type. However, mutants displayed somewhat lower heme midpoint potentials and faster ferrous heme-NO complex reactivity with O(2). Unlike the wild-type protein, mutants could not oxidize NOHA to nitrite in a H(2)O(2)-driven reaction. Mutation could potentially change the ferrous dioxy decay rate, H(4)B radical formation rate, and the amount of the Arg hydroxylation during single turnover Arg hydroxylation reaction. All mutants were able to form heterodimers with the iNOS G450A full-length protein and displayed lower NO synthesis activities and uncoupled NADPH consumption. We conclude that the conserved residue Arg375 (1) regulates the tempo and extent of the electron transfer between H(4)B and ferrous dioxy species and (2) controls the reactivity of the heme-based oxidant formed after electron transfer from H(4)B during steady state NO synthesis and H(2)O(2)-driven NOHA oxidation. Thus, Arg375 modulates the redox function of H(4)B and is important in controlling the catalytic function of NOS enzymes.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Chemistry and Biochemistry, Kent State University at Tuscarawas, New Philadelphia, Ohio, 44663
| | - Jesús Tejero
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, 44195
| | - Chin-Chuan Wei
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, 62026
| | - Mohammad Mahfuzul Haque
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, 44195
| | - Jerome Santolini
- iBiTec-S; LSOD, C. E. A. Saclay; 91191 Gif-sur-Yvette Cedex, France
| | - Mohammed Fadlalla
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, 44195
| | - Ashis Biswas
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, 44195
| | - Dennis J. Stuehr
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, 44195
| |
Collapse
|
7
|
Feng C. Mechanism of Nitric Oxide Synthase Regulation: Electron Transfer and Interdomain Interactions. Coord Chem Rev 2012; 256:393-411. [PMID: 22523434 PMCID: PMC3328867 DOI: 10.1016/j.ccr.2011.10.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitric oxide synthase (NOS), a flavo-hemoprotein, tightly regulates nitric oxide (NO) synthesis and thereby its dual biological activities as a key signaling molecule for vasodilatation and neurotransmission at low concentrations, and also as a defensive cytotoxin at higher concentrations. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their key biological functions by tight regulation of interdomain electron transfer (IET) process via interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O(2) activation at the catalytic heme site. Compelling evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS through a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the domains. Another exciting recent development in NOS enzymology is the discovery of importance of the the FMN domain motions in modulating reactivity and structure of the catalytic heme active site (in addition to the primary role of controlling the IET processes). In the absence of a structure of full-length NOS, an integrated approach of spectroscopic (e.g. pulsed EPR, MCD, resonance Raman), rapid kinetics (laser flash photolysis and stopped flow) and mutagenesis methods is critical to unravel the molecular details of the interdomain FMN/heme interactions. This is to investigate the roles of dynamic conformational changes of the FMN domain and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in understanding of mechanisms of the NOS regulation that are driven by the combined approach are the focuses of this review. An improved understanding of the role of interdomain FMN/heme interaction and CaM binding may serve as the basis for the design of new selective inhibitors of NOS isoforms.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131 (USA) , Tel: 505-925-4326
| |
Collapse
|
8
|
Mansuy D, Mathieu D, Battioni P, Boucher JL. Reactions between iron porphyrins and tetrahydropterins. J PORPHYR PHTHALOCYA 2012. [DOI: 10.1142/s1088424604000258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Data from the last few years have revealed a novel biological role of the tetrahydrobiopterin ( H 4 B ) cofactor, in one-electron transfers to the heme of the active site of NO-synthases (NOSs) with intermediate formation of a H 4 B -derived radical. These electron transfers play a key role in the catalytic cycles of the two steps catalyzed by NOS, the N ω-hydroxylation of L-arginine, and the three-electron oxidation of N ω-hydroxyarginine to L-citrulline and NO. Recent experiments performed between various tetrahydropterins and iron porphyrins have shown that the one-electron transfer from tetrahydropterins, such as the natural cofactors H 4 B and tetrahydrofolate or the synthetic 6,7-dimethyltetrahydropterin (diMeH4P), to Fe(III) porphyrins of sufficiently high redox potentials (> about -100 mV versus NHE for the Fe(III)/Fe(II) couple) is a very general reaction that occurs with formation of a tetrahydropterin-derived radical. Reaction of diMeH4P with a stable porphyrin Fe(II)-O 2 complex leads to a diMeH4P-derived radical and a transient Fe(III)-OOH complex, mimicking the reaction between H 4 B and heme Fe(II)-O 2 in the NOS catalytic cycle. Tetrahydropterins such as diMeH4P also reduce hemeproteins Fe(III) of sufficiently high redox potentials, such as cytochromes c and b5 or metmyoglobin, to the corresponding hemeproteins Fe(II) .
Collapse
Affiliation(s)
- Daniel Mansuy
- Université Paris 5, UMR 8601, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Delphine Mathieu
- Université Paris 5, UMR 8601, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Pierrette Battioni
- Université Paris 5, UMR 8601, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | - Jean-Luc Boucher
- Université Paris 5, UMR 8601, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| |
Collapse
|
9
|
Smith BC, Fernhoff NB, Marletta MA. Mechanism and kinetics of inducible nitric oxide synthase auto-S-nitrosation and inactivation. Biochemistry 2012; 51:1028-40. [PMID: 22242685 DOI: 10.1021/bi201818c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitric oxide (NO), the product of the nitric oxide synthase (NOS) reaction, was previously shown to result in S-nitrosation of the NOS Zn(2+)-tetrathiolate and inactivation of the enzyme. To probe the potential physiological significance of NOS S-nitrosation, we determined the inactivation time scale of the inducible NOS isoform (iNOS) and found it directly correlates with an increase in the level of iNOS S-nitrosation. A kinetic model of NOS inactivation in which arginine is treated as a suicide substrate was developed. In this model, NO synthesized at the heme cofactor is partitioned between release into solution (NO release pathway) and NOS S-nitrosation followed by NOS inactivation (inactivation pathway). Experimentally determined progress curves of NO formation were fit to the model. The NO release pathway was perturbed through addition of the NO traps oxymyoglobin (MbO(2)) and β2 H-NOX, which yielded partition ratios between NO release and inactivation of ~100 at 4 μM MbO(2) and ~22000 at saturating trap concentrations. The results suggest that a portion of the NO synthesized at the heme cofactor reacts with the Zn(2+)-tetrathiolate without being released into solution. Perturbation of the inactivation pathway through addition of the reducing agent GSH or TCEP resulted in a concentration-dependent decrease in the level of iNOS S-nitrosation that directly correlated with protection from iNOS inactivation. iNOS inactivation was most responsive to physiological concentrations of GSH with an apparent K(m) value of 13 mM. NOS turnover that leads to NOS S-nitrosation might be a mechanism for controlling NOS activity, and NOS S-nitrosation could play a role in the physiological generation of nitrosothiols.
Collapse
Affiliation(s)
- Brian C Smith
- California Institute for Quantitative Biosciences, University of California, Berkeley, California 94720-3220, United States
| | | | | |
Collapse
|
10
|
Hannibal L, Somasundaram R, Tejero J, Wilson A, Stuehr DJ. Influence of heme-thiolate in shaping the catalytic properties of a bacterial nitric-oxide synthase. J Biol Chem 2011; 286:39224-35. [PMID: 21921039 PMCID: PMC3234747 DOI: 10.1074/jbc.m111.286351] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/26/2011] [Indexed: 12/26/2022] Open
Abstract
Nitric-oxide synthases (NOS) are heme-thiolate enzymes that generate nitric oxide (NO) from L-arginine. Mammalian and bacterial NOSs contain a conserved tryptophan (Trp) that hydrogen bonds with the heme-thiolate ligand. We mutated Trp(66) to His and Phe (W66H, W66F) in B. subtilis NOS to investigate how heme-thiolate electronic properties control enzyme catalysis. The mutations had opposite effects on heme midpoint potential (-302, -361, and -427 mV for W66H, wild-type (WT), and W66F, respectively). These changes were associated with rank order (W66H < WT < W66F) changes in the rates of oxygen activation and product formation in Arg hydroxylation and N-hydroxyarginine (NOHA) oxidation single turnover reactions, and in the O(2) reactivity of the ferrous heme-NO product complex. However, enzyme ferrous heme-O(2) autoxidation showed an opposite rank order. Tetrahydrofolate supported NO synthesis by WT and the mutant NOS. All three proteins showed similar extents of product formation (L-Arg → NOHA or NOHA → citrulline) in single turnover studies, but the W66F mutant showed a 2.5 times lower activity when the reactions were supported by flavoproteins and NADPH. We conclude that Trp(66) controls several catalytic parameters by tuning the electron density of the heme-thiolate bond. A greater electron density (as in W66F) improves oxygen activation and reactivity toward substrate, but decreases heme-dioxy stability and lowers the driving force for heme reduction. In the WT enzyme the Trp(66) residue balances these opposing effects for optimal catalysis.
Collapse
Affiliation(s)
- Luciana Hannibal
- From the Department of Pathobiology, Lerner
Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Ramasamy Somasundaram
- From the Department of Pathobiology, Lerner
Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Jesús Tejero
- From the Department of Pathobiology, Lerner
Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| | - Adjele Wilson
- the Laboratoire Stress Oxidant et Detoxication
(LSOD), CEA-IBITEC-S, Saclay, 91191 Gif-sur-Yvette Cedex, France
| | - Dennis J. Stuehr
- From the Department of Pathobiology, Lerner
Research Institute, Cleveland Clinic, Cleveland, Ohio 44195 and
| |
Collapse
|
11
|
Lustig DB, Kempt C, Alam S, Clancy J, Yee J, Rafferty SP. Mutation of conserved tryptophan residues at the dimer interface of Staphylococcus aureus nitric oxide synthase. Arch Biochem Biophys 2011; 506:165-72. [DOI: 10.1016/j.abb.2010.11.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/25/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
|
12
|
Santolini J. The molecular mechanism of mammalian NO-synthases: a story of electrons and protons. J Inorg Biochem 2010; 105:127-41. [PMID: 21194610 DOI: 10.1016/j.jinorgbio.2010.10.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 02/01/2023]
Abstract
Since its discovery, nitric oxide synthase (NOS), the enzyme responsible for NO biosynthesis in mammals, has been the subject of extensive investigations regarding its catalytic and molecular mechanisms. These studies reveal the high degree of sophistication of NOS functioning and regulation. However, the precise description of the NOS molecular mechanism and in particular of the oxygen activation chemistry is still lacking. The reaction intermediates implicated in NOS catalysis continue to elude identification and the current working paradigm is increasingly contested. Consequently, the last three years has seen the emergence of several competing models. All these models propose the same global reaction scheme consisting of two successive oxidation reactions but they diverge in the details of their reaction sequence. The major discrepancies concern the number, source and characteristics of proton and electron transfer processes. As a result each model proposes distinct reaction pathways with different implied oxidative species. This review aims to examine the different experimental evidence concerning NOS proton and electron transfer events and the role played by the substrates and cofactors in these processes. The resulting discussion should provide a comparative picture of all potential models for the NOS molecular mechanism.
Collapse
Affiliation(s)
- Jérôme Santolini
- iBiTec-S; LSOD, C. E. A. Saclay; 91191 Gif-sur-Yvette Cedex, France.
| |
Collapse
|
13
|
The Role of Endothelial Nitric Oxide Synthase Gene Polymorphism in Clinically Classified Patients with Coronary Artery Disease. BIOTECHNOL BIOTEC EQ 2010. [DOI: 10.2478/v10133-010-0083-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
14
|
Reece SY, Woodward JJ, Marletta MA. Synthesis of Nitric Oxide by the NOS-like Protein from Deinococcus radiodurans: A Direct Role for Tetrahydrofolate. Biochemistry 2009; 48:5483-91. [DOI: 10.1021/bi900385g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Michael A. Marletta
- Department of Chemistry
- Department of Molecular and Cell Biology
- California Institute for Quantitative Biosciences
- Division of Physical Biosciences, Lawrence Berkeley National Laboratory
| |
Collapse
|
15
|
Hoke KR, Crane BR. The solution electrochemistry of tetrahydrobiopterin revisited. Nitric Oxide 2009; 20:79-87. [PMID: 19059356 DOI: 10.1016/j.niox.2008.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 10/28/2008] [Accepted: 11/16/2008] [Indexed: 10/21/2022]
Abstract
Re-investigation of the electrochemical behavior of the nitric oxide synthase (NOS) cofactor tetrahydrobiopterin on graphite electrodes has revealed drastic differences in reversibility of electron transfer (ET) depending on the type of electrode surface employed. In particular, slow electron transfer kinetics and quasireversibility on an unpolished glassy carbon electrode can mask underlying concerted two-electron transfer chemistry and cause the appearance of an apparent one-electron couple. Nonetheless, the thermodynamic instability of the radical intermediate prevents any detectable build-up of this intermediate under any conditions tested. Scan rate and pH-dependencies of the concerted two-electron couple indicate a kinetic barrier to formation of the radical that depends on proton availability. These observations resolve previous conflicting interpretations of tetrahydrobiopterin solution electrochemistry and comment on how NOS may stabilize the one-electron oxidized radical state that participates in enzymatic production of nitric oxide.
Collapse
Affiliation(s)
- Kevin R Hoke
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
16
|
Tejero J, Biswas A, Wang ZQ, Page RC, Haque MM, Hemann C, Zweier JL, Misra S, Stuehr DJ. Stabilization and characterization of a heme-oxy reaction intermediate in inducible nitric-oxide synthase. J Biol Chem 2008; 283:33498-507. [PMID: 18815130 PMCID: PMC2586280 DOI: 10.1074/jbc.m806122200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/24/2008] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide synthases (NOS) are heme-thiolate enzymes that N-hydroxylate L-arginine (L-Arg) to make NO. NOS contain a unique Trp residue whose side chain stacks with the heme and hydrogen bonds with the heme thiolate. To understand its importance we substituted His for Trp188 in the inducible NOS oxygenase domain (iNOSoxy) and characterized enzyme spectral, thermodynamic, structural, kinetic, and catalytic properties. The W188H mutation had relatively small effects on l-Arg binding and on enzyme heme-CO and heme-NO absorbance spectra, but increased the heme midpoint potential by 88 mV relative to wild-type iNOSoxy, indicating it decreased heme-thiolate electronegativity. The protein crystal structure showed that the His188 imidazole still stacked with the heme and was positioned to hydrogen bond with the heme thiolate. Analysis of a single turnover L-Arg hydroxylation reaction revealed that a new heme species formed during the reaction. Its build up coincided kinetically with the disappearance of the enzyme heme-dioxy species and with the formation of a tetrahydrobiopterin (H4B) radical in the enzyme, whereas its subsequent disappearance coincided with the rate of l-Arg hydroxylation and formation of ferric enzyme. We conclude: (i) W188H iNOSoxy stabilizes a heme-oxy species that forms upon reduction of the heme-dioxy species by H4B. (ii) The W188H mutation hinders either the processing or reactivity of the heme-oxy species and makes these steps become rate-limiting for l-Arg hydroxylation. Thus, the conserved Trp residue in NOS may facilitate formation and/or reactivity of the ultimate hydroxylating species by tuning heme-thiolate electronegativity.
Collapse
Affiliation(s)
- Jesús Tejero
- Department of Pathobiology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Chartier FJM, Blais SP, Couture M. A Weak Fe–O Bond in the Oxygenated Complex of the Nitric-oxide Synthase of Staphylococcus aureus. J Biol Chem 2006; 281:9953-62. [PMID: 16473878 DOI: 10.1074/jbc.m513893200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Little is known about the intermediates formed during catalysis by nitric-oxide synthase (NOS). We report here the characterization by resonance Raman spectroscopy of the oxygenated complex of the NOS from Staphylococcus aureus (saNOS) as well as the kinetics of formation and decay of the complex. An oxygenated complex transiently formed after mixing reduced saNOS with oxygen and decayed to the ferric enzyme with kinetics that were dependent on the substrate L-arginine and the cofactor H(4)B. The oxygenated complex displayed a Soret absorption band centered at 430 nm. Resonance Raman spectroscopy revealed that it can be described as a ferric superoxide form (Fe(III)O(2)(-)) with a single nu(O-O) mode at 1135 cm(-1). In the presence of L-arginine, an additional nu(O-O) mode at 1123 cm(-1) was observed, indicating an increased pi back-bonding electron donation to the bound oxygen induced by the substrate. With saNOS, this is the first time that the nu(Fe-O) mode of a NOS has been observed. The low frequency of this mode, at 517 cm(-1), points to an oxygenated complex that differs from that of P450(cam). The electronic structure of the oxygenated complex and the effect of L-arginine are discussed in relation to the kinetic properties of saNOS and other NOS.
Collapse
Affiliation(s)
- François J M Chartier
- Department of Biochemistry and Microbiology and CREFSIP Research Center, Université Laval, Quebec City, Quebec G1K 7P4, Canada
| | | | | |
Collapse
|
18
|
Lefèvre-Groboillot D, Boucher JL, Mansuy D, Stuehr DJ. Reactivity of the heme-dioxygen complex of the inducible nitric oxide synthase in the presence of alternative substrates. FEBS J 2006; 273:180-91. [PMID: 16367758 DOI: 10.1111/j.1742-4658.2005.05056.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single turnover reactions of the inducible nitric oxide synthase oxygenase domain (iNOSoxy) in the presence of several non alpha-amino acid N-hydroxyguanidines and guanidines were studied by stopped-flow visible spectroscopy, and compared with reactions using the native substrates L-arginine (L-arg) or N(omega)-hydroxy-L-arginine (NOHA). In experiments containing dihydrobiopterin, a catalytically incompetent pterin, and each of the studied substrates, L-arg, butylguanidine (BuGua), para-fluorophenylguanidine (FPhGua), NOHA, N-butyl- and N-(para-fluorophenyl)-N'-hydroxyguanidines (BuNOHG and FPhNOHG), the formation of a iron(II) heme-dioxygen intermediate (Fe(II)O2) was always observed. The Fe(II)O2 species then decayed to iron(III) iNOSoxy at rates that were dependent on the nature of the substrate. Identical reactions containing the catalytically competent cofactor tetrahydrobiopterin (BH4), iNOSoxy and the three N-hydroxyguanidines, all exhibited an initial formation of an Fe(II)O2 species that was successively converted to an Fe(III)NO complex and eventually to high-spin iron(III) iNOSoxy. The formation and decay kinetics of the Fe(III)NO complex did not vary greatly as a function of the N-hydroxyguanidine structure, but the formation of Fe(III)NO was substoichiometric in the cases of BuNOHG and FPhNOHG. Reactions between BH4-containing iNOSoxy and BuGua exhibited kinetics similar to those of the corresponding reaction with L-arginine, with formation of an Fe(II)O2 intermediate that was directly converted to high-spin iron(III) iNOSoxy. In contrast, no Fe(II)O2 intermediate was observed in the reaction of BH4-containing iNOSoxy and FPhGua. Multi-turnover reaction of iNOS with FPhGua did not lead to formation of NO or to hydroxylation of the substrate, contrary to reactions with BuGua or L-arg. Our results reveal how different structural and chemical properties of NOS substrate analogues can impact on the kinetics and reactivity of the Fe(II)O2 intermediate, and support an important role for substrate pKa during NOS oxygen activation.
Collapse
Affiliation(s)
- David Lefèvre-Groboillot
- Department of Immunology, The Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
19
|
Stuehr DJ, Wei CC, Wang Z, Hille R. Exploring the redox reactions between heme and tetrahydrobiopterin in the nitric oxide synthases. Dalton Trans 2005:3427-35. [PMID: 16234921 DOI: 10.1039/b506355h] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The NO synthases (NOSs) catalyze a two-step oxidation of L-arginine (Arg) to generate nitric oxide (NO) plus L-citrulline. Because NOSs are the only hemeproteins known to contain tetrahydrobiopterin (H4B) as a bound cofactor, the function and role of H4B in their heme-based oxygen activation and catalysis is of current interest. Distinct oxidative and reductive transitions of bound H4B cofactor occur during catalysis and are associated with distinct redox transitions of the NOS heme and flavin prosthetic groups. In this perspective, we discuss the redox transitions of H4B and heme with regard to their kinetics, regulation, role in the catalytic mechanism, and how and why they may be linked.
Collapse
Affiliation(s)
- Dennis J Stuehr
- Lerner Research Institute, Cleveland Clinic, Ohio State University, USA
| | | | | | | |
Collapse
|
20
|
Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci 2004; 75:639-53. [PMID: 15172174 DOI: 10.1016/j.lfs.2003.10.042] [Citation(s) in RCA: 953] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 10/24/2003] [Indexed: 12/18/2022]
Abstract
This review focuses on the production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and its regulation under physiological and pathophysiological conditions. NO is an important biological mediator in the living organism that is synthesized from L-arginine using NADPH and molecular oxygen. However, the overproduction of NO which is catalyzed by iNOS, a soluble enzyme and active in its dimeric form, is cytotoxic. Immunostimulating cytokines or bacterial pathogens activate iNOS and generate high concentrations of NO through the activation of inducible nuclear factors, including NFkB. iNOS activation is regulated mainly at the transcriptional level, but also at posttranscriptional, translational and postranslational levels through effects on protein stability, dimerization, phosphorylation, cofactor binding and availability of oxygen and L-arginine as substrates. The prevention of the overproduction of NO in the living organism through control of regulatory pathways may assist in the treatment of high NO-mediated disorders without changing physiological levels of NO.
Collapse
Affiliation(s)
- Fugen Aktan
- Faculty of Pharmacy, Building A15, Room N257, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
21
|
Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S. Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 2004; 279:36167-70. [PMID: 15133020 DOI: 10.1074/jbc.r400017200] [Citation(s) in RCA: 368] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Dennis J Stuehr
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | | | | | | | |
Collapse
|
22
|
Marchal S, Gorren ACF, Sørlie M, Andersson KK, Mayer B, Lange R. Evidence of Two Distinct Oxygen Complexes of Reduced Endothelial Nitric Oxide Synthase. J Biol Chem 2004; 279:19824-31. [PMID: 15004019 DOI: 10.1074/jbc.m313587200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxygen binding to the oxygenase domain of reduced endothelial nitric oxide synthase (eNOS) results in two distinct species differing in their Soret and visible absorbance maxima and in their capacity to exchange oxygen by CO. At 7 degrees C, heme-oxy I (with maxima at 420 and 560 nm) is formed very rapidly (k(on) approximately 2.5.10(6) m(-1).s(-1)) in the absence of substrate but in the presence of pterin cofactor. It is capable of exchanging oxygen with CO at -30 degrees C. Heme-oxy II is formed more slowly (k(on) approximately equal to 3.10(5) m(-1).s(-1)) in the presence of substrate, regardless of the presence of pterin. It is also formed in the absence of both substrate and pterin. In contrast to heme-oxy I, it cannot exchange oxygen with CO at cryogenic temperature. In the presence of arginine, heme-oxy II is characterized by absorbance maxima near 432, 564, and 597 nm. When arginine is replaced by N-hydroxyarginine, and also in the absence of both substrate and pterin, its absorbance maxima are blue-shifted to 428, 560, and 593 nm. Heme-oxy I seems to resemble the ferrous dioxygen complex observed in many hemoproteins, including cytochrome P450. Heme-oxy II, which is the oxygen complex competent for product formation, appears to represent a distinct conformation in which the electronic configuration is essentially locked in the ferric superoxide complex.
Collapse
Affiliation(s)
- Stéphane Marchal
- INSERM U431, Département Biologie-Santé, Université Montpellier II, IFR 122, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | | | | | | | | | | |
Collapse
|
23
|
Wang ZQ, Wei CC, Sharma M, Pant K, Crane BR, Stuehr DJ. A conserved Val to Ile switch near the heme pocket of animal and bacterial nitric-oxide synthases helps determine their distinct catalytic profiles. J Biol Chem 2004; 279:19018-25. [PMID: 14976216 DOI: 10.1074/jbc.m311663200] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide (NO) release from nitric oxide synthases (NOSs) is largely dependent on the dissociation of an enzyme ferric heme-NO product complex (Fe(III)NO). Although the NOS-like protein from Bacillus subtilis (bsNOS) generates Fe(III)NO from the reaction intermediate N-hydroxy-l-arginine (NOHA), its NO dissociation is about 20-fold slower than in mammalian NOSs. Crystal structures suggest that a conserved Val to Ile switch near the heme pocket of bsNOS might determine its kinetic profile. To test this we generated complementary mutations in the mouse inducible NOS oxygenase domain (iNOSoxy, V346I) and in bsNOS (I224V) and characterized the kinetics and extent of their NO synthesis from NOHA and their NO-binding kinetics. The mutations did not greatly alter binding of Arg, (6R)-tetrahydrobiopterin, or alter the electronic properties of the heme or various heme-ligand complexes. Stopped-flow spectroscopy was used to study heme transitions during single turnover NOHA reactions. I224V bsNOS displayed three heme transitions involving four species as typically occurs in wild-type NOS, the beginning ferrous enzyme, a ferrous-dioxy (Fe(II)O(2)) intermediate, Fe(III)NO, and an ending ferric enzyme. The rate of each transition was increased relative to wild-type bsNOS, with Fe(III)NO dissociation being 3.6 times faster. In V346I iNOSoxy we consecutively observed the beginning ferrous, Fe(II)O(2), a mixture of Fe(III)NO and ferric heme species, and ending ferric enzyme. The rate of each transition was decreased relative to wild-type iNOSoxy, with the Fe(III)NO dissociation being 3 times slower. An independent measure of NO binding kinetics confirmed that V346I iNOSoxy has slower NO binding and dissociation than wild-type. Citrulline production by both mutants was only slightly lower than wild-type enzymes, indicating good coupling. Our data suggest that a greater shielding of the heme pocket caused by the Val/Ile switch slows down NO synthesis and NO release in NOS, and thus identifies a structural basis for regulating these kinetic variables.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- Department of Immunology, the Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | |
Collapse
|
24
|
Gautier C, Négrerie M, Wang ZQ, Lambry JC, Stuehr DJ, Collin F, Martin JL, Slama-Schwok A. Dynamic regulation of the inducible nitric-oxide synthase by NO: comparison with the endothelial isoform. J Biol Chem 2004; 279:4358-65. [PMID: 14594819 DOI: 10.1074/jbc.m305048200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We studied by ultrafast time-resolved absorption spectroscopy the geminate recombination of NO to the oxygenase domain of the inducible NO synthase, iNOSoxy, and to mutated proteins at position Trp-457. This tryptophan interacts with the tetrahydrobiopterin cofactor BH4, and W457A/F mutations largely reduced the catalytic formation of NO. BH4 decreases the rate of NO rebinding to the ferric iNOSoxy compared with that measured in its absence. The pterin has a larger effect on W457A/F than on the WT protein by increasing NO release from the protein. Therefore, BH4 raises the energy barrier for NO recombination to the mutated proteins in contrast with our observations on eNOS (Slama-Schwok, A., Négrerie, M., Berka, V., Lambry, J.-C., Tsai, A.-L., Vos, M., and Martin, J.-L. (2002) J. Biol. Chem. 277, 7581-7586). Thus, we show a differential effect of BH4 on NO release from eNOS and iNOS. Compared with the position of this residue in the BH4-repleted enzyme, simulations of the NO dissociation dynamics point out at a swing of Trp-457 toward the missing pterin in the absence of BH4. NO geminate-rebinding data show a more efficient NO release from eNOS than from iNOS once NO is formed. Consistently, NO produced by iNOS is regulated by its ferric nitrosyl complex in contrast with eNOS. We show that the small enhancement of the NO geminate recombination rate in W457A/F compared with that in the WT enzyme cannot explain the decrease of NO yield because of the mutation; the major effect of the mutation thus arises from an uncoupled catalysis (Wang, Z. Q., Wei, C. C., Ghosh, S., Meade, A. L., Hemann, C., Hille, R., and Stuehr, D. J. (2001) Biochemistry 40, 12819-12825).
Collapse
Affiliation(s)
- Clement Gautier
- Laboratory for Optics and Biosciences, INSERM U451, CNRS Unite Mixte de Recherche 7645, Ecole Polytechnique, 91128 Palaiseau Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wei CC, Wang ZQ, Hemann C, Hille R, Stuehr DJ. A tetrahydrobiopterin radical forms and then becomes reduced during Nomega-hydroxyarginine oxidation by nitric-oxide synthase. J Biol Chem 2003; 278:46668-73. [PMID: 14504282 DOI: 10.1074/jbc.m307682200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide synthases are flavoheme enzymes that catalyze two sequential monooxygenase reactions to generate nitric oxide (NO) from l-arginine. We investigated a possible redox role for the enzyme-bound cofactor 6R-tetrahydrobiopterin (H4B) in the second reaction of NO synthesis, which is conversion of N-hydroxy-l-arginine (NOHA) to NO plus citrulline. We used stopped-flow spectroscopy and rapid-freeze EPR spectroscopy to follow heme and biopterin transformations during single-turnover NOHA oxidation reactions catalyzed by the oxygenase domain of inducible nitric-oxide synthase (iNOSoxy). Significant biopterin radical (>0.5 per heme) formed during reactions catalyzed by iNOSoxy that contained either H4B or 5-methyl-H4B. Biopterin radical formation was kinetically linked to conversion of a heme-dioxy intermediate to a heme-NO product complex. The biopterin radical then decayed within a 200-300-ms time period just prior to dissociation of NO from a ferric heme-NO product complex. Measures of final biopterin redox status showed that biopterin radical decay occurred via an enzymatic one-electron reduction process that regenerated H4B (or 5MeH4B). These results provide evidence of a dual redox function for biopterin during the NOHA oxidation reaction. The data suggest that H4B first provides an electron to a heme-dioxy intermediate, and then the H4B radical receives an electron from a downstream reaction intermediate to regenerate H4B. The first one-electron transition enables formation of the heme-based oxidant that reacts with NOHA, while the second one-electron transition is linked to formation of a ferric heme-NO product complex that can release NO from the enzyme. These redox roles are novel and expand our understanding of biopterin function in biology.
Collapse
Affiliation(s)
- Chin-Chuan Wei
- Department of Immunology, The Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
26
|
Wei CC, Wang ZQ, Meade AL, McDonald JF, Stuehr DJ. Why do nitric oxide synthases use tetrahydrobiopterin? J Inorg Biochem 2002; 91:618-24. [PMID: 12237227 DOI: 10.1016/s0162-0134(02)00432-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We are combining stopped-flow, stop-quench, and rapid-freezing kinetic methods to help clarify the unique redox roles of tetrahydrobiopterin (H(4)B) in NO synthesis, which occurs via the consecutive oxidation of L-arginine (Arg) and N-hydroxy-L-arginine (NOHA). In the Arg reaction, H(4)B radical formation is coupled to reduction of a heme Fe(II)O(2) intermediate. The tempo of this electron transfer is important for coupling Fe(II)O(2) formation to Arg hydroxylation. Because H(4)B provides this electron faster than can the NOS reductase domain, H(4)B appears to be a kinetically preferred source of the second electron for oxygen activation during Arg hydroxylation. A conserved Trp (W457 in mouse inducible NOS) has been shown to influence product formation by controlling the kinetics of H(4)B electron transfer to the Fe(II)O(2) intermediate. This shows that the NOS protein tunes H(4)B redox function. In the NOHA reaction the role of H(4)B is more obscure. However, existing evidence suggests that H(4)B may perform consecutive electron donor and acceptor functions to reduce the Fe(II)O(2) intermediate and then ensure that NO is produced from NOHA.
Collapse
Affiliation(s)
- Chin-Chuan Wei
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | |
Collapse
|
27
|
Pant K, Bilwes AM, Adak S, Stuehr DJ, Crane BR. Structure of a nitric oxide synthase heme protein from Bacillus subtilis. Biochemistry 2002; 41:11071-9. [PMID: 12220171 DOI: 10.1021/bi0263715] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eukaryotic nitric oxide synthases (NOSs) produce nitric oxide to mediate intercellular signaling and protect against pathogens. Recently, proteins homologous to mammalian NOS oxygenase domains have been found in prokaryotes and one from Bacillus subtilis (bsNOS) has been demonstrated to produce nitric oxide [Adak, S., Aulak, K. S., and Stuehr, D. J. (2002) J. Biol. Chem. 277, 16167-16171]. We present structures of bsNOS complexed with the active cofactor tetrahydrofolate and the substrate L-arginine (L-Arg) or the intermediate N(omega)-hydroxy-L-arginine (NHA) to 1.9 or 2.2 A resolution, respectively. The bsNOS structure is similar to those of the mammalian NOS oxygenase domains (mNOS(ox)) except for the absence of an N-terminal beta-hairpin hook and zinc-binding region that interact with pterin and stabilize the mNOS(ox) dimer. Changes in patterns of residue conservation between bacterial and mammalian NOSs correlate to different binding modes for pterin side chains. Residue conservation on a surface patch surrounding an exposed heme edge indicates a likely interaction site for reductase proteins in all NOSs. The heme pockets of bsNOS and mNOS(ox) recognize L-Arg and NHA similarly, although a change from Val to Ile beside the substrate guanidinium may explain the 10-20-fold slower dissociation of product NO from the bacterial enzyme. Overall, these structures suggest that bsNOS functions naturally to produce nitrogen oxides from L-Arg and NHA in a pterin-dependent manner, but that the regulation and purpose of NO production by NOS may be quite different in B. subtilis than in mammals.
Collapse
Affiliation(s)
- Kartikeya Pant
- The Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
28
|
Adak S, Aulak KS, Stuehr DJ. Direct evidence for nitric oxide production by a nitric-oxide synthase-like protein from Bacillus subtilis. J Biol Chem 2002; 277:16167-71. [PMID: 11856757 DOI: 10.1074/jbc.m201136200] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide synthases (NOSs) are widely distributed among prokaryotes and eukaryotes and have diverse functions in physiology. Recent genome sequencing revealed NOS-like protein in bacteria, but whether these proteins generate nitric oxide is unknown. We therefore cloned, expressed, and purified a NOS-like protein from Bacillus subtilis (bsNOS) and characterized its catalytic parameters in both multiple and single turnover reactions. bsNOS was dimeric, bound l-Arg and 6R-tetrahydrobiopterin with similar affinity as mammalian NOS, and generated nitrite from l-Arg when incubated with NADPH and a mammalian NOS reductase domain. Stopped-flow analysis showed that ferrous bsNOS reacted with O(2) to form a transient heme Fe(II)O(2) species in the presence of either Arg or the reaction intermediate N-hydroxy-l-arginine. In the latter case, disappearance of the Fe(II)O(2) species was kinetically and quantitatively coupled to formation of a transient heme Fe(III)NO product, which then dissociated to form ferric bsNOS. This behavior mirrors mammalian NOS enzymes and unambiguously shows that bsNOS can generate NO. NO formation required a bound tetrahydropteridine, and the kinetic effects of this cofactor were consistent with it donating an electron to the Fe(II)O(2) intermediate during the reaction. Dissociation of the heme Fe(III)NO product was much slower in bsNOS than in mammalian NOS. This constrains allowable rates of ferric heme reduction by a protein redox partner and underscores the utility of using a tetrahydropteridine electron donor in bsNOS.
Collapse
Affiliation(s)
- Subrata Adak
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA.
| | | | | |
Collapse
|