1
|
Nousi A, Molina GA, Schiano-di-Cola C, Sørensen TH, Borch K, Pedersen JN, Westh P, Marie R. Impact of Synergy Partner Cel7B on Cel7A Binding Rates: Insights from Single-Molecule Data. J Phys Chem B 2024; 128:635-647. [PMID: 38227769 PMCID: PMC10824242 DOI: 10.1021/acs.jpcb.3c05697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/18/2024]
Abstract
Enzymatic degradation of cellulosic biomass is a well-established route for the sustainable production of biofuels, chemicals, and materials. A strategy employed by nature and industry to achieve an efficient degradation of cellulose is that cellobiohydrolases (or exocellulases), such as Cel7A, work synergistically with endoglucanases, such as Cel7B, to achieve the complete degradation of cellulose. However, a complete mechanistic understanding of this exo-endo synergy is still lacking. Here, we used single-molecule fluorescence microscopy to quantify the binding kinetics of Cel7A on cellulose when it is acting alone on the cellulose fibrils and in the presence of its synergy partner, the endoglucanase Cel7B. To this end, we used a fluorescently tagged Cel7A and studied its binding in the presence of the unlabeled Cel7B. This provided the single-molecule data necessary for the estimation of the rate constants of association kON and dissociation kOFF of Cel7A for the substrate. We show that the presence of Cel7B does not impact the dissociation rate constant, kOFF. But, the association rate of Cel7A decreases by a factor of 2 when Cel7B is present at a molar proportion of 10:1. This ratio has previously been shown to lead to synergy. This decrease in association rate is observed in a wide range of total enzyme concentrations, from sub nM to μM concentrations. This decrease in kON is consistent with the formation of cellulase clusters recently observed by others using atomic force microscopy.
Collapse
Affiliation(s)
- Aimilia Nousi
- Department
of Health Technology, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| | - Gustavo Avelar Molina
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | - Kim Borch
- Novozymes
A/S, Krogshøjvej
36, 2880 Bagsværd, Denmark
| | - Jonas N. Pedersen
- Department
of Health Technology, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| | - Peter Westh
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rodolphe Marie
- Department
of Health Technology, Technical University
of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
2
|
Penneru SK, Saharay M, Krishnan M. CelS-Catalyzed Processive Cellulose Degradation and Cellobiose Extraction for the Production of Bioethanol. J Chem Inf Model 2022; 62:6628-6638. [PMID: 35649216 DOI: 10.1021/acs.jcim.2c00239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bacterial cellulase enzymes are potent candidates for the efficient production of bioethanol, a promising alternative to fossil fuels, from cellulosic biomass. These enzymes catalyze the breakdown of cellulose in plant biomass into simple sugars and then to bioethanol. In the absence of the enzyme, the cellulosic biomass is recalcitrant to decomposition due to fermentation-resistant lignin and pectin coatings on the cellulose surface, which make them inaccessible for hydrolysis. Cellobiohydrolase CelS is a microbial enzyme that binds to cellulose fiber and efficiently cleaves it into a simple sugar (cellobiose) by a repeated processive chopping mechanism. The two contributing factors to the catalytic reaction rate and the yield of cellobiose are the efficient product expulsion from the product binding site of CelS and the movement of the substrate or cellulose chain into the active site. Despite progress in understanding product expulsion in other cellulases, much remains to be understood about the molecular mechanism of processive action of these enzymes. Here, nonequilibrium molecular dynamics simulations using suitable reaction coordinates are carried out to investigate the energetics and mechanism of the substrate dynamics and product expulsion in CelS. The calculated free energy barrier for the product expulsion is three times lower than that for the processive action indicating that product removal is relatively easier and faster than the sliding of the substrate to the catalytic active site. The water traffic near the active site in response to the product expulsion and the processive action is also explored.
Collapse
Affiliation(s)
- Sree Kavya Penneru
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, 1311 Cumberland Avenue, Knoxville, Tennessee 37996-1939, United States
| | - Moumita Saharay
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, Telangana, India
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics (CCNSB), International Institute of Information Technology, Gachibowli, Hyderabad 500032, India
| |
Collapse
|
3
|
Schaller KS, Molina GA, Kari J, Schiano-di-Cola C, Sørensen TH, Borch K, Peters GH, Westh P. Virtual Bioprospecting of Interfacial Enzymes: Relating Sequence and Kinetics. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kay S. Schaller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
- Department of Chemistry, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Gustavo Avelar Molina
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| | - Jeppe Kari
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
- Department of Science and Environment, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark
| | - Corinna Schiano-di-Cola
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| | | | - Kim Borch
- Novozymes A/S, Biologiens Vej 2, DK-2800 Kgs. Lyngby, Denmark
| | - Günther H.J. Peters
- Department of Chemistry, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
4
|
Gado JE, Harrison BE, Sandgren M, Ståhlberg J, Beckham GT, Payne CM. Machine learning reveals sequence-function relationships in family 7 glycoside hydrolases. J Biol Chem 2021; 297:100931. [PMID: 34216620 PMCID: PMC8329511 DOI: 10.1016/j.jbc.2021.100931] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 11/28/2022] Open
Abstract
Family 7 glycoside hydrolases (GH7) are among the principal enzymes for cellulose degradation in nature and industrially. These enzymes are often bimodular, including a catalytic domain and carbohydrate-binding module (CBM) attached via a flexible linker, and exhibit an active site that binds cello-oligomers of up to ten glucosyl moieties. GH7 cellulases consist of two major subtypes: cellobiohydrolases (CBH) and endoglucanases (EG). Despite the critical importance of GH7 enzymes, there remain gaps in our understanding of how GH7 sequence and structure relate to function. Here, we employed machine learning to gain data-driven insights into relationships between sequence, structure, and function across the GH7 family. Machine-learning models, trained only on the number of residues in the active-site loops as features, were able to discriminate GH7 CBHs and EGs with up to 99% accuracy, demonstrating that the lengths of loops A4, B2, B3, and B4 strongly correlate with functional subtype across the GH7 family. Classification rules were derived such that specific residues at 42 different sequence positions each predicted the functional subtype with accuracies surpassing 87%. A random forest model trained on residues at 19 positions in the catalytic domain predicted the presence of a CBM with 89.5% accuracy. Our machine learning results recapitulate, as top-performing features, a substantial number of the sequence positions determined by previous experimental studies to play vital roles in GH7 activity. We surmise that the yet-to-be-explored sequence positions among the top-performing features also contribute to GH7 functional variation and may be exploited to understand and manipulate function.
Collapse
Affiliation(s)
- Japheth E Gado
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA; Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Brent E Harrison
- Department of Computer Science, University of Kentucky, Lexington, Kentucky, USA
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerry Ståhlberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gregg T Beckham
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Christina M Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, USA.
| |
Collapse
|
5
|
Hrůzová K, Matsakas L, Karnaouri A, Norén F, Rova U, Christakopoulos P. Valorization of outer tunic of the marine filter feeder Ciona intestinalis towards the production of second-generation biofuel and prebiotic oligosaccharides. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:32. [PMID: 33509271 PMCID: PMC7841879 DOI: 10.1186/s13068-021-01875-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND One of the sustainable development goals focuses on the biomass-based production as a replacement for fossil-based commodities. A novel feedstock with vast potentials is tunicate biomass, which can be pretreated and fermented in a similar way to lignocellulose. Ciona intestinalis is a marine filter feeder that is cultivated to produce fish feed. While the inner tissue body is used for feed production, the surrounding tunic remains as a cellulose-rich by-product, which can be further separated into outer and inner tunic. Ethanol production from organosolv-pretreated whole-tunic biomass was recently validated. The aim of the present study was to evaluate the potential of organosolv pretreated outer-tunic biomass for the production of biofuels and cellobiose that is a disaccharide with prebiotic potential. RESULTS As a result, 41.4 g/L of ethanol by Saccharomyces cerevisiae, corresponding to a 90.2% theoretical yield, was achieved under the optimal conditions when the tunicate biomass was pretreated at 195 °C for 60 min at a liquid-to-solid ratio of 50. In addition, cellobiose production by enzymatic hydrolysis of the pretreated tunicate biomass was demonstrated with a maximum conversion yield of 49.7 wt. %. CONCLUSIONS The utilisation of tunicate biomass offers an eco-friendly and sustainable alternative for value-added biofuels and chemicals. The cultivation of tunicate biomass in shallow coastal sea improves the quality of the water and ensures sustainable production of fish feed. Moreover, there is no competition for arable land, which leaves the latter available for food and feed production.
Collapse
Affiliation(s)
- Kateřina Hrůzová
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Leonidas Matsakas
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Anthi Karnaouri
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Fredrik Norén
- N-Research AB, Gränsgatan 17, 453 30, Lysekil, Sweden
| | - Ulrika Rova
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Paul Christakopoulos
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.
| |
Collapse
|
6
|
Schaller KS, Kari J, Molina GA, Tidemand KD, Borch K, Peters GHJ, Westh P. Computing Cellulase Kinetics with a Two-Domain Linear Interaction Energy Approach. ACS OMEGA 2021; 6:1547-1555. [PMID: 33490814 PMCID: PMC7818601 DOI: 10.1021/acsomega.0c05361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/24/2020] [Indexed: 05/21/2023]
Abstract
While heterogeneous enzyme reactions play an essential role in both nature and green industries, computational predictions of their catalytic properties remain scarce. Recent experimental work demonstrated the applicability of the Sabatier principle for heterogeneous biocatalysis. This provides a simple relationship between binding strength and the catalytic rate and potentially opens a new way for inexpensive computational determination of kinetic parameters. However, broader implementation of this approach will require fast and reliable prediction of binding free energies of complex two-phase systems, and computational procedures for this are still elusive. Here, we propose a new framework for the assessment of the binding strengths of multidomain proteins, in general, and interfacial enzymes, in particular, based on an extended linear interaction energy (LIE) method. This two-domain LIE (2D-LIE) approach was successfully applied to predict binding and activation free energies of a diverse set of cellulases and resulted in robust models with high accuracy. Overall, our method provides a fast computational screening tool for cellulases that have not been experimentally characterized, and we posit that it may also be applicable to other heterogeneously acting biocatalysts.
Collapse
Affiliation(s)
- Kay S. Schaller
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
- Department
of Chemistry, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Jeppe Kari
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| | - Gustavo A. Molina
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
| | | | - Kim Borch
- Novozymes
A/S, Biologiens Vej 2, DK-2800 Kgs. Lyngby, Denmark
| | - Günther H. J. Peters
- Department
of Chemistry, Technical University of Denmark, Kemitorvet, DK-2800 Kgs. Lyngby, Denmark
| | - Peter Westh
- Department
of Biotechnology and Biomedicine, Technical
University of Denmark, Søltofts Plads, DK-2800 Kgs. Lyngby, Denmark
- . Phone: +45 45 25 26 41
| |
Collapse
|
7
|
Yakovlieva L, Ramírez-Palacios C, Marrink SJ, Walvoort MTC. Semiprocessive Hyperglycosylation of Adhesin by Bacterial Protein N-Glycosyltransferases. ACS Chem Biol 2021; 16:165-175. [PMID: 33401908 PMCID: PMC7812588 DOI: 10.1021/acschembio.0c00848] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Processivity is an important feature
of enzyme families such as
DNA polymerases, polysaccharide synthases, and protein kinases, to
ensure high fidelity in biopolymer synthesis and modification. Here,
we reveal processive character in the family of cytoplasmic protein N-glycosyltransferases (NGTs). Through various activity
assays, intact protein mass spectrometry, and proteomics analysis,
we established that NGTs from nontypeable Haemophilus influenzae and Actinobacillus pleuropneumoniae modify an adhesin
protein fragment in a semiprocessive manner. Molecular modeling studies
suggest that the processivity arises from the shallow substrate binding
groove in NGT, which promotes the sliding of the adhesin over the
surface to allow further glycosylations without temporary dissociation.
We hypothesize that the processive character of these bacterial protein
glycosyltransferases is the mechanism to ensure multisite glycosylation
of adhesins in vivo, thereby creating the densely
glycosylated proteins necessary for bacterial self-aggregation and
adherence to human cells, as a first step toward infection.
Collapse
Affiliation(s)
- Liubov Yakovlieva
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Carlos Ramírez-Palacios
- Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Marthe T. C. Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
8
|
Carbohydrate – Protein aromatic ring interactions beyond CH/π interactions: A Protein Data Bank survey and quantum chemical calculations. Int J Biol Macromol 2020; 157:1-9. [DOI: 10.1016/j.ijbiomac.2020.03.251] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 02/03/2023]
|
9
|
Sørlie M, Horn SJ, Vaaje-Kolstad G, Eijsink VG. Using chitosan to understand chitinases and the role of processivity in the degradation of recalcitrant polysaccharides. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104488] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Røjel N, Kari J, Sørensen TH, Borch K, Westh P. pH profiles of cellulases depend on the substrate and architecture of the binding region. Biotechnol Bioeng 2019; 117:382-391. [PMID: 31631319 DOI: 10.1002/bit.27206] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/09/2019] [Accepted: 10/13/2019] [Indexed: 01/06/2023]
Abstract
Understanding the pH effect of cellulolytic enzymes is of great technological importance. In this study, we have examined the influence of pH on activity and stability for central cellulases (Cel7A, Cel7B, Cel6A from Trichoderma reesei, and Cel7A from Rasamsonia emersonii). We systematically changed pH from 2 to 7, temperature from 20°C to 70°C, and used both soluble (4-nitrophenyl β- d-lactopyranoside [pNPL]) and insoluble (Avicel) substrates at different concentrations. Collective interpretation of these data provided new insights. An unusual tolerance to acidic conditions was observed for both investigated Cel7As, but only on real insoluble cellulose. In contrast, pH profiles on pNPL were bell-shaped with a strong loss of activity both above and below the optimal pH for all four enzymes. On a practical level, these observations call for the caution of the common practice of using soluble substrates for the general characterization of pH effects on cellulase activity. Kinetic modeling of the experimental data suggested that the nucleophile of Cel7A experiences a strong downward shift in pKa upon complexation with an insoluble substrate. This shift was less pronounced for Cel7B, Cel6A, and for Cel7A acting on the soluble substrate, and we hypothesize that these differences are related to the accessibility of water to the binding region of the Michaelis complex.
Collapse
Affiliation(s)
- Nanna Røjel
- Department of Science and Environment (INM), Roskilde University, Roskilde, Denmark.,Present address: Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, DK-2800, Kgs. Lyngby, Denmark
| | - Jeppe Kari
- Department of Science and Environment (INM), Roskilde University, Roskilde, Denmark.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
11
|
Yang Y, Liu Y, Ning L, Wang L, Mu Y, Li W. Binding Process and Free Energy Characteristics of Cellulose Chain into the Catalytic Domain of Cellobiohydrolase TrCel7A. J Phys Chem B 2019; 123:8853-8860. [PMID: 31557037 DOI: 10.1021/acs.jpcb.9b05023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It was observed in experiments that the catalytic domain (CD) of Trichoderma reesei Cel7A (TrCel7A) hydrolyzes crystalline cellulose in a processive manner, but the underlying binding mechanism is still unknown. Here, through replica-exchange molecular dynamics simulations, we find that the loading and sucking-in process of the cellulose chain into CD is entropy-driven and enthalpy-unfavorable, which firmly relate to the desolvation of the binding channel of CD. During the loading process, hydrophobic interactions play a dominant role because several aromatic residues have been identified to guide the cellulose chain processing. At the active site, a transition from enthalpy- to entropy-driven is detected for the driving force. Such a finding reveals the indispensability of the catalytic reaction of the glycosidic bond to provide the energy to drive the movements of the cellulose chain. Our study reveals the interaction pictures between the cellulose chain and TrCel7A at the atomic level, which helps better understand the catalytic mechanism of TrCel7A.
Collapse
Affiliation(s)
- Yanmei Yang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education , Shandong Normal University , Jinan 250014 , China
| | | | - Lulu Ning
- School of Biological Sciences , Nanyang Technological University , 637551 Singapore
| | | | - Yuguang Mu
- School of Biological Sciences , Nanyang Technological University , 637551 Singapore
| | | |
Collapse
|
12
|
Hefferon KL, Cantero‐Tubilla B, Brady J, Wilson D. Aromatic residues surrounding the active site tunnel of TfCel48A influence activity, processivity, and synergistic interactions with other cellulases. Biotechnol Bioeng 2019; 116:2463-2472. [DOI: 10.1002/bit.27086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/29/2019] [Accepted: 06/02/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Kathleen L. Hefferon
- Department of Cellular and Molecular GeneticsCornell University Ithaca New York
- Department of Food Science and TechnologyCornell University Ithaca New York
| | - Borja Cantero‐Tubilla
- Robert Frederick Smith School of Chemical and Biomolecular EngineeringCornell University Ithaca New York
| | - John Brady
- Department of Food Science and TechnologyCornell University Ithaca New York
| | - David Wilson
- Department of Cellular and Molecular GeneticsCornell University Ithaca New York
| |
Collapse
|
13
|
Hamre AG, Kaupang A, Payne CM, Väljamäe P, Sørlie M. Thermodynamic Signatures of Substrate Binding for Three Thermobifida fusca Cellulases with Different Modes of Action. Biochemistry 2019; 58:1648-1659. [PMID: 30785271 DOI: 10.1021/acs.biochem.9b00014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The enzymatic breakdown of recalcitrant polysaccharides is achieved by synergistic enzyme cocktails of glycoside hydrolases (GHs) and accessory enzymes. Many GHs are processive, meaning that they stay bound to the substrate between subsequent catalytic interactions. Cellulases are GHs that catalyze the hydrolysis of cellulose [β-1,4-linked glucose (Glc)]. Here, we have determined the relative subsite binding affinity for a glucose moiety as well as the thermodynamic signatures for (Glc)6 binding to three of the seven cellulases produced by the bacterium Thermobifida fusca. TfCel48A is exo-processive, TfCel9A endo-processive, and TfCel5A endo-nonprocessive. Initial hydrolysis of (Glc)5 and (Glc)6 was performed in H218O enabling the incorporation of an 18O atom at the new reducing end anomeric carbon. A matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of the products reveals the intensity ratios of otherwise identical 18O- and 16O-containing products to provide insight into how the substrate is placed during productive binding. The two processive cellulases have significant binding affinity in subsites where products dissociate during processive hydrolysis, aligned with a need to have a pushing potential to remove obstacles on the substrate. Moreover, we observed a correlation between processive ability and favorable binding free energy, as previously postulated. Upon ligand binding, the largest contribution to the binding free energy is desolvation for all three cellulases as determined by isothermal titration calorimetry. The two endo-active cellulases show a more favorable solvation entropy change compared to the exo-active cellulase, while the two processive cellulases have less favorable changes in binding enthalpy compared to the nonprocessive TfCel5A.
Collapse
Affiliation(s)
- Anne Grethe Hamre
- Department of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Ås , Norway
| | - Anita Kaupang
- Department of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Ås , Norway
| | - Christina M Payne
- Department of Chemical and Materials Engineering , University of Kentucky , 177 F. Paul Anderson Tower , Lexington , Kentucky 40506 , United States
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology , University of Tartu , 50090 Tartu , Estonia
| | - Morten Sørlie
- Department of Chemistry, Biotechnology and Food Science , Norwegian University of Life Sciences , P.O. Box 5003, N-1432 Ås , Norway
| |
Collapse
|
14
|
Schiano-di-Cola C, Røjel N, Jensen K, Kari J, Sørensen TH, Borch K, Westh P. Systematic deletions in the cellobiohydrolase (CBH) Cel7A from the fungus Trichoderma reesei reveal flexible loops critical for CBH activity. J Biol Chem 2018; 294:1807-1815. [PMID: 30538133 DOI: 10.1074/jbc.ra118.006699] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/08/2018] [Indexed: 11/06/2022] Open
Abstract
Glycoside hydrolase family 7 (GH7) cellulases are some of the most efficient degraders of cellulose, making them particularly relevant for industries seeking to produce renewable fuels from lignocellulosic biomass. The secretome of the cellulolytic model fungus Trichoderma reesei contains two GH7s, termed TrCel7A and TrCel7B. Despite having high structural and sequence similarities, the two enzymes are functionally quite different. TrCel7A is an exolytic, processive cellobiohydrolase (CBH), with high activity on crystalline cellulose, whereas TrCel7B is an endoglucanase (EG) with a preference for more amorphous cellulose. At the structural level, these functional differences are usually ascribed to the flexible loops that cover the substrate-binding areas. TrCel7A has an extensive tunnel created by eight peripheral loops, and the absence of four of these loops in TrCel7B makes its catalytic domain a more open cleft. To investigate the structure-function relationships of these loops, here we produced and kinetically characterized several variants in which four loops unique to TrCel7A were individually deleted to resemble the arrangement in the TrCel7B structure. Analysis of a range of kinetic parameters consistently indicated that the B2 loop, covering the substrate-binding subsites -3 and -4 in TrCel7A, was a key determinant for the difference in CBH- or EG-like behavior between TrCel7A and TrCel7B. Conversely, the B3 and B4 loops, located closer to the catalytic site in TrCel7A, were less important for these activities. We surmise that these results could be useful both in further mechanistic investigations and for guiding engineering efforts of this industrially important enzyme family.
Collapse
Affiliation(s)
- Corinna Schiano-di-Cola
- From the Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, DK-4000 Roskilde, Denmark
| | - Nanna Røjel
- From the Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, DK-4000 Roskilde, Denmark
| | - Kenneth Jensen
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark, and
| | - Jeppe Kari
- From the Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, DK-4000 Roskilde, Denmark
| | - Trine Holst Sørensen
- From the Department of Science and Environment, Roskilde University, Universitetsvej 1, Building 28, DK-4000 Roskilde, Denmark
| | - Kim Borch
- Novozymes A/S, Krogshøjvej 36, DK-2880 Bagsværd, Denmark, and
| | - Peter Westh
- the Department of Biotechnology and Biomedicine, Technical University of Denmark, Building 224, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Rabinovich ML, Melnik MS, Herner ML, Voznyi YV, Vasilchenko LG. Predominant Nonproductive Substrate Binding by Fungal Cellobiohydrolase I and Implications for Activity Improvement. Biotechnol J 2018; 14:e1700712. [PMID: 29781240 DOI: 10.1002/biot.201700712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 05/08/2018] [Indexed: 12/20/2022]
Abstract
Enzymatic conversion of the most abundant renewable source of organic compounds, cellulose to fermentable sugars is attractive for production of green fuels and chemicals. The major component of industrial enzyme systems, cellobiohydrolase I from Hypocrea jecorina (Trichoderma reesei) (HjCel7A) processively splits disaccharide units from the reducing ends of tightly packed cellulose chains. HjCel7A consists of a catalytic domain (CD) and a carbohydrate-binding module (CBM) separated by a linker peptide. A tunnel-shaped substrate-binding site in the CD includes nine subsites for β-d-glucose units, seven of which (-7 to -1) precede the catalytic center. Low catalytic activity of Cel7A is the bottleneck and the primary target for improvement. Here it is shown for the first time that, in spite of much lower apparent kcat of HjCel7A at the hydrolysis of β-1,4-glucosidic linkages in the fluorogenic cellotetra- and -pentaose compared to the structurally related endoglucanase I (HjCel7B), the specificity constants (catalytic efficiency) kcat /Km for both enzymes are almost equal in these reactions. The observed activity difference appears from strong nonproductive substrate binding by HjCel7A, particularly significant for MU-β-cellotetraose (MUG4 ). Interaction of substrates with the subsites -6 and -5 proximal to the nonconserved Gln101 residue in HjCel7A decreases Km,ap by >1500 times. HjCel7A can be nonproductively bound onto cellulose surface with Kd ≈2-9 nM via CBM and CD that captures six terminal glucose units of cellulose chain. Decomposition of this nonproductive complex can determine the rate of cellulose conversion. MUG4 is a promising substrate to select active cellobiohydrolase I variants with reduced nonproductive substrate binding.
Collapse
Affiliation(s)
- Mikhail L Rabinovich
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Maria S Melnik
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Mikhail L Herner
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| | - Yakov V Voznyi
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Lilia G Vasilchenko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 33, bld. 2 Leninsky Ave., Moscow 119071, Russia
| |
Collapse
|
16
|
Zhai R, Hu J, Saddler JN. The inhibition of hemicellulosic sugars on cellulose hydrolysis are highly dependant on the cellulase productive binding, processivity, and substrate surface charges. BIORESOURCE TECHNOLOGY 2018; 258:79-87. [PMID: 29524690 DOI: 10.1016/j.biortech.2017.12.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 05/24/2023]
Abstract
In this study, the influence of major hemicellulosic sugars (mannose and xylose) on cellulose hydrolysis and major enzyme activities were evaluated by using both commercial enzyme cocktail and purified cellulase monocomponents over a "library" of cellulosic substrates. Surprisingly, the results showed that unlike glucose, mannose/xylose did not inhibit individual cellulase activities but significantly decreased their hydrolytic performance on cellulose substrates. When various enzyme-substrate interactions (e.g. adsorption/desorption, productive binding, and processive moving) were evaluated, it appeared that these hemicellulosic sugars significantly reduced the productive binding and processivity of Cel7A, which in turn limited cellulase hydrolytic efficacy. Among a range of major cellulose characteristics (e.g. crystallinity, degree of polymerization, accessibility, and surface charges), the acid group content of the cellulosic substrates seemed to be the main driver that determined the extent of hemicellulosic sugar inhibition. Our results provided new insights for better understanding the sugar inhibition mechanisms of cellulose hydrolysis.
Collapse
Affiliation(s)
- Rui Zhai
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, China; Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada
| | - Jinguang Hu
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada.
| | - Jack N Saddler
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada
| |
Collapse
|
17
|
Huang H, Han F, Guan S, Qian M, Wan Y, Shan Y, Zhang H, Wang S. Insight into the process of product expulsion in cellobiohydrolase Cel6A from Trichoderma reesei by computational modeling. J Biomol Struct Dyn 2018. [PMID: 29519213 DOI: 10.1080/07391102.2018.1450164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Glycoside hydrolase cellulase family 6 from Trichoderma reesei (TrCel6A) is an important cellobiohydrolase to hydrolyze cellooligosaccharide into cellobiose. The knowledge of enzymatic mechanisms is critical for improving the conversion efficiency of cellulose into ethanol or other chemicals. However, the process of product expulsion, a key component of enzymatic depolymerization, from TrCel6A has not yet been described in detail. Here, conventional molecular dynamics and steered molecular dynamics (SMD) were applied to study product expulsion from TrCel6A. Tyr103 may be a crucial residue in product expulsion given that it exhibits two different posthydrolytic conformations. In one conformation, Tyr103 rotates to open the -3 subsite. However, Tyr103 does not rotate in the other conformation. Three different routes for product expulsion were proposed on the basis of the two different conformations. The total energy barriers of the three routes were calculated through SMD simulations. The total energy barrier of product expulsion through Route 1, in which Tyr103 does not rotate, was 22.2 kcal·mol-1. The total energy barriers of product expulsion through Routes 2 and 3, in which Tyr103 rotates to open the -3 subsite, were 10.3 and 14.4 kcal·mol-1, respectively. Therefore, Routes 2 and 3 have lower energy barriers than Route 1, and Route 2 is the thermodynamically optimal route for product expulsion. Consequently, the rotation of Tyr103 may be crucial for product release from TrCel6A. Results of this work have potential applications in cellulase engineering.
Collapse
Affiliation(s)
- Houhou Huang
- a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Fei Han
- a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Shanshan Guan
- a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China.,b National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China
| | - Mengdan Qian
- c State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering , Jilin University , Changchun , Jilin 130012 , People's Republic of China
| | - Yongfeng Wan
- a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Yaming Shan
- b National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun 130012 , People's Republic of China
| | - Hao Zhang
- a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| | - Song Wang
- a Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry , Jilin University , Changchun 130023 , People's Republic of China
| |
Collapse
|
18
|
Jeoh T, Cardona MJ, Karuna N, Mudinoor AR, Nill J. Mechanistic kinetic models of enzymatic cellulose hydrolysis-A review. Biotechnol Bioeng 2017; 114:1369-1385. [PMID: 28244589 DOI: 10.1002/bit.26277] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 02/10/2017] [Accepted: 02/22/2017] [Indexed: 01/05/2023]
Abstract
Bioconversion of lignocellulose forms the basis for renewable, advanced biofuels, and bioproducts. Mechanisms of hydrolysis of cellulose by cellulases have been actively studied for nearly 70 years with significant gains in understanding of the cellulolytic enzymes. Yet, a full mechanistic understanding of the hydrolysis reaction has been elusive. We present a review to highlight new insights gained since the most recent comprehensive review of cellulose hydrolysis kinetic models by Bansal et al. (2009) Biotechnol Adv 27:833-848. Recent models have taken a two-pronged approach to tackle the challenge of modeling the complex heterogeneous reaction-an enzyme-centric modeling approach centered on the molecularity of the cellulase-cellulose interactions to examine rate limiting elementary steps and a substrate-centric modeling approach aimed at capturing the limiting property of the insoluble cellulose substrate. Collectively, modeling results suggest that at the molecular-scale, how rapidly cellulases can bind productively (complexation) and release from cellulose (decomplexation) is limiting, while the overall hydrolysis rate is largely insensitive to the catalytic rate constant. The surface area of the insoluble substrate and the degrees of polymerization of the cellulose molecules in the reaction both limit initial hydrolysis rates only. Neither enzyme-centric models nor substrate-centric models can consistently capture hydrolysis time course at extended reaction times. Thus, questions of the true reaction limiting factors at extended reaction times and the role of complexation and decomplexation in rate limitation remain unresolved. Biotechnol. Bioeng. 2017;114: 1369-1385. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tina Jeoh
- Biological and Agricultural Engineering, University of California, Davis, California
| | - Maria J Cardona
- Chemical Engineering, University of California, Davis, California.,Intel Corporation, Hillsboro, Oregon
| | - Nardrapee Karuna
- Biological and Agricultural Engineering, University of California, Davis, California.,Department of Biotechnology, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, Thailand
| | - Akshata R Mudinoor
- Biological and Agricultural Engineering, University of California, Davis, California
| | - Jennifer Nill
- Chemical Engineering, University of California, Davis, California
| |
Collapse
|
19
|
Kuusk S, Sørlie M, Väljamäe P. Human Chitotriosidase Is an Endo-Processive Enzyme. PLoS One 2017; 12:e0171042. [PMID: 28129403 PMCID: PMC5271402 DOI: 10.1371/journal.pone.0171042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/13/2017] [Indexed: 01/17/2023] Open
Abstract
Human chitotriosidase (HCHT) is involved in immune response to chitin-containing pathogens in humans. The enzyme is able to degrade chitooligosaccharides as well as crystalline chitin. The catalytic domain of HCHT is connected to the carbohydrate binding module (CBM) through a flexible hinge region. In humans, two active isoforms of HCHT are found-the full length enzyme and its truncated version lacking CBM and the hinge region. The active site architecture of HCHT is reminiscent to that of the reducing-end exo-acting processive chitinase ChiA from bacterium Serratia marcescens (SmChiA). However, the presence of flexible hinge region and occurrence of two active isoforms are reminiscent to that of non-processive endo-chitinase from S. marcescens, SmChiC. Although the studies on soluble chitin derivatives suggest the endo-character of HCHT, the mode of action of the enzyme on crystalline chitin is not known. Here, we made a thorough characterization of HCHT in terms of the mode of action, processivity, binding, and rate constants for the catalysis and dissociation using α-chitin as substrate. HCHT efficiently released the end-label from reducing-end labelled chitin and had also high probability (95%) of endo-mode initiation of processive run. These results qualify HCHT as an endo-processive enzyme. Processivity and the rate constant of dissociation of HCHT were found to be in-between those, characteristic to processive exo-enzymes, like SmChiA and randomly acting non-processive endo-enzymes, like SmChiC. Apart from increasing the affinity for chitin, CBM had no major effect on kinetic properties of HCHT.
Collapse
Affiliation(s)
- Silja Kuusk
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- * E-mail:
| | - Morten Sørlie
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| |
Collapse
|
20
|
Yang X, Ye L, Li A, Yang C, Yu H, Gu J, Guo F, Jiang L, Wang F, Yu H. Engineering of d-fructose-6-phosphate aldolase A for improved activity towards cinnamaldehyde. Catal Sci Technol 2017. [DOI: 10.1039/c6cy01622g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
d-Fructose-6-phosphate aldolase A (FSAA) from Escherichia coli was engineered for enhanced catalytic efficiency towards cinnamaldehyde.
Collapse
|
21
|
Kari J, Kont R, Borch K, Buskov S, Olsen JP, Cruyz-Bagger N, Väljamäe P, Westh P. Anomeric Selectivity and Product Profile of a Processive Cellulase. Biochemistry 2016; 56:167-178. [PMID: 28026938 DOI: 10.1021/acs.biochem.6b00636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cellobiohydrolases (CBHs) make up an important group of enzymes for both natural carbon cycling and industrial deconstruction of lignocellulosic biomass. The consecutive hydrolysis of one cellulose strand relies on an intricate pattern of enzyme-substrate interactions in the long, tunnel-shaped binding site of the CBH. In this work, we have investigated the initial complexation mode with cellulose of the most thoroughly studied CBH, Cel7A from Hypocrea jecorina (HjCel7A). We found that HjCel7A predominantly produces glucose when it initiates a processive run on insoluble microcrystalline cellulose, confirming the validity of an even and odd product ratio as an estimate of processivity. Moreover, the glucose released from cellulose was predominantly α-glucose. A link between the initial binding mode of the enzyme and the reducing end configuration was investigated by inhibition studies with the two anomers of cellobiose. A clear preference for β-cellobiose in product binding site +2 was observed for HjCel7A, but not the homologous endoglucanase, HjCe7B. Possible relationships between this anomeric preference in the product site and the prevalence of odd-numbered initial-cut products are discussed, and a correlation between processivity and anomer selectivity is proposed.
Collapse
Affiliation(s)
- Jeppe Kari
- Research Unit for Functional Biomaterials, Roskilde University , Roskilde, Denmark
| | - Riin Kont
- Institute of Molecular and Cell Biology, University of Tartu , Tartu, Estonia
| | - Kim Borch
- Novozymes A/S , Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Steen Buskov
- Novozymes A/S , Krogshøjvej 36, DK-2880 Bagsværd, Denmark
| | - Johan Pelck Olsen
- Research Unit for Functional Biomaterials, Roskilde University , Roskilde, Denmark
| | | | - Priit Väljamäe
- Institute of Molecular and Cell Biology, University of Tartu , Tartu, Estonia
| | - Peter Westh
- Research Unit for Functional Biomaterials, Roskilde University , Roskilde, Denmark
| |
Collapse
|
22
|
Mayes HB, Knott BC, Crowley MF, Broadbelt LJ, Ståhlberg J, Beckham GT. Who's on base? Revealing the catalytic mechanism of inverting family 6 glycoside hydrolases. Chem Sci 2016; 7:5955-5968. [PMID: 30155195 PMCID: PMC6091422 DOI: 10.1039/c6sc00571c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/29/2016] [Indexed: 12/16/2022] Open
Abstract
In several important classes of inverting carbohydrate-active enzymes, the identity of the catalytic base remains elusive, including in family 6 Glycoside Hydrolase (GH6) enzymes, which are key components of cellulase cocktails for cellulose depolymerization. Despite many structural and kinetic studies with both wild-type and mutant enzymes, especially on the Trichoderma reesei (Hypocrea jecorina) GH6 cellulase (TrCel6A), the catalytic base in the single displacement inverting mechanism has not been definitively identified in the GH6 family. Here, we employ transition path sampling to gain insight into the catalytic mechanism, which provides unbiased atomic-level understanding of key order parameters involved in cleaving the strong glycosidic bond. Our hybrid quantum mechanics and molecular mechanics (QM/MM) simulations reveal a network of hydrogen bonding that aligns two active site water molecules that play key roles in hydrolysis: one water molecule drives the reaction by nucleophilic attack on the substrate and a second shuttles a proton to the putative base (D175) via a short water wire. We also investigated the case where the putative base is mutated to an alanine, an enzyme that is experimentally still partially active. The simulations predict that proton hopping along a water wire via a Grotthuss mechanism provides a mechanism of catalytic rescue. Further simulations reveal that substrate processive motion is 'driven' by strong electrostatic interactions with the protein at the product sites and that the -1 sugar adopts a 2SO ring configuration as it reaches its binding site. This work thus elucidates previously elusive steps in the processive catalytic mechanism of this important class of enzymes.
Collapse
Affiliation(s)
- Heather B Mayes
- Department of Chemical and Biological Engineering , Northwestern University , Evanston , IL 60208 , USA
- National Bioenergy Center , National Renewable Energy Laboratory , Golden , CO 80401 , USA .
| | - Brandon C Knott
- National Bioenergy Center , National Renewable Energy Laboratory , Golden , CO 80401 , USA .
| | - Michael F Crowley
- Biosciences Center , National Renewable Energy Laboratory , Golden , CO 80401 , USA
| | - Linda J Broadbelt
- Department of Chemical and Biological Engineering , Northwestern University , Evanston , IL 60208 , USA
| | - Jerry Ståhlberg
- Department of Chemistry and Biotechnology , Swedish University of Agricultural Sciences , SE-75007 , Uppsala , Sweden .
| | - Gregg T Beckham
- National Bioenergy Center , National Renewable Energy Laboratory , Golden , CO 80401 , USA .
| |
Collapse
|
23
|
Wang Y, Zhang S, Song X, Yao L. Cellulose chain binding free energy drives the processive move of cellulases on the cellulose surface. Biotechnol Bioeng 2016; 113:1873-80. [DOI: 10.1002/bit.25970] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/17/2016] [Accepted: 02/21/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Yefei Wang
- Shandong Provincial Key Laboratory of Synthetic Biology; Chinese Academy of Sciences; Qingdao China
- Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao 266061 China
| | - Shujun Zhang
- Shandong Provincial Key Laboratory of Synthetic Biology; Chinese Academy of Sciences; Qingdao China
- Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao 266061 China
| | - Xiangfei Song
- Shandong Provincial Key Laboratory of Synthetic Biology; Chinese Academy of Sciences; Qingdao China
- Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao 266061 China
| | - Lishan Yao
- Shandong Provincial Key Laboratory of Synthetic Biology; Chinese Academy of Sciences; Qingdao China
- Laboratory of Biofuels; Qingdao Institute of Bioenergy and Bioprocess Technology; Chinese Academy of Sciences; Qingdao 266061 China
| |
Collapse
|
24
|
Chen M, Bu L, Alahuhta M, Brunecky R, Xu Q, Lunin VV, Brady JW, Crowley MF, Himmel ME, Bomble YJ. Strategies to reduce end-product inhibition in family 48 glycoside hydrolases. Proteins 2016; 84:295-304. [PMID: 26572060 DOI: 10.1002/prot.24965] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/02/2015] [Accepted: 11/06/2015] [Indexed: 11/07/2022]
Abstract
Family 48 cellobiohydrolases are some of the most abundant glycoside hydrolases in nature. They are able to degrade cellulosic biomass and therefore serve as good enzyme candidates for biofuel production. Family 48 cellulases hydrolyze cellulose chains via a processive mechanism, and produce end products composed primarily of cellobiose as well as other cellooligomers (dp ≤ 4). The challenge of utilizing cellulases in biofuel production lies in their extremely slow turnover rate. A factor contributing to the low enzyme activity is suggested to be product binding to enzyme and the resulting performance inhibition. In this study, we quantitatively evaluated the product inhibitory effect of four family 48 glycoside hydrolases using molecular dynamics simulations and product expulsion free-energy calculations. We also suggested a series of single mutants of the four family 48 glycoside hydrolases with theoretically reduced level of product inhibition. The theoretical calculations provide a guide for future experimental studies designed to produce mutant cellulases with enhanced activity.
Collapse
Affiliation(s)
- Mo Chen
- Department of Food Science, Cornell University, Ithaca, New York
| | - Lintao Bu
- National Renewable Energy Laboratory, Golden, Colorado
| | | | | | - Qi Xu
- National Renewable Energy Laboratory, Golden, Colorado
| | | | - John W Brady
- Department of Food Science, Cornell University, Ithaca, New York
| | | | | | | |
Collapse
|
25
|
Olsen JP, Alasepp K, Kari J, Cruys-Bagger N, Borch K, Westh P. Mechanism of product inhibition for cellobiohydrolase Cel7A during hydrolysis of insoluble cellulose. Biotechnol Bioeng 2016; 113:1178-86. [DOI: 10.1002/bit.25900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/23/2015] [Accepted: 11/29/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Johan P. Olsen
- Research Unit for Functional Biomaterials; Roskilde University; NSM, 1 Universitetsvej, Build. 28 DK-4000 Roskilde Denmark
| | - Kadri Alasepp
- Research Unit for Functional Biomaterials; Roskilde University; NSM, 1 Universitetsvej, Build. 28 DK-4000 Roskilde Denmark
| | - Jeppe Kari
- Research Unit for Functional Biomaterials; Roskilde University; NSM, 1 Universitetsvej, Build. 28 DK-4000 Roskilde Denmark
| | - Nicolaj Cruys-Bagger
- Research Unit for Functional Biomaterials; Roskilde University; NSM, 1 Universitetsvej, Build. 28 DK-4000 Roskilde Denmark
- Novozymes A/S; Bagsvaerd Denmark
| | | | - Peter Westh
- Research Unit for Functional Biomaterials; Roskilde University; NSM, 1 Universitetsvej, Build. 28 DK-4000 Roskilde Denmark
| |
Collapse
|
26
|
Borisova AS, Eneyskaya EV, Bobrov KS, Jana S, Logachev A, Polev DE, Lapidus AL, Ibatullin FM, Saleem U, Sandgren M, Payne CM, Kulminskaya AA, Ståhlberg J. Sequencing, biochemical characterization, crystal structure and molecular dynamics of cellobiohydrolase Cel7A from
Geotrichum candidum
3C. FEBS J 2015; 282:4515-37. [DOI: 10.1111/febs.13509] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 08/13/2015] [Accepted: 09/04/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Anna S. Borisova
- Department of Chemistry and Biotechnology Swedish University of Agricultural Sciences Uppsala Sweden
- National Research Centre «Kurchatov Institute» B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Orlova roscha Russia
| | - Elena V. Eneyskaya
- National Research Centre «Kurchatov Institute» B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Orlova roscha Russia
| | - Kirill S. Bobrov
- National Research Centre «Kurchatov Institute» B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Orlova roscha Russia
| | - Suvamay Jana
- Department of Chemical and Materials Engineering University of Kentucky Lexington KY USA
| | - Anton Logachev
- Theodosius Dobzhansky Center for Genome Bioinformatics St. Petersburg State University Russia
| | - Dmitrii E. Polev
- Research Resource Centre «Molecular and Cell Technologies» St. Petersburg State University Russia
| | - Alla L. Lapidus
- Centre for Algorithmic Biotechnology St. Petersburg Academic University Russia
| | - Farid M. Ibatullin
- National Research Centre «Kurchatov Institute» B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Orlova roscha Russia
| | - Umair Saleem
- Department of Chemistry and Biotechnology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Mats Sandgren
- Department of Chemistry and Biotechnology Swedish University of Agricultural Sciences Uppsala Sweden
| | - Christina M. Payne
- Department of Chemical and Materials Engineering University of Kentucky Lexington KY USA
| | - Anna A. Kulminskaya
- National Research Centre «Kurchatov Institute» B.P. Konstantinov Petersburg Nuclear Physics Institute Gatchina Orlova roscha Russia
- Department of Medical Physics Peter the Great St. Petersburg Polytechnic University Russia
| | - Jerry Ståhlberg
- Department of Chemistry and Biotechnology Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
27
|
Petkun S, Rozman Grinberg I, Lamed R, Jindou S, Burstein T, Yaniv O, Shoham Y, Shimon LJ, Bayer EA, Frolow F. Reassembly and co-crystallization of a family 9 processive endoglucanase from its component parts: structural and functional significance of the intermodular linker. PeerJ 2015; 3:e1126. [PMID: 26401442 PMCID: PMC4579020 DOI: 10.7717/peerj.1126] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/04/2015] [Indexed: 11/22/2022] Open
Abstract
Non-cellulosomal processive endoglucanase 9I (Cel9I) from Clostridium thermocellum is a modular protein, consisting of a family-9 glycoside hydrolase (GH9) catalytic module and two family-3 carbohydrate-binding modules (CBM3c and CBM3b), separated by linker regions. GH9 does not show cellulase activity when expressed without CBM3c and CBM3b and the presence of the CBM3c was previously shown to be essential for endoglucanase activity. Physical reassociation of independently expressed GH9 and CBM3c modules (containing linker sequences) restored 60-70% of the intact Cel9I endocellulase activity. However, the mechanism responsible for recovery of activity remained unclear. In this work we independently expressed recombinant GH9 and CBM3c with and without their interconnecting linker in Escherichia coli. We crystallized and determined the molecular structure of the GH9/linker-CBM3c heterodimer at a resolution of 1.68 Å to understand the functional and structural importance of the mutual spatial orientation of the modules and the role of the interconnecting linker during their re-association. Enzyme activity assays and isothermal titration calorimetry were performed to study and compare the effect of the linker on the re-association. The results indicated that reassembly of the modules could also occur without the linker, albeit with only very low recovery of endoglucanase activity. We propose that the linker regions in the GH9/CBM3c endoglucanases are important for spatial organization and fixation of the modules into functional enzymes.
Collapse
Affiliation(s)
- Svetlana Petkun
- Department of Molecular Microbiology and Biotechnology, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Inna Rozman Grinberg
- Department of Molecular Microbiology and Biotechnology, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Sadanari Jindou
- Department of Life Sciences, Meijo University, Nagoya, Japan
| | - Tal Burstein
- Department of Molecular Microbiology and Biotechnology, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Oren Yaniv
- Department of Molecular Microbiology and Biotechnology, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Linda J.W. Shimon
- Department of Chemical Research Support, The Weizmann Institute of Science, Rehovot, Israel
| | - Edward A. Bayer
- Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot, Israel
| | - Felix Frolow
- Department of Molecular Microbiology and Biotechnology, The Daniella Rich Institute for Structural Biology, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
28
|
Atreya ME, Strobel KL, Clark DS. Alleviating product inhibition in cellulase enzyme Cel7A. Biotechnol Bioeng 2015; 113:330-8. [PMID: 26302366 PMCID: PMC5049672 DOI: 10.1002/bit.25809] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 12/19/2022]
Abstract
Enzymes that degrade cellulose into glucose are one of the most expensive components of processes for converting cellulosic biomass to fuels and chemicals. Cellulase enzyme Cel7A is the most abundant enzyme naturally employed by fungi to depolymerize cellulose, and like other cellulases is inhibited by its product, cellobiose. There is thus great economic incentive for minimizing the detrimental effects of product inhibition on Cel7A. In this work, we experimentally generated 10 previously proposed site-directed mutant Cel7A enzymes expected to have reduced cellobiose binding energies (the majority of mutations were to alanine). We then tested their resilience to cellobiose as well as their hydrolytic activities on microcrystalline cellulose. Although every mutation tested conferred reduced product inhibition (and abolished it for some), our results confirm a trade-off between Cel7A tolerance to cellobiose and enzymatic activity: Reduced product inhibition was accompanied by lower overall enzymatic activity on crystalline cellulose for the mutants tested. The tempering effect of mutations on inhibition was nearly constant despite relatively large differences in activities of the mutants. Our work identifies an amino acid in the Cel7A product binding site of interest for further mutational studies, and highlights both the challenge and the opportunity of enzyme engineering toward improving product tolerance in Cel7A.
Collapse
Affiliation(s)
- Meera E Atreya
- Department of Chemistry, Chemical Biology Graduate Program, University of California, Berkeley, 94720, California.,Energy Biosciences Institute, University of California, Berkeley, 94720, California
| | - Kathryn L Strobel
- Energy Biosciences Institute, University of California, Berkeley, 94720, California.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 94720, California
| | - Douglas S Clark
- Energy Biosciences Institute, University of California, Berkeley, 94720, California. .,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, 94720, California.
| |
Collapse
|
29
|
Hamid SBA, Islam MM, Das R. Cellulase biocatalysis: key influencing factors and mode of action. CELLULOSE 2015; 22:2157-2182. [DOI: 10.1007/s10570-015-0672-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
30
|
Vermaas JV, Crowley MF, Beckham GT, Payne CM. Effects of lytic polysaccharide monooxygenase oxidation on cellulose structure and binding of oxidized cellulose oligomers to cellulases. J Phys Chem B 2015; 119:6129-43. [PMID: 25785779 DOI: 10.1021/acs.jpcb.5b00778] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
In nature, polysaccharide glycosidic bonds are cleaved by hydrolytic enzymes for a vast array of biological functions. Recently, a new class of enzymes that utilize an oxidative mechanism to cleave glycosidic linkages was discovered; these enzymes are called lytic polysaccharide monooxygenases (LPMO). These oxidative enzymes are synergistic with cocktails of hydrolytic enzymes and are thought to act primarily on crystalline regions, in turn providing new sites of productive attachment and detachment for processive hydrolytic enzymes. In the case of cellulose, the homopolymer of β-1,4-d-glucose, enzymatic oxidation occurs at either the reducing end or the nonreducing end of glucose, depending on enzymatic specificity, and results in the generation of oxidized chemical substituents at polymer chain ends. LPMO oxidation of cellulose is thought to produce either a lactone at the reducing end of glucose that can spontaneously or enzymatically convert to aldonic acid or 4-keto-aldose at the nonreducing end that may further oxidize to a geminal diol. Here, we use molecular simulation to examine the effect of oxidation on the structure of crystalline cellulose. The simulations highlight variations in behaviors depending on the chemical identity of the oxidized species and its location within the cellulose fibril, as different oxidized species introduce steric effects that disrupt local crystallinity and in some cases reduce the work needed for polymer decrystallization. Reducing-end oxidations are easiest to decrystallize when located at the end of the fibril, whereas nonreducing end oxidations readily decrystallize from internal cleavage sites despite their lower solvent accessibility. The differential in decrystallization free energy suggests a molecular mechanism consistent with experimentally observed LPMO/cellobiohydrolase synergy. Additionally, the soluble oxidized cellobiose products released by hydrolytic cellulases may bind to the active sites of cellulases with different affinities relative to cellobiose itself, which potentially affects hydrolytic turnover through product inhibition. To examine the effect of oxidation on cello-oligomer binding, we use thermodynamic integration to compute the relative change in binding free energy between the hydrolyzed and oxidized products in the active site of Family 7 and Family 6 processive glycoside hydrolases, Trichoderma reesei Cel7A and Cel6A, which are key industrial cellulases and commonly used model systems for fungal cellulases. Our results suggest that the equilibrium between the two reducing end oxidized products, favoring the linear aldonic acid, may increase product inhibition, which would in turn reduce processive substrate turnover. In the case of LMPO action at the nonreducing end, oxidation appears to lower affinity with the nonreducing end specific cellulase, reducing product inhibition and potentially promoting processive cellulose turnover. Overall, this suggests that oxidation of recalcitrant polysaccharides by LPMOs accelerates degradation not only by increasing the concentration of chain termini but also by reducing decrystallization work, and that product inhibition may be somewhat reduced as a result.
Collapse
Affiliation(s)
- Josh V Vermaas
- †Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.,‡National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Michael F Crowley
- §Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Gregg T Beckham
- ‡National Bioenergy Center, National Renewable Energy Laboratory, Golden, Colorado 80401, United States
| | - Christina M Payne
- ∥Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, United States.,⊥Center for Computational Science, University of Kentucky, Lexington, Kentucky 40506, United States
| |
Collapse
|
31
|
Hsieh CWC, Cannella D, Jørgensen H, Felby C, Thygesen LG. Cellobiohydrolase and endoglucanase respond differently to surfactants during the hydrolysis of cellulose. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:52. [PMID: 25829946 PMCID: PMC4379714 DOI: 10.1186/s13068-015-0242-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/19/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND Non-ionic surfactants such as polyethylene glycol (PEG) can increase the glucose yield obtained from enzymatic saccharification of lignocellulosic substrates. Various explanations behind this effect include the ability of PEG to increase the stability of the cellulases, decrease non-productive cellulase adsorption to the substrate, and increase the desorption of enzymes from the substrate. Here, using lignin-free model substrates, we propose that PEG also alters the solvent properties, for example, water, leading the cellulases to increase hydrolysis yields. RESULTS The effect of PEG differs for the individual cellulases. During hydrolysis of Avicel and PASC with a processive monocomponent exo-cellulase cellobiohydrolase (CBH) I, the presence of PEG leads to an increase in the final glucose concentration, while PEG caused no change in glucose production with a non-processive endoglucanase (EG). Also, no effect of PEG was seen on the activity of β-glucosidases. While PEG has a small effect on the thermostability of both cellulases, only the activity of CBH I increases with PEG. Using commercial enzyme mixtures, the hydrolysis yields increased with the addition of PEG. In parallel, we observed that the relaxation time of the hydrolysis liquid phase, as measured by LF-NMR, directly correlated with the final glucose yield. PEG was able to boost the glucose production even in highly concentrated solutions of up to 150 g/L of glucose. CONCLUSIONS The hydrolysis boosting effect of PEG appears to be specific for CBH I. The mechanism could be due to an increase in the apparent activity of the enzyme on the substrate surface. The addition of PEG increases the relaxation time of the liquid-phase water, which from the data presented points towards a mechanism related to PEG-water interactions rather than PEG-protein or PEG-substrate interactions.
Collapse
Affiliation(s)
- Chia-wen C Hsieh
- />Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - David Cannella
- />Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Henning Jørgensen
- />Present address: Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, DK-2800 Kgs. Lyngby, Denmark
| | - Claus Felby
- />Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Lisbeth G Thygesen
- />Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
32
|
Kuusk S, Sørlie M, Väljamäe P. The predominant molecular state of bound enzyme determines the strength and type of product inhibition in the hydrolysis of recalcitrant polysaccharides by processive enzymes. J Biol Chem 2015; 290:11678-91. [PMID: 25767120 DOI: 10.1074/jbc.m114.635631] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Indexed: 11/06/2022] Open
Abstract
Processive enzymes are major components of the efficient enzyme systems that are responsible for the degradation of the recalcitrant polysaccharides cellulose and chitin. Despite intensive research, there is no consensus on which step is rate-limiting for these enzymes. Here, we performed a comparative study of two well characterized enzymes, the cellobiohydrolase Cel7A from Hypocrea jecorina and the chitinase ChiA from Serratia marcescens. Both enzymes were inhibited by their disaccharide product, namely chitobiose for ChiA and cellobiose for Cel7A. The products behaved as noncompetitive inhibitors according to studies using the (14)C-labeled crystalline polymeric substrates (14)C chitin nanowhiskers and (14)C-labeled bacterial microcrystalline cellulose for ChiA and Cel7A, respectively. The resulting observed Ki (obs) values were 0.45 ± 0.08 mm for ChiA and 0.17 ± 0.02 mm for Cel7A. However, in contrast to ChiA, the Ki (obs) of Cel7A was an order of magnitude higher than the true Ki value governed by the thermodynamic stability of the enzyme-inhibitor complex. Theoretical analysis of product inhibition suggested that the inhibition strength and pattern can be accounted for by assuming different rate-limiting steps for ChiA and Cel7A. Measuring the population of enzymes whose active site was occupied by a polymer chain revealed that Cel7A was bound predominantly via its active site. Conversely, the active-site-mediated binding of ChiA was slow, and most ChiA exhibited a free active site, even when the substrate concentration was saturating for the activity. Collectively, our data suggest that complexation with the polymer chain is rate-limiting for ChiA, whereas Cel7A is limited by dissociation.
Collapse
Affiliation(s)
- Silja Kuusk
- From the Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia and
| | - Morten Sørlie
- the Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Priit Väljamäe
- From the Institute of Molecular and Cell Biology, University of Tartu, 51010 Tartu, Estonia and
| |
Collapse
|
33
|
Payne CM, Knott BC, Mayes HB, Hansson H, Himmel ME, Sandgren M, Ståhlberg J, Beckham GT. Fungal Cellulases. Chem Rev 2015; 115:1308-448. [DOI: 10.1021/cr500351c] [Citation(s) in RCA: 533] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Christina M. Payne
- Department
of Chemical and Materials Engineering and Center for Computational
Sciences, University of Kentucky, 177 F. Paul Anderson Tower, Lexington, Kentucky 40506, United States
| | - Brandon C. Knott
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| | - Heather B. Mayes
- Department
of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Henrik Hansson
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Michael E. Himmel
- Biosciences
Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Mats Sandgren
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Jerry Ståhlberg
- Department
of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, Uppsala BioCenter, Almas allé 5, SE-75651 Uppsala, Sweden
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver
West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
34
|
Greene ER, Himmel ME, Beckham GT, Tan Z. Glycosylation of Cellulases: Engineering Better Enzymes for Biofuels. Adv Carbohydr Chem Biochem 2015; 72:63-112. [PMID: 26613815 DOI: 10.1016/bs.accb.2015.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Cellulose in plant cell walls is the largest reservoir of renewable carbon on Earth. The saccharification of cellulose from plant biomass into soluble sugars can be achieved using fungal and bacterial cellulolytic enzymes, cellulases, and further converted into fuels and chemicals. Most fungal cellulases are both N- and O-glycosylated in their native form, yet the consequences of glycosylation on activity and structure are not fully understood. Studying protein glycosylation is challenging as glycans are extremely heterogeneous, stereochemically complex, and glycosylation is not under direct genetic control. Despite these limitations, many studies have begun to unveil the role of cellulase glycosylation, especially in the industrially relevant cellobiohydrolase from Trichoderma reesei, Cel7A. Glycosylation confers many beneficial properties to cellulases including enhanced activity, thermal and proteolytic stability, and structural stabilization. However, glycosylation must be controlled carefully as such positive effects can be dampened or reversed. Encouragingly, methods for the manipulation of glycan structures have been recently reported that employ genetic tuning of glycan-active enzymes expressed from homogeneous and heterologous fungal hosts. Taken together, these studies have enabled new strategies for the exploitation of protein glycosylation for the production of enhanced cellulases for biofuel production.
Collapse
|
35
|
Silveira RL, Skaf MS. Molecular Dynamics Simulations of Family 7 Cellobiohydrolase Mutants Aimed at Reducing Product Inhibition. J Phys Chem B 2014; 119:9295-303. [DOI: 10.1021/jp509911m] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Rodrigo L. Silveira
- Institute
of Chemistry, University of Campinas, Cx. P. 6154 Campinas, SP, 13084-862, Brazil
| | - Munir S. Skaf
- Institute
of Chemistry, University of Campinas, Cx. P. 6154 Campinas, SP, 13084-862, Brazil
| |
Collapse
|
36
|
|
37
|
Bornscheuer U, Buchholz K, Seibel J. Enzymatic degradation of (ligno)cellulose. Angew Chem Int Ed Engl 2014; 53:10876-93. [PMID: 25136976 DOI: 10.1002/anie.201309953] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Indexed: 11/06/2022]
Abstract
Glycoside-degrading enzymes play a dominant role in the biochemical conversion of cellulosic biomass into low-price biofuels and high-value-added chemicals. New insight into protein functions and substrate structures, the kinetics of recognition, and degradation events has resulted in a substantial improvement of our understanding of cellulose degradation.
Collapse
Affiliation(s)
- Uwe Bornscheuer
- Ernst-Moritz-Arndt-Universität Greifswald, Biotechnologie und Enzymkatalyse, Institut für Biochemie, Felix-Hausdorff-Strasse 4, 17487 Greifswald (Germany)
| | | | | |
Collapse
|
38
|
Knott BC, Crowley MF, Himmel ME, Ståhlberg J, Beckham GT. Carbohydrate-protein interactions that drive processive polysaccharide translocation in enzymes revealed from a computational study of cellobiohydrolase processivity. J Am Chem Soc 2014; 136:8810-9. [PMID: 24869982 DOI: 10.1021/ja504074g] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Translocation of carbohydrate polymers through protein tunnels and clefts is a ubiquitous biochemical phenomenon in proteins such as polysaccharide synthases, glycoside hydrolases, and carbohydrate-binding modules. Although static snapshots of carbohydrate polymer binding in proteins have long been studied via crystallography and spectroscopy, the molecular details of polysaccharide chain processivity have not been elucidated. Here, we employ simulation to examine how a cellulose chain translocates by a disaccharide unit during the processive cycle of a glycoside hydrolase family 7 cellobiohydrolase. Our results demonstrate that these biologically and industrially important enzymes employ a two-step mechanism for chain threading to form a Michaelis complex and that the free energy barrier to chain threading is significantly lower than the hydrolysis barrier. Taken with previous studies, our findings suggest that the rate-limiting step in enzymatic cellulose degradation is the glycosylation reaction, not chain processivity. Based on the simulations, we find that strong electrostatic interactions with polar residues that are conserved in GH7 cellobiohydrolases, but not in GH7 endoglucanases, at the leading glucosyl ring provide the thermodynamic driving force for polysaccharide chain translocation. Also, we consider the role of aromatic-carbohydrate interactions, which are widespread in carbohydrate-active enzymes and have long been associated with processivity. Our analysis suggests that the primary role for these aromatic residues is to provide tunnel shape and guide the carbohydrate chain to the active site. More broadly, this work elucidates the role of common protein motifs found in carbohydrate-active enzymes that synthesize or depolymerize polysaccharides by chain translocation mechanisms coupled to catalysis.
Collapse
Affiliation(s)
- Brandon C Knott
- National Bioenergy Center and ‡Biosciences Center, National Renewable Energy Laboratory , Golden, Colorado 80401, United States
| | | | | | | | | |
Collapse
|
39
|
Towards a molecular-level theory of carbohydrate processivity in glycoside hydrolases. Curr Opin Biotechnol 2014; 27:96-106. [DOI: 10.1016/j.copbio.2013.12.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/04/2013] [Indexed: 10/25/2022]
|
40
|
Wu M, Bu L, Vuong TV, Wilson DB, Crowley MF, Sandgren M, Ståhlberg J, Beckham GT, Hansson H. Loop motions important to product expulsion in the Thermobifida fusca glycoside hydrolase family 6 cellobiohydrolase from structural and computational studies. J Biol Chem 2013; 288:33107-17. [PMID: 24085303 DOI: 10.1074/jbc.m113.502765] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellobiohydrolases (CBHs) are typically major components of natural enzyme cocktails for biomass degradation. Their active sites are enclosed in a tunnel, enabling processive hydrolysis of cellulose chains. Glycoside hydrolase Family 6 (GH6) CBHs act from nonreducing ends by an inverting mechanism and are present in many cellulolytic fungi and bacteria. The bacterial Thermobifida fusca Cel6B (TfuCel6B) exhibits a longer and more enclosed active site tunnel than its fungal counterparts. Here, we determine the structures of two TfuCel6B mutants co-crystallized with cellobiose, D274A (catalytic acid), and the double mutant D226A/S232A, which targets the putative catalytic base and a conserved serine that binds the nucleophilic water. The ligand binding and the structure of the active site are retained when compared with the wild type structure, supporting the hypothesis that these residues are directly involved in catalysis. One structure exhibits crystallographic waters that enable construction of a model of the α-anomer product after hydrolysis. Interestingly, the product sites of TfuCel6B are completely enclosed by an "exit loop" not present in fungal GH6 CBHs and by an extended "bottom loop". From the structures, we hypothesize that either of the loops enclosing the product subsites in the TfuCel6B active site tunnel must open substantially for product release. With simulation, we demonstrate that both loops can readily open to allow product release with equal probability in solution or when the enzyme is engaged on cellulose. Overall, this study reveals new structural details of GH6 CBHs likely important for functional differences among enzymes from this important family.
Collapse
Affiliation(s)
- Miao Wu
- From the Department of Molecular Biology, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kamat RK, Ma W, Yang Y, Zhang Y, Wang C, Kumar CV, Lin Y. Adsorption and hydrolytic activity of the polycatalytic cellulase nanocomplex on cellulose. ACS APPLIED MATERIALS & INTERFACES 2013; 5:8486-8494. [PMID: 23968137 DOI: 10.1021/am401916k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The formation of polycatalytic enzyme complexes may enhance the effectiveness of enzymes due to improved substrate interaction and synergistic actions of multiple enzymes in proximity. Much effort has been made to develop highly efficient polycatalytic cellulase complexes by immobilizing cellulases on low-cost polymer or nanoparticle scaffolds, aiming at their potential applications in biomass conversion to fuels. However, some key cellulases carry out the hydrolytic reaction on crystalline cellulose in a directional, processive manner. A large, artificial polycatalytic complex is unlikely to undergo a highly coordinated motion to slide on the cellulose surface as a whole unit. The mechanism underlying the activity enhancements observed in some artificial cellulase complexes and the limit of this approach remain elusive. Herein, we report the synthesis of polycatalytic cellulase complexes bound to colloidal polymer nanoparticles with a magnetic core and describe their unique adsorption, hydrolytic activities, and motions on cellulose. The polycatalytic clusters of cellulases on colloidal polymers show an increased rate of hydrolytic reactions on cellulose, but this was observed mainly at relatively low cellulase-to-cellulose ratios. Enhanced efficiency is mainly attributed to increased local concentrations of cellulases on the scaffolds and their polyvalent interactions with cellulose. However, once bound, the polycatalytic complexes can only carry out reactions locally and are not capable of relocating to new sites rapidly due to their lack of long-range surface mobility and their extremely tight binding. The development of highly optimized polycatalytic complexes may arise by developing novel nanoscaffolds that induce concerted motion of the complex as a whole.
Collapse
Affiliation(s)
- Ranjan K Kamat
- Polymer Program, Institute of Material Science, §Department of Chemistry, and ∥Department of Molecular and Cellular Biology, University of Connecticut , Storrs, Connecticut 06269, United States
| | | | | | | | | | | | | |
Collapse
|
42
|
Ghattyvenkatakrishna PK, Alekozai EM, Beckham GT, Schulz R, Crowley MF, Uberbacher EC, Cheng X. Initial recognition of a cellodextrin chain in the cellulose-binding tunnel may affect cellobiohydrolase directional specificity. Biophys J 2013; 104:904-12. [PMID: 23442969 DOI: 10.1016/j.bpj.2012.12.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 12/14/2012] [Accepted: 12/27/2012] [Indexed: 10/27/2022] Open
Abstract
Cellobiohydrolases processively hydrolyze glycosidic linkages in individual polymer chains of cellulose microfibrils, and typically exhibit specificity for either the reducing or nonreducing end of cellulose. Here, we conduct molecular dynamics simulations and free energy calculations to examine the initial binding of a cellulose chain into the catalytic tunnel of the reducing-end-specific Family 7 cellobiohydrolase (Cel7A) from Hypocrea jecorina. In unrestrained simulations, the cellulose diffuses into the tunnel from the -7 to the -5 positions, and the associated free energy profiles exhibit no barriers for initial processivity. The comparison of the free energy profiles for different cellulose chain orientations show a thermodynamic preference for the reducing end, suggesting that the preferential initial binding may affect the directional specificity of the enzyme by impeding nonproductive (nonreducing end) binding. Finally, the Trp-40 at the tunnel entrance is shown with free energy calculations to have a significant effect on initial chain complexation in Cel7A.
Collapse
|
43
|
Jung J, Sethi A, Gaiotto T, Han JJ, Jeoh T, Gnanakaran S, Goodwin PM. Binding and movement of individual Cel7A cellobiohydrolases on crystalline cellulose surfaces revealed by single-molecule fluorescence imaging. J Biol Chem 2013; 288:24164-72. [PMID: 23818525 DOI: 10.1074/jbc.m113.455758] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The efficient catalytic conversion of biomass to bioenergy would meet a large portion of energy requirements in the near future. A crucial step in this process is the enzyme-catalyzed hydrolysis of cellulose to glucose that is then converted into fuel such as ethanol by fermentation. Here we use single-molecule fluorescence imaging to directly monitor the movement of individual Cel7A cellobiohydrolases from Trichoderma reesei (TrCel7A) on the surface of insoluble cellulose fibrils to elucidate molecular level details of cellulase activity. The motion of multiple, individual TrCel7A cellobiohydrolases was simultaneously recorded with ∼15-nm spatial resolution. Time-resolved localization microscopy provides insights on the activity of TrCel7A on cellulose and informs on nonproductive binding and diffusion. We measured single-molecule residency time distributions of TrCel7A bound to cellulose both in the presence of and absence of cellobiose the major product and a potent inhibitor of Cel7A activity. Combining these results with a kinetic model of TrCel7A binding provides microscopic insight into interactions between TrCel7A and the cellulose substrate.
Collapse
Affiliation(s)
- Jaemyeong Jung
- Material Physics and Applications, Los Alamos National Laboratory, Los Alamos, New Mexico 87544, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Taylor CB, Payne CM, Himmel ME, Crowley MF, McCabe C, Beckham GT. Binding Site Dynamics and Aromatic–Carbohydrate Interactions in Processive and Non-Processive Family 7 Glycoside Hydrolases. J Phys Chem B 2013; 117:4924-33. [DOI: 10.1021/jp401410h] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Courtney B. Taylor
- Department
of Chemical and Biomolecular
Engineering, Vanderbilt University, Nashville,
Tennessee 37235, United States
| | - Christina M. Payne
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado
80401, United States
- Department
of Chemical and Materials
Engineering, University of Kentucky, Lexington,
Kentucky 40506, United States
| | - Michael E. Himmel
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado
80401, United States
| | - Michael F. Crowley
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado
80401, United States
| | - Clare McCabe
- Department
of Chemical and Biomolecular
Engineering, Vanderbilt University, Nashville,
Tennessee 37235, United States
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235,
United States
| | - Gregg T. Beckham
- National
Bioenergy Center, National
Renewable Energy Laboratory, Golden, Colorado 80401, United States
- Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado 80401, United
States
| |
Collapse
|
45
|
Bubner P, Plank H, Nidetzky B. Visualizing cellulase activity. Biotechnol Bioeng 2013; 110:1529-49. [DOI: 10.1002/bit.24884] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 01/08/2013] [Accepted: 02/22/2013] [Indexed: 11/08/2022]
|
46
|
Bu L, Crowley MF, Himmel ME, Beckham GT. Computational investigation of the pH dependence of loop flexibility and catalytic function in glycoside hydrolases. J Biol Chem 2013; 288:12175-86. [PMID: 23504310 DOI: 10.1074/jbc.m113.462465] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cellulase enzymes cleave glycosidic bonds in cellulose to produce cellobiose via either retaining or inverting hydrolysis mechanisms, which are significantly pH-dependent. Many fungal cellulases function optimally at pH ~5, and their activities decrease dramatically at higher or lower pH. To understand the molecular-level implications of pH in cellulase structure, we use a hybrid, solvent-based, constant pH molecular dynamics method combined with pH-based replica exchange to determine the pK(a) values of titratable residues of a glycoside hydrolase (GH) family 6 cellobiohydrolase (Cel6A) and a GH family 7 cellobiohydrolase (Cel7A) from the fungus Hypocrea jecorina. For both enzymes, we demonstrate that a bound substrate significantly affects the pKa values of the acid residues at the catalytic center. The calculated pK(a) values of catalytic residues confirm their proposed roles from structural studies and are consistent with the experimentally measured apparent pKa values. Additionally, GHs are known to impart a strained pucker conformation in carbohydrate substrates in active sites for catalysis, and results from free energy calculations combined with constant pH molecular dynamics suggest that the correct ring pucker is stable near the optimal pH for both Cel6A and Cel7A. Much longer molecular dynamics simulations of Cel6A and Cel7A with fixed protonation states based on the calculated pK(a) values suggest that pH affects the flexibility of tunnel loops, which likely affects processivity and substrate complexation. Taken together, this work demonstrates several molecular-level effects of pH on GH enzymes important for cellulose turnover in the biosphere and relevant to biomass conversion processes.
Collapse
Affiliation(s)
- Lintao Bu
- National Bioenergy Center, Colorado School of Mines, Golden, Colorado 80401, USA.
| | | | | | | |
Collapse
|
47
|
Momeni MH, Payne CM, Hansson H, Mikkelsen NE, Svedberg J, Engström Å, Sandgren M, Beckham GT, Ståhlberg J. Structural, biochemical, and computational characterization of the glycoside hydrolase family 7 cellobiohydrolase of the tree-killing fungus Heterobasidion irregulare. J Biol Chem 2013; 288:5861-72. [PMID: 23303184 DOI: 10.1074/jbc.m112.440891] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Root rot fungi of the Heterobasidion annosum complex are the most damaging pathogens in temperate forests, and the recently sequenced Heterobasidion irregulare genome revealed over 280 carbohydrate-active enzymes. Here, H. irregulare was grown on biomass, and the most abundant protein in the culture filtrate was identified as the only family 7 glycoside hydrolase in the genome, which consists of a single catalytic domain, lacking a linker and carbohydrate-binding module. The enzyme, HirCel7A, was characterized biochemically to determine the optimal conditions for activity. HirCel7A was crystallized and the structure, refined at 1.7 Å resolution, confirms that HirCel7A is a cellobiohydrolase rather than an endoglucanase, with a cellulose-binding tunnel that is more closed than Phanerochaete chrysosporium Cel7D and more open than Hypocrea jecorina Cel7A, suggesting intermediate enzyme properties. Molecular simulations were conducted to ascertain differences in enzyme-ligand interactions, ligand solvation, and loop flexibility between the family 7 glycoside hydrolase cellobiohydrolases from H. irregulare, H. jecorina, and P. chrysosporium. The structural comparisons and simulations suggest significant differences in enzyme-ligand interactions at the tunnel entrance in the -7 to -4 binding sites and suggest that a tyrosine residue at the tunnel entrance of HirCel7A may serve as an additional ligand-binding site. Additionally, the loops over the active site in H. jecorina Cel7A are more closed than loops in the other two enzymes, which has implications for the degree of processivity, endo-initiation, and substrate dissociation. Overall, this study highlights molecular level features important to understanding this biologically and industrially important family of glycoside hydrolases.
Collapse
Affiliation(s)
- Majid Haddad Momeni
- Department of Molecular Biology, Swedish University of Agricultural Sciences, SE-751 24 Uppsala, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Puri DJ, Heaven S, Banks CJ. Improving the performance of enzymes in hydrolysis of high solids paper pulp derived from MSW. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:107. [PMID: 23885832 PMCID: PMC3726406 DOI: 10.1186/1754-6834-6-107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/23/2013] [Indexed: 05/18/2023]
Abstract
BACKGROUND The research aimed to improve the overall conversion efficiency of the CTec® family of enzymes by identifying factors that lead to inhibition and seeking methods to overcome these through process modification and manipulation. The starting material was pulp derived from municipal solid waste and processed in an industrial-scale washing plant. RESULTS Analysis of the pulp by acid hydrolysis showed a ratio of 55 : 12 : 6 : 24 : 3 of glucan : xylan : araban/galactan/mannan : lignin : ash. At high total solids content (>18.5% TS) single-stage enzyme hydrolysis gave a maximum glucan conversion of 68%. It was found that two-stage hydrolysis could give higher conversion if sugar inhibition was removed by an intermediate fermentation step between hydrolysis stages. This, however, was not as effective as direct removal of the sugar products, including xylose, by washing of the residual pulp at pH 5. This improved the water availability and allowed reactivation of the pulp-bound enzymes. Inhibition of enzyme activity could further be alleviated by replenishment of β-glucosidase which was shown to be removed during the wash step. CONCLUSIONS The two-stage hydrolysis process developed could give an overall glucan conversion of 88%, with an average glucose concentration close to 8% in 4 days, thus providing an ideal starting point for ethanol fermentation with a likely yield of 4 wt%. This is a significant improvement over a single-step process. This hydrolysis configuration also provides the potential to recover the sugars associated with residual solids which are diluted when washing hydrolysed pulp.
Collapse
Affiliation(s)
- Dhivya J Puri
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Sonia Heaven
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Charles J Banks
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
49
|
Jalak J, Kurašin M, Teugjas H, Väljamäe P. Endo-exo synergism in cellulose hydrolysis revisited. J Biol Chem 2012; 287:28802-15. [PMID: 22733813 DOI: 10.1074/jbc.m112.381624] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synergistic cooperation of different enzymes is a prerequisite for efficient degradation of cellulose. The conventional mechanistic interpretation of the synergism between randomly acting endoglucanases (EGs) and chain end-specific processive cellobiohydrolases (CBHs) is that EG-generated new chain ends on cellulose surface serve as starting points for CBHs. Here we studied the hydrolysis of bacterial cellulose (BC) by CBH TrCel7A and EG TrCel5A from Trichoderma reesei under both single-turnover and "steady state" conditions. Unaccountable by conventional interpretation, the presence of EG increased the rate constant of TrCel7A-catalyzed hydrolysis of BC in steady state. At optimal enzyme/substrate ratios, the "steady state" rate of synergistic hydrolysis became limited by the velocity of processive movement of TrCel7A on BC. A processivity value of 66 ± 7 cellobiose units measured for TrCel7A on (14)C-labeled BC was close to the leveling off degree of polymerization of BC, suggesting that TrCel7A cannot pass through the amorphous regions on BC and stalls. We propose a mechanism of endo-exo synergism whereby the degradation of amorphous regions by EG avoids the stalling of TrCel7A and leads to its accelerated recruitment. Hydrolysis of pretreated wheat straw suggested that this mechanism of synergism is operative also in the degradation of lignocellulose. Although both mechanisms of synergism are used in parallel, the contribution of conventional mechanism is significant only at high enzyme/substrate ratios.
Collapse
Affiliation(s)
- Jürgen Jalak
- Institute of Molecular and Cell Biology, University of Tartu, Vanemuise 46-138, 51014 Tartu, Estonia
| | | | | | | |
Collapse
|
50
|
Marana SR. Structural and mechanistic fundamentals for designing of cellulases. Comput Struct Biotechnol J 2012; 2:e201209006. [PMID: 24688647 PMCID: PMC3962180 DOI: 10.5936/csbj.201209006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sandro R Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, São Paulo, 05513-970, SP, Brazil
| |
Collapse
|