1
|
Barua D, Płecha M, Muszewska A. A minimal Fanconi Anemia complex in early diverging fungi. Sci Rep 2024; 14:9922. [PMID: 38688950 PMCID: PMC11061109 DOI: 10.1038/s41598-024-60318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Fanconi Anemia (FA) pathway resolves DNA interstrand cross links (ICL). The FA pathway was initially recognized in vertebrates, but was later confirmed in other animals and speculated in fungi. FA proteins FANCM, FANCL and FANCJ are present in Saccharomyces cerevisiae but, their mechanism of interaction to resolve ICL is still unclear. Unlike Dikarya, early diverging fungi (EDF) possess more traits shared with animals. We traced the evolutionary history of the FA pathway across Opisthokonta. We scanned complete proteomes for FA-related homologs to establish their taxonomic distribution and analyzed their phylogenetic trees. We checked transcription profiles of FA genes to test if they respond to environmental conditions and their genomic localizations for potential co-localization. We identified fungal homologs of the activation and ID complexes, 5 out of 8 core proteins, all of the endonucleases, and deubiquitination proteins. All fungi lack FANCC, FANCF and FANCG proteins responsible for post-replication repair and chromosome stability in animals. The observed taxonomic distribution can be attributed to a gradual degradation of the FA pathway from EDF to Dikarya. One of the key differences is that EDF have the ID complex recruiting endonucleases to the site of ICL. Moreover, 21 out of 32 identified FA genes are upregulated in response to different growth conditions. Several FA genes are co-localized in fungal genomes which also could facilitate co-expression. Our results indicate that a minimal FA pathway might still be functional in Mucoromycota with a gradual loss of components in Dikarya ancestors.
Collapse
Affiliation(s)
- Drishtee Barua
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Magdalena Płecha
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, 02-106, Warsaw, Poland.
| |
Collapse
|
2
|
Kupculak M, Bai F, Luo Q, Yoshikawa Y, Lopez-Martinez D, Xu H, Uphoff S, Cohn MA. Phosphorylation by ATR triggers FANCD2 chromatin loading and activates the Fanconi anemia pathway. Cell Rep 2023; 42:112721. [PMID: 37392383 PMCID: PMC10933773 DOI: 10.1016/j.celrep.2023.112721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 04/28/2023] [Accepted: 06/13/2023] [Indexed: 07/03/2023] Open
Abstract
The Fanconi anemia (FA) pathway repairs DNA interstrand crosslinks (ICLs) in humans. Activation of the pathway relies on loading of the FANCD2/FANCI complex onto chromosomes, where it is fully activated by subsequent monoubiquitination. However, the mechanism for loading the complex onto chromosomes remains unclear. Here, we identify 10 SQ/TQ phosphorylation sites on FANCD2, which are phosphorylated by ATR in response to ICLs. Using a range of biochemical assays complemented with live-cell imaging including super-resolution single-molecule tracking, we show that these phosphorylation events are critical for loading of the complex onto chromosomes and for its subsequent monoubiquitination. We uncover how the phosphorylation events are tightly regulated in cells and that mimicking their constant phosphorylation leads to an uncontrolled active state of FANCD2, which is loaded onto chromosomes in an unrestrained fashion. Taken together, we describe a mechanism where ATR triggers FANCD2/FANCI loading onto chromosomes.
Collapse
Affiliation(s)
- Marian Kupculak
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Fengxiang Bai
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Qiang Luo
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | | | | | - Hannan Xu
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Stephan Uphoff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Martin A Cohn
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
3
|
Andriuskevicius T, Dubenko A, Makovets S. The Inability to Disassemble Rad51 Nucleoprotein Filaments Leads to Aberrant Mitosis and Cell Death. Biomedicines 2023; 11:1450. [PMID: 37239121 PMCID: PMC10216663 DOI: 10.3390/biomedicines11051450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The proper maintenance of genetic material is essential for the survival of living organisms. One of the main safeguards of genome stability is homologous recombination involved in the faithful repair of DNA double-strand breaks, the restoration of collapsed replication forks, and the bypass of replication barriers. Homologous recombination relies on the formation of Rad51 nucleoprotein filaments which are responsible for the homology-based interactions between DNA strands. Here, we demonstrate that without the regulation of these filaments by Srs2 and Rad54, which are known to remove Rad51 from single-stranded and double-stranded DNA, respectively, the filaments strongly inhibit damage-associated DNA synthesis during DNA repair. Furthermore, this regulation is essential for cell survival under normal growth conditions, as in the srs2Δ rad54Δ mutants, unregulated Rad51 nucleoprotein filaments cause activation of the DNA damage checkpoint, formation of mitotic bridges, and loss of genetic material. These genome instability features may stem from the problems at stalled replication forks as the lack of Srs2 and Rad54 in the presence of Rad51 nucleoprotein filaments impedes cell recovery from replication stress. This study demonstrates that the timely and efficient disassembly of recombination machinery is essential for genome maintenance and cell survival.
Collapse
Affiliation(s)
| | | | - Svetlana Makovets
- Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, UK
| |
Collapse
|
4
|
Martinez MZ, Olmo F, Taylor MC, Caudron F, Wilkinson SR. Dissecting the interstrand crosslink DNA repair system of Trypanosoma cruzi. DNA Repair (Amst) 2023; 125:103485. [PMID: 36989950 DOI: 10.1016/j.dnarep.2023.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
DNA interstrand crosslinks (ICLs) are toxic lesions that can block essential biological processes. Here we show Trypanosoma cruzi, the causative agent of Chagas disease, is susceptible to ICL-inducing compounds including mechlorethamine and novel nitroreductase-activated prodrugs that have potential in treating this infection. To resolve such lesions, cells co-opt enzymes from "classical" DNA repair pathways that alongside dedicated factors operate in replication-dependent and -independent mechanisms. To assess ICL repair in T. cruzi, orthologues of SNM1, MRE11 and CSB were identified and their function assessed. The T. cruzi enzymes could complement the mechlorethamine susceptibility phenotype displayed by corresponding yeast and/or T. brucei null confirming their role as ICL repair factors while GFP-tagged TcSNM1, TcMRE11 and TcCSB were shown to localise to the nuclei of insect and/or intracellular form parasites. Gene disruption demonstrated that while each activity was non-essential for T. cruzi viability, nulls displayed a growth defect in at least one life cycle stage with TcMRE11-deficient trypomastigotes also compromised in mammalian cell infectivity. Phenotyping revealed all nulls were more susceptible to mechlorethamine than controls, a trait complemented by re-expression of the deleted gene. To assess interplay, the gene disruption approach was extended to generate T. cruzi deficient in TcSNM1/TcMRE11 or in TcSNM1/TcCSB. Analysis demonstrated these activities functioned across two ICL repair pathways with TcSNM1 and TcMRE11 postulated to operate in a replication-dependent system while TcCSB helps resolve transcription-blocking lesions. By unravelling how T. cruzi repairs ICL damage, specific inhibitors targeting repair components could be developed and used to increase the potency of trypanocidal ICL-inducing compounds.
Collapse
Affiliation(s)
- Monica Zavala Martinez
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Francisco Olmo
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Martin C Taylor
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Fabrice Caudron
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Shane R Wilkinson
- School of Biological & Chemical Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK.
| |
Collapse
|
5
|
Post-Translational Modifications of PCNA: Guiding for the Best DNA Damage Tolerance Choice. J Fungi (Basel) 2022; 8:jof8060621. [PMID: 35736104 PMCID: PMC9225081 DOI: 10.3390/jof8060621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The sliding clamp PCNA is a multifunctional homotrimer mainly linked to DNA replication. During this process, cells must ensure an accurate and complete genome replication when constantly challenged by the presence of DNA lesions. Post-translational modifications of PCNA play a crucial role in channeling DNA damage tolerance (DDT) and repair mechanisms to bypass unrepaired lesions and promote optimal fork replication restart. PCNA ubiquitination processes trigger the following two main DDT sub-pathways: Rad6/Rad18-dependent PCNA monoubiquitination and Ubc13-Mms2/Rad5-mediated PCNA polyubiquitination, promoting error-prone translation synthesis (TLS) or error-free template switch (TS) pathways, respectively. However, the fork protection mechanism leading to TS during fork reversal is still poorly understood. In contrast, PCNA sumoylation impedes the homologous recombination (HR)-mediated salvage recombination (SR) repair pathway. Focusing on Saccharomyces cerevisiae budding yeast, we summarized PCNA related-DDT and repair mechanisms that coordinately sustain genome stability and cell survival. In addition, we compared PCNA sequences from various fungal pathogens, considering recent advances in structural features. Importantly, the identification of PCNA epitopes may lead to potential fungal targets for antifungal drug development.
Collapse
|
6
|
Shen M, Dhingra N, Wang Q, Cheng C, Zhu S, Tian X, Yu J, Gong X, Li X, Zhang H, Xu X, Zhai L, Xie M, Gao Y, Deng H, He Y, Niu H, Zhao X, Xiang S. Structural basis for the multi-activity factor Rad5 in replication stress tolerance. Nat Commun 2021; 12:321. [PMID: 33436623 PMCID: PMC7804152 DOI: 10.1038/s41467-020-20538-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/04/2020] [Indexed: 12/17/2022] Open
Abstract
The yeast protein Rad5 and its orthologs in other eukaryotes promote replication stress tolerance and cell survival using their multiple activities, including ubiquitin ligase, replication fork remodeling and DNA lesion targeting activities. Here, we present the crystal structure of a nearly full-length Rad5 protein. The structure shows three distinct, but well-connected, domains required for Rad5’s activities. The spatial arrangement of these domains suggest that different domains can have autonomous activities but also undergo intrinsic coordination. Moreover, our structural, biochemical and cellular studies demonstrate that Rad5’s HIRAN domain mediates interactions with the DNA metabolism maestro factor PCNA and contributes to its poly-ubiquitination, binds to DNA and contributes to the Rad5-catalyzed replication fork regression, defining a new type of HIRAN domains with multiple activities. Our work provides a framework to understand how Rad5 integrates its various activities in replication stress tolerance. Rad5 is a hub connecting three replication stress tolerance pathways. Here, the authors present the 3.3 Å crystal structure of a N-terminal truncated K.lactis Rad5 construct that reveals the spatial arrangement of the HIRAN, Snf2 and RING domains and structure-guided in vitro and in vivo experiments reveal multiple activities of the yeast Rad5 HIRAN domain among them a role in binding PCNA and supporting its ubiquitination.
Collapse
Affiliation(s)
- Miaomiao Shen
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, P. R. China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 300070, Tianjin, P. R. China.,The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Nalini Dhingra
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Quan Wang
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Chen Cheng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 201210, Shanghai, P. R. China
| | - Songbiao Zhu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, P. R. China
| | - Xiaolin Tian
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, P. R. China
| | - Jun Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P. R. China
| | - Xiaoxin Gong
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, P. R. China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 300070, Tianjin, P. R. China.,The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Xuzhichao Li
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, P. R. China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 300070, Tianjin, P. R. China.,The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Hongwei Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P. R. China
| | - Xin Xu
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, P. R. China.,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 300070, Tianjin, P. R. China.,The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, 300070, Tianjin, P. R. China
| | - Liting Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P. R. China
| | - Min Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P. R. China
| | - Ying Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P. R. China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences, Tsinghua University, 100084, Beijing, P. R. China
| | - Yongning He
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 201210, Shanghai, P. R. China
| | - Hengyao Niu
- Department of Molecular and Cellular Biochemistry, Indiana University Bloomington, Bloomington, IN, 47405, USA
| | - Xiaolan Zhao
- Molecular Biology Department, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Song Xiang
- Department of Biochemistry and Molecular Biology, Tianjin Medical University, 300070, Tianjin, P. R. China. .,Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, 300070, Tianjin, P. R. China. .,The province and ministry co-sponsored collaborative innovation center for medical epigenetics, Tianjin Medical University, 300070, Tianjin, P. R. China.
| |
Collapse
|
7
|
Access to PCNA by Srs2 and Elg1 Controls the Choice between Alternative Repair Pathways in Saccharomyces cerevisiae. mBio 2020; 11:mBio.00705-20. [PMID: 32371600 PMCID: PMC7403780 DOI: 10.1128/mbio.00705-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
PCNA, the ring that encircles DNA maintaining the processivity of DNA polymerases, is modified by ubiquitin and SUMO. Whereas ubiquitin is required for bypassing lesions through the DNA damage tolerance (DDT) pathways, we show here that SUMOylation represses another pathway, salvage recombination. The Srs2 helicase is recruited to SUMOylated PCNA and prevents the salvage pathway from acting. The pathway can be induced by overexpressing the PCNA unloader Elg1, or the homologous recombination protein Rad52. Our results underscore the role of PCNA modifications in controlling the various bypass and DNA repair mechanisms. During DNA replication, stalling can occur when the replicative DNA polymerases encounter lesions or hard-to replicate regions. Under these circumstances, the processivity factor PCNA gets ubiquitylated at lysine 164, inducing the DNA damage tolerance (DDT) mechanisms that can bypass lesions encountered during DNA replication. PCNA can also be SUMOylated at the same residue or at lysine 127. Surprisingly, pol30-K164R mutants display a higher degree of sensitivity to DNA-damaging agents than pol30-KK127,164RR strains, unable to modify any of the lysines. Here, we show that in addition to translesion synthesis and strand-transfer DDT mechanisms, an alternative repair mechanism (“salvage recombination”) that copies information from the sister chromatid is repressed by the recruitment of Srs2 to SUMOylated PCNA. Overexpression of Elg1, the PCNA unloader, or of the recombination protein Rad52 allows its activation. We dissect the genetic requirements for this pathway, as well as the interactions between Srs2 and Elg1.
Collapse
|
8
|
Li C, Wong JTY. DNA Damage Response Pathways in Dinoflagellates. Microorganisms 2019; 7:E191. [PMID: 31284474 PMCID: PMC6680887 DOI: 10.3390/microorganisms7070191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/17/2022] Open
Abstract
Dinoflagellates are a general group of phytoplankton, ubiquitous in aquatic environments. Most dinoflagellates are non-obligate autotrophs, subjected to potential physical and chemical DNA-damaging agents, including UV irradiation, in the euphotic zone. Delay of cell cycles by irradiation, as part of DNA damage responses (DDRs), could potentially lead to growth inhibition, contributing to major errors in the estimation of primary productivity and interpretations of photo-inhibition. Their liquid crystalline chromosomes (LCCs) have large amount of abnormal bases, restricted placement of coding sequences at the chromosomes periphery, and tandem repeat-encoded genes. These chromosome characteristics, their large genome sizes, as well as the lack of architectural nucleosomes, likely contribute to possible differential responses to DNA damage agents. In this study, we sought potential dinoflagellate orthologues of eukaryotic DNA damage repair pathways, and the linking pathway with cell-cycle control in three dinoflagellate species. It appeared that major orthologues in photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, double-strand break repair and homologous recombination repair are well represented in dinoflagellate genomes. Future studies should address possible differential DNA damage responses of dinoflagellates over other planktonic groups, especially in relation to possible shift of life-cycle transitions in responses to UV irradiation. This may have a potential role in the persistence of dinoflagellate red tides with the advent of climatic change.
Collapse
Affiliation(s)
- Chongping Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
| | - Joseph Tin Yum Wong
- Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
9
|
Dattani A, Wilkinson SR. Deciphering the interstrand crosslink DNA repair network expressed by Trypanosoma brucei. DNA Repair (Amst) 2019; 78:154-166. [DOI: 10.1016/j.dnarep.2019.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 10/26/2022]
|
10
|
Dorn A, Feller L, Castri D, Röhrig S, Enderle J, Herrmann NJ, Block-Schmidt A, Trapp O, Köhler L, Puchta H. An Arabidopsis FANCJ helicase homologue is required for DNA crosslink repair and rDNA repeat stability. PLoS Genet 2019; 15:e1008174. [PMID: 31120885 PMCID: PMC6550410 DOI: 10.1371/journal.pgen.1008174] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/05/2019] [Accepted: 05/03/2019] [Indexed: 11/18/2022] Open
Abstract
Proteins of the Fanconi Anemia (FA) complementation group are required for crosslink (CL) repair in humans and their loss leads to severe pathological phenotypes. Here we characterize a homolog of the Fe-S cluster helicase FANCJ in the model plant Arabidopsis, AtFANCJB, and show that it is involved in interstrand CL repair. It acts at a presumably early step in concert with the nuclease FAN1 but independently of the nuclease AtMUS81, and is epistatic to both error-prone and error-free post-replicative repair in Arabidopsis. The simultaneous knock out of FANCJB and the Fe-S cluster helicase RTEL1 leads to induced cell death in root meristems, indicating an important role of the enzymes in replicative DNA repair. Surprisingly, we found that AtFANCJB is involved in safeguarding rDNA stability in plants. In the absence of AtRTEL1 and AtFANCJB, we detected a synergetic reduction to about one third of the original number of 45S rDNA copies. It is tempting to speculate that the detected rDNA instability might be due to deficiencies in G-quadruplex structure resolution and might thus contribute to pathological phenotypes of certain human genetic diseases.
Collapse
Affiliation(s)
- Annika Dorn
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Laura Feller
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Dominique Castri
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Sarah Röhrig
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Janina Enderle
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Natalie J. Herrmann
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Astrid Block-Schmidt
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Oliver Trapp
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Laura Köhler
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Holger Puchta
- Botanical Institute, Molecular Biology and Biochemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
11
|
Chaudhury I, Koepp DM. Degradation of Mrc1 promotes recombination-mediated restart of stalled replication forks. Nucleic Acids Res 2017; 45:2558-2570. [PMID: 27956499 PMCID: PMC5389566 DOI: 10.1093/nar/gkw1249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022] Open
Abstract
The DNA replication or S-phase checkpoint monitors the integrity of DNA synthesis. Replication stress or DNA damage triggers fork stalling and checkpoint signaling to activate repair pathways. Recovery from checkpoint activation is critical for cell survival following DNA damage. Recovery from the S-phase checkpoint includes inactivation of checkpoint signaling and restart of stalled replication forks. Previous studies demonstrated that degradation of Mrc1, the Saccharomyces cerevisiae ortholog of human Claspin, is facilitated by the SCFDia2 ubiquitin ligase and is important for cell cycle re-entry after DNA damage-induced S-phase checkpoint activation. Here, we show that degradation of Mrc1 facilitated by the SCFDia2 complex is critical to restart stalled replication forks during checkpoint recovery. Using DNA fiber analysis, we showed that Dia2 functions with the Sgs1 and Mph1 helicases (orthologs of human BLM and FANCM, respectively) in the recombination-mediated fork restart pathway. In addition, Dia2 physically interacts with Sgs1 upon checkpoint activation. Importantly, failure to target Mrc1 for degradation during recovery inhibits Sgs1 chromatin association, but this can be alleviated by induced proteolysis of Mrc1 after checkpoint activation. Together, these studies provide new mechanistic insights into how cells recover from activation of the S-phase checkpoint.
Collapse
Affiliation(s)
- Indrajit Chaudhury
- Department of Genetics, Cell Biology and Development, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455 USA
| | - Deanna M Koepp
- Department of Genetics, Cell Biology and Development, 321 Church St. SE, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
12
|
Ward TA, McHugh PJ, Durant ST. Small molecule inhibitors uncover synthetic genetic interactions of human flap endonuclease 1 (FEN1) with DNA damage response genes. PLoS One 2017. [PMID: 28628639 PMCID: PMC5476263 DOI: 10.1371/journal.pone.0179278] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Flap endonuclease 1 (FEN1) is a structure selective endonuclease required for proficient DNA replication and the repair of DNA damage. Cellularly active inhibitors of this enzyme have previously been shown to induce a DNA damage response and, ultimately, cell death. High-throughput screens of human cancer cell-lines identify colorectal and gastric cell-lines with microsatellite instability (MSI) as enriched for cellular sensitivity to N-hydroxyurea series inhibitors of FEN1, but not the PARP inhibitor olaparib or other inhibitors of the DNA damage response. This sensitivity is due to a synthetic lethal interaction between FEN1 and MRE11A, which is often mutated in MSI cancers through instabilities at a poly(T) microsatellite repeat. Disruption of ATM is similarly synthetic lethal with FEN1 inhibition, suggesting that disruption of FEN1 function leads to the accumulation of DNA double-strand breaks. These are likely a result of the accumulation of aberrant replication forks, that accumulate as a consequence of a failure in Okazaki fragment maturation, as inhibition of FEN1 is toxic in cells disrupted for the Fanconi anemia pathway and post-replication repair. Furthermore, RAD51 foci accumulate as a consequence of FEN1 inhibition and the toxicity of FEN1 inhibitors increases in cells disrupted for the homologous recombination pathway, suggesting a role for homologous recombination in the resolution of damage induced by FEN1 inhibition. Finally, FEN1 appears to be required for the repair of damage induced by olaparib and cisplatin within the Fanconi anemia pathway, and may play a role in the repair of damage associated with its own disruption.
Collapse
Affiliation(s)
- Thomas A. Ward
- AstraZeneca, Innovative Medicines and Early Development Biotech Unit, Oncology Bioscience, Alderley Park, Macclesfield, Cheshire, United Kingdom
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- * E-mail: (TAW); (STD)
| | - Peter J. McHugh
- Department of Oncology, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Stephen T. Durant
- AstraZeneca, Innovative Medicines and Early Development Biotech Unit, Oncology Bioscience, Alderley Park, Macclesfield, Cheshire, United Kingdom
- AstraZeneca, Innovative Medicines and Early Development Biotech Unit, Oncology Bioscience, Little Chesterford, Cambridge, United Kingdom
- * E-mail: (TAW); (STD)
| |
Collapse
|
13
|
Nikolova T, Roos WP, Krämer OH, Strik HM, Kaina B. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochim Biophys Acta Rev Cancer 2017; 1868:29-39. [PMID: 28143714 DOI: 10.1016/j.bbcan.2017.01.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 01/20/2023]
Abstract
Chloroethylating nitrosoureas (CNU), such as lomustine, nimustine, semustine, carmustine and fotemustine are used for the treatment of malignant gliomas, brain metastases of different origin, melanomas and Hodgkin disease. They alkylate the DNA bases and give rise to the formation of monoadducts and subsequently interstrand crosslinks (ICL). ICL are critical cytotoxic DNA lesions that link the DNA strands covalently and block DNA replication and transcription. As a result, S phase progression is inhibited and cells are triggered to undergo apoptosis and necrosis, which both contribute to the effectiveness of CNU-based cancer therapy. However, tumor cells resist chemotherapy through the repair of CNU-induced DNA damage. The suicide enzyme O6-methylguanine-DNA methyltransferase (MGMT) removes the precursor DNA lesion O6-chloroethylguanine prior to its conversion into ICL. In cells lacking MGMT, the formed ICL evoke complex enzymatic networks to accomplish their removal. Here we discuss the mechanism of ICL repair as a survival strategy of healthy and cancer cells and DNA damage signaling as a mechanism contributing to CNU-induced cell death. We also discuss therapeutic implications and strategies based on sequential and simultaneous treatment with CNU and the methylating drug temozolomide.
Collapse
Affiliation(s)
- Teodora Nikolova
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| | - Wynand P Roos
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Oliver H Krämer
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany
| | - Herwig M Strik
- Department of Neurology, University Medical Center, Baldinger Strasse, 35033 Marburg, Germany
| | - Bernd Kaina
- Institute of Toxicology, University Medical Center, Obere Zahlbacher Str. 67, D-55131 Mainz, Germany.
| |
Collapse
|
14
|
Rendeková J, Ward TA, Šimoničová L, Thomas PH, Nosek J, Tomáška Ľ, McHugh PJ, Chovanec M. Mgm101: A double-duty Rad52-like protein. Cell Cycle 2016; 15:3169-3176. [PMID: 27636878 PMCID: PMC5176325 DOI: 10.1080/15384101.2016.1231288] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mgm101 has well-characterized activity for the repair and replication of the mitochondrial genome. Recent work has demonstrated a further role for Mgm101 in nuclear DNA metabolism, contributing to an S-phase specific DNA interstrand cross-link repair pathway that acts redundantly with a pathway controlled by Pso2 exonuclease. Due to involvement of FANCM, FANCJ and FANCP homologues (Mph1, Chl1 and Slx4), this pathway has been described as a Fanconi anemia-like pathway. In this pathway, Mgm101 physically interacts with the DNA helicase Mph1 and the MutSα (Msh2/Msh6) heterodimer, but its precise role is yet to be elucidated. Data presented here suggests that Mgm101 functionally overlaps with Rad52, supporting previous suggestions that, based on protein structure and biochemical properties, Mgm101 and Rad52 belong to a family of proteins with similar function. In addition, our data shows that this overlap extends to the function of both proteins at telomeres, where Mgm101 is required for telomere elongation during chromosome replication in rad52 defective cells. We hypothesize that Mgm101 could, in Rad52-like manner, preferentially bind single-stranded DNAs (such as at stalled replication forks, broken chromosomes and natural chromosome ends), stabilize them and mediate single-strand annealing-like homologous recombination event to prevent them from converting into toxic structures.
Collapse
Affiliation(s)
- Jana Rendeková
- a Department of Genetics , Cancer Research Institute, Biomedical Research Center, Slovak Academy of Science , Bratislava , Slovak Republic
| | - Thomas A Ward
- b Department of Oncology , Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital , Oxford , UK
| | - Lucia Šimoničová
- c Department of Genetics , Faculty of Natural Sciences, Comenius University , Bratislava , Slovakia
| | - Peter H Thomas
- b Department of Oncology , Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital , Oxford , UK
| | - Jozef Nosek
- d Department of Biochemistry , Faculty of Natural Sciences, Comenius University , Bratislava , Slovakia
| | - Ľubomír Tomáška
- c Department of Genetics , Faculty of Natural Sciences, Comenius University , Bratislava , Slovakia
| | - Peter J McHugh
- b Department of Oncology , Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital , Oxford , UK
| | - Miroslav Chovanec
- a Department of Genetics , Cancer Research Institute, Biomedical Research Center, Slovak Academy of Science , Bratislava , Slovak Republic
| |
Collapse
|
15
|
Northam MR, Trujillo KM. Histone H2B mono-ubiquitylation maintains genomic integrity at stalled replication forks. Nucleic Acids Res 2016; 44:9245-9255. [PMID: 27458205 PMCID: PMC5100568 DOI: 10.1093/nar/gkw658] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 07/12/2016] [Indexed: 12/29/2022] Open
Abstract
Histone modifications play an important role in regulating access to DNA for transcription, DNA repair and DNA replication. A central player in these events is the mono-ubiquitylation of histone H2B (H2Bub1), which has been shown to regulate nucleosome dynamics. Previously, it was shown that H2Bub1 was important for nucleosome assembly onto nascent DNA at active replication forks. In the absence of H2Bub1, incomplete chromatin structures resulted in several replication defects. Here, we report new evidence, which shows that loss of H2Bub1 contributes to genomic instability in yeast. Specifically, we demonstrate that H2Bub1-deficient yeast accumulate mutations at a high frequency under conditions of replicative stress. This phenotype is due to an aberrant DNA Damage Tolerance (DDT) response upon fork stalling. We show that H2Bub1 normally functions to promote error-free translesion synthesis (TLS) mediated by DNA polymerase eta (Polη). Without H2Bub1, DNA polymerase zeta (Polζ) is responsible for a highly mutagenic alternative mechanism. While H2Bub1 does not appear to regulate other DDT pathways, error-free DDT mechanisms are employed by H2Bub1-deficient cells as another means for survival. However, in these instances, the anti-recombinase, Srs2, is essential to prevent the accumulation of toxic HR intermediates that arise in an unconstrained chromatin environment.
Collapse
Affiliation(s)
- Matthew R Northam
- University of Nebraska Medical Center, College of Medicine, Fred and Pamela Buffett Cancer Center, Department of Biochemistry and Molecular Biology, Omaha NE 68198, USA
| | - Kelly M Trujillo
- University of Nebraska Medical Center, College of Medicine, Fred and Pamela Buffett Cancer Center, Department of Biochemistry and Molecular Biology, Omaha NE 68198, USA
| |
Collapse
|
16
|
Xue X, Papusha A, Choi K, Bonner JN, Kumar S, Niu H, Kaur H, Zheng XF, Donnianni RA, Lu L, Lichten M, Zhao X, Ira G, Sung P. Differential regulation of the anti-crossover and replication fork regression activities of Mph1 by Mte1. Genes Dev 2016; 30:687-99. [PMID: 26966246 PMCID: PMC4803054 DOI: 10.1101/gad.276139.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/17/2016] [Indexed: 02/03/2023]
Abstract
Xue et al. identified Mte1 as a multifunctional regulator of S. cerevisiae Mph1. Mte1 stimulates Mph1-mediated DNA replication fork regression and branch migration in a model substrate. Surprisingly, Mte1 antagonizes the D-loop-dissociative activity of Mph1–MHF and exerts a procrossover role in mitotic recombination. We identified Mte1 (Mph1-associated telomere maintenance protein 1) as a multifunctional regulator of Saccharomyces cerevisiae Mph1, a member of the FANCM family of DNA motor proteins important for DNA replication fork repair and crossover suppression during homologous recombination. We show that Mte1 interacts with Mph1 and DNA species that resemble a DNA replication fork and the D loop formed during recombination. Biochemically, Mte1 stimulates Mph1-mediated DNA replication fork regression and branch migration in a model substrate. Consistent with this activity, genetic analysis reveals that Mte1 functions with Mph1 and the associated MHF complex in replication fork repair. Surprisingly, Mte1 antagonizes the D-loop-dissociative activity of Mph1–MHF and exerts a procrossover role in mitotic recombination. We further show that the influence of Mte1 on Mph1 activities requires its binding to Mph1 and DNA. Thus, Mte1 differentially regulates Mph1 activities to achieve distinct outcomes in recombination and replication fork repair.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Alma Papusha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jacob N Bonner
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Sandeep Kumar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Hengyao Niu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Hardeep Kaur
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Xiao-Feng Zheng
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Roberto A Donnianni
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | - Lucy Lu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Michael Lichten
- Laboratory of Biochemistry and Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
17
|
Abstract
Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. In this review, Xue et al. provide an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes. Members of the conserved FANCM family of DNA motor proteins play key roles in genome maintenance processes. FANCM supports genome duplication and repair under different circumstances and also functions in the ATR-mediated DNA damage checkpoint. Some of these roles are shared among lower eukaryotic family members. Human FANCM has been linked to Fanconi anemia, a syndrome characterized by cancer predisposition, developmental disorder, and bone marrow failure. Recent studies on human FANCM and its orthologs from other organisms have provided insights into their biological functions, regulation, and collaboration with other genome maintenance factors. This review summarizes the progress made, with the goal of providing an integrated view of the functions and regulation of these enzymes in humans and model organisms and how they advance our understanding of genome maintenance processes.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
18
|
Xue X, Choi K, Bonner JN, Szakal B, Chen YH, Papusha A, Saro D, Niu H, Ira G, Branzei D, Sung P, Zhao X. Selective modulation of the functions of a conserved DNA motor by a histone fold complex. Genes Dev 2015; 29:1000-5. [PMID: 25956905 PMCID: PMC4441048 DOI: 10.1101/gad.259143.115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/14/2015] [Indexed: 01/10/2023]
Abstract
Budding yeast Mph1 helicase and its orthologs drive multiple DNA transactions. Here, Xue et al. show that the conserved histone fold MHF complex promotes Mph1-mediated repair of damaged replication forks but does not influence the outcome of DNA double-strand break repair. Budding yeast Mph1 helicase and its orthologs drive multiple DNA transactions. Elucidating the mechanisms that regulate these motor proteins is central to understanding genome maintenance processes. Here, we show that the conserved histone fold MHF complex promotes Mph1-mediated repair of damaged replication forks but does not influence the outcome of DNA double-strand break repair. Mechanistically, scMHF relieves the inhibition imposed by the structural maintenance of chromosome protein Smc5 on Mph1 activities relevant to replication-associated repair through binding to Mph1 but not DNA. Thus, scMHF is a function-specific enhancer of Mph1 that enables flexible response to different genome repair situations.
Collapse
Affiliation(s)
- Xiaoyu Xue
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Koyi Choi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Jacob N Bonner
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Barnabas Szakal
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Yu-Hung Chen
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA
| | - Alma Papusha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dorina Saro
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Hengyao Niu
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Grzegorz Ira
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Dana Branzei
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan 20139, Italy
| | - Patrick Sung
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, New York 10065, USA;
| |
Collapse
|
19
|
Sullivan JA, Tong JL, Wong M, Kumar A, Sarkar H, Ali S, Hussein I, Zaman I, Meredith EL, Helsby NA, Hu L, Wilkinson SR. Unravelling the role of SNM1 in the DNA repair system ofTrypanosoma brucei. Mol Microbiol 2015; 96:827-38. [DOI: 10.1111/mmi.12973] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2015] [Indexed: 12/31/2022]
Affiliation(s)
- James A. Sullivan
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Jie Lun Tong
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Martin Wong
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Ambika Kumar
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Hajrah Sarkar
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Sarah Ali
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Ikran Hussein
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Iqra Zaman
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Emma Louise Meredith
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| | - Nuala A. Helsby
- Department of Molecular Medicine and Pathology; University of Auckland; Private Bag 92019 Auckland New Zealand
| | - Longqin Hu
- Department of Medicinal Chemistry; Ernest Mario School of Pharmacy; Rutgers; The State University of New Jersey; Piscataway NJ 08854 USA
| | - Shane R. Wilkinson
- School of Biological & Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS UK
| |
Collapse
|
20
|
Herrmann NJ, Knoll A, Puchta H. The nuclease FAN1 is involved in DNA crosslink repair in Arabidopsis thaliana independently of the nuclease MUS81. Nucleic Acids Res 2015; 43:3653-66. [PMID: 25779053 PMCID: PMC4402529 DOI: 10.1093/nar/gkv208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/01/2015] [Indexed: 01/06/2023] Open
Abstract
Fanconi anemia is a severe genetic disorder. Mutations in one of several genes lead to defects in DNA crosslink (CL) repair in human cells. An essential step in CL repair is the activation of the pathway by the monoubiquitination of the heterodimer FANCD2/FANCI, which recruits the nuclease FAN1 to the CL site. Surprisingly, FAN1 function is not conserved between different eukaryotes. No FAN1 homolog is present in Drosophila and Saccharomyces cerevisiae. The FAN1 homolog in Schizosaccharomyces pombe is involved in CL repair; a homolog is present in Xenopus but is not involved in CL repair. Here we show that a FAN1 homolog is present in plants and it is involved in CL repair in Arabidopsis thaliana. Both the virus-type replication-repair nuclease and the ubiquitin-binding ubiquitin-binding zinc finger domains are essential for this function. FAN1 likely acts upstream of two sub-pathways of CL repair. These pathways are defined by the Bloom syndrome homolog RECQ4A and the ATPase RAD5A, which is involved in error-free post-replicative repair. Mutations in both FAN1 and the endonuclease MUS81 resulted in greater sensitivity against CLs than in the respective single mutants. These results indicate that the two nucleases define two independent pathways of CL repair in plants.
Collapse
Affiliation(s)
- Natalie J Herrmann
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| | - Alexander Knoll
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| | - Holger Puchta
- Botanical Institute II, Karlsruhe Institute of Technology, Hertzstrasse 16, Karlsruhe, 76187, Germany
| |
Collapse
|
21
|
Essential domains of Schizosaccharomyces pombe Rad8 required for DNA damage response. G3-GENES GENOMES GENETICS 2014; 4:1373-84. [PMID: 24875629 PMCID: PMC4132169 DOI: 10.1534/g3.114.011346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Schizosaccharomyces pombe Rad8 is a conserved protein homologous to S. cerevisiaeRad5 and human HLTF that is required for error-free postreplication repair by contributing to polyubiquitylation of PCNA. It has three conserved domains: an E3 ubiquitin ligase motif, a SNF2-family helicase domain, and a family-specific HIRAN domain. Data from humans and budding yeast suggest that helicase activity contributes to replication fork regression and template switching for fork restart. We constructed specific mutations in the three conserved domains and found that both the E3 ligase and HIRAN domains are required for proper response to DNA damage caused by a variety of agents. In contrast, mutations in the helicase domain show no phenotypes in a wild-type background. To determine whether Rad8 functionally overlaps with other helicases, we compared the phenotypes of single and double mutants with a panel of 23 nonessential helicase mutants, which we categorized into five phenotypic groups. Synthetic phenotypes with rad8∆ were observed for mutants affecting recombination, and a rad8 helicase mutation affected the HU response of a subset of recombination mutants. Our data suggest that the S. pombe Rad8 ubiquitin ligase activity is important for response to a variety of damaging agents, while the helicase domain plays only a minor role in modulating recombination-based fork restart during specific forms of replication stress.
Collapse
|
22
|
The histone-fold complex MHF is remodeled by FANCM to recognize branched DNA and protect genome stability. Cell Res 2014; 24:560-75. [PMID: 24699063 DOI: 10.1038/cr.2014.42] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/10/2014] [Accepted: 02/24/2014] [Indexed: 01/19/2023] Open
Abstract
Histone-fold proteins typically assemble in multiprotein complexes to bind duplex DNA. However, one histone-fold complex, MHF, associates with Fanconi anemia (FA) protein FANCM to form a branched DNA remodeling complex that senses and repairs stalled replication forks and activates FA DNA damage response network. How the FANCM-MHF complex recognizes branched DNA is unclear. Here, we solved the crystal structure of MHF and its complex with the MHF-interaction domain (referred to as MID) of FANCM, and performed structure-guided mutagenesis. We found that the MID-MHF complex consists of one histone H3-H4-like MHF heterotetramer wrapped by a single polypeptide of MID. We identified a zinc atom-liganding structure at the central interface between MID and MHF that is critical for stabilization of the complex. Notably, the DNA-binding surface of MHF was altered by MID in both electrostatic charges and allosteric conformation. This leads to a switch in the DNA-binding preference - from duplex DNA by MHF alone, to branched DNA by the MID-MHF complex. Mutations that disrupt either the composite DNA-binding surface or the protein-protein interface of the MID-MHF complex impaired activation of the FA network and genome stability. Our data provide the structural basis of how FANCM and MHF work together to recognize branched DNA, and suggest a novel mechanism by which histone-fold complexes can be remodeled by their partners to bind special DNA structures generated during DNA metabolism.
Collapse
|
23
|
Bochman ML, Paeschke K, Chan A, Zakian VA. Hrq1, a homolog of the human RecQ4 helicase, acts catalytically and structurally to promote genome integrity. Cell Rep 2014; 6:346-56. [PMID: 24440721 DOI: 10.1016/j.celrep.2013.12.037] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/27/2013] [Accepted: 12/24/2013] [Indexed: 11/29/2022] Open
Abstract
Human RecQ4 (hRecQ4) affects cancer and aging but is difficult to study because it is a fusion between a helicase and an essential replication factor. Budding yeast Hrq1 is homologous to the disease-linked helicase domain of RecQ4 and, like hRecQ4, is a robust 3'-5' helicase. Additionally, Hrq1 has the unusual property of forming heptameric rings. Cells lacking Hrq1 exhibited two DNA damage phenotypes: hypersensitivity to DNA interstrand crosslinks (ICLs) and telomere addition to DNA breaks. Both activities are rare; their coexistence in a single protein is unprecedented. Resistance to ICLs requires helicase activity, but suppression of telomere addition does not. Hrq1 also affects telomere length by a noncatalytic mechanism, as well as telomerase-independent telomere maintenance. Because Hrq1 binds telomeres in vivo, it probably affects them directly. Thus, the tumor-suppressing activity of RecQ4 could be due to a role in ICL repair and/or suppression of de novo telomere addition.
Collapse
Affiliation(s)
- Matthew L Bochman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Katrin Paeschke
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Angela Chan
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
24
|
Munari FM, Guecheva TN, Bonatto D, Henriques JAP. New features on Pso2 protein family in DNA interstrand cross-link repair and in the maintenance of genomic integrity in Saccharomyces cerevisiae. Fungal Genet Biol 2013; 60:122-32. [PMID: 24076078 DOI: 10.1016/j.fgb.2013.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/11/2013] [Accepted: 09/15/2013] [Indexed: 11/27/2022]
Abstract
Pso2 protein, a member of the highly conserved metallo-β-lactamase (MBL) super family of nucleases, plays a central role in interstrand crosslink repair (ICL) in yeast. Pso2 protein is the founder member of a distinct group within the MBL superfamily, called β-CASP family. Three mammalian orthologs of this protein that act on DNA were identified: SNM1A, SNM1B/Apollo and SNM1C/Artemis. Yeast Pso2 and all three mammalian orthologs proteins have been shown to possess nuclease activity. Besides Pso2, ICL repair involves proteins of several DNA repair pathways. Over the last years, new homologs for human proteins have been identified in yeast. In this review, we will focus on studies clarifying the function of Pso2 protein during ICL repair in yeast, emphasizing the contribution of Brazilian research groups in this topic. New sub-pathways in the mechanisms of ICL repair, such as recently identified conserved Fanconi Anemia pathway in yeast as well as a contribution of non-homologous end joining are discussed.
Collapse
Affiliation(s)
- Fernanda Mosena Munari
- Biotechnology Center, Federal University of Rio Grande do Sul (UFRGS), 91507-970 Porto Alegre, RS, Brazil
| | | | | | | |
Collapse
|
25
|
A genetic screen for high copy number suppressors of the synthetic lethality between elg1Δ and srs2Δ in yeast. G3-GENES GENOMES GENETICS 2013; 3:917-26. [PMID: 23704284 PMCID: PMC3656737 DOI: 10.1534/g3.113.005561] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Elg1 and Srs2 are two proteins involved in maintaining genome stability in yeast. After DNA damage, the homotrimeric clamp PCNA, which provides stability and processivity to DNA polymerases and serves as a docking platform for DNA repair enzymes, undergoes modification by the ubiquitin-like molecule SUMO. PCNA SUMOylation helps recruit Srs2 and Elg1 to the replication fork. In the absence of Elg1, both SUMOylated PCNA and Srs2 accumulate at the chromatin fraction, indicating that Elg1 is required for removing SUMOylated PCNA and Srs2 from DNA. Despite this interaction, which suggests that the two proteins work together, double mutants elg1Δ srs2Δ have severely impaired growth as haploids and exhibit synergistic sensitivity to DNA damage and a synergistic increase in gene conversion. In addition, diploid elg1Δ srs2Δ double mutants are dead, which implies that an essential function in the cell requires at least one of the two gene products for survival. To gain information about this essential function, we have carried out a high copy number suppressor screen to search for genes that, when overexpressed, suppress the synthetic lethality between elg1Δ and srs2Δ. We report the identification of 36 such genes, which are enriched for functions related to DNA- and chromatin-binding, chromatin packaging and modification, and mRNA export from the nucleus.
Collapse
|
26
|
Singh S, Shemesh K, Liefshitz B, Kupiec M. Genetic and physical interactions between the yeast ELG1 gene and orthologs of the Fanconi anemia pathway. Cell Cycle 2013; 12:1625-36. [PMID: 23624835 PMCID: PMC3680542 DOI: 10.4161/cc.24756] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fanconi anemia (FA) is a human syndrome characterized by genomic instability and increased incidence of cancer. FA is a genetically heterogeneous disease caused by mutations in at least 15 different genes; several of these genes are conserved in the yeast Saccharomyces cerevisiae. Elg1 is also a conserved protein that forms an RFC-like complex, which interacts with SUMOylated PCNA. The mammalian Elg1 protein has been recently found to interact with the FA complex. Here we analyze the genetic interactions between elg1Δand mutants of the yeast FA-like pathway. We show that Elg1 physically contacts the Mhf1/Mhf2 histone-like complex and genetically interacts with MPH1 (ortholog of the FANCM helicase) and CHL1 (ortholog of the FANCJ helicase) genes. We analyze the sensitivity of double, triple, quadruple and quintuple mutants to methylmethane sulfonate (MMS) and to hydroxyurea (HU). Our results show that genetic interactions depend on the type of DNA damaging agent used and show a hierarchy: Chl1 and Elg1 play major roles in the survival to these genotoxins and exhibit synthetic fitness reduction. Mph1 plays a lesser role, and the effect of the Mhf1/2 complex is seen only in the absence of Elg1 on HU-containing medium. Finally, we dissect the relationship between yeast FA-like mutants and the replication clamp, PCNA. Our results point to an intricate network of interactions rather than a single, linear repair pathway.
Collapse
Affiliation(s)
- Shivani Singh
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | | | | | | |
Collapse
|
27
|
Abstract
Interstrand crosslinks covalently link complementary DNA strands, block replication and transcription, and can trigger cell death. In eukaryotic systems several pathways, including the Fanconi Anemia pathway, are involved in repairing interstrand crosslinks, but their precise mechanisms remain enigmatic. The lack of functional homologs in simpler model organisms has significantly hampered progress in this field. Two recent studies have finally identified a Fanconi-like interstrand crosslink repair pathway in yeast. Future studies in this simplistic model organism promise to greatly improve our basic understanding of complex interstrand crosslink repair pathways like the Fanconi pathway.
Collapse
|
28
|
McHugh PJ, Ward TA, Chovanec M. A prototypical Fanconi anemia pathway in lower eukaryotes? Cell Cycle 2012; 11:3739-44. [PMID: 22895051 DOI: 10.4161/cc.21727] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
DNA interstrand cross-links (ICLs) present a major challenge to cells, preventing separation of the two strands of duplex DNA and blocking major chromosome transactions, including transcription and replication. Due to the complexity of removing this form of DNA damage, no single DNA repair pathway has been shown to be capable of eradicating ICLs. In eukaryotes, ICL repair is a complex process, principally because several repair pathways compete for ICL repair intermediates in a strictly cell cycle-dependent manner. Yeast cells require a combination of nucleotide excision repair, homologous recombination repair and postreplication repair/translesion DNA synthesis to remove ICLs. There are also a number of additional ICL repair factors originally identified in the budding yeast Saccharomyces cerevisiae, called Pso1 though 10, of which Pso2 has an apparently dedicated role in ICL repair. Mammalian cells respond to ICLs by a complex network guided by factors mutated in the inherited cancer-prone disorder Fanconi anemia (FA). Although enormous progress has been made over recent years in identifying and characterizing FA factors as well as in elucidating certain aspects of the biology of FA, the mechanistic details of the ICL repair defects in FA patients remain unknown. Dissection of the FA DNA damage response pathway has, in part, been limited by the absence of FA-like pathways in highly tractable model organisms, such as yeast. Although S. cerevisiae possesses putative homologs of the FA factors FANCM, FANCJ and FANCP (Mph1, Chl1 and Slx4, respectively) as well as of the FANCM-associated proteins MHF1 and MHF2 (Mhf1 and Mhf2), the corresponding mutants display no significant increase in sensitivity to ICLs. Nevertheless, we and others have recently shown that these FA homologs, along with several other factors, control an ICL repair pathway, which has an overlapping or redundant role with a Pso2-controlled pathway. This pathway acts in S-phase and serves to prevent ICL-stalled replication forks from collapsing into DNA double-strand breaks.
Collapse
Affiliation(s)
- Peter J McHugh
- Department of Oncology, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|