1
|
Currie MJ, Davies JS, Scalise M, Gulati A, Wright JD, Newton-Vesty MC, Abeysekera GS, Subramanian R, Wahlgren WY, Friemann R, Allison JR, Mace PD, Griffin MDW, Demeler B, Wakatsuki S, Drew D, Indiveri C, Dobson RCJ, North RA. Structural and biophysical analysis of a Haemophilus influenzae tripartite ATP-independent periplasmic (TRAP) transporter. eLife 2024; 12:RP92307. [PMID: 38349818 PMCID: PMC10942642 DOI: 10.7554/elife.92307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 Å resolution (extending to 2.2 Å at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 Å resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (KD) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.
Collapse
Affiliation(s)
- Michael J Currie
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - James S Davies
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of CalabriaArcavacata di RendeItaly
| | - Ashutosh Gulati
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Joshua D Wright
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Gayan S Abeysekera
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
| | - Ramaswamy Subramanian
- Biological Sciences and Biomedical Engineering, Bindley Bioscience Center, Purdue University West LafayetteWest LafayetteUnited States
| | - Weixiao Y Wahlgren
- Department of Chemistry and Molecular Biology, Biochemistry and Structural Biology, University of GothenburgGothenburgSweden
| | - Rosmarie Friemann
- Centre for Antibiotic Resistance Research (CARe) at University of GothenburgGothenburgSweden
| | - Jane R Allison
- Biomolecular Interaction Centre, Digital Life Institute, Maurice Wilkins Centre for Molecular Biodiscovery, and School of Biological Sciences, University of AucklandAucklandNew Zealand
| | - Peter D Mace
- Biochemistry Department, School of Biomedical Sciences, University of OtagoDunedinNew Zealand
| | - Michael DW Griffin
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of MelbourneMelbourneAustralia
| | - Borries Demeler
- Department of Chemistry and Biochemistry, University of MontanaMissoulaUnited States
- Department of Chemistry and Biochemistry, University of LethbridgeLethbridgeCanada
| | - Soichi Wakatsuki
- Biological Sciences Division, SLAC National Accelerator LaboratoryMenlo ParkUnited States
- Department of Structural Biology, Stanford University School of MedicineStanfordUnited States
| | - David Drew
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of CalabriaArcavacata di RendeItaly
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)BariItaly
| | - Renwick CJ Dobson
- Biomolecular Interaction Centre, Maurice Wilkins Centre for Biodiscovery, MacDiarmid Institute for Advanced Materials and Nanotechnology, and School of Biological Sciences, University of CanterburyChristchurchNew Zealand
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Bio Molecular Science and Biotechnology Institute, Department of Biochemistry and Pharmacology, University of MelbourneMelbourneAustralia
| | - Rachel A North
- Department of Biochemistry and Biophysics, Stockholm UniversityStockholmSweden
- School of Medical Sciences, Faculty of Medicine and Health, University of SydneySydneyAustralia
| |
Collapse
|
2
|
Seppälä S, Gierke T, Schauer EE, Brown JL, O'Malley MA. Identification and expression of small multidrug resistance transporters in early-branching anaerobic fungi. Protein Sci 2023; 32:e4730. [PMID: 37470750 PMCID: PMC10443351 DOI: 10.1002/pro.4730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Membrane-embedded transporters impart essential functions to cells as they mediate sensing and the uptake and extrusion of nutrients, waste products, and effector molecules. Promiscuous multidrug exporters are implicated in resistance to drugs and antibiotics and are highly relevant for microbial engineers who seek to enhance the tolerance of cell factory strains to hydrophobic bioproducts. Here, we report on the identification of small multidrug resistance (SMR) transporters in early-branching anaerobic fungi (Neocallimastigomycetes). The SMR class of transporters is commonly found in bacteria but has not previously been reported in eukaryotes. In this study, we show that SMR transporters from anaerobic fungi can be produced heterologously in the model yeast Saccharomyces cerevisiae, demonstrating the potential of these proteins as targets for further characterization. The discovery of these novel anaerobic fungal SMR transporters offers a promising path forward to enhance bioproduction from engineered microbial strains.
Collapse
Affiliation(s)
- Susanna Seppälä
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Taylor Gierke
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Elizabeth E. Schauer
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Jennifer L. Brown
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
| | - Michelle A. O'Malley
- Department of Chemical EngineeringUniversity of California Santa BarbaraSanta BarbaraCaliforniaUSA
- Bioengineering ProgramUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Joint BioEnergy Institute (JBEI)EmeryvilleCaliforniaUSA
| |
Collapse
|
3
|
High-pH structure of EmrE reveals the mechanism of proton-coupled substrate transport. Nat Commun 2022; 13:991. [PMID: 35181664 PMCID: PMC8857205 DOI: 10.1038/s41467-022-28556-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 01/27/2022] [Indexed: 12/20/2022] Open
Abstract
The homo-dimeric bacterial membrane protein EmrE effluxes polyaromatic cationic substrates in a proton-coupled manner to cause multidrug resistance. We recently determined the structure of substrate-bound EmrE in phospholipid bilayers by measuring hundreds of protein-ligand HN–F distances for a fluorinated substrate, 4-fluoro-tetraphenylphosphonium (F4-TPP+), using solid-state NMR. This structure was solved at low pH where one of the two proton-binding Glu14 residues is protonated. Here, to understand how substrate transport depends on pH, we determine the structure of the EmrE-TPP complex at high pH, where both Glu14 residues are deprotonated. The high-pH complex exhibits an elongated and hydrated binding pocket in which the substrate is similarly exposed to the two sides of the membrane. In contrast, the low-pH complex asymmetrically exposes the substrate to one side of the membrane. These pH-dependent EmrE conformations provide detailed insights into the alternating-access model, and suggest that the high-pH conformation may facilitate proton binding in the presence of the substrate, thus accelerating the conformational change of EmrE to export the substrate. EmrE transporter effluxes cationic substrates across lipid membranes in a pH-coupled manner. Here, the authors solve the structure of ligand-bound EmrE at high pH by NMR, with insights into the transport mechanism.
Collapse
|
4
|
Garcia ÍR, de Oliveira Garcia FA, Pereira PS, Coutinho HDM, Siyadatpanah A, Norouzi R, Wilairatana P, de Lourdes Pereira M, Nissapatorn V, Tintino SR, Rodrigues FFG. Microbial resistance: The role of efflux pump superfamilies and their respective substrates. Life Sci 2022; 295:120391. [PMID: 35149116 DOI: 10.1016/j.lfs.2022.120391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 12/24/2022]
Abstract
The microorganism resistance to antibiotics has become one of the most worrying issues for science due to the difficulties related to clinical treatment and the rapid spread of diseases. Efflux pumps are classified into six groups of carrier proteins that are part of the different types of mechanisms that contribute to resistance in microorganisms, allowing their survival. The present study aimed to carry out a bibliographic review on the superfamilies of carriers in order to understand their compositions, expressions, substrates, and role in intrinsic resistance. At first, a search for manuscripts was carried out in the databases Medline, Pubmed, ScienceDirect, and Scielo, using as descriptors: efflux pump, expression, pump inhibitors and efflux superfamily. For article selection, two criteria were taken into account: for inclusion, those published between 2000 and 2020, including textbooks, and for exclusion, duplicates and academic collections. In this research, 139,615 published articles were obtained, with 312 selected articles and 7 book chapters that best met the aim. From the comprehensive analysis, it was possible to consider that the chromosomes and genetic elements can contain genes encoding efflux pumps and are responsible for multidrug resistance. Even though this is a well-explored topic in the scientific community, understanding the behavior of antibiotics as substrates that increase the expression of pump-encoding genes has challenged medicine. This review study succinctly summarizes the most relevant features of these systems, as well as their contribution to multidrug resistance.
Collapse
Affiliation(s)
| | | | | | | | - Abolghasem Siyadatpanah
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Maria de Lourdes Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and Research Excellence Center for Innovation and Health, Walailak University, Thailand
| | | | | |
Collapse
|
5
|
Drew D, North RA, Nagarathinam K, Tanabe M. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chem Rev 2021; 121:5289-5335. [PMID: 33886296 PMCID: PMC8154325 DOI: 10.1021/acs.chemrev.0c00983] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
The major facilitator superfamily (MFS) is the largest known superfamily of secondary active transporters. MFS transporters are responsible for transporting a broad spectrum of substrates, either down their concentration gradient or uphill using the energy stored in the electrochemical gradients. Over the last 10 years, more than a hundred different MFS transporter structures covering close to 40 members have provided an atomic framework for piecing together the molecular basis of their transport cycles. Here, we summarize the remarkable promiscuity of MFS members in terms of substrate recognition and proton coupling as well as the intricate gating mechanisms undergone in achieving substrate translocation. We outline studies that show how residues far from the substrate binding site can be just as important for fine-tuning substrate recognition and specificity as those residues directly coordinating the substrate, and how a number of MFS transporters have evolved to form unique complexes with chaperone and signaling functions. Through a deeper mechanistic description of glucose (GLUT) transporters and multidrug resistance (MDR) antiporters, we outline novel refinements to the rocker-switch alternating-access model, such as a latch mechanism for proton-coupled monosaccharide transport. We emphasize that a full understanding of transport requires an elucidation of MFS transporter dynamics, energy landscapes, and the determination of how rate transitions are modulated by lipids.
Collapse
Affiliation(s)
- David Drew
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Rachel A. North
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Kumar Nagarathinam
- Center
of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, D-23538, Lübeck, Germany
| | - Mikio Tanabe
- Structural
Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
6
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
7
|
Steinberg R, Origi A, Natriashvili A, Sarmah P, Licheva M, Walker PM, Kraft C, High S, Luirink J, Shi WQ, Helmstädter M, Ulbrich MH, Koch HG. Posttranslational insertion of small membrane proteins by the bacterial signal recognition particle. PLoS Biol 2020; 18:e3000874. [PMID: 32997663 PMCID: PMC7549839 DOI: 10.1371/journal.pbio.3000874] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/12/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023] Open
Abstract
Small membrane proteins represent a largely unexplored yet abundant class of proteins in pro- and eukaryotes. They essentially consist of a single transmembrane domain and are associated with stress response mechanisms in bacteria. How these proteins are inserted into the bacterial membrane is unknown. Our study revealed that in Escherichia coli, the 27-amino-acid-long model protein YohP is recognized by the signal recognition particle (SRP), as indicated by in vivo and in vitro site-directed cross-linking. Cross-links to SRP were also observed for a second small membrane protein, the 33-amino-acid-long YkgR. However, in contrast to the canonical cotranslational recognition by SRP, SRP was found to bind to YohP posttranslationally. In vitro protein transport assays in the presence of a SecY inhibitor and proteoliposome studies demonstrated that SRP and its receptor FtsY are essential for the posttranslational membrane insertion of YohP by either the SecYEG translocon or by the YidC insertase. Furthermore, our data showed that the yohP mRNA localized preferentially and translation-independently to the bacterial membrane in vivo. In summary, our data revealed that YohP engages an unique SRP-dependent posttranslational insertion pathway that is likely preceded by an mRNA targeting step. This further highlights the enormous plasticity of bacterial protein transport machineries. Small membrane proteins represent a largely unexplored yet abundant class of proteins, but how they are inserted into the bacterial membrane is unknown. This study identifies a novel posttranslational protein transport pathway that relies on the signal recognition particle and the SecYEG translocon/YidC insertase.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Princess M. Walker
- Department of Chemistry, Ball State University, Muncie, Indiana, United States of America
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Stephen High
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Joen Luirink
- Molecular Microbiology, AIMMS, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Wei. Q. Shi
- Department of Chemistry, Ball State University, Muncie, Indiana, United States of America
| | - Martin Helmstädter
- Internal Medicine IV, Department of Medicine, Medical Center − University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maximilian H. Ulbrich
- Internal Medicine IV, Department of Medicine, Medical Center − University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|
8
|
Cooperativity and Steep Voltage Dependence in a Bacterial Channel. Int J Mol Sci 2019; 20:ijms20184501. [PMID: 31514419 PMCID: PMC6770917 DOI: 10.3390/ijms20184501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 11/17/2022] Open
Abstract
This paper reports on the discovery of a novel three-membrane channel unit exhibiting very steep voltage dependence and strong cooperative behavior. It was reconstituted into planar phospholipid membranes formed by the monolayer method and studied under voltage-clamp conditions. The behavior of the novel channel-former, isolated from Escherichia coli, is consistent with a linearly organized three-channel unit displaying steep voltage-gating (a minimum of 14 charges in the voltage sensor) that rivals that of channels in mammalian excitable membranes. The channels also display strong cooperativity in that closure of the first channel permits the second to close and closure of the second channel permits closure of the third. All three have virtually the same conductance and selectivity, and yet the first and third close at positive potentials whereas the second closes at negative potentials. Thus, is it likely that the second channel-former is oriented in the membrane in a direction opposite to that of the other two. This novel structure is named “triplin.” The extraordinary behavior of triplin indicates that it must have important and as yet undefined physiological roles.
Collapse
|
9
|
Structure of the EmrE multidrug transporter and its use for inhibitor peptide design. Proc Natl Acad Sci U S A 2018; 115:E7932-E7941. [PMID: 30082384 DOI: 10.1073/pnas.1802177115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Small multidrug resistance (SMR) pumps represent a minimal paradigm of proton-coupled membrane transport in bacteria, yet no high-resolution structure of an SMR protein is available. Here, atomic-resolution structures of the Escherichia coli efflux-multidrug resistance E (EmrE) multidrug transporter in ligand-bound form are refined using microsecond molecular dynamics simulations biased using low-resolution data from X-ray crystallography. The structures are compatible with existing mutagenesis data as well as NMR and biochemical experiments, including pKas of the catalytic glutamate residues and the dissociation constant ([Formula: see text]) of the tetraphenylphosphonium+ cation. The refined structures show the arrangement of residue side chains in the EmrE active site occupied by two different ligands and in the absence of a ligand, illustrating how EmrE can adopt structurally diverse active site configurations. The structures also show a stable, well-packed binding interface between the helices H4 of the two monomers, which is believed to be crucial for EmrE dimerization. Guided by the atomic details of this interface, we design proteolysis-resistant stapled peptides that bind to helix H4 of an EmrE monomer. The peptides are expected to interfere with the dimerization and thereby inhibit drug transport. Optimal positions of the peptide staple were determined using free-energy simulations of peptide binding to monomeric EmrE Three of the four top-scoring peptides selected for experimental testing resulted in significant inhibition of proton-driven ethidium efflux in live cells without nonspecific toxicity. The approach described here is expected to be of general use for the design of peptide therapeutics.
Collapse
|
10
|
Padariya M, Kalathiya U, Baginski M. Structural and dynamic insights on the EmrE protein with TPP + and related substrates through molecular dynamics simulations. Chem Phys Lipids 2018; 212:1-11. [DOI: 10.1016/j.chemphyslip.2017.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 11/30/2017] [Accepted: 12/22/2017] [Indexed: 12/21/2022]
|
11
|
Qazi SJS, Turner RJ. Influence of quaternary cation compound on the size of the Escherichia coli small multidrug resistance protein, EmrE. Biochem Biophys Rep 2018; 13:129-140. [PMID: 29552647 PMCID: PMC5852267 DOI: 10.1016/j.bbrep.2018.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 12/04/2017] [Accepted: 02/05/2018] [Indexed: 11/26/2022] Open
Abstract
EmrE is a member of the small multidrug resistance (SMR) protein family in Escherichia coli. It confers resistance to a wide variety of quaternary cation compounds (QCCs) as an efflux transporter driven by the transmembrane proton motive force. We have expressed hexahistidinyl (His6) – myc epitope tagged EmrE, extracted it from membrane preparations using the detergent n-dodecyl-β-D-maltopyranoside (DDM), and purified it using nickel-affinity chromatography. The size of the EmrE protein, in DDM environment, was then examined in the presence and absence of a range of structurally different QCC ligands that varied in their chemical structure, charge and shape. We used dynamic light scattering and showed that the size and oligomeric state distributions are dependent on the type of QCC. We also followed changes in the Trp fluorescence and determined apparent dissociation constants (Kd). Overall, our in vitro analyses of epitope tagged EmrE demonstrated subtle but significant differences in the size distributions with different QCC ligands bound. Chemical shape of ligand has significant affect on binding. Shape of the ligand affects the multimeric state of EmrE. Binding affinities strongly depend upon the ligand shape. EmrE shows high plasticity of structure to accommodate a wide range of ligands.
Collapse
Affiliation(s)
- S Junaid S Qazi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Raymond J Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| |
Collapse
|
12
|
Slipski CJ, Zhanel GG, Bay DC. Biocide Selective TolC-Independent Efflux Pumps in Enterobacteriaceae. J Membr Biol 2018; 251:15-33. [PMID: 29063140 PMCID: PMC5840245 DOI: 10.1007/s00232-017-9992-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/04/2017] [Indexed: 02/03/2023]
Abstract
Bacterial resistance to biocides used as antiseptics, dyes, and disinfectants is a growing concern in food preparation, agricultural, consumer manufacturing, and health care industries, particularly among Gram-negative Enterobacteriaceae, some of the most common community and healthcare-acquired bacterial pathogens. Biocide resistance is frequently associated with antimicrobial cross-resistance leading to reduced activity and efficacy of both antimicrobials and antiseptics. Multidrug resistant efflux pumps represent an important biocide resistance mechanism in Enterobacteriaceae. An assortment of structurally diverse efflux pumps frequently co-exist in these species and confer both unique and overlapping biocide and antimicrobial selectivity. TolC-dependent multicomponent systems that span both the plasma and outer membranes have been shown to confer clinically significant resistance to most antimicrobials including many biocides, however, a growing number of single component TolC-independent multidrug resistant efflux pumps are specifically associated with biocide resistance: small multidrug resistance (SMR), major facilitator superfamily (MFS), multidrug and toxin extruder (MATE), cation diffusion facilitator (CDF), and proteobacterial antimicrobial compound efflux (PACE) families. These efflux systems are a growing concern as they are rapidly spread between members of Enterobacteriaceae on conjugative plasmids and mobile genetic elements, emphasizing their importance to antimicrobial resistance. In this review, we will summarize the known biocide substrates of these efflux pumps, compare their structural relatedness, Enterobacteriaceae distribution, and significance. Knowledge gaps will be highlighted in an effort to unravel the role that these apparent "lone wolves" of the efflux-mediated resistome may offer.
Collapse
Affiliation(s)
- Carmine J Slipski
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada
| | - Denice C Bay
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Rm 514C Basic Medical Sciences Bldg., 745 Bannatyne Avenue, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
13
|
Abstract
The topologies of α-helical membrane proteins are generally thought to be determined during their cotranslational insertion into the membrane. It is typically assumed that membrane topologies remain static after this process has ended. Recent findings, however, question this static view by suggesting that some parts of, or even the whole protein, can reorient in the membrane on a biologically relevant time scale. Here, we focus on antiparallel homo- or heterodimeric small multidrug resistance proteins and examine whether the individual monomers can undergo reversible topological inversion (flip flop) in the membrane until they are trapped in a fixed orientation by dimerization. By perturbing dimerization using various means, we show that the membrane orientation of a monomer is unaffected by the presence or absence of its dimerization partner. Thus, membrane-inserted monomers attain their final orientations independently of dimerization, suggesting that wholesale topological inversion is an unlikely event in vivo.
Collapse
|
14
|
BLaTM 2.0, a Genetic Tool Revealing Preferred Antiparallel Interaction of Transmembrane Helix 4 of the Dual-Topology Protein EmrE. J Mol Biol 2017; 429:1630-1637. [DOI: 10.1016/j.jmb.2017.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 01/13/2023]
|
15
|
Vitrac H, Dowhan W, Bogdanov M. Effects of mixed proximal and distal topogenic signals on the topological sensitivity of a membrane protein to the lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1291-1300. [PMID: 28432030 DOI: 10.1016/j.bbamem.2017.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
The final topology of membrane proteins is thought to be dictated primarily by the encoding sequence. However, according to the Charge Balance Rule the topogenic signals within nascent membrane proteins are interpreted in agreement with the Positive Inside Rule as influenced by the protein phospholipid environment. The role of long-range protein-lipid interactions in establishing a final uniform or dual topology is unknown. In order to address this role, we determined the positional dependence of the potency of charged residues as topological signals within Escherichia coli sucrose permease (CscB) in cells in which the zwitterionic phospholipid phosphatidylethanolamine (PE), acting as topological determinant, was either eliminated or tightly titrated. Although the position of a single or paired oppositely charged amino acid residues within an extramembrane domain (EMD), either proximal, central or distal to a transmembrane domain (TMD) end, does not appear to be important, the oppositely charged residues exert their topogenic effects separately only in the absence of PE. Thus, the Charge Balance Rule can be executed in a retrograde manner from any cytoplasmic EMD or any residue within an EMD most likely outside of the translocon. Moreover, CscB is inserted into the membrane in two opposite orientations at different ratios with the native orientation proportional to the mol % of PE. The results demonstrate how the cooperative contribution of lipid-protein interactions affects the potency of charged residues as topological signals, providing a molecular mechanism for the realization of single, equal or different amounts of oppositely oriented protein within the same membrane.
Collapse
Affiliation(s)
- Heidi Vitrac
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Abstract
The insertion and assembly of proteins into the inner membrane of bacteria are crucial for many cellular processes, including cellular respiration, signal transduction, and ion and pH homeostasis. This process requires efficient membrane targeting and insertion of proteins into the lipid bilayer in their correct orientation and proper conformation. Playing center stage in these events are the targeting components, signal recognition particle (SRP) and the SRP receptor FtsY, as well as the insertion components, the Sec translocon and the YidC insertase. Here, we will discuss new insights provided from the recent high-resolution structures of these proteins. In addition, we will review the mechanism by which a variety of proteins with different topologies are inserted into the inner membrane of Gram-negative bacteria. Finally, we report on the energetics of this process and provide information on how membrane insertion occurs in Gram-positive bacteria and Archaea. It should be noted that most of what we know about membrane protein assembly in bacteria is based on studies conducted in Escherichia coli.
Collapse
Affiliation(s)
- Andreas Kuhn
- Institute for Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Ross E Dalbey
- Department of Chemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
17
|
Woodall NB, Hadley S, Yin Y, Bowie JU. Complete topology inversion can be part of normal membrane protein biogenesis. Protein Sci 2017; 26:824-833. [PMID: 28168866 DOI: 10.1002/pro.3131] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/14/2023]
Abstract
The topology of helical membrane proteins is generally defined during insertion of the transmembrane helices, yet it is now clear that it is possible for topology to change under unusual circumstances. It remains unclear, however, if topology reorientation is part of normal biogenesis. For dual topology dimer proteins such as the multidrug transporter EmrE, there may be evolutionary pressure to allow topology flipping so that the populations of both orientations can be equalized. We previously demonstrated that when EmrE is forced to insert in a distorted topology, topology flipping of the first transmembrane helix can occur during translation. Here, we show that topological malleability also extends to the C-terminal helix and that even complete topology inversion of the entire EmrE protein can occur after the full protein is translated and inserted. Thus, topology rearrangements are possible during normal biogenesis. Wholesale topology flipping is remarkable given the physical constraints of the membrane and expands the range of possible membrane protein folding pathways, both productive and detrimental.
Collapse
Affiliation(s)
- Nicholas B Woodall
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California
| | - Sarah Hadley
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California
| | - Ying Yin
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California
| |
Collapse
|
18
|
Schindler BD, Kaatz GW. Multidrug efflux pumps of Gram-positive bacteria. Drug Resist Updat 2016; 27:1-13. [DOI: 10.1016/j.drup.2016.04.003] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/28/2016] [Accepted: 04/22/2016] [Indexed: 11/16/2022]
|
19
|
Affiliation(s)
- David Drew
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065;
| |
Collapse
|
20
|
Li F, Liu J, Liu N, Kuhn LA, Garavito RM, Ferguson-Miller S. Translocator Protein 18 kDa (TSPO): An Old Protein with New Functions? Biochemistry 2016; 55:2821-31. [PMID: 27074410 DOI: 10.1021/acs.biochem.6b00142] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Translocator protein 18 kDa (TSPO) was previously known as the peripheral benzodiazepine receptor (PBR) in eukaryotes, where it is mainly localized to the mitochondrial outer membrane. Considerable evidence indicates that it plays regulatory roles in steroidogenesis and apoptosis and is involved in various human diseases, such as metastatic cancer, Alzheimer's and Parkinson's disease, inflammation, and anxiety disorders. Ligands of TSPO are widely used as diagnostic tools and treatment options, despite there being no clear understanding of the function of TSPO. An ortholog in the photosynthetic bacterium Rhodobacter was independently discovered as the tryptophan-rich sensory protein (TspO) and found to play a role in the response to changes in oxygen and light conditions that regulate photosynthesis and respiration. As part of this highly conserved protein family found in all three kingdoms, the rat TSPO is able to rescue the knockout phenotype in Rhodobacter, indicating functional as well as structural conservation. Recently, a major breakthrough in the field was achieved: the determination of atomic-resolution structures of TSPO from different species by several independent groups. This now allows us to reexamine the function of TSPO with a molecular perspective. In this review, we focus on recently determined structures of TSPO and their implications for potential functions of this ubiquitous multifaceted protein. We suggest that TSPO is an ancient bacterial receptor/stress sensor that has developed additional interactions, partners, and roles in its mitochondrial outer membrane environment in eukaryotes.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Jian Liu
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Nan Liu
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Computer Science and Engineering, Michigan State University , East Lansing, Michigan 48824-1319, United States.,Department of Chemistry, Michigan State University , East Lansing, Michigan 48824-1319, United States
| | - Leslie A Kuhn
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Computer Science and Engineering, Michigan State University , East Lansing, Michigan 48824-1319, United States
| | - R Michael Garavito
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
21
|
Padariya M, Kalathiya U, Baginski M. Structural and dynamic changes adopted by EmrE, multidrug transporter protein—Studies by molecular dynamics simulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:2065-74. [DOI: 10.1016/j.bbamem.2015.05.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/25/2015] [Accepted: 05/18/2015] [Indexed: 01/07/2023]
|
22
|
Van Lehn RC, Zhang B, Miller TF. Regulation of multispanning membrane protein topology via post-translational annealing. eLife 2015; 4. [PMID: 26408961 PMCID: PMC4635508 DOI: 10.7554/elife.08697] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/25/2015] [Indexed: 12/19/2022] Open
Abstract
The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis. DOI:http://dx.doi.org/10.7554/eLife.08697.001 Proteins are long chains of smaller molecules called amino acids, and are built inside cells by a molecular machine called the ribosome. Many important proteins must be inserted into the membrane that surrounds each cell in order to carry out their role. As these proteins are being built by the ribosome, they thread their way into a membrane-spanning channel (called the translocon) from the inner side of the membrane. Short segments of these integral membrane proteins (called transmembrane domains) then become embedded in the membrane, while other parts of the protein remain on either side of the membrane. For a membrane protein to work properly, the end of each of its transmembrane domains must be on the correct side of the membrane (i.e., the protein must obtain the correct ‘topology’). The conventional model for this process suggests that topology is fixed when the first transmembrane domain of a protein is initially integrated into the membrane, while the ribosome is still building the protein. This model can explain most integral membrane proteins, which only have a single topology. However, it cannot explain the family of membrane proteins that have an almost equal chance of adopting one of two different topologies (so-called ‘dual-topology proteins’). Van Lehn et al. have now used computer modeling to simulate how a bacterial protein called EmrE (which is a dual-topology protein) integrates into the membrane via the translocon. The results reveal that a few transmembrane domains in EmrE do not fully integrate into the membrane while the ribosome is building the protein. Instead, these transmembrane domains slowly integrate after the ribosome has finished its job. These findings contradict the conventional model and suggest that some membrane proteins only become fully integrated after the protein-building process is complete. The next step in this work is to experimentally test predictions from the computer simulations. DOI:http://dx.doi.org/10.7554/eLife.08697.002
Collapse
Affiliation(s)
- Reid C Van Lehn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Bin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
23
|
Dual-topology insertion of a dual-topology membrane protein. Nat Commun 2015; 6:8099. [PMID: 26306475 PMCID: PMC4560821 DOI: 10.1038/ncomms9099] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/17/2015] [Indexed: 11/17/2022] Open
Abstract
Some membrane transporters are dual-topology dimers in which the subunits have inverted transmembrane topology. How a cell manages to generate equal populations of two opposite topologies from the same polypeptide chain remains unclear. For the dual-topology transporter EmrE, the evidence to date remains consistent with two extreme models. A post-translational model posits that topology remains malleable after synthesis and becomes fixed once the dimer forms. A second, co-translational model, posits that the protein inserts in both topologies in equal proportions. Here we show that while there is at least some limited topological malleability, the co-translational model likely dominates under normal circumstances. Dual-topology membrane proteins consist of subunits that have identical sequence but reside in the membrane in two inverted orientations. Here, Woodall et al. find that the dual topology of the transporter EmrE is largely achieved by initial insertion in both topologies rather than major rearrangements after insertion.
Collapse
|
24
|
Dutta S, Morrison EA, Henzler-Wildman KA. Blocking dynamics of the SMR transporter EmrE impairs efflux activity. Biophys J 2015; 107:613-620. [PMID: 25099800 DOI: 10.1016/j.bpj.2014.06.030] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 05/30/2014] [Accepted: 06/18/2014] [Indexed: 11/19/2022] Open
Abstract
EmrE is a small multidrug resistance transporter that has been well studied as a model for secondary active transport. Because transport requires the protein to convert between at least two states open to opposite sides of the membrane, it is expected that blocking these conformational transitions will prevent transport activity. We have previously shown that NMR can quantitatively measure the transition between the open-in and open-out states of EmrE in bicelles. Now, we have used the antiparallel EmrE crystal structure to design a cross-link to inhibit this conformational exchange process. We probed the structural, dynamic, and functional effects of this cross-link with NMR and in vivo efflux assays. Our NMR results show that our antiparallel cross-link performs as predicted: dramatically reducing conformational exchange while minimally perturbing the overall structure of EmrE and essentially trapping EmrE in a single state. The same cross-link also impairs ethidium efflux activity by EmrE in Escherichia coli. This confirms the hypothesis that transport can be inhibited simply by blocking conformational transitions in a properly folded transporter. The success of our cross-linker design also provides further evidence that the antiparallel crystal structure provides a good model for functional EmrE.
Collapse
Affiliation(s)
- Supratik Dutta
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Emma A Morrison
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri
| | - Katherine A Henzler-Wildman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
25
|
Du D, van Veen HW, Murakami S, Pos KM, Luisi BF. Structure, mechanism and cooperation of bacterial multidrug transporters. Curr Opin Struct Biol 2015; 33:76-91. [PMID: 26282926 DOI: 10.1016/j.sbi.2015.07.015] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/29/2015] [Accepted: 07/24/2015] [Indexed: 12/13/2022]
Abstract
Cells from all domains of life encode energy-dependent trans-membrane transporters that can expel harmful substances including clinically applied therapeutic agents. As a collective body, these transporters perform as a super-system that confers tolerance to an enormous range of harmful compounds and consequently aid survival in hazardous environments. In the Gram-negative bacteria, some of these transporters serve as energy-transducing components of tripartite assemblies that actively efflux drugs and other harmful compounds, as well as deliver virulence agents across the entire cell envelope. We draw together recent structural and functional data to present the current models for the transport mechanisms for the main classes of multi-drug transporters and their higher-order assemblies.
Collapse
Affiliation(s)
- Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Hendrik W van Veen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Satoshi Murakami
- Division of Structure and Function of Biomolecules, Department of Life Science, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| | - Klaas M Pos
- Institute of Biochemistry, Goethe Universität Frankfurt, Max-von-Laue-Straße 9, D-60438 Frankfurt, Germany
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
26
|
Saidijam M, Patching SG. Amino acid composition analysis of secondary transport proteins from Escherichia coli with relation to functional classification, ligand specificity and structure. J Biomol Struct Dyn 2015; 33:2205-20. [DOI: 10.1080/07391102.2014.998283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Massoud Saidijam
- Department of Molecular Medicine and Genetics, Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan, Iran
| | - Simon G. Patching
- Department of Molecular Medicine and Genetics, Research Centre for Molecular Medicine, School of Medicine, Hamadan University of Medical Sciences , Hamadan, Iran
| |
Collapse
|
27
|
Lloris-Garcerá P, Seppälä S, Slusky JSG, Rapp M, von Heijne G. Why have small multidrug resistance proteins not evolved into fused, internally duplicated structures? J Mol Biol 2014; 426:2246-54. [PMID: 24690367 DOI: 10.1016/j.jmb.2014.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 11/16/2022]
Abstract
The increasing number of solved membrane protein structures has led to the recognition of a common feature in a large fraction of the small-molecule transporters: inverted repeat structures, formed by two fused homologous membrane domains with opposite orientation in the membrane. An evolutionary pathway in which the ancestral state is a single gene encoding a dual-topology membrane protein capable of forming antiparallel homodimers has been posited. A gene duplication event enables the evolution of two oppositely orientated proteins that form antiparallel heterodimers. Finally, fusion of the two genes generates an internally duplicated transporter with two oppositely orientated membrane domains. Strikingly, however, in the small multidrug resistance (SMR) family of transporters, no fused, internally duplicated proteins have been found to date. Here, we have analyzed fused versions of the dual-topology transporter EmrE, a member of the SMR family, by blue-native PAGE and in vivo activity measurements. We find that fused constructs give rise to both intramolecular inverted repeat structures and competing intermolecular dimers of varying activity. The formation of several intramolecularly and intermolecularly paired species indicates that a gene fusion event may lower the overall amount of active protein, possibly explaining the apparent absence of fused SMR proteins in nature.
Collapse
Affiliation(s)
- Pilar Lloris-Garcerá
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Susanna Seppälä
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Joanna S G Slusky
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Mikaela Rapp
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden; Science for Life Laboratory, Stockholm University, SE-17177 Solna, Sweden.
| |
Collapse
|
28
|
hCLE/C14orf166 associates with DDX1-HSPC117-FAM98B in a novel transcription-dependent shuttling RNA-transporting complex. PLoS One 2014; 9:e90957. [PMID: 24608264 PMCID: PMC3946611 DOI: 10.1371/journal.pone.0090957] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 02/05/2014] [Indexed: 02/05/2023] Open
Abstract
hCLE/C14orf166 is a nuclear and cytoplasmic protein that interacts with the RNAP II, modulates nuclear RNA metabolism and is present in cytoplasmic RNA granules involved in localized translation. Here we have studied whether hCLE shares common interactors in the nucleus and the cytosol, which could shed light on its participation in the sequential phases of RNA metabolism. Nuclear and cytoplasmic purified hCLE-associated factors were identified and proteins involved in mRNA metabolism, motor-related proteins, cytoskeletal and translation-related factors were found. Purified hCLE complexes also contain RNAs and as expected some hCLE-interacting proteins (DDX1, HSPC117, FAM98B) were found both in the nucleus and the cytoplasm. Moreover, endogenous hCLE fractionates in protein complexes together with DDX1, HSPC117 and FAM98B and silencing of hCLE down-regulates their nuclear and cytosolic accumulation levels. Using a photoactivatable hCLE-GFP protein, nuclear import and export of hCLE was observed indicating that hCLE is a shuttling protein. Interestingly, hCLE nuclear import required active transcription, as did the import of DDX1, HSPC117 and FAM98B proteins. The data indicate that hCLE probably as a complex with DDX1, HSPC117 and FAM98B shuttles between the nucleus and the cytoplasm transporting RNAs suggesting that this complex has a prominent role on nuclear and cytoplasmic RNA fate.
Collapse
|
29
|
Li F, Xia Y, Meiler J, Ferguson-Miller S. Characterization and modeling of the oligomeric state and ligand binding behavior of purified translocator protein 18 kDa from Rhodobacter sphaeroides. Biochemistry 2013; 52:5884-99. [PMID: 23952237 PMCID: PMC3756528 DOI: 10.1021/bi400431t] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
![]()
Translocator
Protein 18 kDa (TSPO), previously known as the peripheral-type
benzodiazepine receptor (PBR), is a mitochondrial outer membrane protein
that has been identified as a key player in cholesterol and porphyrin
transport, apoptotic signaling, and cancer development, as well as
neurological inflammation and disease. Despite a number of TSPO ligands
whose effects have been studied with respect to these varied biological
activities, the nature of their interactions with TSPO and the molecular
mechanism of their effects remain controversial, in part because of
the lack of an atomic-resolution structure. We expressed and purified
the homologue of mammalian TSPO from Rhodobacter sphaeroides (RsTSPO), as well as a mutant form in a proposed
drug binding loop, RsTSPOW38C. We characterized their
binding behaviors with endogenous ligands and a series of compounds
that affect apoptosis by using a sensitive tryptophan fluorescence
quenching assay. Our results show that RsTSPO behaves
as a dimer in the purified state and binds with low micromolar affinity
to many of these ligands, including retinoic acid, curcumin, and a
known Bcl-2 inhibitor, gossypol, suggesting a possible direct role
for TSPO in their regulation of apoptosis. A computational model of
the RsTSPO dimer is constructed using EM-Fold, Rosetta,
and a cryo-electron microscopy density map. Binding behaviors of known
ligands are discussed in the context of the model with respect to
regions that may be involved in binding.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | | | | | | |
Collapse
|
30
|
Gayen A, Banigan JR, Traaseth NJ. Ligand-induced conformational changes of the multidrug resistance transporter EmrE probed by oriented solid-state NMR spectroscopy. Angew Chem Int Ed Engl 2013; 52:10321-4. [PMID: 23939862 DOI: 10.1002/anie.201303091] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/12/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Anindita Gayen
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 (USA) http://www.nyu.edu/fas/dept/chemistry/traasethgroup/
| | | | | |
Collapse
|
31
|
Gayen A, Banigan JR, Traaseth NJ. Ligand-Induced Conformational Changes of the Multidrug Resistance Transporter EmrE Probed by Oriented Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Lloris-Garcerá P, Slusky JSG, Seppälä S, Prieß M, Schäfer LV, von Heijne G. In vivo trp scanning of the small multidrug resistance protein EmrE confirms 3D structure models'. J Mol Biol 2013; 425:4642-51. [PMID: 23920359 DOI: 10.1016/j.jmb.2013.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/10/2013] [Accepted: 07/28/2013] [Indexed: 11/28/2022]
Abstract
The quaternary structure of the homodimeric small multidrug resistance protein EmrE has been studied intensely over the past decade. Structural models derived from both two- and three-dimensional crystals show EmrE as an anti-parallel homodimer. However, the resolution of the structures is rather low and their relevance for the in vivo situation has been questioned. Here, we have challenged the available structural models by a comprehensive in vivo Trp scanning of all four transmembrane helices in EmrE. The results are in close agreement with the degree of lipid exposure of individual residues predicted from coarse-grained molecular dynamics simulations of the anti-parallel dimeric structure obtained by X-ray crystallography, strongly suggesting that the X-ray structure provides a good representation of the active in vivo form of EmrE.
Collapse
Affiliation(s)
- Pilar Lloris-Garcerá
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
33
|
Kolbusz MA, Slotboom DJ, Lolkema JS. Genomic distribution of the small multidrug resistance protein EmrE over 29Escherichia colistrains reveals two forms of the protein. FEBS J 2012; 280:244-55. [DOI: 10.1111/febs.12065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/08/2012] [Accepted: 11/12/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Magdalena A. Kolbusz
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; The Netherlands
| | - Dirk J. Slotboom
- Membrane Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; The Netherlands
| | - Juke S. Lolkema
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; The Netherlands
| |
Collapse
|
34
|
A lipid-dependent link between activity and oligomerization state of the M. tuberculosis SMR protein TBsmr. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:561-7. [PMID: 23103507 DOI: 10.1016/j.bbamem.2012.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 10/04/2012] [Accepted: 10/19/2012] [Indexed: 02/06/2023]
Abstract
TBsmr is a secondary active multidrug transporter from Mycobacterium tuberculosis that transports a plethora of compounds including antibiotics and fluorescent dyes. It belongs to the small multidrug resistance (SMR) superfamily and is structurally and functionally related to E. coli EmrE. Of particular importance is the link between protein function, oligomeric state and lipid composition. By freeze fracture EM, we found three different size distributions in three different lipid environments for TBsmr indicating different oligomeric states. The link of these states with protein activity has been probed by fluorescence spectroscopy revealing significant differences. The drug binding site has been probed further by (19)F-MAS NMR through chemical labeling of native cysteine residues showing a water accessible environment in agreement with the alternating access model.
Collapse
|