1
|
Iida K, Okada M. Identifying Key Regulatory Genes in Drug Resistance Acquisition: Modeling Pseudotime Trajectories of Breast Cancer Single-Cell Transcriptome. Cancers (Basel) 2024; 16:1884. [PMID: 38791962 PMCID: PMC11119661 DOI: 10.3390/cancers16101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Single-cell RNA-sequencing (scRNA-seq) technology has provided significant insights into cancer drug resistance at the single-cell level. However, understanding dynamic cell transitions at the molecular systems level remains limited, requiring a systems biology approach. We present an approach that combines mathematical modeling with a pseudotime analysis using time-series scRNA-seq data obtained from the breast cancer cell line MCF-7 treated with tamoxifen. Our single-cell analysis identified five distinct subpopulations, including tamoxifen-sensitive and -resistant groups. Using a single-gene mathematical model, we discovered approximately 560-680 genes out of 6000 exhibiting multistable expression states in each subpopulation, including key estrogen-receptor-positive breast cancer cell survival genes, such as RPS6KB1. A bifurcation analysis elucidated their regulatory mechanisms, and we mapped these genes into a molecular network associated with cell survival and metastasis-related pathways. Our modeling approach comprehensively identifies key regulatory genes for drug resistance acquisition, enhancing our understanding of potential drug targets in breast cancer.
Collapse
Affiliation(s)
- Keita Iida
- Institute for Protein Research, Osaka University, Suita 565-0871, Osaka, Japan;
| | | |
Collapse
|
2
|
Venkatesh J, Muthu M, Singaravelu I, Cheriyan VT, Sekhar SC, Acharige NCPN, Levi E, Assad H, Pflum MKH, Rishi AK. Phosphorylation of cell cycle and apoptosis regulatory protein-1 by stress activated protein kinase P38γ is a novel mechanism of apoptosis signaling by genotoxic chemotherapy. Front Oncol 2024; 14:1376666. [PMID: 38756656 PMCID: PMC11096501 DOI: 10.3389/fonc.2024.1376666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/08/2024] [Indexed: 05/18/2024] Open
Abstract
CARP-1, a perinuclear phospho-protein, regulates cell survival and apoptosis signaling induced by genotoxic drugs. However, kinase(s) phosphorylating CARP-1 and down-stream signal transduction events remain unclear. Here we find that CARP-1 Serine (S)626 and Threonine (T)627 substitution to Alanines (AA) inhibits genotoxic drug-induced apoptosis. CARP-1 T627 is followed by a Proline (P), and this TP motif is conserved in vertebrates. Based on these findings, we generated affinity-purified, anti-phospho-CARP-1 T627 rabbit polyclonal antibodies, and utilized them to elucidate chemotherapy-activated, CARP-1-dependent cell growth signaling mechanisms. Our kinase profiling studies revealed that MAPKs/SAPKs phosphorylated CARP-1 T627. We then UV cross-linked protein extracts from Adriamycin-treated HeLa cervical cancer cells with a CARP-1 (614-638) peptide, and conducted liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses of the peptide-bound protein complexes. This experiment revealed SAPK p38γ interaction with CARP-1 (614-638) peptide. Our studies further established that SAPK p38γ, but not other MAPKs, phosphorylates CARP-1 T627 in cancer cells treated with genotoxic drugs. Loss of p38γ abrogates CARP-1 T627 phosphorylation, and results in enhanced survival of breast cancer cells by genotoxic drugs. CARP-1 T627 phosphorylation was also noted in breast tumors from patients treated with radiation or endocrine therapies. We conclude that genotoxic drugs activate p38γ-dependent CARP-1 T627 phosphorylation to inhibit cell growth.
Collapse
Affiliation(s)
- Jaganathan Venkatesh
- John D. Dingell V.A. Medical Center, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Oncology, Wayne State University, Detroit, MI, United States
| | - Magesh Muthu
- John D. Dingell V.A. Medical Center, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Oncology, Wayne State University, Detroit, MI, United States
| | - Indulekha Singaravelu
- John D. Dingell V.A. Medical Center, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Oncology, Wayne State University, Detroit, MI, United States
| | - Vino T. Cheriyan
- John D. Dingell V.A. Medical Center, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Oncology, Wayne State University, Detroit, MI, United States
| | - Sreeja C. Sekhar
- John D. Dingell V.A. Medical Center, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Oncology, Wayne State University, Detroit, MI, United States
| | | | - Edi Levi
- John D. Dingell V.A. Medical Center, Wayne State University, Detroit, MI, United States
- Department of Pathology, Wayne State University, Detroit, MI, United States
| | - Hadeel Assad
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Oncology, Wayne State University, Detroit, MI, United States
| | - Mary Kay H. Pflum
- Department of Chemistry, Wayne State University, Detroit, MI, United States
| | - Arun K. Rishi
- John D. Dingell V.A. Medical Center, Wayne State University, Detroit, MI, United States
- Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
- Department of Oncology, Wayne State University, Detroit, MI, United States
| |
Collapse
|
3
|
Sengupta P, Dutta A, Suseela YV, Roychowdhury T, Banerjee N, Dutta A, Halder S, Jana K, Mukherjee G, Chattopadhyay S, Govindaraju T, Chatterjee S. G-quadruplex structural dynamics at MAPK12 promoter dictates transcriptional switch to determine stemness in breast cancer. Cell Mol Life Sci 2024; 81:33. [PMID: 38214819 PMCID: PMC11073236 DOI: 10.1007/s00018-023-05046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 01/13/2024]
Abstract
P38γ (MAPK12) is predominantly expressed in triple negative breast cancer cells (TNBC) and induces stem cell (CSC) expansion resulting in decreased survival of the patients due to metastasis. Abundance of G-rich sequences at MAPK12 promoter implied the functional probability to reverse tumorigenesis, though the formation of G-Quadruplex (G4) structures at MAPK12 promoter is elusive. Here, we identified two evolutionary consensus adjacent G4 motifs upstream of the MAPK12 promoter, forming parallel G4 structures. They exist in an equilibria between G4 and duplex, regulated by the binding turnover of Sp1 and Nucleolin that bind to these G4 motifs and regulate MAPK12 transcriptional homeostasis. To underscore the gene-regulatory functions of G4 motifs, we employed CRISPR-Cas9 system to eliminate G4s from TNBC cells and synthesized a naphthalene diimide (NDI) derivative (TGS24) which shows high-affinity binding to MAPK12-G4 and inhibits MAPK12 transcription. Deletion of G4 motifs and NDI compound interfere with the recruitment of the transcription factors, inhibiting MAPK12 expression in cancer cells. The molecular basis of NDI-induced G4 transcriptional regulation was analysed by RNA-seq analyses, which revealed that MAPK12-G4 inhibits oncogenic RAS transformation and trans-activation of NANOG. MAPK12-G4 also reduces CD44High/CD24Low population in TNBC cells and downregulates internal stem cell markers, arresting the stemness properties of cancer cells.
Collapse
Affiliation(s)
- Pallabi Sengupta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Anindya Dutta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Y V Suseela
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka, 560064, India
| | - Tanaya Roychowdhury
- Department of Cancer Biology and Inflammatory Disorder, IICB, Kolkata, West Bengal, India
| | - Nilanjan Banerjee
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Ananya Dutta
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Satyajit Halder
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Kuladip Jana
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India
| | - Gopeswar Mukherjee
- Barasat Cancer Research and Welfare Centre, Barasat, Kolkata, West Bengal, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, Karnataka, 560064, India.
| | - Subhrangsu Chatterjee
- Department of Biological Sciences, Unified Academic Campus, Bose Institute, EN-80, Sector V, Salt Lake, Bidhan Nagar, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
4
|
Natarajan P, Manne M, Koduru SK, Bokkasam TS. 3-deazaadenosine: A promising novel p38γ antagonist with potential as a breast cancer therapeutic agent. Cancer Treat Res Commun 2023; 36:100744. [PMID: 37481995 DOI: 10.1016/j.ctarc.2023.100744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Human p38γ protein kinase, or MAPK12, is a crucial signaling protein that is important in channelizing membrane signals to the nucleus in the MAPK cascade pathway, associated with breast and colorectal cancer, besides other forms of malignancies and atherosclerotic lesions too. P38γ has a significant contribution to the progression of breast carcinoma due to its multifaceted functions. Targeting p38γ for defining potent antagonists against p38γ can turn out to be an attractive and novel means of breast cancer therapeutics. Novel and potent lead molecules were designed utilizing computational drug design methodologies. Using high-throughput virtual screening, 1909 geometrically similar analogs of known inhibitors were generated, primarily using BIRB796, SB202190, ANP, CHEBI: 620708, and CHEBI: 524699. Chemical correctness was ensured using LigPrep for the standalone library, and Prep Wizard for p38γ using Maestro v.11.5. Using the Glide v5.5 flexible docking procedure on a standalone library of p38γ binding sites, we defined 18 potential leads and assessed their ADMET properties. Lead "1", among the proposed four p38γ antagonists with high-scoring and favorable interactions, was considered for 100 ns molecular dynamics simulations. Among the four proposed leads, Lead '1' displayed consistent and stable bonding interactions with p38γ throughout the 100 ns molecular dynamics (MD) simulations. Additionally, it formed water bridges, contributing to its strong association with the protein. Notably, Lead '1' (3-deazaadenosine) exhibited favorable root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) within the acceptable range of pharmacological properties. Thus, 3-deazaadenosine and its mimetic might be promising new directions for developing a novel class of antagonists for breast cancer treatment.
Collapse
Affiliation(s)
- Pradeep Natarajan
- Bioinformatics Center, Department of Biotechnology, Anna University, Chennai, Tamil Nadu 600025, India.
| | - Munikumar Manne
- Clinical Division, ICMR-National Institute of Nutrition, Jamai-Osmania (Post), Hyderabad, 500007 Telangana, India.
| | - Swetha Kumari Koduru
- Department of Bio-sciences and Sericulture, Sri Padmavati Mahila Visvavidyalayam Women's University, Tirupati, Andhra Pradesh 517502, India
| | - Teja Sree Bokkasam
- Department of Biotechnology, Sri Padmavati Mahila Visvavidyalayam Women's University, Tirupati, Andhra Pradesh 517502, India
| |
Collapse
|
5
|
Qi XM, Chen G. p38γ MAPK Inflammatory and Metabolic Signaling in Physiology and Disease. Cells 2023; 12:1674. [PMID: 37443708 PMCID: PMC10341180 DOI: 10.3390/cells12131674] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/12/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023] Open
Abstract
p38γ MAPK (also called ERK6 or SAPK3) is a family member of stress-activated MAPKs and has common and specific roles as compared to other p38 proteins in signal transduction. Recent studies showed that, in addition to inflammation, p38γ metabolic signaling is involved in physiological exercise and in pathogenesis of cancer, diabetes, and Alzheimer's disease, indicating its potential as a therapeutic target. p38γphosphorylates at least 19 substrates through which p38γ activity is further modified to regulate life-important cellular processes such as proliferation, differentiation, cell death, and transformation, thereby impacting biological outcomes of p38γ-driven pathogenesis. P38γ signaling is characterized by its unique reciprocal regulation with its specific phosphatase PTPH1 and by its direct binding to promoter DNAs, leading to transcriptional activation of targets including cancer-like stem cell drivers. This paper will review recent findings about p38γ inflammation and metabolic signaling in physiology and diseases. Moreover, we will discuss the progress in the development of p38γ-specific pharmacological inhibitors for therapeutic intervention in disease prevention and treatment by targeting the p38γ signaling network.
Collapse
Affiliation(s)
- Xiao-Mei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Research Service, Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53295, USA
| |
Collapse
|
6
|
Xu W, Liu R, Dai Y, Hong S, Dong H, Wang H. The Role of p38γ in Cancer: From review to outlook. Int J Biol Sci 2021; 17:4036-4046. [PMID: 34671218 PMCID: PMC8495394 DOI: 10.7150/ijbs.63537] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/16/2021] [Indexed: 01/20/2023] Open
Abstract
p38γ is a member of the p38 Mitogen Activated Protein Kinases (p38 MAPKs). It contains four subtypes in mammalian cells encoded by different genes including p38α (MAPK14), p38β (MAPK11), p38γ (MAPK12), and p38δ (MAPK13). Recent studies revealed that p38γ may exhibit a crucial role in tumorigenesis and cancer aggressiveness. Despite the large number of published literatures, further researches are demanded to clarify its role in cancer development, the tissue-specific function and associated novel treatment strategies. In this article, we provide the latest view on the connection between p38γ and malignant tumors, highlighting the function of p38γ. The clinical value of p38γ is also discussed, helping the translation into the remarkable therapeutic strategy in tumor diseases.
Collapse
Affiliation(s)
- Wentao Xu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.,First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Rui Liu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Ying Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Shaocheng Hong
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huke Dong
- First Clinical Medical College of Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, Anhui, China
| |
Collapse
|
7
|
Jiang C, Wei W, Wang Y, Song C, Pan L, Sun K, Du G, Deng Y, Tang G. TRIM21 causes abnormal expression of IL-6 in oral lichen planus via the TRIB2-MAPK signal axis. Am J Transl Res 2020; 12:4648-4658. [PMID: 32913538 PMCID: PMC7476140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
UNLABELLED Oral lichen planus (OLP) is a common chronic inflammatory disease in the oral cavity, and has the risk of developing into oral squamous cell carcinoma (OSCC). It is necessary to discover the role of TRIM21 in the pathogenesis of OLP and its underlying mechanism. METHODS Western bolt and qPCR assays were used to detect the effects of TRIM21 on cellular levels of ERK, p-ERK, AP-1, IL-6, TRIB2, IRF3, and IRF7, while co-immunoprecipitation was performed to verify the interaction between Trim21 and TRIB2 protein. The TRIM21 effect on TH1/TH2 balance in T cells was also evaluated using ELISA. RESULTS The results of western blot showed that TRIM21 overexpression significantly increased p-ERK, c-fos, c-jun, IL-6 and TRIB2 levels in H9 cells (P<0.01 and P<0.001), however, inhibited the IRF3 and IRF7 levels (P<0.05). On the other hand, TRIM21 did not regulate the phosphorylation of ERK and the mRNA expression of AP-1 and TRIB2. In addition, TRIM21 was in relation to the proteasome degradation in TRIB2-ERK. TRIM21 also regulated the level of TRIB2 not only by inhibiting the ubiquitination of TRIB2, but also by affecting IL-6 through the ERK pathway. CONCLUSION TRIM21 caused abnormal expression of IL-6 in OLP via regulating TRIB2-MAPK signal axis, leading to the disrupted Th1/Th2 balance in T lymphocytes.
Collapse
Affiliation(s)
- Chenyan Jiang
- Department of Oral Medicine, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- National Clinical Research Center for Oral DiseasesShanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghai 200011, China
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- Institute of Otology, Shanghai Jiaotong University School of MedicineShanghai 200011, China
- Shanghai Key Laboratory for Transitional Medicine of Nose and Ear DiseasesShanghai 200011, China
| | - Wei Wei
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Xin Hua Hospital, Shanghai Jiao Tong University School of MedicineShanghai 200092, China
| | - Yufeng Wang
- Department of Oral Medicine, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- National Clinical Research Center for Oral DiseasesShanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghai 200011, China
| | - Chencheng Song
- Department of Oral Medicine, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- National Clinical Research Center for Oral DiseasesShanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghai 200011, China
| | - Lei Pan
- Department of Oral Medicine, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- National Clinical Research Center for Oral DiseasesShanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghai 200011, China
| | - Kai Sun
- Department of Oral Medicine, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- National Clinical Research Center for Oral DiseasesShanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghai 200011, China
| | - Guanhuan Du
- Department of Oral Medicine, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- National Clinical Research Center for Oral DiseasesShanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghai 200011, China
| | - Yiwen Deng
- Department of Oral Medicine, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- National Clinical Research Center for Oral DiseasesShanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghai 200011, China
| | - Guoyao Tang
- Department of Oral Medicine, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of MedicineShanghai 200011, China
- National Clinical Research Center for Oral DiseasesShanghai 200011, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of StomatologyShanghai 200011, China
| |
Collapse
|
8
|
Ryu M, Sung CK, Im YJ, Chun C. Activation of JNK and p38 in MCF-7 Cells and the In Vitro Anticancer Activity of Alnus hirsuta Extract. Molecules 2020; 25:E1073. [PMID: 32121012 PMCID: PMC7179116 DOI: 10.3390/molecules25051073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/02/2023] Open
Abstract
JNK and p38 are important mitogen-activated protein kinases (MAPKs) that respond to stress stimuli. The stress-activated MAPKs associated with apoptotic cell death play vital roles in mammalian cells. Alnus hirsuta, which contains abundant diarylheptanoids derivatives, is a valuable medicinal plant. The CHCl3 extract (AHC) containing platyphyllenone (1) and platyphyllone (3) as main compounds showed in vitro anticancer effects. We report the biological activities of A. hirsuta extract associated with the regulation of apoptosis and JNK and p38 in MCF-7 breast cancer cells. Levels of phospho-JNK and phospho-p38 by AHC treatment were evaluated by enzyme-linked immunosorbent assay (ELISA). ROS production, apoptotic effect, and DNA contents of the cells were measured by flow cytometry. The two diarylheptanoids 1 and 3 and the AHC extract exhibited cytotoxic effects on MCF-7 cells in MTT assay, with IC50 values of 18.1, 46.9, 260.0 μg/mL, respectively. AHC induced ROS generation and elevated the endogenous levels of phospho-JNK and phospho-p38. AHC resulted in apoptosis and cell cycle arrest. We suggest that the antitumor effect of A. hirsuta extract is achieved by apoptosis promotion and cell cycle arrest mediated by the activation of JNK and p38 signaling pathway via ROS generation.
Collapse
Affiliation(s)
| | | | - Young Jun Im
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea; (M.R.); (C.K.S.)
| | - ChangJu Chun
- College of Pharmacy, Chonnam National University, Gwangju 61186, Korea; (M.R.); (C.K.S.)
| |
Collapse
|
9
|
Chen H, Wang X, Guo F, Li P, Peng D, He J. Impact of p38γ mitogen-activated protein kinase (MAPK) on MDA-MB-231 breast cancer cells using metabolomic approach. Int J Biochem Cell Biol 2018; 107:6-13. [PMID: 30447427 DOI: 10.1016/j.biocel.2018.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND The expression of p38 MAPK is high in breast cancer while its subunit p38γ had been rarely reported. We aimed to explain the effect of p38γ in breast cancer from the perspective of metabolomics. METHODS In this study, we detected the expression of p38γ in 28 breast carcinoma and para-tumor samples. Following MDA-MB-231 cell transfection with p38γ siRNAs and pc-DNA-3.1, cell viability, apoptosis, metastasis were determined through CCK-8, the cytometry analysis, transwell assay and wound healing assay. Finally, gas chromatograph-mass spectrometer (GC-MS) was used for analysis the differential metabolites. RESULTS The expression of p38γ was significantly up-regulated in breast cancer tissues. The transfection of si-p38γs could inhibit MDA-MB-231 cell propagation, metastasis, and induced cell apoptosis while overexpressed p38γ could promote the cell propagation, metastasis, and inhibit cell apoptosis. A total of 238 metabolites were identified and 72 of them differentially expressed in three groups (all P < 0.05, FDR < 0.05). Then the metabolites were enriched in the metabolism pathway, 85 pathways were included and 27 were significant (all P < 0.05, FDR < 0.05). CONCLUSIONS p38γ was up-regulated in breast cancer, which exerts a great influence on the cell growth, cell mobility, invasiveness, and apoptosis of MDA-MB-231 cells and also affected the metabolism.
Collapse
Affiliation(s)
- Hongshen Chen
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China; Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Xin Wang
- Department of Nephrology, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Fangdong Guo
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Pisong Li
- Department of Breast and Thyroid Surgery, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, Liaoning, China
| | - Dashuai Peng
- Urology Department One, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
10
|
Targeting an oncogenic kinase/phosphatase signaling network for cancer therapy. Acta Pharm Sin B 2018; 8:511-517. [PMID: 30109176 PMCID: PMC6089844 DOI: 10.1016/j.apsb.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 01/10/2023] Open
Abstract
Protein kinases and phosphatases signal by phosphorylation and dephosphorylation to precisely control the activities of their individual and common substrates for a coordinated cellular outcome. In many situations, a kinase/phosphatase complex signals dynamically in time and space through their reciprocal regulations and their cooperative actions on a substrate. This complex may be essential for malignant transformation and progression and can therefore be considered as a target for therapeutic intervention. p38γ is a unique MAPK family member that contains a PDZ motif at its C-terminus and interacts with a PDZ domain-containing protein tyrosine phosphatase PTPH1. This PDZ-coupled binding is required for both PTPH1 dephosphorylation and inactivation of p38γ and for p38γ phosphorylation and activation of PTPH1. Moreover, the p38γ/PTPH1 complex can further regulate their substrates phosphorylation and dephosphorylation, which impacts Ras transformation, malignant growth and progression, and therapeutic response. This review will use the p38γ/PTPH1 signaling network as an example to discuss the potential of targeting the kinase/phosphatase signaling complex for development of novel targeted cancer therapy.
Collapse
|
11
|
Tsai CF, Cheng YK, Lu DY, Wang SL, Chang CN, Chang PC, Yeh WL. Inhibition of estrogen receptor reduces connexin 43 expression in breast cancers. Toxicol Appl Pharmacol 2017; 338:182-190. [PMID: 29180066 DOI: 10.1016/j.taap.2017.11.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 11/15/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
Connexins are widely supported as tumor suppressors due to their downregulation in cancers, nevertheless, more recent evidence suggests roles for connexins in facilitating tumor progression in later stages, including metastasis. One of the key factors regulating the expression, modification, stability, and localization of connexins is hormone receptors in hormone-dependent cancers. It is reasonable to consider that hormones/hormone receptors may modulate connexins expression and play critical roles in the cellular control of connexins during breast cancer progression. In estrogen receptor (ER)-positive breast cancers, tamoxifen and fulvestrant are widely used therapeutic agents and are considered to alter ER signaling. In this present study, we investigated the effects of fulvestrant and tamoxifen in Cx43 expression, and we also explored the role of Cx43 in ER-positive breast cancer migration and the relationship between Cx43 and ER. The involvement of estrogen/ER in Cx43 modulation was further verified by administering tyrosine kinase inhibitors and chemotherapeutic agents. We found that inhibition of ER promoted the binding of E3 ligase Nedd4 to Cx43, leading to Cx43 ubiquitination. Furthermore, inhibition of ER by fulvestrant and tamoxifen phosphorylated p38 MAPK, and inhibition of Rac, MKK3/6, and p38 reversed fulvestrant-reduced Cx43 expression. These findings suggest that Cx43 expression which may positively regulate cell migration is ER-dependent in ER-positive breast cancer cells.
Collapse
Affiliation(s)
- Cheng-Fang Tsai
- Department of Biotechnology, Asia University, No.500 Lioufeng Road, Taichung 41354, Taiwan.
| | - Yu-Kai Cheng
- Division of Neurosurgery, China Medical University Hospital, No.2 Yuh-Der Road, Taichung, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan; Department of Photonics and Communication Engineering, Asia University, No.500 Lioufeng Road, Taichung 41354, Taiwan.
| | - Shu-Lin Wang
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Chen-Ni Chang
- Department of Biological Science and Technology, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Pei-Chun Chang
- Department of Bioinformatics and Medical Engineering, Asia University, No.500 Lioufeng Road, Taichung 41354, Taiwan.
| | - Wei-Lan Yeh
- Institute of New Drug Development, China Medical University, No.91 Hsueh-Shih Road, Taichung 40402, Taiwan.
| |
Collapse
|
12
|
Park J, Lee Y. Hypoxia induced phosphorylation of estrogen receptor at serine 118 in the absence of ligand. J Steroid Biochem Mol Biol 2017; 174:146-152. [PMID: 28847747 DOI: 10.1016/j.jsbmb.2017.08.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/18/2017] [Accepted: 08/21/2017] [Indexed: 10/19/2022]
Abstract
The estrogen receptor (ER) plays an important role in breast cancer development and progression. Hypoxia modulates the level of ERα expression and induces ligand-independent transcriptional activation of ERα, which is closely related with the biology of breast carcinomas. Since phosphorylation itself affects the transcriptional activity and stabilization of ERα, we examined changes in ERα phosphorylation under hypoxic conditions. Hypoxia induced phosphorylation of ERα at serine residue 118 (S118) in the absence of estrogen through the mitogen-activated protein kinase (MAPK)/ERK1/2 pathway. Cell proliferation was significantly decreased under normoxia or hypoxia when ERα harboring the S118A mutation was overexpressed. Our previous studies showed that ER degradation is the most prominent phenomenon under hypoxia. E2-induced ER protein downregulation is dependent on phosphorylation of S118. However, hypoxia-induced ERα degradation did not involve S118 phosphorylation. Our study implies the existence of a differential mechanism between E2 and hypoxia-mediated ERα protein degradation. Understanding the mechanistic behavior of ER under hypoxia will likely facilitate understanding of endocrine therapy resistance and development of treatment strategies for breast cancer.
Collapse
Affiliation(s)
- Joonwoo Park
- College of Life Science, Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 143-747, South Korea
| | - YoungJoo Lee
- College of Life Science, Department of Integrated Bioscience and Biotechnology, Sejong University, Seoul 143-747, South Korea.
| |
Collapse
|
13
|
Yin N, Lepp A, Ji Y, Mortensen M, Hou S, Qi XM, Myers CR, Chen G. The K-Ras effector p38γ MAPK confers intrinsic resistance to tyrosine kinase inhibitors by stimulating EGFR transcription and EGFR dephosphorylation. J Biol Chem 2017; 292:15070-15079. [PMID: 28739874 DOI: 10.1074/jbc.m117.779488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 07/21/2017] [Indexed: 01/01/2023] Open
Abstract
Mutations in K-Ras and epidermal growth factor receptor (EGFR) are mutually exclusive, but it is not known how K-Ras activation inactivates EGFR, leading to resistance of cancer cells to anti-EGFR therapy. Here, we report that the K-Ras effector p38γ MAPK confers intrinsic resistance to small molecular tyrosine kinase inhibitors (TKIs) by concurrently stimulating EGFR gene transcription and protein dephosphorylation. We found that p38γ increases EGFR transcription by c-Jun-mediated promoter binding and stimulates EGFR dephosphorylation via activation of protein-tyrosine phosphatase H1 (PTPH1). Silencing the p38γ/c-Jun/PTPH1 signaling network increased sensitivities to TKIs in K-Ras mutant cells in which EGFR knockdown inhibited growth. Similar results were obtained with the p38γ-specific pharmacological inhibitor pirfenidone. These results indicate that in K-Ras mutant cancers, EGFR activity is regulated by the p38γ/c-Jun/PTPH1 signaling network, whose disruption may be a novel strategy to restore the sensitivity to TKIs.
Collapse
Affiliation(s)
- Ning Yin
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Adrienne Lepp
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Yongsheng Ji
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Matthew Mortensen
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Songwang Hou
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Xiao-Mei Qi
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Charles R Myers
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and
| | - Guan Chen
- From the Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226 and .,the Research Service, Zablocki Veterans Affairs Medical Center, Milwaukee, Wisconsin 53295
| |
Collapse
|
14
|
Yang XL, Qi LG, Lin FJ, Ou ZL. The role of the chemokine receptor XCR1 in breast cancer cells. BREAST CANCER-TARGETS AND THERAPY 2017; 9:227-236. [PMID: 28408852 PMCID: PMC5384703 DOI: 10.2147/bctt.s126184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Considerable attention has recently been paid to the application of chemokines to cancer immunotherapy due to their complex role in cell proliferation, invasion, metastasis, and tumorigenesis, which extends beyond the regulation of lymphocyte migration during immune responses. The expression and the function of the chemokine receptor XCR1 on breast cancer have remained elusive to date. In this study, the expressions of XCR1 mRNA were tested by quantitative real-time polymerase chain reaction in one breast epithelial cell line (MCF-10A) and nine breast cancer cell lines (MDA-MB-231, 231HM, 231BO, MDA-MB-468, MCF-7, T47D, Bcap-37, ZR-75-30, and SK-BR-3). We established XCR1-overexpressing breast cancer cell line MDA-MB-231 (231/XCR1) in XCR1 low expression cell line MDA-MB-231 (231). The ability of proliferation, invasion, and metastasis was measured by CCK8, plate cloning formation, and transwell analysis, respectively, in XCR1-overexpressing breast cancer cell lines (231/XCR1) and their parental cell line MDA-MB-231/Vector (simplified as “231/Vector”); 5×106/100 μL cells were inoculated in mammary fat pad of BALB/c nude mice. There were six BALB/c nude mice in the experimental group and control group. Protein expression was analyzed by cell immunofluorescence and Western blot. The growth of XCR1-overexpressing human breast cancer cell line MDA-MB-231 in vitro was restrained and tumorigenesis in vivo was also extenuated, its mechanism may involve in the inhibition of MAPK and PI3K/AKT/mTOR signaling pathway, but increase in LC3 expression. However, the overexpression of XCR1 in human breast cancer cell line MDA-MB-231 in vitro can promote the migration and invasion partially due to decreasing the protein level of β-catenin. Therefore, XCR1 can affect the biological characteristics of some special breast cancer cells through complex signal transduction pathway.
Collapse
Affiliation(s)
- Xiao Li Yang
- Department of Oncology, Breast Cancer Institute, Fudan University, Shanghai Cancer Center, Shanghai
| | - Li Guo Qi
- Department of Neurosurgery, Taian City Central Hospital, Taian, Shangdong, People's Republic of China
| | - Feng Juan Lin
- Department of Oncology, Breast Cancer Institute, Fudan University, Shanghai Cancer Center, Shanghai
| | - Zhou Luo Ou
- Department of Oncology, Breast Cancer Institute, Fudan University, Shanghai Cancer Center, Shanghai
| |
Collapse
|
15
|
Ma S, Yin N, Qi X, Pfister SL, Zhang MJ, Ma R, Chen G. Tyrosine dephosphorylation enhances the therapeutic target activity of epidermal growth factor receptor (EGFR) by disrupting its interaction with estrogen receptor (ER). Oncotarget 2016; 6:13320-33. [PMID: 26079946 PMCID: PMC4537017 DOI: 10.18632/oncotarget.3645] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Accepted: 03/24/2015] [Indexed: 11/25/2022] Open
Abstract
Protein-protein interactions can increase or decrease its therapeutic target activity and the determining factors involved, however, are largely unknown. Here, we report that tyrosine-dephosphorylation of epidermal growth factor receptor (EGFR) increases its therapeutic target activity by disrupting its interaction with estrogen receptor (ER). Protein tyrosine phosphatase H1 (PTPH1) dephosphorylates the tyrosine kinase EGFR, disrupts its interaction with the nuclear receptor ER, and increases breast cancer sensitivity to small molecule tyrosine kinase inhibitors (TKIs). These effects require PTPH1 catalytic activity and its interaction with EGFR, suggesting that the phosphatase may increase the sensitivity by dephosphorylating EGFR leading to its dissociation with ER. Consistent with this notion, a nuclear-localization defective ER has a higher EGFR-binding activity and confers the resistance to TKI-induced growth inhibition. Additional analysis show that PTPH1 stabilizes EGFR, stimulates the membranous EGFR accumulation, and enhances the growth-inhibitory activity of a combination therapy of TKIs with an anti-estrogen. Since EGFR and ER both are substrates for PTPH1 in vitro and in intact cells, these results indicate that an inhibitory EGFR-ER protein complex can be switched off through a competitive enzyme-substrate binding. Our results would have important implications for the treatment of breast cancer with targeted therapeutics.
Collapse
Affiliation(s)
- Shao Ma
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Department of Breast Surgery, QiLu Hospital of Shandong University, Jinan, Shandong Province 250012, China
| | - Ning Yin
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sandra L Pfister
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mei-Jie Zhang
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Rong Ma
- Department of Breast Surgery, QiLu Hospital of Shandong University, Jinan, Shandong Province 250012, China
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI 53226, USA
| |
Collapse
|
16
|
Prashanth Kumar B, Rajput S, Bharti R, Parida S, Mandal M. BI2536 – A PLK inhibitor augments paclitaxel efficacy in suppressing tamoxifen induced senescence and resistance in breast cancer cells. Biomed Pharmacother 2015; 74:124-32. [DOI: 10.1016/j.biopha.2015.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 07/09/2015] [Indexed: 02/02/2023] Open
|
17
|
Qi X, Yin N, Ma S, Lepp A, Tang J, Jing W, Johnson B, Dwinell MB, Chitambar CR, Chen G. p38γ MAPK Is a Therapeutic Target for Triple-Negative Breast Cancer by Stimulation of Cancer Stem-Like Cell Expansion. Stem Cells 2015; 33:2738-47. [PMID: 26077647 DOI: 10.1002/stem.2068] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 05/13/2015] [Indexed: 01/03/2023]
Abstract
Triple-negative breast cancer (TNBC) is highly progressive and lacks established therapeutic targets. p38γ mitogen-activated protein kinase (MAPK) (gene name: MAPK12) is overexpressed in TNBC but how overexpressed p38γ contributes to TNBC remains unknown. Here, we show that p38γ activation promotes TNBC development and progression by stimulating cancer stem-like cell (CSC) expansion and may serve as a novel therapeutic target. p38γ silencing in TNBC cells reduces mammosphere formation and decreases expression levels of CSC drivers including Nanog, Oct3/4, and Sox2. Moreover, p38γ MAPK-forced expression alone is sufficient to stimulate CSC expansion and to induce epithelial cell transformation in vitro and in vivo. Furthermore, p38γ depends on its activity to stimulate CSC expansion and breast cancer progression, indicating a therapeutic opportunity by application of its pharmacological inhibitor. Indeed, the non-toxic p38γ specific pharmacological inhibitor pirfenidone selectively inhibits TNBC growth in vitro and/or in vivo and significantly decreases the CSC population. Mechanistically, p38γ stimulates Nanog transcription through c-Jun/AP-1 via a multi-protein complex formation. These results together demonstrate that p38γ can drive TNBC development and progression and may be a novel therapeutic target for TNBC by stimulating CSC expansion. Inhibiting p38γ activity with pirfenidone may be a novel strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ning Yin
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shao Ma
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Adrienne Lepp
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jun Tang
- Laboratory Medicine, Guangzhou Medical University KingMed College, China
| | - Weiqing Jing
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Bryon Johnson
- Division of Hematology and Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Michael B Dwinell
- Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin.,Research Services, Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
18
|
Yin N, Qi X, Tsai S, Lu Y, Basir Z, Oshima K, Thomas JP, Myers CR, Stoner G, Chen G. p38γ MAPK is required for inflammation-associated colon tumorigenesis. Oncogene 2015; 35:1039-48. [PMID: 25961922 DOI: 10.1038/onc.2015.158] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 03/03/2015] [Accepted: 03/10/2015] [Indexed: 12/22/2022]
Abstract
Chronic inflammation has long been considered to causatively link to colon cancer development. However, signal transduction pathways involved remain largely unidentified. Here, we report that p38γ mitogen-activated protein kinase mediates inflammatory signaling to promote colon tumorigenesis. Inflammation activates p38γ in mouse colon tissues and intestinal epithelial cell-specific p38γ knockout (KO) attenuates colitis and inhibits pro-inflammatory cytokine expression. Significantly, p38γ KO inhibits tumorigenesis in a colitis-associated mouse model. The specific p38γ pharmacological inhibitor pirfenidone also suppresses pro-inflammatory cytokine expression and colon tumorigenesis. The tumor-promoting activity of epithelial p38γ was further demonstrated by xenograft studies. In addition, p38γ is required for β-catenin/Wnt activities and p38γ stimulates Wnt transcription by phosphorylating β-catenin at Ser605. These results show that p38γ activation links inflammation and colon tumorigenesis. Targeting p38γ may be a novel strategy for colon cancer prevention and treatment.
Collapse
Affiliation(s)
- N Yin
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, MI, USA
| | - X Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, MI, USA
| | - S Tsai
- Department of Surgery, Medical College of Wisconsin, Milwaukee, MI, USA
| | - Y Lu
- Department of Physiology, Medical College of Wisconsin, Milwaukee, MI, USA
| | - Z Basir
- Department of Pathology, Medical College of Wisconsin, Milwaukee, MI, USA
| | - K Oshima
- Department of Pathology, Medical College of Wisconsin, Milwaukee, MI, USA
| | - J P Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, MI, USA
| | - C R Myers
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, MI, USA
| | - G Stoner
- Department of Medicine, Medical College of Wisconsin, Milwaukee, MI, USA
| | - G Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, MI, USA.,Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, MI, USA
| |
Collapse
|
19
|
Qi X, Xie C, Hou S, Li G, Yin N, Dong L, Lepp A, Chesnik MA, Mirza SP, Szabo A, Tsai S, Basir Z, Wu S, Chen G. Identification of a ternary protein-complex as a therapeutic target for K-Ras-dependent colon cancer. Oncotarget 2015; 5:4269-82. [PMID: 24962213 PMCID: PMC4147322 DOI: 10.18632/oncotarget.2001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A cancer phenotype is driven by several proteins and targeting a cluster of functionally interdependent molecules should be more effective for therapeutic intervention. This is specifically important for Ras-dependent cancer, as mutated (MT) Ras is non-druggable and targeting its interaction with effectors may be essential for therapeutic intervention. Here, we report that a protein-complex activated by the Ras effector p38γ MAPK is a novel therapeutic target for K-Ras-dependent colon cancer. Unbiased proteomic screening and immune-precipitation analyses identified p38γ interaction with heat shock protein 90 (Hsp90) and K-Ras in K-Ras MT, but not wild-type (WT), colon cancer cells, indicating a role of this complex in Ras-dependent growth. Further experiments showed that this complex requires p38γ and Hsp90 activity to maintain MT, but not WT, K-Ras protein expression. Additional studies demonstrated that this complex is activated by p38γ-induced Hsp90 phosphorylation at S595, which is important for MT K-Ras stability and for K-Ras dependent growth. Of most important, pharmacologically inhibition of Hsp90 or p38γ activity disrupts the complex, decreases K-Ras expression, and selectively inhibits the growth of K-Ras MT colon cancer in vitro and in vivo. These results demonstrated that the p38γ-activated ternary complex is a novel therapeutic target for K-Ras-dependent colon cancer.
Collapse
Affiliation(s)
- Xiaomei Qi
- Department of Pharmacology and Toxicology, Medical College of Wisconsin
| | | | | | | | | | | | | | | | | | | | | | | | - Shixiu Wu
- Department of Radiation Oncology, First Affiliated Hospital, Wenzhou Medical College, Wenzhou, China
| | - Guan Chen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin; Research Services, Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
20
|
Zhang D, Wang G, Wang Y. Transcriptional regulation prediction of antiestrogen resistance in breast cancer based on RNA polymerase II binding data. BMC Bioinformatics 2014; 15 Suppl 2:S10. [PMID: 24564526 PMCID: PMC4015922 DOI: 10.1186/1471-2105-15-s2-s10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Although endocrine therapy impedes estrogen-ER signaling pathway and thus reduces breast cancer mortality, patients remain at continued risk of relapse after tamoxifen or other endocrine therapies. Understanding the mechanisms of endocrine resistance, particularly the role of transcriptional regulation is very important and necessary. Methods We propose a two-step workflow based on linear model to investigate the significant differences between MCF7 and OHT cells stimulated by 17β-estradiol (E2) respect to regulatory transcription factors (TFs) and their interactions. We additionally compared predicted regulatory TFs based on RNA polymerase II (PolII) binding quantity data and gene expression data, which were taken from MCF7/MCF7+E2 and OHT/OHT+E2 cell lines following the same analysis workflow. Enrichment analysis concerning diseases and cell functions and regulatory pattern analysis of different motifs of the same TF also were performed. Results The results showed PolII data could provide more information and predict more recognizably important regulatory TFs. Large differences in TF regulatory mode were found between two cell lines. Through verified through GO annotation, enrichment analysis and related literature regarding these TFs, we found some regulatory TFs such as AP-1, C/EBP, FoxA1, GATA1, Oct-1 and NF-κB, maintained OHT cells through molecular interactions or signaling pathways that were different from the surviving MCF7 cells. From TF regulatory interaction network, we identified E2F, E2F-1 and AP-2 as hub-TFs in MCF7 cells; whereas, in addition to E2F and E2F-1, we identified C/EBP and Oct-1 as hub-TFs in OHT cells. Notably, we found the regulatory patterns of different motifs of the same TF were very different from one another sometimes. Conclusions We inferred some regulatory TFs, such as AP-1 and NF-κB, cooperated with ER through both genomic action and non-genomic action. The TFs that were involved in both protein-protein interactions and signaling pathways could be one of the key resistant mechanisms of endocrine therapy and thus also could be new treatment targets for endocrine resistance. Our flexible workflow could be integrated into an existing analytical framework and guide biologists to further determine underlying mechanisms in human diseases.
Collapse
|
21
|
Suresh PS, Ma S, Migliaccio A, Chen G. Protein-Tyrosine Phosphatase H1 Increases Breast Cancer Sensitivity to Antiestrogens by Dephosphorylating Estrogen Receptor at Tyr537. Mol Cancer Ther 2013; 13:230-8. [DOI: 10.1158/1535-7163.mct-13-0610] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Merlin JL, Harlé A, Lion M, Ramacci C, Leroux A. Expression and activation of P38 MAP kinase in invasive ductal breast cancers: correlation with expression of the estrogen receptor, HER2 and downstream signaling phosphorylated proteins. Oncol Rep 2013; 30:1943-8. [PMID: 23900300 DOI: 10.3892/or.2013.2645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 06/28/2013] [Indexed: 11/06/2022] Open
Abstract
MAP kinase signaling proteins have major implications in the molecular oncogenesis of breast cancers and have been extensively investigated as putative targets for therapy. This study reports the investigation of the expression of P38 MAPK and its phosphorylated form (p-P38 MAPK) in clinical specimens of invasive breast carcinomas and their correlation with estrogen receptor (ER) and HER2 expression, as well as MAPK and PI3 kinase-AKT pathway signaling phosphorylated proteins. Expression levels of P38 MAPK and p-P38 MAPK as well as p-AKT, p-GSK3β, p-S6 kinase, p-MEK1 and p-ERK1/2 were quantitatively assessed using multiplex bead immunoassay in frozen specimens from 45 invasive ductal breast cancers. Twenty-nine specimens were ER+, 15 were HER2+ and 10 were triple‑negative breast cancers (TNBCs). P38 MAPK was found to be expressed in all tumor specimens and was significantly (P=0.002) overexpressed in ER+ tumors. P38 MAPK expression was lower in TNBCs than in all of the other tumors. The median expression of p-P38 MAPK was also higher in ER+ tumors while lower in the TNBCs. HER2 status had no effect on P38 MAPK and p-P38 MAPK expression. No variation in the phosphorylation rate of P38 MAPK was observed in relation with ER, HER2 or TNBC status. Significantly higher (P=0.0048) expression of p-AKT was observed in HER2+ tumors. No significant difference in p-MEK1, p-GSK3β and p-S6K expression was found in any other comparisons based on ER and HER2 expression subtypes. Investigation of the expression of multiple phosphorylated signaling proteins can be used for personalized targeted therapy. In invasive breast cancer, the overexpression of P38 MAPK may serve as a biomarker for the evaluation of P38 MAPK inhibitors.
Collapse
Affiliation(s)
- Jean-Louis Merlin
- Department of Biopathology, Institut de Cancérologie de Lorraine, 54519 Vandoeuvre les Nancy, France
| | | | | | | | | |
Collapse
|
23
|
Dong YM, Chien KY, Chen JT, Lin SJ, Wang TCV, Yu JS. Site-specific separation and detection of phosphopeptide isomers with pH-mediated stacking capillary electrophoresis-electrospray ionization-tandem mass spectrometry. J Sep Sci 2013; 36:1582-9. [PMID: 23494885 DOI: 10.1002/jssc.201300054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/02/2013] [Accepted: 03/04/2013] [Indexed: 01/30/2023]
Abstract
This study reported a pH-mediated stacking CE coupled with ESI MS/MS method to determine the phosphorylation sites of three synthetic phosphopeptides containing structural isomers. These phosphopeptides mimic the phosphopeptides (amino acid residues 12-25) derived from the trypsin-digested products of human lamin A/C protein. The LODs were determined to be 118, 132 and 1240 fmol for SGAQASS(19)TpPL(22)SPTR, SGAQASS(19)TPL(22)SpPTR, and SGAQASS(19)TpPL(22)SpPTR, respectively. The established method was employed to analyze the phosphorylation sites of the trypsin-digested products of glutathione S-transferase-lamin A/C (1-57) fusion protein that had been phosphorylated in vitro by cyclin-dependent kinase 1. The results indicated that this method is feasible to specifically determine the phosphorylation site from phosphopeptide isomers in the trypsin-digested products of a kinase-catalyzed phosphoprotein, which should benefit the investigation of protein kinase-mediated cellular signal transduction.
Collapse
Affiliation(s)
- Yu-Ming Dong
- School of Pharmacy, Lanzhou University, PR China
| | | | | | | | | | | |
Collapse
|
24
|
Hou S, Suresh PS, Qi X, Lepp A, Mirza SP, Chen G. p38γ Mitogen-activated protein kinase signals through phosphorylating its phosphatase PTPH1 in regulating ras protein oncogenesis and stress response. J Biol Chem 2012; 287:27895-905. [PMID: 22730326 DOI: 10.1074/jbc.m111.335794] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphatase plays a crucial role in determining cellular fate by inactivating its substrate kinase, but it is not known whether a kinase can vice versa phosphorylate its phosphatase to execute this function. Protein-tyrosine phosphatase H1 (PTPH1) is a specific phosphatase of p38γ mitogen-activated protein kinase (MAPK) through PDZ binding, and here, we show that p38γ is also a PTPH1 kinase through which it executes its oncogenic activity and regulates stress response. PTPH1 was identified as a substrate of p38γ by unbiased proteomic analysis, and its resultant phosphorylation at Ser-459 occurs in vitro and in vivo through their complex formation. Genetic and pharmacological analyses showed further that Ser-459 phosphorylation is directly regulated by Ras signaling and is important for Ras, p38γ, and PTPH1 oncogenic activity. Moreover, experiments with physiological stimuli revealed a novel stress pathway from p38γ to PTPH1/Ser-459 phosphorylation in regulating cell growth and cell death by a mechanism dependent on cellular environments but independent of canonical MAPK activities. These results thus reveal a new mechanism by which a MAPK regulates Ras oncogenesis and stress response through directly phosphorylating its phosphatase.
Collapse
Affiliation(s)
- Songwang Hou
- Department of Pharmacology and Toxicology, Zablocki Veterans Affairs Medical Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | |
Collapse
|