1
|
Pervaiz A, Saleem T, Kanwal K, Raza SM, Iqbal S, Zepp M, Georges RB, Berger MR. Expression profiling of anticancer genes in colorectal cancer patients and their in vitro induction by riproximin, a ribosomal inactivating plant protein. J Cancer Res Clin Oncol 2023; 149:4825-4837. [PMID: 36251065 DOI: 10.1007/s00432-022-04410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/06/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Ectopic expression of anticancer genes (ACGs) imposes antineoplastic effects on transformed cells. Clinically, reduced expression of these genes has been linked with poor prognosis, metastasis and chemo/radiotherapy resistance in cancers. Identifying expression pattern of ACGs is crucial to establish their prognostic and therapeutic relevance in colorectal cancer (CRC). In addition to the clinical perspective, naturally occurring compounds can be explored in parallel for inducing ACGs to achieve cancer cell-specific death. METHODOLOGY Expression profiles of three ACGs (NOXA, PAR-4, TRAIL) were identified via real-time PCR in CRC clinical isolates. Time lapse-based expression modifications in ACGs were studied in a CRC liver metastasis animal model using microarray methodology. Effects of a purified plant protein (riproximin) on selected ACGs were identified in three primary and metastatic CRC cell lines by real-time PCR. Lastly, importance of the ACGs in a cellular environment was highlighted via bioinformatic analysis. RESULTS ACGs (except NOXA) were persistently downregulated in clinical isolates when comparing the overall mean expression values with normal mucosa levels. In vivo studies showed a prominent inhibition of NOXA and PAR-4 genes in implanted CRC cells during rat liver colonization. TRAIL showed deviation from this theme while showing marked induction during the early period of liver colonization (days 3 and 6 after CRC cell implantation). Riproximin exhibited substantial potential of inducing ACGs at transcriptome levels in selected CRC cell lines. Bioinformatic analysis showed that vital molecular/functional aspects of a cell are associated with the presence of ACGs. CONCLUSION ACGs are downregulated in primary and metastatic phase of CRC. Riproximin effectively induces ACGs in CRC cells and can be exploited for clinical investigations over time.
Collapse
Affiliation(s)
- Asim Pervaiz
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan.
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Talha Saleem
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
- Department of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Kinzah Kanwal
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Syed Mohsin Raza
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Sana Iqbal
- Human Genetics and Molecular Biology Department, University of Health Sciences, Lahore, Pakistan
| | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Immundiagnostik, Bensheim, Germany
| | - Rania B Georges
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Coordination Centre for Clinical Trials, University Hospital, Heidelberg, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Immundiagnostik, Bensheim, Germany
| |
Collapse
|
2
|
Pervaiz A, Naseem N, Saleem T, Raza SM, Shaukat I, Kanwal K, Sajjad O, Iqbal S, Shams F, Ijaz B, Berger MR. Anticancer genes (NOXA, PAR-4, TRAIL) are de-regulated in breast cancer patients and can be targeted by using a ribosomal inactivating plant protein (riproximin). Mol Biol Rep 2023; 50:5209-5221. [PMID: 37127809 DOI: 10.1007/s11033-023-08477-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Anticancer genes are an endogenous defense against transformed cells as they impose antineoplastic effects upon ectopic expression. Profiling the expression of these genes is fundamental for exploring their prognostic and therapeutic relevance in cancers. Natural compounds can upregulate anticancer genes in malignant cells and thus be useful for therapeutic purposes. In this study, we identified the expression levels of anticancer genes in breast cancer clinical isolates. In addition, the purified and sequenced plant protein (riproximin) was evaluated for its potential to induce anticancer genes in two breast cancer cell lines. METHODOLOGY Expression profiles of three anticancer genes (NOXA, PAR-4, TRAIL) were identified by immunohistochemistry in 45 breast cancer clinical isolates. Breast cancer cells were exposed to riproximin and expression of the anticancer genes was determined by microarray, real-time PCR and western blot methodologies. Lastly, a bioinformatic approach was adopted to highlight the molecular/functional significance of the anticancer genes. RESULTS NOXA expression was evenly de-regulated among the clinical isolates, while PAR-4 was significantly down-regulated in majority of the breast cancer tissues. In contrast, TRAIL expression was increased in most of the clinical samples. Expression levels of the anticancer genes followed a distinct trend in accordance with the disease severity. Riproximin showed a substantial potential of inducing expression of the anticancer genes in breast cancer cells at transcriptomic and protein levels. The bioinformatic approach revealed involvement of anticancer genes in multiple cellular functions and signaling cascades. CONCLUSION Anticancer genes were de-regulated and showed discrete expression patterns in breast cancer patient samples. Riproximin effectively induced the expression of selected anticancer genes in breast cancer cells.
Collapse
Affiliation(s)
- Asim Pervaiz
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan.
- Toxicology and Chemotherapy Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany.
| | - Nadia Naseem
- Morbid Anatomy and Histopathology Department, University of Health Sciences, Lahore, Pakistan
| | - Talha Saleem
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
- Department of Allied Health Sciences, Superior University, Lahore, Pakistan
| | - Syed Mohsin Raza
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Iqra Shaukat
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Kinzah Kanwal
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Osheen Sajjad
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences, Lahore, Pakistan
| | - Sana Iqbal
- Human Genetics and Molecular Biology Department, University of Health Sciences, Lahore, Pakistan
| | - Faiza Shams
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Immundiagnostik Comp, Bensheim, Germany
| |
Collapse
|
3
|
Sagini MN, Klika KD, Orry A, Zepp M, Mutiso J, Berger MR. Riproximin Exhibits Diversity in Sugar Binding, and Modulates some Metastasis-Related Proteins with Lectin like Properties in Pancreatic Ductal Adenocarcinoma. Front Pharmacol 2020; 11:549804. [PMID: 33328982 PMCID: PMC7734336 DOI: 10.3389/fphar.2020.549804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 10/28/2020] [Indexed: 01/03/2023] Open
Abstract
Riproximin (Rpx) is a type II ribosome-inactivating protein with specific anti-proliferative activity. It was purified from Ximenia americana by affinity chromatography using a resin coupled with lactosyl residues. The same technique facilitated isolation of proteins with lectin-like properties from human Suit2-007 and rat ASML pancreatic cancer cells, which were termed lactosyl-sepharose binding proteins (LSBPs). The role of these proteins in cancer progression was investigated at mRNA level using chip array data of Suit2-007 and ASML cells re-isolated from nude rats. These data compared significant mRNA expression changes when relating primary (pancreas) and metastatic (liver) sites following orthotopic and intraportal implantation of Pancreatic Ductal Adenocarcinoma (PDAC) cells, respectively. The affinity of Rpx to 13 simple sugar structures was modeled by docking experiments, the ranking of which was principally confirmed by NMR-spectroscopy. In addition, Rpx and LSBPs were evaluated for anti-proliferative activity and their cellular uptake was assessed by fluorescence microscopy. From 13 monosaccharides evaluated, open-chain rhamnose, β-d-galactose, and α-l-galactopyranose showed the highest affinities for site 1 of Rpx’s B-chain. NMR evaluation yielded a similar ranking, as galactose was among the best binders. Both, Rpx and LSBPs reduced cell proliferation in vitro, but their anti-proliferative effects were decreased by 15–20% in the presence of galactose. The program “Ingenuity Pathway Analysis” identified 2,415 genes showing significantly modulated mRNA expression following exposure of Suit2-007 cells to Rpx in vitro. These genes were then matched to those 1,639 genes, which were significantly modulated in the rat model when comparing primary and metastatic growth of Suit2-007 cells. In this overlap analysis, LSBP genes were considered separately. The potential suitability of Rpx for treating metastatic Suit2-007 PDAC cells was reflected by those genes, which were modulated by Rpx in a way opposite to that observed in cancer progression. Remarkably, these were 14% of all genes modulated during cancer progression, but 71% of the respective LSBP gene subgroup. Based on these findings, we predict that Rpx has the potential to treat PDAC metastasis by modulating genes involved in metastatic progression, especially by targeting LSBPs.
Collapse
Affiliation(s)
- Micah N Sagini
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center, Heidelberg, Germany
| | | | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| | - Joshua Mutiso
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany.,Department of Zoological Sciences, Kenyatta University, Nairobi, Kenya
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
4
|
Djafari J, McConnell MT, Santos HM, Capelo JL, Bertolo E, Harvey SC, Lodeiro C, Fernández-Lodeiro J. Synthesis of Gold Functionalised Nanoparticles with the Eranthis hyemalis Lectin and Preliminary Toxicological Studies on Caenorhabditis elegans. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1363. [PMID: 30082665 PMCID: PMC6119933 DOI: 10.3390/ma11081363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/22/2022]
Abstract
The lectin found in the tubers of the Winter Aconite (Eranthis hyemalis) plant (EHL) is a Type II Ribosome Inactivating Protein (RIP). Type II RIPs have shown anti-cancer properties and have great potential as therapeutic agents. Similarly, colloidal gold nanoparticles are successfully used in biomedical applications as they can be functionalised with ligands with high affinity and specificity for target cells to create therapeutic and imaging agents. Here we present the synthesis and characterization of gold nanoparticles conjugated with EHL and the results of a set of initial assays to establish whether the biological effect of EHL is altered by the conjugation. Gold nanoparticles functionalised with EHL (AuNPs@EHL) were successfully synthesised by bioconjugation with citrate gold nanoparticles (AuNPs@Citrate). The conjugates were analysed by UV-Vis spectroscopy, Dynamic Light Scattering (DLS), Zeta Potential analysis, and Transmission Electron Microscopy (TEM). Results indicate that an optimal functionalisation was achieved with the addition of 100 µL of EHL (concentration 1090 ± 40 µg/mL) over 5 mL of AuNPs (concentration [Au⁰] = 0.8 mM). Biological assays on the effect of AuNPs@EHL were undertaken on Caenorhabditis elegans, a free-living nematode commonly used for toxicological studies, that has previously been shown to be strongly affected by EHL. Citrate gold nanoparticles did not have any obvious effect on the nematodes. For first larval stage (L1) nematodes, AuNPs@EHL showed a lower biological effect than EHL. For L4 stage, pre-adult nematodes, both EHL alone and AuNPs@EHL delayed the onset of reproduction and reduced fecundity. These assays indicate that EHL can be conjugated to gold nanoparticles and retain elements of biocidal activity.
Collapse
Affiliation(s)
- Jamila Djafari
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| | - Marie T McConnell
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK.
| | - Hugo M Santos
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| | - José Luis Capelo
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| | - Emilia Bertolo
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK.
| | - Simon C Harvey
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury CT1 1QU, UK.
| | - Carlos Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| | - Javier Fernández-Lodeiro
- BIOSCOPE Group, LAQV@REQUIMTE, Chemistry Department, Faculty of Science and Technology, University NOVA of Lisbon, Caparica Campus, 2829-516 Caparica, Portugal.
- PROTEOMASS Scientific Society, Rua dos Inventores, Madam Parque, Caparica Campus, 2829-516 Caparica, Portugal.
| |
Collapse
|
5
|
Lu W, Mao Y, Chen X, Ni J, Zhang R, Wang Y, Wang J, Wu L. Fordin: A novel type I ribosome inactivating protein from Vernicia fordii modulates multiple signaling cascades leading to anti-invasive and pro-apoptotic effects in cancer cells in vitro. Int J Oncol 2018; 53:1027-1042. [PMID: 30015835 PMCID: PMC6065405 DOI: 10.3892/ijo.2018.4470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022] Open
Abstract
Fordin, which is derived from Vernicia fordii, is a novel type I ribosome inactivating protein (RIP) with RNA N-glycosidase activity. In the present study, fordin was expressed by Escherichia coli and purified using nickel affinity chromatography. Previous studies have demonstrated RIP toxicity in a variety of cancer cell lines. To understand the therapeutic potential of fordin on tumors, the present study investigated the effects of fordin on the viability of several tumor and normal cell lines. The results demonstrated that fordin induced significant cytotoxicity in four cancer cell lines, compared with the normal cell line. Specifically, profound apoptosis and inhibition of cell invasion were observed following fordin exposure in U-2 OS and HepG2 cells; however, the molecular mechanism underlying the action of RIP remains to be fully elucidated. In the present study, it was found that the anticancer effects of fordin were associated with suppression of the nuclear factor (NF)-κB signaling pathway. In U-2 OS and HepG2 cells, fordin inhibited the expression of inhibitor of NF-κB (IκB) kinase, leading to downregulation of the phosphorylation level of IκB, which quelled the nuclear translocation of NF-κB. Fordin also reduced the mRNA and protein levels of NF-κB downstream targets associated with cell apoptosis and metastasis, particularly B-cell lymphoma-2-related protein A1 (Blf-1) and matrix metalloproteinase (MMP)-9. The inactivation of NF-κB and the reduction in the expression levels of Blf-1 and MMP-9 mediated by fordin were also confirmed by co-treatment with lipopolysaccharide or p65 small interfering RNA. These findings suggested a possible mechanism for the fordin-induced effect on tumor cell death and metastasis. The results of the present study demonstrated the multiple anticancer effects of fordin in U-2 OS and HepG2 cells, in part by inhibiting activation of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Weili Lu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Yingji Mao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Xue Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Jun Ni
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Rui Zhang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Yuting Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Jun Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Lifang Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| |
Collapse
|
6
|
Wang L, Li H, Yang S, Ma W, Liu M, Guo S, Zhan J, Zhang H, Tsang SY, Zhang Z, Wang Z, Li X, Guo YD, Li X. Cyanidin-3-o-glucoside directly binds to ERα36 and inhibits EGFR-positive triple-negative breast cancer. Oncotarget 2018; 7:68864-68882. [PMID: 27655695 PMCID: PMC5356596 DOI: 10.18632/oncotarget.12025] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 09/02/2016] [Indexed: 12/31/2022] Open
Abstract
Anthocyanins have been shown to inhibit the growth and metastatic potential of breast cancer (BC) cells. However, the effects of individual anthocyanins on triple-negative breast cancer (TNBC) have not yet been studied. In this study, we found that cyanidin-3-o-glucoside (Cy-3-glu) preferentially promotes the apoptosis of TNBC cells, which co-express the estrogen receptor alpha 36 (ERα36) and the epidermal growth factor receptor (EGFR). We demonstrated that Cy-3-glu directly binds to the ligand-binding domain (LBD) of ERα36, inhibits EGFR/AKT signaling, and promotes EGFR degradation. We also confirmed the therapeutic efficacy of Cy-3-glu on TNBC in the xenograft mouse model. Our data indicates that Cy-3-glu could be a novel preventive/therapeutic agent against the TNBC co-expressed ERα36/EGFR.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Haifeng Li
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Shiping Yang
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Wenqiang Ma
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Mei Liu
- Department of General Surgery, The 301th Hospital of PLA, Beijing, China
| | - Shichao Guo
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Jun Zhan
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Ministry of Education, State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Suk Ying Tsang
- School of Life Sciences and State Key Laboratory of Agro-Biotechnology, Chinese University of Hong Kong, Hong Kong, China
| | - Ziding Zhang
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Zhaoyi Wang
- Beijing Shenogen Pharma Group, Beijing, China
| | - Xiru Li
- Department of General Surgery, The 301th Hospital of PLA, Beijing, China
| | - Yang-Dong Guo
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| | - Xiangdong Li
- State Key Laboratory of the Agro-Biotechnology, College of Horticultural Science, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Holland-Letz T, Kopp-Schneider A. Optimal experimental designs for estimating the drug combination index in toxicology. Comput Stat Data Anal 2018. [DOI: 10.1016/j.csda.2017.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Murtaja A, Eyol E, Xiaoqi J, Berger MR, Adwan H. The ribosome inhibiting protein riproximin shows antineoplastic activity in experimental pancreatic cancer liver metastasis. Oncol Lett 2017; 15:1441-1448. [PMID: 29434835 PMCID: PMC5777105 DOI: 10.3892/ol.2017.7526] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the poorest prognoses of all malignancy types. To improve the survival of patients with PDAC, the development of novel anticancer agents is warranted. Riproximin (Rpx) is a newly identified plant lectin, which was isolated from Ximenia americana. The ribosome inactivating protein of type II exhibits potent anticancer activity as recently demonstrated. The rat PDAC cell line ASML was used for in vitro and in vivo studies. The antiproliferative effect of Rpx was assessed using an MTT assay. The modulation of proteins involved in apoptosis was evaluated using western blotting. Tumor-bearing nude rats were treated with Rpx, gemcitabine (GEM) or dinaline (DIN) as single agents, or a combination of Rpx with GEM, or DIN. Rpx was administered intraperitoneally at doses of 1.7–5.4 µg/kg, three times/week, GEM was administered intravenously (50 mg/kg/week) and DIN perorally (10 mg/kg, 5 times/week). Rpx inhibited ASML cell proliferation at IC50-values of 0.8–172 pM, caused apoptosis and reduced tumor growth significantly by 90% (P<0.05). The survival rate of rats was significantly increased (21.8 days for Rpx treated vs. 17.6 days for control rats; P=0.05). Higher doses of Rpx caused no further reduction in tumor size when compared with the low dose of Rpx or a combination of Rpx with GEM, or DIN. The standard drug GEM alone was less effective compared with Rpx. In addition, DIN was ineffective, and in combination, reduced the activity of Rpx. These results suggest that Rpx has an evident potential for use in pancreatic cancer treatment. Further experiments are required in order to elucidate its affinity for certain cancer cells and to optimize the combination therapy with other antineoplastic agents.
Collapse
Affiliation(s)
- Ahmed Murtaja
- German Cancer Research Center, Toxicology and Chemotherapy Unit, D-69120 Heidelberg, Germany.,Klinikum der Stadt Ludwigshafen, D-67063 Ludwigshafen, Germany
| | - Ergül Eyol
- German Cancer Research Center, Toxicology and Chemotherapy Unit, D-69120 Heidelberg, Germany.,Faculty of Pharmacy, University of Inonu, 44280 Malatya, Turkey
| | - Jiang Xiaoqi
- German Cancer Research Center, Division of Biostatistics, D-69120 Heidelberg, Germany
| | - Martin R Berger
- German Cancer Research Center, Toxicology and Chemotherapy Unit, D-69120 Heidelberg, Germany
| | - Hassan Adwan
- The German University in Cairo-GUC, New Cairo 11835, Egypt
| |
Collapse
|
9
|
Holland-Letz T, Gunkel N, Amtmann E, Kopp-Schneider A. Parametric modeling and optimal experimental designs for estimating isobolograms for drug interactions in toxicology. J Biopharm Stat 2017; 28:763-777. [PMID: 29173022 DOI: 10.1080/10543406.2017.1397005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In toxicology and related areas, interaction effects between two substances are commonly expressed through a combination index [Formula: see text] evaluated separately at different effect levels and mixture ratios. Often, these indices are combined into a graphical representation, the isobologram. Instead of estimating the combination indices at the experimental mixture ratios only, we propose a simple parametric model for estimating the underlying interaction function. We integrate this approach into a joint model where both the parameters of the dose-response functions of the singular substances and the interaction parameters can be estimated simultaneously. As an additional benefit, this concept allows to determine optimal statistical designs for combination studies optimizing the estimation of the interaction function as a whole. From an optimal design perspective, finding the interaction parameters generally corresponds to a [Formula: see text]-optimality resp. [Formula: see text]-optimality design problem, while estimation of all underlying dose response parameters corresponds to a [Formula: see text]-optimality design problem. We show how optimal designs can be obtained in either case as well as how combination designs providing reasonable performance in regard to both criteria can be determined by putting a constraint on the efficiency in regard to one of the criteria and optimizing for the other. As all designs require prior information about model parameter values, which may be unreliable in practice, the effect of misspecifications is investigated as well.
Collapse
Affiliation(s)
- Tim Holland-Letz
- a Division of Biostatistics , German Cancer Research Center , Heidelberg , Germany
| | - Nikolas Gunkel
- b Division of Cancer Drug Development , German Cancer Research Center , Heidelberg , Germany
| | - Eberhard Amtmann
- b Division of Cancer Drug Development , German Cancer Research Center , Heidelberg , Germany
| | | |
Collapse
|
10
|
Pervaiz A, Zepp M, Adwan H, Berger MR. Riproximin modulates multiple signaling cascades leading to cytostatic and apoptotic effects in human breast cancer cells. J Cancer Res Clin Oncol 2016; 142:135-47. [PMID: 26163990 DOI: 10.1007/s00432-015-2013-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Riproximin, a type II ribosome-inactivating protein (RIP), has shown significant cytotoxic effects in diverse types of cancer cells. To better understand its therapeutic potential, elaborated investigations on the mechanistic aspects of riproximin deem crucial. In this study, we focused on riproximin-mediated changes in cellular properties and corresponding molecular pathways in breast cancer cells. METHODS Cytotoxicity of riproximin was determined by MTT assay, while the clonogenic and migratory effects were determined by colony formation, migration, and scratch assays. Cytostatic and apoptotic effects were studied by flow cytometry and nuclear staining procedures. Alterations at molecular levels were scrutinized by means of microarray and qRT-PCR methodologies. RESULTS Riproximin induced significant cytotoxic effects in the selected human breast cancer cells MDA-MB-231 and MCF-7. Profound inhibition of migration and colony formation were observed in both cell lines in response to riproximin exposure. Concomitantly, a significant arrest in S phase and nuclear fragmentation were observed as causes for its cytostatic and apoptotic effects, respectively. Genetic profiling revealed pronounced induction of the anticancer cytokine IL24/MDA-7 and ER-stress-related GADD genes. In addition, prominent inhibition of the genes relevant to migration (RHO GTPases), anti-apoptotic activities (BCL family), and cell cycle (cyclins) was also noticed. CONCLUSION Riproximin, with its significant antineoplastic effects, modulates multiple cytostatic and apoptotic pathways in breast cancer cells. Results from these investigations highlight the future therapeutic potential of this naturally occurring compound for breast cancer.
Collapse
Affiliation(s)
- Asim Pervaiz
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Michael Zepp
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Hassan Adwan
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- German University of Cairo, Cairo, Egypt
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, German Cancer Research Center, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Specific N-glycans of Hepatocellular Carcinoma Cell Surface and the Abnormal Increase of Core-α-1, 6-fucosylated Triantennary Glycan via N-acetylglucosaminyltransferases-IVa Regulation. Sci Rep 2015; 5:16007. [PMID: 26537865 PMCID: PMC4633583 DOI: 10.1038/srep16007] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/01/2015] [Indexed: 12/23/2022] Open
Abstract
Glycosylation alterations of cell surface proteins are often observed during the progression of malignancies. The specific cell surface N-glycans were profiled in hepatocellular carcinoma (HCC) with clinical tissues (88 tumor and adjacent normal tissues) and the corresponding serum samples of HCC patients. The level of core-α-1,6-fucosylated triantennary glycan (NA3Fb) increased both on the cell surface and in the serum samples of HCC patients (p < 0.01). Additionally, the change of NA3Fb was not influenced by Hepatitis B virus (HBV)and cirrhosis. Furthermore, the mRNA and protein expression of N-acetylglucosaminyltransferase IVa (GnT-IVa), which was related to the synthesis of the NA3Fb, was substantially increased in HCC tissues. Knockdown of GnT-IVa leads to a decreased level of NA3Fb and decreased ability of invasion and migration in HCC cells. NA3Fb can be regarded as a specific cell surface N-glycan of HCC. The high expression of GnT-IVa is the cause of the abnormal increase of NA3Fb on the HCC cell surface, which regulates cell migration. This study demonstrated the specific N-glycans of the cell surface and the mechanisms of altered glycoform related with HCC. These findings lead to better understanding of the function of glycan and glycosyltransferase in the tumorigenesis, progression and metastasis of HCC.
Collapse
|
12
|
McConnell MT, Lisgarten DR, Byrne LJ, Harvey SC, Bertolo E. Winter Aconite (Eranthis hyemalis) Lectin as a cytotoxic effector in the lifecycle of Caenorhabditis elegans. PeerJ 2015; 3:e1206. [PMID: 26312191 PMCID: PMC4548470 DOI: 10.7717/peerj.1206] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 07/31/2015] [Indexed: 11/25/2022] Open
Abstract
The lectin found in the tubers of the Winter Aconite (Eranthis hyemalis) plant is an N-acetyl-D-galactosamine specific Type II Ribosome Inactivating Protein (RIP); Type II RIPs have shown anti-cancer properties, and hence have potential as therapeutic agents. Here we present a modified protocol for the extraction and purification of the E. hyemalis lectin (EHL) using affinity chromatography. De novo amino acid sequencing of EHL confirms its classification as a Type II Ribosome Inactivating Protein. The biocidal properties of EHL have been investigated against the nematode Caenorhabditis elegans. Arrested first stage larvae treated with EHL have shown some direct mortality, with surviving larvae subsequently showing a range of phenotypes including food avoidance, reduced fecundity, developmental delay and constitutive dauer larvae formation. Both inappropriate dauer larvae development and failure to locate to bacterial food source are consistent with the disruption of chemosensory function and the ablation of amphid neurons. Further investigation indicates that mutations that disrupt normal amphid formation can block the EHL-induced dauer larvae formation. In combination, these phenotypes indicate that EHL is cytotoxic and suggest a cell specific activity against the amphid neurons of C. elegans.
Collapse
Affiliation(s)
- Marie-Therese McConnell
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, UK
| | - David R. Lisgarten
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, UK
| | - Lee J. Byrne
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, UK
| | - Simon C. Harvey
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, UK
| | - Emilia Bertolo
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, Kent, UK
| |
Collapse
|
13
|
Pervaiz A, Adwan H, Berger MR. Riproximin: A type II ribosome inactivating protein with anti-neoplastic potential induces IL24/MDA-7 and GADD genes in colorectal cancer cell lines. Int J Oncol 2015; 47:981-90. [PMID: 26151662 DOI: 10.3892/ijo.2015.3073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/12/2015] [Indexed: 11/06/2022] Open
Abstract
Riproximin (Rpx) is a type II ribosome inactivating protein, which was extracted and purified from the seeds of Ximenia americana. Previous studies demonstrated cytotoxicity of Rpx against a variety of cell lines originating from solid and non-solid cancers. In this study, we investigated the mechanistic aspects of Rpx in selected human and rat colorectal cancer (CRC) cell lines. Cytotoxic levels of Rpx were determined by MTT assay, while cytostatic and apoptotic effects were investigated by flow cytometry and nuclear staining procedures. Effects of Rpx exposure on colony formation/migration of CRC cells and expressional modulations in anticancer/stress-related genes were also studied. Rpx showed significant and comparable levels of cytotoxicity in CRC cells as determined by inhibitory concentration (IC) values. Similar inhibitory effects were found for clonogenicity, while more pronounced inhibition of migration was observed in response to Rpx exposure. Profound arrest in S phases of the cell cycle was noted especially in primary CRC cells. Apoptotic effects were more prominent in rat CRC cells as indicated by Annexin V-FITC assay and Hoechst 33342 nuclear staining. Rpx exposure induced significantly increased levels of the IL24/MDA-7, a well characterized anticancer gene, in all CRC cells. In addition, following Rpx treatment, high expression levels of growth arrest and DNA damage (GADD family) genes were also observed. Increased expression of two additional GADD genes (34 and 153) only in rat CRC cells (CC531) conferred higher sensitivity towards Rpx and subsequent anti-proliferative/apoptotic effects as compared to human CRC cells (SW480 and SW620). The present investigation indicates the anticancer potential of Rpx in CRC and favor further evaluation of this natural compound as therapeutic agent.
Collapse
Affiliation(s)
- Asim Pervaiz
- Toxicology and Chemotherapy Unit, Deutsches Krebsforschungszentrum (DKFZ), D-69120 Heidelberg, Germany
| | - Hassan Adwan
- Toxicology and Chemotherapy Unit, Deutsches Krebsforschungszentrum (DKFZ), D-69120 Heidelberg, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit, Deutsches Krebsforschungszentrum (DKFZ), D-69120 Heidelberg, Germany
| |
Collapse
|
14
|
Adwan H, Bayer H, Pervaiz A, Sagini M, Berger MR. Riproximin is a recently discovered type II ribosome inactivating protein with potential for treating cancer. Biotechnol Adv 2014; 32:1077-90. [DOI: 10.1016/j.biotechadv.2014.03.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 10/25/2022]
|
15
|
Adwan H, Murtaja A, Kadhim Al-Taee K, Pervaiz A, Hielscher T, Berger MR. Riproximin's activity depends on gene expression and sensitizes PDAC cells to TRAIL. Cancer Biol Ther 2014; 15:1185-97. [PMID: 24918923 PMCID: PMC4128861 DOI: 10.4161/cbt.29503] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 06/05/2014] [Indexed: 01/05/2023] Open
Abstract
Riproximin (Rpx) is a type II ribosome inactivating protein, which was investigated for its activity in pancreatic ductal adenocarcinoma (PDAC) in a panel of 17 human and rat PDAC cell lines and in rat pancreatic cancer liver metastasis. Cytotoxicity in response to Rpx was determined by MTT assay, apoptosis by flow cytometry and qRT-PCR for apoptosis related genes, and the modulation of the transcriptome was monitored by micro array analysis. The combination effect of Rpx and TRAIL was assessed by MTT assay. Rpx showed high but varying cytotoxicity in PDAC cells. Based on overall gene expression, the sensitivity of these cells was linked to genes involved in apoptosis. Furthermore, based on the affinity of Rpx for CEA, the expression of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) genes was significantly related to Rpx's cytotoxicity in cells with CEACAM gene expression. Exposure of Suit2-007 cells to Rpx induced the mRNA expression of members of signaling pathways initiating from most death receptors, and down modulation of TRAIL. Apoptosis was increased as shown by FACS analysis. Combination of Rpx with TRAIL resulted in a synergistic cytotoxic effect in human Suit2-007 and rat ASML cells, as evidenced by a 6-fold lower tumor cell survival than expected from an additive combination effect. Treatment of BDX rats bearing intra-portally implanted Suit2-007 cells showed a highly significant anticancer effect and indicated an application of Rpx against pancreatic cancer metastasis to the liver. These data favor further evaluation of Rpx as anticancer agent in PDAC.
Collapse
Affiliation(s)
- Hassan Adwan
- Toxicology and Chemotherapy Unit; German Cancer Research Center (DKFZ); Heidelberg, Germany
| | - Ahmed Murtaja
- Toxicology and Chemotherapy Unit; German Cancer Research Center (DKFZ); Heidelberg, Germany
| | - Khamael Kadhim Al-Taee
- Toxicology and Chemotherapy Unit; German Cancer Research Center (DKFZ); Heidelberg, Germany
| | - Asim Pervaiz
- Toxicology and Chemotherapy Unit; German Cancer Research Center (DKFZ); Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics; Statistics for Translational Oncology; DKFZ; Heidelberg, Germany
| | - Martin R Berger
- Toxicology and Chemotherapy Unit; German Cancer Research Center (DKFZ); Heidelberg, Germany
| |
Collapse
|