1
|
Chen X, Guo Y, Shi J, Wang Y, Guo X, Wu G, Li S, Zhang T. Structural basis for substrate and antibiotic recognition by Helicobacter pylori isoleucyl-tRNA synthetase. FEBS Lett 2024; 598:521-536. [PMID: 38246751 DOI: 10.1002/1873-3468.14805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
Helicobacter pylori infection is a global health concern, affecting over half of the world's population. Acquiring structural information on pharmacological targets is crucial to facilitate inhibitor design. Here, we have determined the crystal structures of H. pylori isoleucyl-tRNA synthetase (HpIleRS) in apo form as well as in complex with various substrates (Ile, Ile-AMP, Val, and Val-AMP) or an inhibitor (mupirocin). Our results provide valuable insights into substrate specificity, recognition, and the mechanism by which HpIleRS is inhibited by an antibiotic. Moreover, we identified Asp641 as a prospective regulatory site and conducted biochemical analyses to investigate its regulatory mechanism. The detailed structural information acquired from this research holds promise for the development of highly selective and effective inhibitors against H. pylori infection.
Collapse
Affiliation(s)
- Xiaobao Chen
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 500 Yonghe Road, Nantong, China
| | - Yu Guo
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiawen Shi
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 500 Yonghe Road, Nantong, China
| | - Yilun Wang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 500 Yonghe Road, Nantong, China
| | - Xinyi Guo
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 500 Yonghe Road, Nantong, China
| | - Guihua Wu
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 500 Yonghe Road, Nantong, China
| | - Sheng Li
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, China
- Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | - Tianlong Zhang
- Institute of Geriatrics, Affiliated Nantong Hospital of Shanghai University, Sixth People's Hospital of Nantong, Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, 500 Yonghe Road, Nantong, China
| |
Collapse
|
2
|
Yuan C, Li Z, Luo X, Huang P, Guo L, Lu M, Xia J, Xiao Y, Zhou XL, Chen M. Mammalian trans-editing factor ProX is able to deacylate tRNA Thr mischarged with alanine. Int J Biol Macromol 2023; 253:127121. [PMID: 37778588 DOI: 10.1016/j.ijbiomac.2023.127121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/16/2023] [Accepted: 09/26/2023] [Indexed: 10/03/2023]
Abstract
The precise coupling of tRNAs with their cognate amino acids, known as tRNA aminoacylation, is a stringently regulated process that governs translation fidelity. To ensure fidelity, organisms deploy multiple layers of editing mechanisms to correct mischarged tRNAs. Prior investigations have unveiled the propensity of eukaryotic AlaRS to erroneously attach alanine onto tRNACys and tRNAThr featuring the G4:U69 base pair. In light of this, and given ProXp-ala's capacity in deacylating Ala-tRNAPro, we embarked on exploring whether this trans-editing factor could extend its corrective function to encompass these mischarged tRNAs. Our in vitro deacylation assays demonstrate that murine ProXp-ala (mProXp-ala) is able to efficiently hydrolyze Ala-tRNAThr, while Ala-tRNACys remains unaffected. Subsequently, we determined the first structure of eukaryotic ProXp-ala, revealing a dynamic helix α2 involved in substrate binding. By integrating molecular dynamics simulations and biochemical assays, we pinpointed the pivotal interactions between mProXp-ala and Ala-tRNA, wherein the basic regions of mProXp-ala as well as the C3-G70 plays essential role in recognition. These observations collectively provide a cogent rationale for mProXp-ala's deacylation proficiency against Ala-tRNAThr. Our findings offer valuable insights into the translation quality control within higher eukaryotic organisms, where the fidelity of translation is safeguarded by the multi-functionality of extensively documented proteins.
Collapse
Affiliation(s)
- Chen Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zihan Li
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyu Luo
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Pingping Huang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lijie Guo
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Meiling Lu
- Department of Biochemistry, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Jie Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yibei Xiao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Chongqing Innovation Institute of China Pharmaceutical University, Chongqing 401135, China.
| | - Xiao-Long Zhou
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China; Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Meirong Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Dulic M, Krpan N, Gruic-Sovulj I. Gly56 in the synthetic site of isoleucyl-tRNA synthetase confers specificity and maintains communication with the editing site. FEBS Lett 2023; 597:3114-3124. [PMID: 38015921 DOI: 10.1002/1873-3468.14780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 11/30/2023]
Abstract
Isoleucyl-tRNA synthetase (IleRS) links isoleucine to cognate tRNA via the Ile-AMP intermediate. Non-cognate valine is often mistakenly recognized as the IleRS substrate; therefore, to maintain the accuracy of translation, IleRS hydrolyzes Val-AMP within the synthetic site (pre-transfer editing). As this activity is not efficient enough, Val-tRNAIle is formed and hydrolyzed in the distant post-transfer editing site. A strictly conserved synthetic site residue Gly56 was previously shown to safeguard Ile-to-Val discrimination during aminoacyl (aa)-AMP formation. Here, we show that the Gly56Ala variant lost its specificity in pre-transfer editing, confirming that this residue ensures the selectivity of all synthetic site reactions. Moreover, we found that the Gly56Ala mutation affects IleRS interaction with aa-tRNA likely by disturbing tRNA-dependent communication between the two active sites.
Collapse
Affiliation(s)
- Morana Dulic
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| | - Nina Krpan
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Croatia
| |
Collapse
|
4
|
Aboelnga MM, Gauld JW. Screening a library of potential competitive inhibitors against bacterial threonyl-tRNA synthetase: DFT calculations. J Biomol Struct Dyn 2023:1-9. [PMID: 37909495 DOI: 10.1080/07391102.2023.2276878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/24/2023] [Indexed: 11/03/2023]
Abstract
Due to the growing interest in directing aminoacyl-tRNA synthetases for antimicrobial therapies, evaluating the binding proficiency of potential inhibitors against this target holds significant importance. In this work, we proposed potential ligands that could properly bind to the crucial Zn(II) cofactor located in the active site of Threonyl-tRNA synthetases (ThrRS), potentially functioning as competitive inhibitors. Initially, detailed DFT quantum chemical study was conducted to examine the binding ability of threonine against unnatural amino acids to cofactor Zn(II). Then, the binding energy value for each suggested ligand has been determined and compared to the value determined for the native substrate, threonine. Our screening investigation showed that the native threonine should coordinate in a bidentate fashion to this Zn(II) which lead to the highest (binding energy) BE Thereby, the synthetic site of ThrRS rejects unnatural amino acids that cannot afford this type of coordination to Zn(II) ion which has been supported by our calculations. Moreover, based on their binding to the Zn(II) and the obtained BE values compared to the cognate threonine, many potent ligands have been suggested. Importantly, ligands with deprotonated warheads showed the highest binding ability amongst a list of potential hits. Further investigation on the selected ligands using molecular docking and QM/MM calculations confirmed our findings of the suggested ligands being able to bind efficiently in the active site of ThrRS. The suggested hits from this study should be valuable in paving routs for developing candidates as competitive inhibitors against the bacterial ThrRS.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohamed M Aboelnga
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Canada
| |
Collapse
|
5
|
Zheng WQ, Zhang JH, Li ZH, Liu X, Zhang Y, Huang S, Li J, Zhou B, Eriani G, Wang ED, Zhou XL. Mammalian mitochondrial translation infidelity leads to oxidative stress-induced cell cycle arrest and cardiomyopathy. Proc Natl Acad Sci U S A 2023; 120:e2309714120. [PMID: 37669377 PMCID: PMC10500172 DOI: 10.1073/pnas.2309714120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023] Open
Abstract
Proofreading (editing) of mischarged tRNAs by cytoplasmic aminoacyl-tRNA synthetases (aaRSs), whose impairment causes neurodegeneration and cardiac diseases, is of high significance for protein homeostasis. However, whether mitochondrial translation needs fidelity and the significance of editing by mitochondrial aaRSs have been unclear. Here, we show that mammalian cells critically depended on the editing of mitochondrial threonyl-tRNA synthetase (mtThrRS, encoded by Tars2), disruption of which accumulated Ser-tRNAThr and generated a large abundance of Thr-to-Ser misincorporated peptides in vivo. Such infidelity impaired mitochondrial translation and oxidative phosphorylation, causing oxidative stress and cell cycle arrest in the G0/G1 phase. Notably, reactive oxygen species (ROS) scavenging by N-acetylcysteine attenuated this abnormal cell proliferation. A mouse model of heart-specific defective mtThrRS editing was established. Increased ROS levels, blocked cardiomyocyte proliferation, contractile dysfunction, dilated cardiomyopathy, and cardiac fibrosis were observed. Our results elucidate that mitochondria critically require a high level of translational accuracy at Thr codons and highlight the cellular dysfunctions and imbalance in tissue homeostasis caused by mitochondrial mistranslation.
Collapse
Affiliation(s)
- Wen-Qiang Zheng
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Jian-Hui Zhang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Zi-Han Li
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Xiuxiu Liu
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Yong Zhang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
| | - Shuo Huang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Jinsong Li
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Bin Zhou
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| | - Gilbert Eriani
- Architecture et Réactivité de l’ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg67084, France
| | - En-Duo Wang
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Xiao-Long Zhou
- Key Laboratory of RNA Science and Engineering, State Key Laboratory of Molecular Biology, Chinese Academy of Sciences Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou310024, China
| |
Collapse
|
6
|
Li HJ, Zhang HH, Lu JB, Zhang CX. Threonyl-tRNA synthetase gene, a potential target for RNAi-based control of three rice planthoppers. PEST MANAGEMENT SCIENCE 2022; 78:4589-4598. [PMID: 35831262 DOI: 10.1002/ps.7078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND RNA interference (RNAi) has potential as a new strategy for pest control. However, the current overemphasis on the control of a single pest increased control costs. The aim of this study was to find a green method of controlling several pests without affecting the natural enemies with a single target gene. One possible RNAi target is the threonyl-tRNA synthetase (ThrRS), which is conserved and plays a significant role in protein biosynthesis. RESULTS In this study, one threonyl-tRNA synthetase gene (NlthrS) was identified from the brown planthopper (Nilaparvata lugens). Spatio-temporal expression pattern analysis showed that NlthrS was highly expressed in the ovary, late embryogenesis, nymphs and female adults. In addition, RNAi-mediated knockdown of NlthrS caused 85.6% nymph mortality, 100% female infertility, molting disorder, extended nymph duration and shortened adult longevity. Target-specific results were obtained when dsNlthrS was used to interfere with the whiteback planthopper (Sogatella furcifera), small brown planthopper (Laodelphax striatellus), zig-zag winged leafhopper (Inazuma dorsalis) and their natural enemy (green mirid bug, Cyrtorhinus lividipennis). In addition, dsNlthrS could cause high mortalities of three species of planthoppers (85.6-100%), while only dsNlthrS-1 led to the death (97.3%) of I. dorsalis that was not affected by dsNlthrS-2. Furthermore, neither dsNlthrS-1 nor dsNlthrS-2 could influence the survival of C. lividipennis. CONCLUSION The results reveal the biological functions of ThrRS in N. lugens in addtion to its protein synthesis, deepening our understanding of tRNA synthase in insects and providing a new method for the control of several rice pests via one dsRNA design. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Han-Jing Li
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Hou-Hong Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
| | - Jia-Bao Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Chuan-Xi Zhang
- Institute of Insect Science, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
7
|
Comparative QM/MM study on the inhibition mechanism of β-Hydroxynorvaline to Threonyl-tRNA synthetase. J Mol Graph Model 2022; 115:108224. [DOI: 10.1016/j.jmgm.2022.108224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/26/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
|
8
|
Kuzmishin Nagy AB, Bakhtina M, Musier-Forsyth K. Trans-editing by aminoacyl-tRNA synthetase-like editing domains. Enzymes 2020; 48:69-115. [PMID: 33837712 DOI: 10.1016/bs.enz.2020.07.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRS) are ubiquitous enzymes responsible for aminoacyl-tRNA (aa-tRNA) synthesis. Correctly formed aa-tRNAs are necessary for proper decoding of mRNA and accurate protein synthesis. tRNAs possess specific nucleobases that promote selective recognition by cognate aaRSs. Selecting the cognate amino acid can be more challenging because all amino acids share the same peptide backbone and several are isosteric or have similar side chains. Thus, aaRSs can misactivate non-cognate amino acids and produce mischarged aa-tRNAs. If left uncorrected, mischarged aa-tRNAs deliver their non-cognate amino acid to the ribosome resulting in misincorporation into the nascent polypeptide chain. This changes the primary protein sequence and potentially causes misfolding or formation of non-functional proteins that impair cell survival. A variety of proofreading or editing pathways exist to prevent and correct mistakes in aa-tRNA formation. Editing may occur before the amino acid transfer step of aminoacylation via hydrolysis of the aminoacyl-adenylate. Alternatively, post-transfer editing, which occurs after the mischarged aa-tRNA is formed, may be carried out via a distinct editing site on the aaRS where the mischarged aa-tRNA is deacylated. In recent years, it has become clear that most organisms also encode factors that lack aminoacylation activity but resemble aaRS editing domains and function to clear mischarged aa-tRNAs in trans. This review focuses on these trans-editing factors, which are encoded in all three domains of life and function together with editing domains present within aaRSs to ensure that the accuracy of protein synthesis is sufficient for cell survival.
Collapse
Affiliation(s)
- Alexandra B Kuzmishin Nagy
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH, United States
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry and Center for RNA Biology, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
9
|
Zheng WQ, Zhang Y, Yao Q, Chen Y, Qiao X, Wang ED, Chen C, Zhou XL. Nitrosative stress inhibits aminoacylation and editing activities of mitochondrial threonyl-tRNA synthetase by S-nitrosation. Nucleic Acids Res 2020; 48:6799-6810. [PMID: 32484546 PMCID: PMC7337905 DOI: 10.1093/nar/gkaa471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/06/2020] [Accepted: 05/22/2020] [Indexed: 12/20/2022] Open
Abstract
Structure and/or function of proteins are frequently affected by oxidative/nitrosative stress via posttranslational modifications. Aminoacyl-tRNA synthetases (aaRSs) constitute a class of ubiquitously expressed enzymes that control cellular protein homeostasis. Here, we found the activity of human mitochondrial (mt) threonyl-tRNA synthetase (hmtThrRS) is resistant to oxidative stress (H2O2) but profoundly sensitive to nitrosative stress (S-nitrosoglutathione, GSNO). Further study showed four Cys residues in hmtThrRS were modified by S-nitrosation upon GSNO treatment, and one residue was one of synthetic active sites. We analyzed the effect of modification at individual Cys residue on aminoacylation and editing activities of hmtThrRS in vitro and found that both activities were decreased. We further confirmed that S-nitrosation of mtThrRS could be readily detected in vivo in both human cells and various mouse tissues, and we systematically identified dozens of S-nitrosation-modified sites in most aaRSs, thus establishing both mitochondrial and cytoplasmic aaRS species with S-nitrosation ex vivo and in vivo, respectively. Interestingly, a decrease in the S-nitrosation modification level of mtThrRS was observed in a Huntington disease mouse model. Overall, our results establish, for the first time, a comprehensive S-nitrosation-modified aaRS network and a previously unknown mechanism on the basis of the inhibitory effect of S-nitrosation on hmtThrRS.
Collapse
Affiliation(s)
- Wen-Qiang Zheng
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuying Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qin Yao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuzhe Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chang Chen
- University of Chinese Academy of Sciences, Beijing 100049, China.,National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Chen M, Kuhle B, Diedrich J, Liu Z, Moresco JJ, Yates Iii JR, Pan T, Yang XL. Cross-editing by a tRNA synthetase allows vertebrates to abundantly express mischargeable tRNA without causing mistranslation. Nucleic Acids Res 2020; 48:6445-6457. [PMID: 32484512 PMCID: PMC7337962 DOI: 10.1093/nar/gkaa469] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Accepted: 05/31/2020] [Indexed: 01/18/2023] Open
Abstract
The accuracy in pairing tRNAs with correct amino acids by aminoacyl-tRNA synthetases (aaRSs) dictates the fidelity of translation. To ensure fidelity, multiple aaRSs developed editing functions that remove a wrong amino acid from tRNA before it reaches the ribosome. However, no specific mechanism within an aaRS is known to handle the scenario where a cognate amino acid is mischarged onto a wrong tRNA, as exemplified by AlaRS mischarging alanine to G4:U69-containing tRNAThr. Here, we report that the mischargeable G4:U69-containing tRNAThr are strictly conserved in vertebrates and are ubiquitously and abundantly expressed in mammalian cells and tissues. Although these tRNAs are efficiently mischarged, no corresponding Thr-to-Ala mistranslation is detectable. Mistranslation is prevented by a robust proofreading activity of ThrRS towards Ala-tRNAThr. Therefore, while wrong amino acids are corrected within an aaRS, a wrong tRNA is handled in trans by an aaRS cognate to the mischarged tRNA species. Interestingly, although Ala-tRNAThr mischarging is not known to occur in bacteria, Escherichia coli ThrRS also possesses robust cross-editing ability. We propose that the cross-editing activity of ThrRS is evolutionarily conserved and that this intrinsic activity allows G4:U69-containing tRNAThr to emerge and be preserved in vertebrates to have alternative functions without compromising translational fidelity.
Collapse
Affiliation(s)
- Meirong Chen
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.,College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bernhard Kuhle
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jolene Diedrich
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ze Liu
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - James J Moresco
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - John R Yates Iii
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tao Pan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Aboelnga MM, Hayward JJ, Gauld JW. Enzymatic Post-Transfer Editing Mechanism of E. coli Threonyl-tRNA Synthetase (ThrRS): A Molecular Dynamics (MD) and Quantum Mechanics/Molecular Mechanics (QM/MM) Investigation. ACS Catal 2017. [DOI: 10.1021/acscatal.7b01554] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mohamed M. Aboelnga
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
- Department
of Chemistry, Faculty of Science, University of Damietta, New Damietta, Damietta Governorate 34511, Egypt
| | - John J. Hayward
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | | |
Collapse
|
12
|
Aboelnga MM, Gauld JW. Roles of the Active Site Zn(II) and Residues in Substrate Discrimination by Threonyl-tRNA Synthetase: An MD and QM/MM Investigation. J Phys Chem B 2017; 121:6163-6174. [PMID: 28592109 DOI: 10.1021/acs.jpcb.7b03782] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Threonyl-tRNA synthetase (ThrRS) is a Zn(II) containing enzyme that catalyzes the activation of threonine and its subsequent transfer to the cognate tRNA. This process is accomplished with remarkable fidelity, with ThrRS being able to discriminate its cognate substrate from similar analogues such as serine and valine. Molecular dynamics (MD) simulations and hybrid quantum mechanics/molecular mechanics (QM/MM) methods have been used to elucidate the role of Zn(II) in the aminoacylation mechanism of ThrRS. More specifically, the role of Zn(II) and active site residues in ThrRS's ability to discriminate between its cognate substrate l-threonine and the noncognate l-serine, l-valine, and d-threonine has been examined. The present results suggest that a role of the Zn(II) ion, with its Lewis acidity, is to facilitate deprotonation of the side chain hydroxyl groups of the aminoacyl moieties of cognate Thr-AMP and noncognate Ser-AMP substrates. In their deprotonated forms, these substrates are able to adopt a conformation preferable for aminoacyl transfer from aa-AMP onto the Ado-3'OH of the tRNAThr cosubstrate. Relative to the neutral substrates, when the substrates are first deprotonated with the assistance of the Zn(II) ion, the barrier for the rate-limiting step is decreased significantly by 42.0 and 39.2 kJ mol-1 for l-Thr-AMP and l-Ser-AMP, respectively. An active site arginyl also plays a key role in stabilizing the buildup of negative charge on the substrate's bridging phosphate oxygen during the mechanism. For the enantiomeric substrate analogue d-Thr-AMP, product formation is highly disfavored, and as a result, the reverse reaction has a very low barrier of 16.0 kJ mol-1.
Collapse
Affiliation(s)
- Mohamed M Aboelnga
- Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario, N9B 3P4, Canada.,Department of Chemistry, Faculty of Science, University of Damietta , New Damietta, Damietta Governorate 34511, Egypt
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor , Windsor, Ontario, N9B 3P4, Canada
| |
Collapse
|
13
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
14
|
Estrada P, Manandhar M, Dong SH, Deveryshetty J, Agarwal V, Cronan JE, Nair SK. The pimeloyl-CoA synthetase BioW defines a new fold for adenylate-forming enzymes. Nat Chem Biol 2017; 13:668-674. [PMID: 28414711 DOI: 10.1038/nchembio.2359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 03/02/2017] [Indexed: 01/11/2023]
Abstract
Reactions that activate carboxylates through acyl-adenylate intermediates are found throughout biology and include acyl- and aryl-CoA synthetases and tRNA synthetases. Here we describe the characterization of Aquifex aeolicus BioW, which represents a new protein fold within the superfamily of adenylating enzymes. Substrate-bound structures identified the enzyme active site and elucidated the mechanistic strategy for conjugating CoA to the seven-carbon α,ω-dicarboxylate pimelate, a biotin precursor. Proper position of reactive groups for the two half-reactions is achieved solely through movements of active site residues, as confirmed by site-directed mutational analysis. The ability of BioW to hydrolyze adenylates of noncognate substrates is reminiscent of pre-transfer proofreading observed in some tRNA synthetases, and we show that this activity can be abolished by mutation of a single residue. These studies illustrate how BioW can carry out three different biologically prevalent chemical reactions (adenylation, thioesterification, and proofreading) in the context of a new protein fold.
Collapse
Affiliation(s)
- Paola Estrada
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Miglena Manandhar
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shi-Hui Dong
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jaigeeth Deveryshetty
- Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Vinayak Agarwal
- Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - John E Cronan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Satish K Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Institute for Genomic Biology University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
15
|
Wei W, Gauld JW, Monard G. Pretransfer Editing in Threonyl-tRNA Synthetase: Roles of Differential Solvent Accessibility and Intermediate Stabilization. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Wanlei Wei
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - James W. Gauld
- Department
of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | - Gerald Monard
- Université de Lorraine, UMR 7565 SRSMC, Boulevard des Aiguillettes B.P. 70239, F-54506 Vandoeuvre-les-Nancy, France
| |
Collapse
|
16
|
Rewiring protein synthesis: From natural to synthetic amino acids. Biochim Biophys Acta Gen Subj 2017; 1861:3024-3029. [PMID: 28095316 DOI: 10.1016/j.bbagen.2017.01.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 01/11/2017] [Accepted: 01/12/2017] [Indexed: 11/21/2022]
Abstract
BACKGROUND The protein synthesis machinery uses 22 natural amino acids as building blocks that faithfully decode the genetic information. Such fidelity is controlled at multiple steps and can be compromised in nature and in the laboratory to rewire protein synthesis with natural and synthetic amino acids. SCOPE OF REVIEW This review summarizes the major quality control mechanisms during protein synthesis, including aminoacyl-tRNA synthetases, elongation factors, and the ribosome. We will discuss evolution and engineering of such components that allow incorporation of natural and synthetic amino acids at positions that deviate from the standard genetic code. MAJOR CONCLUSIONS The protein synthesis machinery is highly selective, yet not fixed, for the correct amino acids that match the mRNA codons. Ambiguous translation of a codon with multiple amino acids or complete reassignment of a codon with a synthetic amino acid diversifies the proteome. GENERAL SIGNIFICANCE Expanding the genetic code with synthetic amino acids through rewiring protein synthesis has broad applications in synthetic biology and chemical biology. Biochemical, structural, and genetic studies of the translational quality control mechanisms are not only crucial to understand the physiological role of translational fidelity and evolution of the genetic code, but also enable us to better design biological parts to expand the proteomes of synthetic organisms. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue.
Collapse
|
17
|
Cvetesic N, Gruic-Sovulj I. Synthetic and editing reactions of aminoacyl-tRNA synthetases using cognate and non-cognate amino acid substrates. Methods 2016; 113:13-26. [PMID: 27713080 DOI: 10.1016/j.ymeth.2016.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 11/19/2022] Open
Abstract
The covalent coupling of cognate amino acid-tRNA pairs by corresponding aminoacyl-tRNA synthetases (aaRS) defines the genetic code and provides aminoacylated tRNAs for ribosomal protein synthesis. Besides the cognate substrate, some non-cognate amino acids may also compete for tRNA aminoacylation. However, their participation in protein synthesis is generally prevented by an aaRS proofreading activity located in the synthetic site and in a separate editing domain. These mechanisms, coupled with the ability of certain aaRSs to discriminate well against non-cognate amino acids in the synthetic reaction alone, define the accuracy of the aminoacylation reaction. aaRS quality control may also act as a gatekeeper for the standard genetic code and prevents infiltration by natural amino acids that are not normally coded for protein biosynthesis. This latter finding has reinforced interest in understanding the principles that govern discrimination against a range of potential non-cognate amino acids. This paper presents an overview of the kinetic assays that have been established for monitoring synthetic and editing reactions with cognate and non-cognate amino acid substrates. Taking into account the peculiarities of non-cognate reactions, the specific controls needed and the dedicated experimental designs are discussed in detail. Kinetic partitioning within the synthetic and editing sites controls the balance between editing and aminoacylation. We describe in detail steady-state and single-turnover approaches for the analysis of synthetic and editing reactions, which ultimately enable mechanisms of amino acid discrimination to be determined.
Collapse
Affiliation(s)
- Nevena Cvetesic
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, 10000 Zagreb, Croatia.
| |
Collapse
|
18
|
Moghal A, Hwang L, Faull K, Ibba M. Multiple Quality Control Pathways Limit Non-protein Amino Acid Use by Yeast Cytoplasmic Phenylalanyl-tRNA Synthetase. J Biol Chem 2016; 291:15796-805. [PMID: 27226603 DOI: 10.1074/jbc.m116.726828] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Indexed: 11/06/2022] Open
Abstract
Non-protein amino acids, particularly isomers of the proteinogenic amino acids, present a threat to proteome integrity if they are mistakenly inserted into proteins. Quality control during aminoacyl-tRNA synthesis reduces non-protein amino acid incorporation by both substrate discrimination and proofreading. For example phenylalanyl-tRNA synthetase (PheRS) proofreads the non-protein hydroxylated phenylalanine derivative m-Tyr after its attachment to tRNA(Phe) We now show in Saccharomyces cerevisiae that PheRS misacylation of tRNA(Phe) with the more abundant Phe oxidation product o-Tyr is limited by kinetic discrimination against o-Tyr-AMP in the transfer step followed by o-Tyr-AMP release from the synthetic active site. This selective rejection of a non-protein aminoacyl-adenylate is in addition to known kinetic discrimination against certain non-cognates in the activation step as well as catalytic hydrolysis of mispaired aminoacyl-tRNA(Phe) species. We also report an unexpected resistance to cytotoxicity by a S. cerevisiae mutant with ablated post-transfer editing activity when supplemented with o-Tyr, cognate Phe, or Ala, the latter of which is not a substrate for activation by this enzyme. Our phenotypic, metabolomic, and kinetic analyses indicate at least three modes of discrimination against non-protein amino acids by S. cerevisiae PheRS and support a non-canonical role for SccytoPheRS post-transfer editing in response to amino acid stress.
Collapse
Affiliation(s)
- Adil Moghal
- From the Ohio State Biochemistry Program, Department of Microbiology, The Ohio State University, Columbus, Ohio 43210 and
| | - Lin Hwang
- Pasarow Mass Spectrometry Laboratory, Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, California 90095
| | - Kym Faull
- Pasarow Mass Spectrometry Laboratory, Semel Institute of Neuroscience and Human Behavior, University of California, Los Angeles, California 90095
| | - Michael Ibba
- From the Ohio State Biochemistry Program, Department of Microbiology, The Ohio State University, Columbus, Ohio 43210 and
| |
Collapse
|
19
|
Holman KM, Wu J, Ling J, Simonović M. The crystal structure of yeast mitochondrial ThrRS in complex with the canonical threonine tRNA. Nucleic Acids Res 2015; 44:1428-39. [PMID: 26704982 PMCID: PMC4756836 DOI: 10.1093/nar/gkv1501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/11/2015] [Indexed: 11/13/2022] Open
Abstract
In mitochondria of Saccharomyces cerevisiae, a single aminoacyl-tRNA synthetase (aaRS), MST1, aminoacylates two isoacceptor tRNAs, tRNA1Thr and tRNA2Thr, that harbor anticodon loops of different size and sequence. As a result of this promiscuity, reassignment of the CUN codon box from leucine to threonine is facilitated. However, the mechanism by which a single aaRS binds distinct anticodon loops with high specificity is not well understood. Herein, we present the crystal structure of MST1 in complex with the canonical tRNA2Thr and non-hydrolyzable analog of threonyl adenylate. Our structure reveals that the dimeric arrangement of MST1 is essential for binding the 5′-phosphate, the second base pair of the acceptor stem, the first two base pairs of the anticodon stem and the first nucleotide of the variable arm. Further, in contrast to the bacterial ortholog that ‘reads’ the entire anticodon sequence, MST1 recognizes bases in the second and third position and the nucleotide upstream of the anticodon sequence. We speculate that a flexible loop linking strands β4 and β5 may be allosteric regulator that establishes cross-subunit communication between the aminoacylation and tRNA-binding sites. We also propose that structural features of the anticodon-binding domain in MST1 permit binding of the enlarged anticodon loop of tRNA1Thr.
Collapse
Affiliation(s)
- Kaitlyn M Holman
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jiang Wu
- Department of Microbiology and Molecular Genetics, The University of Texas, Health Science Center at Houston, Houston, TX 77030, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, The University of Texas, Health Science Center at Houston, Houston, TX 77030, USA
| | - Miljan Simonović
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
20
|
Rubio MÁ, Napolitano M, Ochoa de Alda JAG, Santamaría-Gómez J, Patterson CJ, Foster AW, Bru-Martínez R, Robinson NJ, Luque I. Trans-oligomerization of duplicated aminoacyl-tRNA synthetases maintains genetic code fidelity under stress. Nucleic Acids Res 2015; 43:9905-17. [PMID: 26464444 PMCID: PMC4787780 DOI: 10.1093/nar/gkv1020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) play a key role in deciphering the genetic message by producing charged tRNAs and are equipped with proofreading mechanisms to ensure correct pairing of tRNAs with their cognate amino acid. Duplicated aaRSs are very frequent in Nature, with 25,913 cases observed in 26,837 genomes. The oligomeric nature of many aaRSs raises the question of how the functioning and oligomerization of duplicated enzymes is organized. We characterized this issue in a model prokaryotic organism that expresses two different threonyl-tRNA synthetases, responsible for Thr-tRNA(Thr) synthesis: one accurate and constitutively expressed (T1) and another (T2) with impaired proofreading activity that also generates mischarged Ser-tRNA(Thr). Low zinc promotes dissociation of dimeric T1 into monomers deprived of aminoacylation activity and simultaneous induction of T2, which is active for aminoacylation under low zinc. T2 either forms homodimers or heterodimerizes with T1 subunits that provide essential proofreading activity in trans. These findings evidence that in organisms with duplicated genes, cells can orchestrate the assemblage of aaRSs oligomers that meet the necessities of the cell in each situation. We propose that controlled oligomerization of duplicated aaRSs is an adaptive mechanism that can potentially be expanded to the plethora of organisms with duplicated oligomeric aaRSs.
Collapse
Affiliation(s)
- Miguel Ángel Rubio
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| | - Mauro Napolitano
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| | - Jesús A G Ochoa de Alda
- Facultad de Formación del Profesorado. Universidad de Extremadura, Avda de la Universidad s/n. E-10003, Cáceres, Spain
| | - Javier Santamaría-Gómez
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| | | | | | - Roque Bru-Martínez
- Department of Agrochemistry and Biochemistry, Faculty of Science, University of Alicante, E-03080, Spain
| | | | - Ignacio Luque
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| |
Collapse
|
21
|
Cvetesic N, Bilus M, Gruic-Sovulj I. The tRNA A76 Hydroxyl Groups Control Partitioning of the tRNA-dependent Pre- and Post-transfer Editing Pathways in Class I tRNA Synthetase. J Biol Chem 2015; 290:13981-91. [PMID: 25873392 DOI: 10.1074/jbc.m115.648568] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Indexed: 11/06/2022] Open
Abstract
Aminoacyl-tRNA synthetases catalyze ATP-dependent covalent coupling of cognate amino acids and tRNAs for ribosomal protein synthesis. Escherichia coli isoleucyl-tRNA synthetase (IleRS) exploits both the tRNA-dependent pre- and post-transfer editing pathways to minimize errors in translation. However, the molecular mechanisms by which tRNA(Ile) organizes the synthetic site to enhance pre-transfer editing, an idiosyncratic feature of IleRS, remains elusive. Here we show that tRNA(Ile) affects both the synthetic and editing reactions localized within the IleRS synthetic site. In a complex with cognate tRNA, IleRS exhibits a 10-fold faster aminoacyl-AMP hydrolysis and a 10-fold drop in amino acid affinity relative to the free enzyme. Remarkably, the specificity against non-cognate valine was not improved by the presence of tRNA in either of these processes. Instead, amino acid specificity is determined by the protein component per se, whereas the tRNA promotes catalytic performance of the synthetic site, bringing about less error-prone and kinetically optimized isoleucyl-tRNA(Ile) synthesis under cellular conditions. Finally, the extent to which tRNA(Ile) modulates activation and pre-transfer editing is independent of the intactness of its 3'-end. This finding decouples aminoacylation and pre-transfer editing within the IleRS synthetic site and further demonstrates that the A76 hydroxyl groups participate in post-transfer editing only. The data are consistent with a model whereby the 3'-end of the tRNA remains free to sample different positions within the IleRS·tRNA complex, whereas the fine-tuning of the synthetic site is attained via conformational rearrangement of the enzyme through the interactions with the remaining parts of the tRNA body.
Collapse
Affiliation(s)
- Nevena Cvetesic
- From the Department of Chemistry, University of Zagreb, Faculty of Science, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Mirna Bilus
- From the Department of Chemistry, University of Zagreb, Faculty of Science, Horvatovac 102a, 10000 Zagreb, Croatia
| | - Ita Gruic-Sovulj
- From the Department of Chemistry, University of Zagreb, Faculty of Science, Horvatovac 102a, 10000 Zagreb, Croatia
| |
Collapse
|
22
|
Blais SP, Kornblatt JA, Barbeau X, Bonnaure G, Lagüe P, Chênevert R, Lapointe J. tRNAGlu increases the affinity of glutamyl-tRNA synthetase for its inhibitor glutamyl-sulfamoyl-adenosine, an analogue of the aminoacylation reaction intermediate glutamyl-AMP: mechanistic and evolutionary implications. PLoS One 2015; 10:e0121043. [PMID: 25860020 PMCID: PMC4393105 DOI: 10.1371/journal.pone.0121043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/11/2015] [Indexed: 12/05/2022] Open
Abstract
For tRNA-dependent protein biosynthesis, amino acids are first activated by aminoacyl-tRNA synthetases (aaRSs) yielding the reaction intermediates aminoacyl-AMP (aa-AMP). Stable analogues of aa-AMP, such as aminoacyl-sulfamoyl-adenosines, inhibit their cognate aaRSs. Glutamyl-sulfamoyl-adenosine (Glu-AMS) is the best known inhibitor of Escherichia coli glutamyl-tRNA synthetase (GluRS). Thermodynamic parameters of the interactions between Glu-AMS and E. coli GluRS were measured in the presence and in the absence of tRNA by isothermal titration microcalorimetry. A significant entropic contribution for the interactions between Glu-AMS and GluRS in the absence of tRNA or in the presence of the cognate tRNAGlu or of the non-cognate tRNAPhe is indicated by the negative values of –TΔSb, and by the negative value of ΔCp. On the other hand, the large negative enthalpy is the dominant contribution to ΔGb in the absence of tRNA. The affinity of GluRS for Glu-AMS is not altered in the presence of the non-cognate tRNAPhe, but the dissociation constant Kd is decreased 50-fold in the presence of tRNAGlu; this result is consistent with molecular dynamics results indicating the presence of an H-bond between Glu-AMS and the 3’-OH oxygen of the 3’-terminal ribose of tRNAGlu in the Glu-AMS•GluRS•tRNAGlu complex. Glu-AMS being a very close structural analogue of Glu-AMP, its weak binding to free GluRS suggests that the unstable Glu-AMP reaction intermediate binds weakly to GluRS; these results could explain why all the known GluRSs evolved to activate glutamate only in the presence of tRNAGlu, the coupling of glutamate activation to its transfer to tRNA preventing unproductive cleavage of ATP.
Collapse
Affiliation(s)
- Sébastien P. Blais
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada
- * E-mail: (SPB); (JL)
| | - Jack A. Kornblatt
- Department of Biology, Centre for Structural and Functional Genomics, Faculty of Arts and Science, Concordia University, Montréal, Canada
| | - Xavier Barbeau
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- Département de Chimie, Université Laval, Québec, Canada
- The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada
| | - Guillaume Bonnaure
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada
| | - Patrick Lagüe
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada
| | - Robert Chênevert
- Département de Chimie, Université Laval, Québec, Canada
- The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada
| | - Jacques Lapointe
- Département de Biochimie, de Microbiologie et de Bio-informatique, Université Laval, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, Canada
- The Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Québec, Canada
- * E-mail: (SPB); (JL)
| |
Collapse
|
23
|
Fan Y, Wu J, Ung MH, De Lay N, Cheng C, Ling J. Protein mistranslation protects bacteria against oxidative stress. Nucleic Acids Res 2015; 43:1740-8. [PMID: 25578967 PMCID: PMC4330365 DOI: 10.1093/nar/gku1404] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Accurate flow of genetic information from DNA to protein requires faithful translation. An increased level of translational errors (mistranslation) has therefore been widely considered harmful to cells. Here we demonstrate that surprisingly, moderate levels of mistranslation indeed increase tolerance to oxidative stress in Escherichia coli. Our RNA sequencing analyses revealed that two antioxidant genes katE and osmC, both controlled by the general stress response activator RpoS, were upregulated by a ribosomal error-prone mutation. Mistranslation-induced tolerance to hydrogen peroxide required rpoS, katE and osmC. We further show that both translational and post-translational regulation of RpoS contribute to peroxide tolerance in the error-prone strain, and a small RNA DsrA, which controls translation of RpoS, is critical for the improved tolerance to oxidative stress through mistranslation. Our work thus challenges the prevailing view that mistranslation is always detrimental, and provides a mechanism by which mistranslation benefits bacteria under stress conditions.
Collapse
Affiliation(s)
- Yongqiang Fan
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jiang Wu
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Matthew H Ung
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Nicholas De Lay
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, TX 77030, USA Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Chao Cheng
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, TX 77030, USA Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
24
|
Zhou XL, Ruan ZR, Wang M, Fang ZP, Wang Y, Chen Y, Liu RJ, Eriani G, Wang ED. A minimalist mitochondrial threonyl-tRNA synthetase exhibits tRNA-isoacceptor specificity during proofreading. Nucleic Acids Res 2014; 42:13873-86. [PMID: 25414329 PMCID: PMC4267643 DOI: 10.1093/nar/gku1218] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Yeast mitochondria contain a minimalist threonyl-tRNA synthetase (ThrRS) composed only of the catalytic core and tRNA binding domain but lacking the entire editing domain. Besides the usual tRNAThr2, some budding yeasts, such as Saccharomyces cerevisiae, also contain a non-canonical tRNAThr1 with an enlarged 8-nucleotide anticodon loop, reprograming the usual leucine CUN codons to threonine. This raises interesting questions about the aminoacylation fidelity of such ThrRSs and the possible contribution of the two tRNAThrs during editing. Here, we found that, despite the absence of the editing domain, S. cerevisiae mitochondrial ThrRS (ScmtThrRS) harbors a tRNA-dependent pre-transfer editing activity. Remarkably, only the usual tRNAThr2 stimulated pre-transfer editing, thus, establishing the first example of a synthetase exhibiting tRNA-isoacceptor specificity during pre-transfer editing. We also showed that the failure of tRNAThr1 to stimulate tRNA-dependent pre-transfer editing was due to the lack of an editing domain. Using assays of the complementation of a ScmtThrRS gene knockout strain, we showed that the catalytic core and tRNA binding domain of ScmtThrRS co-evolved to recognize the unusual tRNAThr1. In combination, the results provide insights into the tRNA-dependent editing process and suggest that tRNA-dependent pre-transfer editing takes place in the aminoacylation catalytic core.
Collapse
Affiliation(s)
- Xiao-Long Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | - Zhi-Rong Ruan
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | - Meng Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | - Zhi-Peng Fang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | - Yong Wang
- School of Life Science and Technology, ShanghaiTech University, 319 Yue Yang Road, 200031 Shanghai, China
| | - Yun Chen
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | - Ru-Juan Liu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | - Gilbert Eriani
- Architecture et Réactivité de l'ARN, Université de Strasbourg, UPR9002 CNRS, Institut de Biologie Moléculaire et Cellulaire, 15 rue René Descartes, 67084 Strasbourg, France
| | - En-Duo Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China School of Life Science and Technology, ShanghaiTech University, 319 Yue Yang Road, 200031 Shanghai, China
| |
Collapse
|
25
|
Dulic M, Perona JJ, Gruic-Sovulj I. Determinants for tRNA-dependent pretransfer editing in the synthetic site of isoleucyl-tRNA synthetase. Biochemistry 2014; 53:6189-98. [PMID: 25207837 PMCID: PMC4188249 DOI: 10.1021/bi5007699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
accurate expression of genetic information relies on the fidelity
of amino acid–tRNA coupling by aminoacyl-tRNA synthetases (aaRS).
When the specificity against structurally similar noncognate amino
acids in the synthetic reaction does not support a threshold fidelity
level for translation, the aaRS employ intrinsic hydrolytic editing
to correct errors in aminoacylation. Escherichia coli isoleucyl-tRNA synthetase (EcIleRS) is a class I aaRS that is notable
for its use of tRNA-dependent pretransfer editing to hydrolyze noncognate
valyl-adenylate prior to aminoacyl-tRNA formation. On the basis of
the finding that IleRS possessing an inactivated post-transfer editing
domain is still capable of robust tRNA-dependent editing, we have
recently proposed that the pretransfer editing activity resides within
the synthetic site. Here we apply an improved methodology that allows
quantitation of the AMP fraction that arises particularly from tRNA-dependent
aa-AMP hydrolysis. By this approach, we demonstrate that tRNA-dependent
pretransfer editing accounts for nearly one-third of the total proofreading
by EcIleRS and that a highly conserved tyrosine within the synthetic
site modulates both editing and aminoacylation. Therefore, synthesis
of aminoacyl-tRNA and hydrolysis of aminoacyl-adenylates employ overlapping
amino acid determinants. We suggest that this overlap hindered the
evolution of synthetic site-based pretransfer editing as the predominant
proofreading pathway, because that activity is difficult to accommodate
in the context of efficient aminoacyl-tRNA synthesis. Instead, the
acquisition of a spatially separate domain dedicated to post-transfer
editing alone allowed for the development of a powerful deacylation
machinery that effectively competes with dissociation of misacylated
tRNAs.
Collapse
Affiliation(s)
- Morana Dulic
- Department of Chemistry, Faculty of Science, University of Zagreb , Horvatovac 102a, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
26
|
Moghal A, Mohler K, Ibba M. Mistranslation of the genetic code. FEBS Lett 2014; 588:4305-10. [PMID: 25220850 DOI: 10.1016/j.febslet.2014.08.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 01/02/2023]
Abstract
During mRNA decoding at the ribosome, deviations from stringent codon identity, or "mistranslation," are generally deleterious and infrequent. Observations of organisms that decode some codons ambiguously, and the discovery of a compensatory increase in mistranslation frequency to combat environmental stress have changed the way we view "errors" in decoding. Modern tools for the study of the frequency and phenotypic effects of mistranslation can provide quantitative and sensitive measurements of decoding errors that were previously inaccessible. Mistranslation with non-protein amino acids, in particular, is an enticing prospect for new drug therapies and the study of molecular evolution.
Collapse
Affiliation(s)
- Adil Moghal
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210-1292, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210-1292, USA
| | - Kyle Mohler
- Department of Microbiology, The Ohio State University, Columbus, OH 43210-1292, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210-1292, USA
| | - Michael Ibba
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210-1292, USA; Department of Microbiology, The Ohio State University, Columbus, OH 43210-1292, USA; Center for RNA Biology, The Ohio State University, Columbus, OH 43210-1292, USA.
| |
Collapse
|
27
|
Cvetesic N, Palencia A, Halasz I, Cusack S, Gruic-Sovulj I. The physiological target for LeuRS translational quality control is norvaline. EMBO J 2014; 33:1639-53. [PMID: 24935946 DOI: 10.15252/embj.201488199] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The fidelity of protein synthesis depends on the capacity of aminoacyl-tRNA synthetases (AARSs) to couple only cognate amino acid-tRNA pairs. If amino acid selectivity is compromised, fidelity can be ensured by an inherent AARS editing activity that hydrolyses mischarged tRNAs. Here, we show that the editing activity of Escherichia coli leucyl-tRNA synthetase (EcLeuRS) is not required to prevent incorrect isoleucine incorporation. Rather, as shown by kinetic, structural and in vivo approaches, the prime biological function of LeuRS editing is to prevent mis-incorporation of the non-standard amino acid norvaline. This conclusion follows from a reassessment of the discriminatory power of LeuRS against isoleucine and the demonstration that a LeuRS editing-deficient E. coli strain grows normally in high concentrations of isoleucine but not under oxygen deprivation conditions when norvaline accumulates to substantial levels. Thus, AARS-based translational quality control is a key feature for bacterial adaptive response to oxygen deprivation. The non-essential role for editing under normal bacterial growth has important implications for the development of resistance to antimicrobial agents targeting the LeuRS editing site.
Collapse
Affiliation(s)
- Nevena Cvetesic
- Department of Chemistry, Faculty of Science University of Zagreb, Zagreb, Croatia
| | - Andrés Palencia
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS UMI 3265, France
| | | | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation and Unit of Virus Host-Cell Interactions, University of Grenoble Alpes-EMBL-CNRS UMI 3265, France
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science University of Zagreb, Zagreb, Croatia
| |
Collapse
|
28
|
Wu J, Fan Y, Ling J. Mechanism of oxidant-induced mistranslation by threonyl-tRNA synthetase. Nucleic Acids Res 2014; 42:6523-31. [PMID: 24744241 PMCID: PMC4041444 DOI: 10.1093/nar/gku271] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aminoacyl-tRNA synthetases maintain the fidelity during protein synthesis by selective activation of cognate amino acids at the aminoacylation site and hydrolysis of misformed aminoacyl-tRNAs at the editing site. Threonyl-tRNA synthetase (ThrRS) misactivates serine and utilizes an editing site cysteine (C182 in Escherichia coli) to hydrolyze Ser-tRNAThr. Hydrogen peroxide oxidizes C182, leading to Ser-tRNAThr production and mistranslation of threonine codons as serine. The mechanism of C182 oxidation remains unclear. Here we used a chemical probe to demonstrate that C182 was oxidized to sulfenic acid by air, hydrogen peroxide and hypochlorite. Aminoacylation experiments in vitro showed that air oxidation increased the Ser-tRNAThr level in the presence of elongation factor Tu. C182 forms a putative metal binding site with three conserved histidine residues (H73, H77 and H186). We showed that H73 and H186, but not H77, were critical for activating C182 for oxidation. Addition of zinc or nickel ions inhibited C182 oxidation by hydrogen peroxide. These results led us to propose a model for C182 oxidation, which could serve as a paradigm for the poorly understood activation mechanisms of protein cysteine residues. Our work also suggests that bacteria may use ThrRS editing to sense the oxidant levels in the environment.
Collapse
Affiliation(s)
- Jiang Wu
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Yongqiang Fan
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Jiqiang Ling
- Department of Microbiology and Molecular Genetics, Medical School, University of Texas Health Science Center, Houston, TX 77030, USA Graduate School of Biomedical Sciences, University of Texas, Houston, TX 77030, USA
| |
Collapse
|
29
|
Zhou X, Wang E. Transfer RNA: a dancer between charging and mis-charging for protein biosynthesis. SCIENCE CHINA-LIFE SCIENCES 2013; 56:921-32. [PMID: 23982864 DOI: 10.1007/s11427-013-4542-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/13/2013] [Indexed: 01/17/2023]
Abstract
Transfer RNA plays a fundamental role in the protein biosynthesis as an adaptor molecule by functioning as a biological link between the genetic nucleotide sequence in the mRNA and the amino acid sequence in the protein. To perform its role in protein biosynthesis, it has to be accurately recognized by aminoacyl-tRNA synthetases (aaRSs) to generate aminoacyl-tRNAs (aa-tRNAs). The correct pairing between an amino acid with its cognate tRNA is crucial for translational quality control. Production and utilization of mis-charged tRNAs are usually detrimental for all the species, resulting in cellular dysfunctions. Correct aa-tRNAs formation is collectively controlled by aaRSs with distinct mechanisms and/or other trans-factors. However, in very limited instances, mis-charged tRNAs are intermediate for specific pathways or essential components for the translational machinery. Here, from the point of accuracy in tRNA charging, we review our understanding about the mechanism ensuring correct aa-tRNA generation. In addition, some unique mis-charged tRNA species necessary for the organism are also briefly described.
Collapse
Affiliation(s)
- Xiaolong Zhou
- Center for RNA Research, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | |
Collapse
|
30
|
Abstract
The aminoacyl-tRNA synthetases (aaRSs) are essential components of the protein synthesis machinery responsible for defining the genetic code by pairing the correct amino acids to their cognate tRNAs. The aaRSs are an ancient enzyme family believed to have origins that may predate the last common ancestor and as such they provide insights into the evolution and development of the extant genetic code. Although the aaRSs have long been viewed as a highly conserved group of enzymes, findings within the last couple of decades have started to demonstrate how diverse and versatile these enzymes really are. Beyond their central role in translation, aaRSs and their numerous homologs have evolved a wide array of alternative functions both inside and outside translation. Current understanding of the emergence of the aaRSs, and their subsequent evolution into a functionally diverse enzyme family, are discussed in this chapter.
Collapse
|
31
|
Rokov-Plavec J, Lesjak S, Gruic-Sovulj I, Mocibob M, Dulic M, Weygand-Durasevic I. Substrate recognition and fidelity of maize seryl-tRNA synthetases. Arch Biochem Biophys 2013; 529:122-30. [DOI: 10.1016/j.abb.2012.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 12/27/2022]
|
32
|
Perona JJ, Gruic-Sovulj I. Synthetic and editing mechanisms of aminoacyl-tRNA synthetases. Top Curr Chem (Cham) 2013; 344:1-41. [PMID: 23852030 DOI: 10.1007/128_2013_456] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRS) ensure the faithful transmission of genetic information in all living cells. The 24 known aaRS families are divided into 2 structurally distinct classes (class I and class II), each featuring a catalytic domain with a common fold that binds ATP, amino acid, and the 3'-terminus of tRNA. In a common two-step reaction, each aaRS first uses the energy stored in ATP to synthesize an activated aminoacyl adenylate intermediate. In the second step, either the 2'- or 3'-hydroxyl oxygen atom of the 3'-A76 tRNA nucleotide functions as a nucleophile in synthesis of aminoacyl-tRNA. Ten of the 24 aaRS families are unable to distinguish cognate from noncognate amino acids in the synthetic reactions alone. These enzymes possess additional editing activities for hydrolysis of misactivated amino acids and misacylated tRNAs, with clearance of the latter species accomplished in spatially separate post-transfer editing domains. A distinct class of trans-acting proteins that are homologous to class II editing domains also perform hydrolytic editing of some misacylated tRNAs. Here we review essential themes in catalysis with a view toward integrating the kinetic, stereochemical, and structural mechanisms of the enzymes. Although the aaRS have now been the subject of investigation for many decades, it will be seen that a significant number of questions regarding fundamental catalytic functioning still remain unresolved.
Collapse
Affiliation(s)
- John J Perona
- Department of Chemistry, Portland State University, 751, Portland, OR, 97207, USA,
| | | |
Collapse
|