1
|
Caron DP, Specht WL, Chen D, Wells SB, Szabo PA, Jensen IJ, Farber DL, Sims PA. Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues. CELL REPORTS METHODS 2025; 5:100938. [PMID: 39814026 DOI: 10.1016/j.crmeth.2024.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/21/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins. Cellular indexing of transcriptomes and epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell-type annotation requires a classifier that integrates multimodal data. Here, we describe multimodal classifier hierarchy (MMoCHi), a marker-based approach for accurate cell-type classification across multiple single-cell modalities that does not rely on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.
Collapse
Affiliation(s)
- Daniel P Caron
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - William L Specht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Chen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Steven B Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Isaac J Jensen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Donna L Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
2
|
Zhu Y, Lu Y, Zhu Y, Ren X, Deng Q, Yang M, Liang X. ST2L promotes VEGFA-mediated angiogenesis in gastric cancer by activating TRAF6/PI3K/Akt/NF-κB pathway via IL-33. Sci Rep 2024; 14:26393. [PMID: 39488565 PMCID: PMC11531471 DOI: 10.1038/s41598-024-76763-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/16/2024] [Indexed: 11/04/2024] Open
Abstract
Suppression of Tumorigenicity 2 (ST2) is a member of the interleukin-1 receptor/ Toll-like receptor superfamily, and its specific ligand is Interleukin-33 (IL-33). IL-33/ ST2 signaling has been implicated in numerous inflammatory and allergic diseases, as well as in promoting malignant behavior of tumor cells and angiogenesis. However, the precise role of ST2 in gastric cancer angiogenesis remains incompletely elucidated. We observed a significant correlation between high expression of ST2 in gastric cancer tissues and poor prognosis, along with various clinicopathological features. In vitro experiments demonstrated that the IL-33/ ST2 axis activates the PI3K/AKT/NF-κB signaling pathway through TRAF6, thereby promoting VEGFA-mediated tumor angiogenesis; meanwhile sST2 acts as a decoy receptor to regulate the IL-33/ST2L axis. Consistent findings were also observed in subcutaneous xenograft tumor models in nude mice. Furthermore, we investigated the molecular mechanism by which IL-33 promotes ST2L expression in GC cells via upregulation of transcription factors YY1 and GATA2 through intracellular signaling pathways.
Collapse
Affiliation(s)
- Yanqing Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Yuxin Lu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Yifei Zhu
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Xiaolu Ren
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Qinyi Deng
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China
| | - Muqing Yang
- Department of Hepatobilliary Surgical Center, Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Putuo District, Shanghai, China.
| | - Xin Liang
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, China.
| |
Collapse
|
3
|
Caron DP, Specht WL, Chen D, Wells SB, Szabo PA, Jensen IJ, Farber DL, Sims PA. Multimodal hierarchical classification of CITE-seq data delineates immune cell states across lineages and tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.06.547944. [PMID: 37461466 PMCID: PMC10350048 DOI: 10.1101/2023.07.06.547944] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity and dissecting transcriptional states, but transcriptomic profiles do not always delineate subsets defined by surface proteins, as in cells of the immune system. Cellular Indexing of Transcriptomes and Epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface proteomes; however, accurate cell type annotation requires a classifier that integrates multimodal data. Here, we describe MultiModal Classifier Hierarchy (MMoCHi), a marker-based approach for classification, reconciling gene and protein expression without reliance on reference atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and multimodal unsupervised clustering in its ability to identify immune cell subsets that are not readily resolved and to reveal novel subset markers. MMoCHi is designed for adaptability and can integrate annotation of cell types and developmental states across diverse lineages, samples, or modalities.
Collapse
Affiliation(s)
- Daniel P. Caron
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - William L. Specht
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - David Chen
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Steven B. Wells
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter A. Szabo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Isaac J. Jensen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Surgery, Columbia University Irving Medical Center, New York, NY, USA
| | - Peter A. Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Akimoto M, Susa T, Okudaira N, Koshikawa N, Hisaki H, Iizuka M, Okinaga H, Takenaga K, Okazaki T, Tamamori-Adachi M. Hypoxia induces downregulation of the tumor-suppressive sST2 in colorectal cancer cells via the HIF-nuclear IL-33-GATA3 pathway. Proc Natl Acad Sci U S A 2023; 120:e2218033120. [PMID: 37094129 PMCID: PMC10160999 DOI: 10.1073/pnas.2218033120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/30/2023] [Indexed: 04/26/2023] Open
Abstract
As a decoy receptor, soluble ST2 (sST2) interferes with the function of the inflammatory cytokine interleukin (IL)-33. Decreased sST2 expression in colorectal cancer (CRC) cells promotes tumor growth via IL-33-mediated bioprocesses in the tumor microenvironment. In this study, we discovered that hypoxia reduced sST2 expression in CRC cells and explored the associated molecular mechanisms, including the expression of key regulators of ST2 gene transcription in hypoxic CRC cells. In addition, the effect of the recovery of sST2 expression in hypoxic tumor regions on malignant progression was investigated using mouse CRC cells engineered to express sST2 in response to hypoxia. Our results indicated that hypoxia-dependent increases in nuclear IL-33 interfered with the transactivation activity of GATA3 for ST2 gene transcription. Most importantly, hypoxia-responsive sST2 restoration in hypoxic tumor regions corrected the inflammatory microenvironment and suppressed tumor growth and lung metastasis. These results indicate that strategies targeting sST2 in hypoxic tumor regions could be effective for treating malignant CRC.
Collapse
Affiliation(s)
- Miho Akimoto
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Takao Susa
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Noriyuki Okudaira
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Nobuko Koshikawa
- Department of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Nitona, Chuoh-ku, Chiba260-8717, Japan
| | - Harumi Hisaki
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Masayoshi Iizuka
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
- Medical Education Center, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Hiroko Okinaga
- Department of Internal Medicine, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Keizo Takenaga
- Department of Innovative Cancer Therapeutics, Chiba Cancer Center Research Institute, Nitona, Chuoh-ku, Chiba260-8717, Japan
| | - Tomoki Okazaki
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| | - Mimi Tamamori-Adachi
- Department of Biochemistry, Teikyo University School of Medicine, Kaga, Itabashi-ku, Tokyo173-8605, Japan
| |
Collapse
|
5
|
Kwon JW, Seok SH, Kim S, An HW, Choudhury AD, Woo SH, Oh JS, Kim JK, Voon DC, Kim DY, Park JW. A synergistic partnership between IL-33/ST2 and Wnt pathway through Bcl-xL drives gastric cancer stemness and metastasis. Oncogene 2023; 42:501-515. [PMID: 36526851 DOI: 10.1038/s41388-022-02575-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
Abstract
ST2 functions as a receptor for the cytokine IL-33. It has been implicated in carcinogenesis. In this study, we sought to mechanistically determine how ST2 and IL-33 function to support cancer stem cell (CSC) activity and drive gastric cancer (GC) pathogenesis. ST2+ subpopulation spontaneously arose during gastric tumorigenesis. A thorough evaluation of ST2 and IL-33 expression in gastric tumors revealed that they show an overlapping expression pattern, notably in poor differentiated GC and metastasis foci. Moreover, their expression levels are clinically correlated to cancer progression. Using a genetic model of CSC-driven gastric carcinogenesis, ST2+ subpopulation displays increased tumorigenicity, chemoresistance and metastatic potentials through increased survival fitness endowed by an elevated MAPK-regulated Bcl-xL. The IL-33/ST2 axis enhances the self-renewal and survival of GC stem cells and organoids. Importantly, we observed a synergistic cooperation between IL-33/ST2 and the canonical Wnt pathway in transactivating Wnt-dependent transcription and supporting CSC activity, a partnership that was abrogated by inhibiting Bcl-xL. Concordant with this, ST2+ subpopulation was targeted by MEK1/2 and Bcl-xL-specific inhibitors. These findings establish ST2 as a functional CSC marker that fortifies the Wnt signal while availing a novel therapeutic strategy to suppress GC progression by targeting the IL-33/ST2/Bcl-xL signaling axis.
Collapse
Affiliation(s)
- Jong-Wan Kwon
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-gil, ChunCheon-si, Gangwon-do, 24341, South Korea
| | - Sang-Hyuk Seok
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-gil, ChunCheon-si, Gangwon-do, 24341, South Korea
| | - Somi Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Hyeok-Won An
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-gil, ChunCheon-si, Gangwon-do, 24341, South Korea
| | - Anahita Dev Choudhury
- Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan.,Innovative Cancer Model Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Sang-Ho Woo
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jeong-Seop Oh
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jong Kyoung Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Dominic C Voon
- Cancer Research Institute, Kanazawa University, Kanazawa, 920-1192, Japan. .,Innovative Cancer Model Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, 920-1192, Japan.
| | - Dae-Yong Kim
- Department of Veterinary Pathology, College of Veterinary Medicine, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| | - Jun Won Park
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, 1 Kangwondaehak-gil, ChunCheon-si, Gangwon-do, 24341, South Korea.
| |
Collapse
|
6
|
Akula S, Riihimäki M, Waern I, Åbrink M, Raine A, Hellman L, Wernersson S. Quantitative Transcriptome Analysis of Purified Equine Mast Cells Identifies a Dominant Mucosal Mast Cell Population with Possible Inflammatory Functions in Airways of Asthmatic Horses. Int J Mol Sci 2022; 23:ijms232213976. [PMID: 36430453 PMCID: PMC9692376 DOI: 10.3390/ijms232213976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Asthma is a chronic inflammatory airway disease and a serious health problem in horses as well as in humans. In humans and mice, mast cells (MCs) are known to be directly involved in asthma pathology and subtypes of MCs accumulate in different lung and airway compartments. The role and phenotype of MCs in equine asthma has not been well documented, although an accumulation of MCs in bronchoalveolar lavage fluid (BALF) is frequently seen. To characterize the phenotype of airway MCs in equine asthma we here developed a protocol, based on MACS Tyto sorting, resulting in the isolation of 92.9% pure MCs from horse BALF. We then used quantitative transcriptome analyses to determine the gene expression profile of the purified MCs compared with total BALF cells. We found that the MCs exhibited a protease profile typical for the classical mucosal MC subtype, as demonstrated by the expression of tryptase (TPSB2) alone, with no expression of chymase (CMA1) or carboxypeptidase A3 (CPA3). Moreover, the expression of genes involved in antigen presentation and complement activation strongly implicates an inflammatory role for these MCs. This study provides a first insight into the phenotype of equine MCs in BALF and their potential role in the airways of asthmatic horses.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, P.O. Box 7011, SE-750 07 Uppsala, Sweden
| | - Miia Riihimäki
- Department of Clinical Sciences, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Ida Waern
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, P.O. Box 7011, SE-750 07 Uppsala, Sweden
| | - Magnus Åbrink
- Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Amanda Raine
- Science for Life Laboratory, Department of Medical Sciences, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, The Biomedical Center, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, P.O. Box 7011, SE-750 07 Uppsala, Sweden
- Correspondence: ; Tel.: +46-(0)1-8672-112
| |
Collapse
|
7
|
Liu R, Liu L, Wei C, Li D. IL-33/ST2 immunobiology in coronary artery disease: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:990007. [PMID: 36337880 PMCID: PMC9630943 DOI: 10.3389/fcvm.2022.990007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 10/06/2022] [Indexed: 11/29/2022] Open
Abstract
The IL-33/ST2 axis is reported to be controversially associated with coronary artery disease (CAD). A systematic review of the association between the IL-33/ST2 axis and CAD revealed that IL-33/ST2 plays a protective role in CAD and serum sST2 and IL-33 levels are increased in patients with cardiovascular disease. Therefore, the association of IL-33/ST2 single nucleotide polymorphisms (SNPs) with CAD prevalence, prognosis, and risk factors was assessed by performing a meta-analysis. Through a literature search of relevant articles in various databases using the relevant keywords, seven studies were included in the analysis. The meta-analysis showed that the IL-33/ST2 axis was associated with increased CAD risk [pooled odds ratio (OR) = 1.17, 95% confidence interval (CI): 1.13–1.20]. Gene subgroup analysis showed a close association of IL1RL1 (OR = 1.25, 95% CI: 1.20–1.30; I2 = 85.9%; p = 0.000) and IL1RAcP (OR = 1.42, 95% CI: 1.26–1.60; I2 = 27.1%; p = 0.203) with increased CAD risk. However, the association for the IL-33 gene was not statistically significant. SNPs rs7044343 (T), rs10435816 (G), rs11792633 (C) in IL-33 gene were associated with a protective effect in CAD. However, rs7025417 (T) in IL-33, rs11685424 (G) in IL1RL1, rs950880 (A) in sST2, and rs4624606 (A) in IL1RAcP were related to increased CAD risk. Overall, polymorphisms in IL-33/ST2 axis components were associated with increased CAD risk. These results may help identify key features of IL-33/ST2 immunobiology in CAD along with potential treatment strategies to lower disease burden.
Collapse
|
8
|
He X, Pan W. Host–parasite interactions mediated by cross-species microRNAs. Trends Parasitol 2022; 38:478-488. [DOI: 10.1016/j.pt.2022.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 10/18/2022]
|
9
|
Gandhi VD, Cephus JY, Norlander AE, Chowdhury NU, Zhang J, Ceneviva ZJ, Tannous E, Polosukhin VV, Putz ND, Wickersham N, Singh A, Ware LB, Bastarache JA, Shaver CM, Chu HW, Peebles RS, Newcomb DC. Androgen receptor signaling promotes Treg suppressive function during allergic airway inflammation. J Clin Invest 2022; 132:e153397. [PMID: 35025767 PMCID: PMC8843736 DOI: 10.1172/jci153397] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Women have higher prevalence of asthma compared with men. In asthma, allergic airway inflammation is initiated by IL-33 signaling through ST2, leading to increased IL-4, IL-5, and IL-13 production and eosinophil infiltration. Foxp3+ Tregs suppress and ST2+ Tregs promote allergic airway inflammation. Clinical studies showed that the androgen dehydroepiandrosterone (DHEA) reduced asthma symptoms in patients, and mouse studies showed that androgen receptor (AR) signaling decreased allergic airway inflammation. Yet the impact of AR signaling on lung Tregs remains unclear. Using AR-deficient and Foxp3 fate-mapping mice, we determined that AR signaling increased Treg suppression during Alternaria extract (Alt Ext; allergen) challenge by stabilizing Foxp3+ Tregs and limiting the number of ST2+ ex-Tregs and IL-13+ Th2 cells and ex-Tregs. AR signaling also decreased Alt Ext-induced ST2+ Tregs in mice by limiting expression of Gata2, a transcription factor for ST2, and by decreasing Alt Ext-induced IL-33 production from murine airway epithelial cells. We confirmed our findings in human cells where 5α-dihydrotestosterone (DHT), an androgen, decreased IL-33-induced ST2 expression in lung Tregs and decreased Alt Ext-induced IL-33 secretion in human bronchial epithelial cells. Our findings showed that AR signaling stabilized Treg suppressive function, providing a mechanism for the sex difference in asthma.
Collapse
Affiliation(s)
| | | | | | - Nowrin U. Chowdhury
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | | | | - Amrit Singh
- Prevention of Organ Failure (PROOF) Centre of Excellence, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | - Hong Wei Chu
- National Jewish Medical Center, Denver, Colorado, USA
| | - R. Stokes Peebles
- Department of Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dawn C. Newcomb
- Department of Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
10
|
Zhang M, Duffen JL, Nocka KH, Kasaian MT. IL-13 Controls IL-33 Activity through Modulation of ST2. THE JOURNAL OF IMMUNOLOGY 2021; 207:3070-3080. [PMID: 34789557 DOI: 10.4049/jimmunol.2100655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022]
Abstract
IL-33 is a multifunctional cytokine that mediates local inflammation upon tissue damage. IL-33 is known to act on multiple cell types including group 2 innate lymphoid cells (ILC2s), Th2 cells, and mast cells to drive production of Th2 cytokines including IL-5 and IL-13. IL-33 signaling activity through transmembrane ST2L can be inhibited by soluble ST2 (sST2), which acts as a decoy receptor. Previous findings suggested that modulation of IL-13 levels in mice lacking decoy IL-13Rα2, or mice lacking IL-13, impacted responsiveness to IL-33. In this study, we used Il13 -/- mice to investigate whether IL-13 regulates IL-33 activity by modulating the transmembrane and soluble forms of ST2. In Il13 -/- mice, the effects of IL-33 administration were exacerbated relative to wild type (WT). Il13 -/- mice administered IL-33 i.p. had heightened splenomegaly, more immune cells in the peritoneum including an expanded ST2L+ ILC2 population, increased eosinophilia in the spleen and peritoneum, and reduced sST2 in the circulation and peritoneum. In the spleen, lung, and liver of mice given IL-33, gene expression of both isoforms of ST2 was increased in Il13 -/- mice relative to WT. We confirmed fibroblasts to be an IL-13-responsive cell type that can regulate IL-33 activity through production of sST2. This study elucidates the important regulatory activity that IL-13 exerts on IL-33 through induction of IL-33 decoy receptor sST2 and through modulation of ST2L+ ILC2s.
Collapse
Affiliation(s)
- Melvin Zhang
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| | - Jennifer L Duffen
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| | - Karl H Nocka
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| | - Marion T Kasaian
- Inflammation and Immunology Research Unit, Pfizer, Inc., Cambridge, MA
| |
Collapse
|
11
|
Saikumar Jayalatha AK, Hesse L, Ketelaar ME, Koppelman GH, Nawijn MC. The central role of IL-33/IL-1RL1 pathway in asthma: From pathogenesis to intervention. Pharmacol Ther 2021; 225:107847. [PMID: 33819560 DOI: 10.1016/j.pharmthera.2021.107847] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family, and its cognate receptor, Interleukin-1 receptor like-1 (IL-1RL1 or ST2), are susceptibility genes for childhood asthma. In response to cellular damage, IL-33 is released from barrier tissues as an 'alarmin' to activate the innate immune response. IL-33 drives type 2 responses by inducing signalling through its receptor IL-1RL1 in several immune and structural cells, thereby leading to type 2 cytokine and chemokine production. IL-1RL1 gene transcript encodes different isoforms generated through alternative splicing. Its soluble isoform, IL-1RL1-a or sST2, acts as a decoy receptor by sequestering IL-33, thereby inhibiting IL1RL1-b/IL-33 signalling. IL-33 and its receptor IL-1RL1 are therefore considered as putative biomarkers or targets for pharmacological intervention in asthma. This review will provide an overview of the genetics and biology of the IL-33/IL-1RL1 pathway in the context of asthma pathogenesis. It will discuss the potential and complexities of targeting the cytokine or its receptor, how genetics or biomarkers may inform precision medicine for asthma targeting this pathway, and the possible positioning of therapeutics targeting IL-33 or its receptor in the expanding landscape of novel biologicals applied in asthma management.
Collapse
Affiliation(s)
- A K Saikumar Jayalatha
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - L Hesse
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - M E Ketelaar
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - G H Koppelman
- University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - M C Nawijn
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands.
| |
Collapse
|
12
|
Salter BM, Ju X, Sehmi R. Eosinophil Lineage-Committed Progenitors as a Therapeutic Target for Asthma. Cells 2021; 10:412. [PMID: 33669458 PMCID: PMC7920418 DOI: 10.3390/cells10020412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 12/15/2022] Open
Abstract
Eosinophilic asthma is the most prevalent phenotype of asthma. Although most asthmatics are adequately controlled by corticosteroid therapy, a subset (5-10%) remain uncontrolled with significant therapy-related side effects. This indicates the need for a consideration of alternative treatment strategies that target airway eosinophilia with corticosteroid-sparing benefits. A growing body of evidence shows that a balance between systemic differentiation and local tissue eosinophilopoietic processes driven by traffic and lung homing of bone marrow-derived hemopoietic progenitor cells (HPCs) are important components for the development of airway eosinophilia in asthma. Interleukin (IL)-5 is considered a critical and selective driver of terminal differentiation of eosinophils. Studies targeting IL-5 or IL-5R show that although mature and immature eosinophils are decreased within the airways, there is incomplete ablation, particularly within the bronchial tissue. Eotaxin is a chemoattractant for mature eosinophils and eosinophil-lineage committed progenitor cells (EoP), yet anti-CCR3 studies did not yield meaningful clinical outcomes. Recent studies highlight the role of epithelial cell-derived alarmin cytokines, IL-33 and TSLP, (Thymic stromal lymphopoietin) in progenitor cell traffic and local differentiative processes. This review provides an overview of the role of EoP in asthma and discusses findings from clinical trials with various therapeutic targets. We will show that targeting single mediators downstream of the inflammatory cascade may not fully attenuate tissue eosinophilia due to the multiplicity of factors that can promote tissue eosinophilia. Blocking lung homing and local eosinophilopoiesis through mediators upstream of this cascade may yield greater improvement in clinical outcomes.
Collapse
Affiliation(s)
| | | | - Roma Sehmi
- CardioRespiratory Research Group, Department of Medicine, McMaster University, Hamilton, ON L8N 3Z5, Canada; (B.M.S.); (X.J.)
| |
Collapse
|
13
|
Chen S, Wu L, Peng L, Wang X, Tang N. Hepatitis B virus X protein (HBx) promotes ST2 expression by GATA2 in liver cells. Mol Immunol 2020; 123:32-39. [PMID: 32413787 DOI: 10.1016/j.molimm.2020.04.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/12/2020] [Accepted: 04/22/2020] [Indexed: 02/08/2023]
Abstract
At present, most studies on the relationship between hepatitis B virus (HBV) and IL-33/ST2 axis focus on clinical detection, but the underlying molecular mechanisms of HBx and IL-33/ST2 axis regulation and Th cell function regulation have not been explored. In this study, serum samples of patients with chronic hepatitis B (CHB) and HBV-related liver cancer (HBV-HCC), and healthy controls, as well as the supernatant solutions of HL7702-WT, HL7702-NC, and HL7702-HBx cells were collected to detect the content of soluble ST2 (sST2). The contents of Th1 cytokines (TNF-α and TNF-γ) and Th2 cytokines (IL-6 and IL-10) in the supernatant of different co-culture groups were detected. The effects of GATA2 on ST2 promoter transcription were investigated by upregulation or interference with GATA2 expression, dual-luciferase reporting, and ChIP experiments. The combined detection of sST2 and FIB-4 was beneficial to the non-invasive diagnosis of liver fibrosis. HBx promotes sST2 expression in liver cells, upregulates Th2 cell function, and inhibits Th1 cell function through IL-33/ST2 axis. HBx interacts with GATA2 to influence the activity of ST2 promoter. Serum sST2 detection is an invaluable indicator for the assessment of the progress of HBV infectious diseases, and the IL-33/ST2 axis plays an important role in changing the cellular immune function caused by HBV infection.
Collapse
Affiliation(s)
- Siyan Chen
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou, China
| | - Luxi Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Lirong Peng
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
14
|
Portelli MA, Dijk FN, Ketelaar ME, Shrine N, Hankinson J, Bhaker S, Grotenboer NS, Obeidat M, Henry AP, Billington CK, Shaw D, Johnson SR, Pogson ZE, Fogarty A, McKeever TM, Nickle DC, Bossé Y, van den Berge M, Faiz A, Brouwer S, Vonk JM, de Vos P, Brandsma CA, Vermeulen CJ, Singapuri A, Heaney LG, Mansur AH, Chaudhuri R, Thomson NC, Holloway JW, Lockett GA, Howarth PH, Niven R, Simpson A, Blakey JD, Tobin MD, Postma DS, Hall IP, Wain LV, Nawijn MC, Brightling CE, Koppelman GH, Sayers I. Phenotypic and functional translation of IL1RL1 locus polymorphisms in lung tissue and asthmatic airway epithelium. JCI Insight 2020; 5:132446. [PMID: 32324168 PMCID: PMC7205441 DOI: 10.1172/jci.insight.132446] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 03/12/2020] [Indexed: 12/22/2022] Open
Abstract
The IL1RL1 (ST2) gene locus is robustly associated with asthma; however, the contribution of single nucleotide polymorphisms (SNPs) in this locus to specific asthma subtypes and the functional mechanisms underlying these associations remain to be defined. We tested for association between IL1RL1 region SNPs and characteristics of asthma as defined by clinical and immunological measures and addressed functional effects of these genetic variants in lung tissue and airway epithelium. Utilizing 4 independent cohorts (Lifelines, Dutch Asthma GWAS [DAG], Genetics of Asthma Severity and Phenotypes [GASP], and Manchester Asthma and Allergy Study [MAAS]) and resequencing data, we identified 3 key signals associated with asthma features. Investigations in lung tissue and primary bronchial epithelial cells identified context-dependent relationships between the signals and IL1RL1 mRNA and soluble protein expression. This was also observed for asthma-associated IL1RL1 nonsynonymous coding TIR domain SNPs. Bronchial epithelial cell cultures from asthma patients, exposed to exacerbation-relevant stimulations, revealed modulatory effects for all 4 signals on IL1RL1 mRNA and/or protein expression, suggesting SNP-environment interactions. The IL1RL1 TIR signaling domain haplotype affected IL-33–driven NF-κB signaling, while not interfering with TLR signaling. In summary, we identify that IL1RL1 genetic signals potentially contribute to severe and eosinophilic phenotypes in asthma, as well as provide initial mechanistic insight, including genetic regulation of IL1RL1 isoform expression and receptor signaling.
Collapse
Affiliation(s)
- Michael A Portelli
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - F Nicole Dijk
- Department of Pediatric Pulmonology and Pediatric Allergology, and
| | - Maria E Ketelaar
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom.,Department of Pediatric Pulmonology and Pediatric Allergology, and.,Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Nick Shrine
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom
| | - Jenny Hankinson
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Sangita Bhaker
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Néomi S Grotenboer
- Department of Pediatric Pulmonology and Pediatric Allergology, and.,Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Ma'en Obeidat
- The University of British Columbia Center for Heart Lung Innovation, St. Paul's Hospital Vancouver, Vancouver, British Columbia, Canada
| | - Amanda P Henry
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Charlotte K Billington
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Dominick Shaw
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Simon R Johnson
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Zara Ek Pogson
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Andrew Fogarty
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - Tricia M McKeever
- Division of Epidemiology and Public Health, University of Nottingham, Nottingham, United Kingdom
| | - David C Nickle
- Departments of Genetics and Pharmacogenomics, Merck Research Laboratories, Boston, Massachusetts, USA
| | - Yohan Bossé
- Institut universitaire de cardiologie et de pneumologie de Québec, Department of Molecular Medicine, Laval University, Québec, Canada
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pulmonary Diseases, and
| | - Alen Faiz
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pulmonary Diseases, and
| | - Sharon Brouwer
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Judith M Vonk
- Department of Epidemiology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Cornelis J Vermeulen
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Amisha Singapuri
- Respiratory sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom
| | - Liam G Heaney
- Centre for Experimental Medicine, Queens University of Belfast, Belfast, United Kingdom
| | - Adel H Mansur
- Department of Respiratory Medicine, Birmingham Heartlands Hospital and University of Birmingham, Birmingham, United Kingdom
| | - Rekha Chaudhuri
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Neil C Thomson
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - John W Holloway
- Department of Human Development and.,Department of Health & Clinical and Experimental Sciences, Faculty of Medicine and NIH Research (NIHR), Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Gabrielle A Lockett
- Department of Human Development and.,Department of Health & Clinical and Experimental Sciences, Faculty of Medicine and NIH Research (NIHR), Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Peter H Howarth
- Department of Human Development and.,Department of Health & Clinical and Experimental Sciences, Faculty of Medicine and NIH Research (NIHR), Southampton Biomedical Research Centre, University of Southampton, Southampton, United Kingdom
| | - Robert Niven
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Angela Simpson
- Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - John D Blakey
- Respiratory Medicine, Sir Charles Gairdner Hospital, Perth, Australia
| | - Martin D Tobin
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom.,NIHR, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Dirkje S Postma
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Department of Pulmonary Diseases, and
| | - Ian P Hall
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - Louise V Wain
- Department of Health Sciences, University of Leicester, Leicester, United Kingdom.,NIHR, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | - Martijn C Nawijn
- Department of Pathology and Medical Biology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, University of Groningen, Groningen, Netherlands
| | - Christopher E Brightling
- Respiratory sciences, University of Leicester, Glenfield Hospital, Leicester, United Kingdom.,NIHR, Leicester Respiratory Biomedical Research Centre, University of Leicester, Leicester, United Kingdom
| | | | - Ian Sayers
- Division of Respiratory Medicine, NIHR, Nottingham Biomedical Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
15
|
Kasakura K, Nagata K, Miura R, Iida M, Nakaya H, Okada H, Arai T, Arai T, Kawakami Y, Kawakami T, Yashiro T, Nishiyama C. Cooperative Regulation of the Mucosal Mast Cell-Specific Protease Genes Mcpt1 and Mcpt2 by GATA and Smad Transcription Factors. THE JOURNAL OF IMMUNOLOGY 2020; 204:1641-1649. [PMID: 32005755 DOI: 10.4049/jimmunol.1900094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/06/2020] [Indexed: 01/09/2023]
Abstract
Mouse mast cell proteases (mMCP)-1 and -2 are specifically expressed in mucosal mast cells (MCs). However, the transcriptional regulation mechanism of the Mcpt1 and Mcpt2 genes induced in mucosal MCs is largely unknown. In the current study, we found that TGF-β stimulation drastically induced upregulation of Mcpt1 and Mcpt2 mRNA in mouse bone marrow-derived MCs (BMMCs). TGF-β-induced expression of Mcpt1 and Mcpt2 was markedly suppressed by transfection with small interfering RNA targeting Smad2 or Smad4 and moderately reduced by Smad3 small interfering RNA. We next examined the roles of the hematopoietic cell-specific transcription factors GATA1 and GATA2 in the expression of Mcpt1 and Mcpt2 and demonstrated that knockdown of GATA1 and GATA2 reduced the mRNA levels of Mcpt1 and Mcpt2 in BMMCs. The recruitment of GATA2 and acetylation of histone H4 of the highly conserved GATA-Smad motifs, which were localized in the distal regions of the Mcpt1 and Mcpt2 genes, were markedly increased by TGF-β stimulation, whereas the level of GATA2 binding to the proximal GATA motif was not affected by TGF-β. A reporter assay showed that TGF-β stimulation upregulated GATA2-mediated transactivation activity in a GATA-Smad motif-dependent manner. We also observed that GATA2 and Smad4 interacted in TGF-β-stimulated BMMCs via immunoprecipitation and Western blotting analysis. Taken together, these results demonstrate that TGF-β induced mMCP-1 and -2 expression by accelerating the recruitment of GATA2 to the proximal regions of the Mcpt1 and Mcpt2 genes in mucosal MCs.
Collapse
Affiliation(s)
- Kazumi Kasakura
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and.,Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Kazuki Nagata
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Ryosuke Miura
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Mayu Iida
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Hikaru Nakaya
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Hikaru Okada
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Takahiro Arai
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Takahiro Arai
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Immunology, La Jolla, CA 92037
| | - Takuya Yashiro
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| | - Chiharu Nishiyama
- Laboratory of Molecular and Cellular Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585, Japan; and
| |
Collapse
|
16
|
The ST2/Interleukin-33 Axis in Hematologic Malignancies: The IL-33 Paradox. Int J Mol Sci 2019; 20:ijms20205226. [PMID: 31652497 PMCID: PMC6834139 DOI: 10.3390/ijms20205226] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/07/2023] Open
Abstract
Interleukin (IL)-33 is a chromatin-related nuclear interleukin that is a component of IL-1 family. IL-33 production augments the course of inflammation after cell damage or death. It is discharged into the extracellular space. IL-33 is regarded as an “alarmin” able to stimulate several effectors of the immune system, regulating numerous immune responses comprising cancer immune reactions. IL-33 has been demonstrated to influence tumorigenesis. However, as far as this cytokine is concerned, we are faced with what has sometimes been defined as the IL-33 paradox. Several studies have demonstrated a relevant role of IL-33 to numerous malignancies, where it may have pro- and—less frequently—antitumorigenic actions. In the field of hematological malignancies, the role of IL-33 seems even more complex. Although we can affirm the existence of a negative role of IL-33 in Chronic myelogenos leukemia (CML) and in lymphoproliferative diseases and a positive role in pathologies such as Acute myeloid leukemia (AML), the action of IL-33 seems to be multiple and sometimes contradictory within the same pathology. In the future, we will have to learn to govern the negative aspects of activating the IL-33/ST2 axis and exploit the positive ones.
Collapse
|
17
|
Alvarez F, Fritz JH, Piccirillo CA. Pleiotropic Effects of IL-33 on CD4 + T Cell Differentiation and Effector Functions. Front Immunol 2019; 10:522. [PMID: 30949175 PMCID: PMC6435597 DOI: 10.3389/fimmu.2019.00522] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/26/2019] [Indexed: 12/16/2022] Open
Abstract
IL-33, a member of the IL-1 family of cytokines, was originally described in 2005 as a promoter of type 2 immune responses. However, recent evidence reveals a more complex picture. This cytokine is released locally as an alarmin upon cellular damage where innate cell types respond to IL-33 by modulating their differentiation and influencing the polarizing signals they provide to T cells at the time of antigen presentation. Moreover, the prominent expression of the IL-33 receptor, ST2, on GATA3+ T helper 2 cells (TH2) demonstrated that IL-33 could have a direct impact on T cells. Recent observations reveal that T-bet+ TH1 cells and Foxp3+ regulatory T (TREG) cells can also express the ST2 receptor, either transiently or permanently. As such, IL-33 can have a direct effect on the dynamics of T cell populations. As IL-33 release was shown to play both an inflammatory and a suppressive role, understanding the complex effect of this cytokine on T cell homeostasis is paramount. In this review, we will focus on the factors that modulate ST2 expression on T cells, the effect of IL-33 on helper T cell responses and the role of IL-33 on TREG cell function.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
| | - Jörg H. Fritz
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
- McGill University Research Center on Complex Traits, McGill University, Montréal, QC, Canada
| | - Ciriaco A. Piccirillo
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada
- Program in Infectious Diseases and Immunology in Global Health, Centre for Translational Biology, The Research Institute of the McGill University Health Center, Montréal, QC, Canada
- Centre of Excellence in Translational Immunology, Montréal, QC, Canada
- McGill University Research Center on Complex Traits, McGill University, Montréal, QC, Canada
| |
Collapse
|
18
|
Gene Expression Profiling of NFATc1-Knockdown in RAW 264.7 Cells: An Alternative Pathway for Macrophage Differentiation. Cells 2019; 8:cells8020131. [PMID: 30736420 PMCID: PMC6406727 DOI: 10.3390/cells8020131] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/18/2019] [Accepted: 02/05/2019] [Indexed: 01/12/2023] Open
Abstract
NFATc1, which is ubiquitous in many cell types, is the master regulator of osteoclastogenesis. However, the molecular mechanisms by which NFATc1 drives its transcriptional program to produce osteoclasts from macrophages (M) remains poorly understood. We performed quantitative PCR (QPCR) arrays and bioinformatic analyses to discover new direct and indirect NFATc1 targets. The results revealed that NFATc1 significantly modified the expression of 55 genes in untransfected cells and 31 genes after NFATc1-knockdown (≥2). Among them, we focused on 19 common genes that showed changes in the PCR arrays between the two groups of cells. Gene Ontology (GO) demonstrated that genes related to cell differentiation and the development process were significantly (p > 0.05) affected by NFATc1-knockdown. Among all the genes analyzed, we focused on GATA2, which was up-regulated in NFATc1-knockdown cells, while its expression was reduced after NFATc1 rescue. Thus, we suggest GATA2 as a new target of NFATc1. Ingenuity Pathway Analysis (IPA) identified up-regulated GATA2 and the STAT family members as principal nodes involved in cell differentiation. Mechanistically, we demonstrated that STAT6 was activated in parallel with GATA2 in NFATc1-knockdown cells. We suggest an alternative pathway for macrophage differentiation in the absence of NFATc1 due to the GATA2 transcription factor.
Collapse
|
19
|
The Role of IL-33/ST2 Pathway in Tumorigenesis. Int J Mol Sci 2018; 19:ijms19092676. [PMID: 30205617 PMCID: PMC6164146 DOI: 10.3390/ijms19092676] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022] Open
Abstract
Cancer is initiated by mutations in critical regulatory genes; however, its progression to malignancy is aided by non-neoplastic cells and molecules that create a permissive environment known as the tumor stroma or microenvironment (TME). Interleukin 33 (IL-33) is a dual function cytokine that also acts as a nuclear factor. IL-33 typically resides in the nucleus of the cells where it is expressed. However, upon tissue damage, necrosis, or injury, it is quickly released into extracellular space where it binds to its cognate receptor suppression of tumorigenicity 2 (ST2)L found on the membrane of target cells to potently activate a T Helper 2 (Th2) immune response, thus, it is classified as an alarmin. While its role in immunity and immune-related disorders has been extensively studied, its role in tumorigenesis is only beginning to be elucidated and has revealed opposing roles in tumor development. The IL-33/ST2 axis is emerging as a potent modulator of the TME. By recruiting a cohort of immune cells, it can remodel the TME to promote malignancy or impose tumor regression. Here, we review its multiple functions in various cancers to better understand its potential as a therapeutic target to block tumor progression or as adjuvant therapy to enhance the efficacy of anticancer immunotherapies.
Collapse
|
20
|
Akimoto M, Takenaga K. Role of the IL-33/ST2L axis in colorectal cancer progression. Cell Immunol 2018; 343:103740. [PMID: 29329638 DOI: 10.1016/j.cellimm.2017.12.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022]
Abstract
Interleukin-33 (IL-33) has been identified as a natural ligand of ST2L. IL-33 primarily acts as a key regulator of Th2 responses through binding to ST2L, which is antagonized by soluble ST2 (sST2). The IL-33/ST2L axis is involved in various inflammatory pathologies, including ulcerative colitis (UC). Several recent investigations have also suggested that the IL-33/ST2L axis plays a role in colorectal cancer (CRC) progression. In CRC, tumor- and stroma-derived IL-33 may activate ST2L on various cell types in an autocrine and paracrine manner. Although several findings support the hypothesis that the IL-33/ST2L axis positively regulates CRC progression, other reports do not; hence, this hypothesis remains controversial. At any rate, recent studies have provided overwhelming evidence that the IL-33/ST2L axis plays important roles in CRC progression. This review summarizes the role of the IL-33/ST2L axis in the UC and CRC microenvironments.
Collapse
Affiliation(s)
- Miho Akimoto
- Department of Life Science, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan
| | - Keizo Takenaga
- Department of Life Science, Shimane University Faculty of Medicine, 89-1 Enya, Izumo, Shimane 693-8501, Japan.
| |
Collapse
|
21
|
Ramírez C, Mendoza L. Phenotypic stability and plasticity in GMP-derived cells as determined by their underlying regulatory network. Bioinformatics 2017; 34:1174-1182. [DOI: 10.1093/bioinformatics/btx736] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 11/23/2017] [Indexed: 12/30/2022] Open
Affiliation(s)
- Carlos Ramírez
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Mx., México
| | - Luis Mendoza
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Cd. Mx., México
| |
Collapse
|
22
|
Conti P, Carinci F, Caraffa A, Ronconi G, Lessiani G, Theoharides TC. Link between mast cells and bacteria: Antimicrobial defense, function and regulation by cytokines. Med Hypotheses 2017; 106:10-14. [DOI: 10.1016/j.mehy.2017.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/04/2017] [Accepted: 06/25/2017] [Indexed: 01/12/2023]
|
23
|
Ducassou S, Prouzet-Mauléon V, Deau MC, Brunet de la Grange P, Cardinaud B, Soueidan H, Quelen C, Brousset P, Pasquet JM, Moreau-Gaudry F, Arock M, Mahon FX, Lippert E. MYB-GATA1 fusion promotes basophilic leukaemia: involvement of interleukin-33 and nerve growth factor receptors. J Pathol 2017; 242:347-357. [PMID: 28418072 DOI: 10.1002/path.4908] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 03/02/2017] [Accepted: 03/31/2017] [Indexed: 12/29/2022]
Abstract
Acute basophilic leukaemia (ABL) is a rare subtype of acute myeloblastic leukaemia. We previously described a recurrent t(X;6)(p11;q23) translocation generating an MYB-GATA1 fusion gene in male infants with ABL. To better understand its role, the chimeric MYB-GATA1 transcription factor was expressed in CD34-positive haematopoietic progenitors, which were transplanted into immunodeficient mice. Cells expressing MYB-GATA1 showed increased expression of markers of immaturity (CD34), of granulocytic lineage (CD33 and CD117), and of basophilic differentiation (CD203c and FcϵRI). UT-7 cells also showed basophilic differentiation after MYB-GATA1 transfection. A transcriptomic study identified nine genes deregulated by both MYB-GATA1 and basophilic differentiation. Induction of three of these genes (CCL23, IL1RL1, and NTRK1) was confirmed in MYB-GATA1-expressing CD34-positive cells by reverse transcription quantitative polymerase chain reaction. Interleukin (IL)-33 and nerve growth factor (NGF), the ligands of IL-1 receptor-like 1 (IL1RL1) and neurotrophic receptor tyrosine kinase 1 (NTRK1), respectively, enhanced the basophilic differentiation of MYB-GATA1-expressing UT-7 cells, thus demonstrating the importance of this pathway in the basophilic differentiation of leukaemic cells and CD34-positive primary cells. Finally, gene reporter assays confirmed that MYB and MYB-GATA1 directly activated NTRK1 and IL1RL1 transcription, leading to basophilic skewing of the blasts. MYB-GATA1 is more efficient than MYB, because of better stability. Our results highlight the role of IL-33 and NGF receptors in the basophilic differentiation of normal and leukaemic cells. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Stéphane Ducassou
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France.,Unité d'hématologie oncologie pédiatrique, CHU de Bordeaux, Bordeaux, France
| | | | - Marie-Céline Deau
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France
| | - Philippe Brunet de la Grange
- Laboratoire R&D d'Ingénierie Cellulaire, Etablissement Français du Sang - Aquitaine Limousin, CIRID UMR5164, University of Bordeaux, Bordeaux, France
| | - Bruno Cardinaud
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France.,Bordeaux INP, Bordeaux, France
| | - Hayssam Soueidan
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France
| | - Cathy Quelen
- Centre de Recherches en Cancérologie de Toulouse, INSERM U1037, Toulouse, France
| | - Pierre Brousset
- Centre de Recherches en Cancérologie de Toulouse, INSERM U1037, Toulouse, France
| | - Jean-Max Pasquet
- Equipe thérapie génique, INSERM U 1035 Biothérapie des maladies génétiques et cancers, University of Bordeaux, Bordeaux, France
| | - François Moreau-Gaudry
- Equipe thérapie génique, INSERM U 1035 Biothérapie des maladies génétiques et cancers, University of Bordeaux, Bordeaux, France
| | - Michel Arock
- Laboratoire d'Hématologie, CHU Pitié-Salpêtrière, Paris, France
| | - François-Xavier Mahon
- ACTION Laboratory, INSERM Unit 1218, University of Bordeaux, Bordeaux, France.,Bergonié Cancer Institute, INSERM Unit 916, University of Bordeaux, Bordeaux, France
| | - Eric Lippert
- Equipe thérapie génique, INSERM U 1035 Biothérapie des maladies génétiques et cancers, University of Bordeaux, Bordeaux, France.,CHU de Brest and INSERM U1078, Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
24
|
Johnston LK, Bryce PJ. Understanding Interleukin 33 and Its Roles in Eosinophil Development. Front Med (Lausanne) 2017; 4:51. [PMID: 28512632 PMCID: PMC5411415 DOI: 10.3389/fmed.2017.00051] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 04/18/2017] [Indexed: 01/10/2023] Open
Abstract
Over the last decade, significant interest in the contribution of three “epithelial-derived cytokines,” such as thymic stromal lymphopoietin, interleukin 25, and interleukin 33 (IL-33), has developed. These cytokines have been strongly linked to the early events that occur during allergen exposures and how they contribute to the subsequent type 2 immune response. Of these three cytokines, IL-33 has proven particularly interesting because of the strong associations found between both it and its receptor, ST2, in several genome-wide association studies of allergic diseases. Further work has demonstrated clear mechanisms through which this cytokine might orchestrate allergic inflammation, including activation of several key effector cells that possess high ST2 levels, including mast cells, basophils, innate lymphoid cells, and eosinophils. Despite this, controversies surrounding IL-33 seem to suggest the biology of this cytokine might not be as simple as current dogmas suggest including: the relevant cellular sources of IL-33, with significant evidence for inducible expression in some hematopoietic cells; the mechanistic contributions of nuclear localization vs secretion; secretion and processing mechanisms; and the biological consequences of IL-33 exposure on different cell types. In this review, we will address the evidence for IL-33 and ST2 regulation over eosinophils and how this may contribute to allergic diseases. In particular, we focus on the accumulating evidence for a role of IL-33 in regulating hematopoiesis and how this relates to eosinophils as well as how this may provide new concepts for how the progression of allergy is regulated.
Collapse
Affiliation(s)
- Laura K Johnston
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Paul J Bryce
- Department of Medicine, Division of Allergy-Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
25
|
Scanning indels in the 5q22.1 region and identification of the TMEM232 susceptibility gene that is associated with atopic dermatitis in the Chinese Han population. Gene 2017; 617:17-23. [PMID: 28351738 DOI: 10.1016/j.gene.2017.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/21/2017] [Accepted: 03/24/2017] [Indexed: 11/22/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is a chronic inflammatory skin disease. The 5q22.1 region was found to have an association with AD in our previous genome-wide association study (GWAS). OBJECTIVE To identify the AD susceptibility gene in 5q22.1 and observe its expression in AD tissues. METHODS Suggestive indels from the GWAS data were genotyped in 3013 AD patients and 5075 controls from the Chinese Han population with the SequenomMassArray system. Association, Bayesian and bioinformatics analyses were used to identify possible causal indels and genes in the 5q22.1 region. Immunohistochemistry (IHC) was performed to observe protein expression in the tissues. PLINK 1.07 software was used for all statistical analyses. RESULTS The genotyping and association analysis showed that six deletions and four SNPs were associated with AD (P<0.005). The rs11357450 (Pcombined=7.79E-04, OR=1.39, logBayes Factor=1.29) deletion located in TMEM232 was identified to be the strongest variant. Analysis of the genetic model revealed that the dominant model best described rs11357450 (P=1.96E-03, OR=1.22; 95% CI=1.07-1.37). IHC showed that the expression of TMEM232 decreased gradually from the granular layer to the basal layer in AD, but in normal tissues, this trend was reversed. Additionally, positive cytoplasm staining was found in lymphocytes around the blood vessels in AD. CONCLUSIONS The study indicates that TMEM232 in the 5q22.1 region is the causal gene for AD in the Chinese Han population.
Collapse
|
26
|
Miura R, Kasakura K, Nakano N, Hara M, Maeda K, Okumura K, Ogawa H, Yashiro T, Nishiyama C. Role of PU.1 in MHC Class II Expression via CIITA Transcription in Plasmacytoid Dendritic Cells. PLoS One 2016; 11:e0154094. [PMID: 27105023 PMCID: PMC4841550 DOI: 10.1371/journal.pone.0154094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/08/2016] [Indexed: 11/18/2022] Open
Abstract
The cofactor CIITA is a master regulator of MHC class II expression and several transcription factors regulating the cell type-specific expression of CIITA have been identified. Although the MHC class II expression in plasmacytoid dendritic cells (pDCs) is also mediated by CIITA, the transcription factors involved in the CIITA expression in pDCs are largely unknown. In the present study, we analyzed the role of a hematopoietic lineage-specific transcription factor, PU.1, in CIITA transcription in pDCs. The introduction of PU.1 siRNA into mouse pDCs and a human pDC cell line, CAL-1, reduced the mRNA levels of MHC class II and CIITA. When the binding of PU.1 to the 3rd promoter of CIITA (pIII) in CAL-1 and mouse pDCs was analyzed by a chromatin immunoprecipitation assay, a significant amount of PU.1 binding to the pIII was detected, which was definitely decreased in PU.1 siRNA-transfected cells. Reporter assays showed that PU.1 knockdown reduced the pIII promoter activity and that three Ets-motifs in the human pIII promoter were candidates of cis-enhancing elements. By electrophoretic mobility shift assays, it was confirmed that two Ets-motifs, GGAA (-181/-178) and AGAA (-114/-111), among three candidates, were directly bound with PU.1. When mouse pDCs and CAL-1 cells were stimulated by GM-CSF, mRNA levels of PU.1, pIII-driven CIITA, total CIITA, MHC class II, and the amount of PU.1 binding to pIII were significantly increased. The GM-CSF-mediated up-regulation of these mRNAs was canceled in PU.1 siRNA-introduced cells. Taking these results together, we conclude that PU.1 transactivates the pIII through direct binding to Ets-motifs in the promoter in pDCs.
Collapse
Affiliation(s)
- Ryosuke Miura
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125–8585, Japan
| | - Kazumi Kasakura
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125–8585, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113–8421, Japan
| | - Mutsuko Hara
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113–8421, Japan
| | - Keiko Maeda
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113–8421, Japan
| | - Ko Okumura
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113–8421, Japan
| | - Hideoki Ogawa
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113–8421, Japan
| | - Takuya Yashiro
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125–8585, Japan
| | - Chiharu Nishiyama
- Laboratory of Molecular Biology and Immunology, Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125–8585, Japan
- * E-mail:
| |
Collapse
|
27
|
Abstract
Interleukin-33 (IL-33) is a member of the IL-1 cytokine superfamily that potently drives production of a variety of cytokines and contributes to the pathogenesis of inflammatory diseases. The IL-33 is a nuclear protein and is released from apoptotic or necrotic cells. Serum IL-33 levels are increased in various diseases, such as atopic dermatitis, chronic hepatitis C infection, and asthma. Here, we show that red blood cells (RBCs) are one of the major sources of plasma IL-33. The IL-33 levels are significantly increased in supernatants from lysed RBCs. Plasma IL-33 levels are increased in patients during hemolysis, and plasma IL-33 levels show a positive correlation with degree of hemolysis. The IL-33 protein and messenger RNA levels were detected in the late stages of differentiation in ex vivo primary human erythroid progenitor cell cultures, suggesting that IL-33 is expressed during maturation of RBCs. Furthermore, hemoglobin depleted red cell lysates induced IL-8 expression in human epithelial cells. This effect was attenuated in IL-33 decoy receptor expressing cells and was enhanced in IL-33 receptor expressing cells. These results suggest that erythroid progenitor cells produce IL-33 and circulating RBCs represent a major source of IL-33 that is released upon hemolysis.
Collapse
|
28
|
De la Fuente M, MacDonald TT, Hermoso MA. The IL-33/ST2 axis: Role in health and disease. Cytokine Growth Factor Rev 2015; 26:615-23. [DOI: 10.1016/j.cytogfr.2015.07.017] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/17/2015] [Indexed: 01/05/2023]
|
29
|
Bandara G, Beaven MA, Olivera A, Gilfillan AM, Metcalfe DD. Activated mast cells synthesize and release soluble ST2-a decoy receptor for IL-33. Eur J Immunol 2015; 45:3034-44. [PMID: 26256265 DOI: 10.1002/eji.201545501] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/20/2015] [Accepted: 08/08/2015] [Indexed: 12/19/2022]
Abstract
IL-33 released from damaged cells plays a central role in allergic inflammation by acting through its membrane-bound receptor, ST2 receptor (ST2L). IL-33 activity can be neutralized by the soluble spliced variant of ST2 (sST2) that has been associated with allergic inflammation but its source is not well defined. We investigated whether mast cells (MCs) are a significant source of sST2 following activation through FcεRI or ST2. We find that antigen and IL-33 induce substantial production and release of sST2 from human and mouse MCs in culture and do so synergistically when added together or in combination with stem cell factor. Moreover, increases in circulating sST2 during anaphylaxis in mice were dependent on the presence of MCs. Human MCs activated via FcεRI failed to generate IL-33 and IL-33 produced by mouse bone marrow-derived MCs was retained within the cells. Therefore, FcεRI-mediated sST2 production is independent of MC-derived IL-33 acting in an autocrine manner. These results are consistent with the conclusion that both mouse and human MCs when activated are a significant inducible source of sST2 but not IL-33 and thus have the ability to modulate the biologic impact of IL-33 produced locally by other cell types during allergic inflammation.
Collapse
Affiliation(s)
- Geethani Bandara
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Abstract
ST2 is a member of the interleukin 1 receptor family with 2 main isoforms: transmembrane or cellular (ST2L) and soluble or circulating (sST2) forms. ST2 is the receptor of the IL-33, which is an IL-1-like cytokine that can be secreted by living cells in response to cell damage. IL-33 exerts its cellular functions by binding a receptor complex composed of ST2L and IL-1R accessory protein. The IL-33/ST2 system is upregulated in cardiomyocytes and fibroblasts as response to mechanical stimulation or injury. The interaction between IL33 and ST2L has been demonstrated to be cardioprotective: in experimental models, this interaction reduces myocardial fibrosis, prevents cardiomyocyte hypertrophy, reduces apoptosis, and improves myocardial function. The beneficial effects of IL-33 are specifically through the ST2L receptor. sST2 avidly binds IL-33 which results in interruption of the interaction between IL-33/ST2L and consequently eliminates the antiremodeling effects; thus, sST2 is viewed as a decoy receptor. In recent years, knowledge about ST2 role in the pathophysiology of cardiovascular diseases has broadly expanded, with strong links to myocardial dysfunction, fibrosis, and remodeling. Beyond its myocardial role, the IL-33/ST2 system could have an additional role in the development and progression of atherosclerosis. In conclusion, IL-33/ST2L signaling is a mechanically activated, cardioprotective fibroblast-cardiomyocyte paracrine system, which may have therapeutic potential for beneficially regulating the myocardial response to overload and injury. In contrast, sST2 acts as a decoy receptor and, by sequestering IL-33, antagonizes the cardioprotective effects of IL-33/ST2L interaction.
Collapse
|
31
|
Buck AH, Coakley G, Simbari F, McSorley HJ, Quintana JF, Le Bihan T, Kumar S, Abreu-Goodger C, Lear M, Harcus Y, Ceroni A, Babayan SA, Blaxter M, Ivens A, Maizels RM. Exosomes secreted by nematode parasites transfer small RNAs to mammalian cells and modulate innate immunity. Nat Commun 2014; 5:5488. [PMID: 25421927 PMCID: PMC4263141 DOI: 10.1038/ncomms6488] [Citation(s) in RCA: 538] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/06/2014] [Indexed: 12/15/2022] Open
Abstract
In mammalian systems RNA can move between cells via vesicles. Here we demonstrate that the gastrointestinal nematode Heligmosomoides polygyrus, which infects mice, secretes vesicles containing microRNAs (miRNAs) and Y RNAs as well as a nematode Argonaute protein. These vesicles are of intestinal origin and are enriched for homologues of mammalian exosome proteins. Administration of the nematode exosomes to mice suppresses Type 2 innate responses and eosinophilia induced by the allergen Alternaria. Microarray analysis of mouse cells incubated with nematode exosomes in vitro identifies Il33r and Dusp1 as suppressed genes, and Dusp1 can be repressed by nematode miRNAs based on a reporter assay. We further identify miRNAs from the filarial nematode Litomosoides sigmodontis in the serum of infected mice, suggesting that miRNA secretion into host tissues is conserved among parasitic nematodes. These results reveal exosomes as another mechanism by which helminths manipulate their hosts and provide a mechanistic framework for RNA transfer between animal species.
Collapse
Affiliation(s)
- Amy H. Buck
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Gillian Coakley
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Fabio Simbari
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Henry J. McSorley
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Juan F. Quintana
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Thierry Le Bihan
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- SynthSys, Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Sujai Kumar
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Cei Abreu-Goodger
- Laboratorio Nacional de Genómica para la Biodiversidad, Langebio-CINVESTAV, Irapuato 36821, Guanajuato, México
| | - Marissa Lear
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Yvonne Harcus
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alessandro Ceroni
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Simon A. Babayan
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Mark Blaxter
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- SynthSys, Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Edinburgh Genomics, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Rick M. Maizels
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| |
Collapse
|
32
|
Shao D, Perros F, Caramori G, Meng C, Dormuller P, Chou PC, Church C, Papi A, Casolari P, Welsh D, Peacock A, Humbert M, Adcock IM, Wort SJ. Nuclear IL-33 regulates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hypertension. Biochem Biophys Res Commun 2014; 451:8-14. [DOI: 10.1016/j.bbrc.2014.06.111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 06/23/2014] [Indexed: 11/26/2022]
|
33
|
Saluja R, Ketelaar ME, Hawro T, Church MK, Maurer M, Nawijn MC. The role of the IL-33/IL-1RL1 axis in mast cell and basophil activation in allergic disorders. Mol Immunol 2014; 63:80-5. [PMID: 25017307 DOI: 10.1016/j.molimm.2014.06.018] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 06/08/2014] [Indexed: 12/15/2022]
Abstract
Interleukin-33 (IL-33) is a recently discovered cytokine that belongs to the IL-1 superfamily and acts as an important regulator in several allergic disorders. It is considered to function as an alarmin, or danger cytokine, that is released upon structural cell damage. IL-33 activates several immune cells, including Th2 cells, mast cells and basophils, following its interaction with a cell surface heterodimer consisting of an IL-1 receptor-related protein ST2 (IL-1RL1) and IL-1 receptor accessory protein (IL-1RAcP). This activation leads to the production of a variety of Th2-like cytokines that mediate allergic-type immune responses. Thus, IL-33 appears to be a double-edged sword because, in addition to its important contribution to host defence, it exacerbates allergic responses, such as allergic rhinitis and asthma. A major purported mechanism of IL-33 in allergy is the activation of mast cells to produce a variety of pro-inflammatory cytokines and chemokines. In this review, we summarize the current knowledge regarding the genetics and physiology of IL-33 and IL-1RL1 and its association with different allergic diseases by focusing on its effects on mast cells and basophils.
Collapse
Affiliation(s)
- Rohit Saluja
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Maria E Ketelaar
- University of Groningen, Laboratory of Allergology and Pulmonary Diseases, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands; GRIAC research institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Tomasz Hawro
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martin K Church
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Maurer
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Martijn C Nawijn
- University of Groningen, Laboratory of Allergology and Pulmonary Diseases, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands; GRIAC research institute, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Role of IL-33 and its receptor in T cell-mediated autoimmune diseases. BIOMED RESEARCH INTERNATIONAL 2014; 2014:587376. [PMID: 25032216 PMCID: PMC4084552 DOI: 10.1155/2014/587376] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 12/14/2022]
Abstract
Interleukin-33 (IL-33) is a new cytokine of interleukin-1 family, whose specific receptor is ST2. IL-33 exerts its functions via its target cells and plays different roles in diseases. ST2 deletion and exclusion of IL-33/ST2 axis are accompanied by enhanced susceptibility to dominantly T cell-mediated organ-specific autoimmune diseases. It has been reported that IL-33/ST2 pathway plays a key role in host defense and immune regulation in inflammatory and infectious diseases. This review focuses on new findings in the roles of IL-33 and ST2 in several kinds of T cell-mediated autoimmune diseases.
Collapse
|
35
|
Inage E, Kasakura K, Yashiro T, Suzuki R, Baba Y, Nakano N, Hara M, Tanabe A, Oboki K, Matsumoto K, Saito H, Niyonsaba F, Ohtsuka Y, Ogawa H, Okumura K, Shimizu T, Nishiyama C. Critical Roles for PU.1, GATA1, and GATA2 in the expression of human FcεRI on mast cells: PU.1 and GATA1 transactivate FCER1A, and GATA2 transactivates FCER1A and MS4A2. THE JOURNAL OF IMMUNOLOGY 2014; 192:3936-46. [PMID: 24639354 DOI: 10.4049/jimmunol.1302366] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The high-affinity IgE receptor, FcεRI, which is composed of α-, β-, and γ-chains, plays an important role in IgE-mediated allergic responses. In the current study, involvement of the transcription factors, PU.1, GATA1, and GATA2, in the expression of FcεRI on human mast cells was investigated. Transfection of small interfering RNAs (siRNAs) against PU.1, GATA1, and GATA2 into the human mast cell line, LAD2, caused significant downregulation of cell surface expression of FcεRI. Quantification of the mRNA levels revealed that PU.1, GATA1, and GATA2 siRNAs suppressed the α transcript, whereas the amount of β mRNA was reduced in only GATA2 siRNA transfectants. In contrast, γ mRNA levels were not affected by any of the knockdowns. Chromatin immunoprecipitation assay showed that significant amounts of PU.1, GATA1, and GATA2 bind to the promoter region of FCER1A (encoding FcεRIα) and that GATA2 binds to the promoter of MS4A2 (encoding FcεRIβ). Luciferase assay and EMSA showed that GATA2 transactivates the MS4A2 promoter via direct binding. These knockdowns of transcription factors also suppressed the IgE-mediated degranulation activity of LAD2. Similarly, all three knockdowns suppressed FcεRI expression in primary mast cells, especially PU.1 siRNA and GATA2 siRNA, which target FcεRIα and FcεRIβ, respectively. From these results, we conclude that PU.1 and GATA1 are involved in FcεRIα transcription through recruitment to its promoter, whereas GATA2 positively regulates FcεRIβ transcription. Suppression of these transcription factors leads to downregulation of FcεRI expression and IgE-mediated degranulation activity. Our findings will contribute to the development of new therapeutic approaches for FcεRI-mediated allergic diseases.
Collapse
Affiliation(s)
- Eisuke Inage
- Atopy (Allergy) Research Center, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Makrinioti H, Toussaint M, Jackson DJ, Walton RP, Johnston SL. Role of interleukin 33 in respiratory allergy and asthma. THE LANCET RESPIRATORY MEDICINE 2014; 2:226-37. [PMID: 24621684 DOI: 10.1016/s2213-2600(13)70261-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Since the discovery of interleukin 33 as the adopted ligand for the then orphan ST2 receptor, many studies have implicated this cytokine in the pathogenesis of respiratory allergy and asthma. Although some extracellular functions of interleukin 33 have been well defined, many aspects of the regulation and secretion of this cytokine need clarification. Interleukin 33 has been identified as a trigger of T-helper-type-2 cell differentiation, which by interacting with both the innate and the adaptive immune systems, can drive allergy and asthma pathogenesis. However, induction of interleukin 33 by both environmental and endogenous triggers implies a possible role during infection and tissue damage. Further understanding of the biology of interleukin 33 will clarify its possible role in future therapeutic interventions.
Collapse
Affiliation(s)
- Heidi Makrinioti
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK; Centre for Respiratory Infection, Imperial College, London, UK.
| | - Marie Toussaint
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK; Centre for Respiratory Infection, Imperial College, London, UK
| | - David J Jackson
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK; Centre for Respiratory Infection, Imperial College, London, UK; Imperial College Healthcare NHS Trust, London, UK
| | - Ross P Walton
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK; Centre for Respiratory Infection, Imperial College, London, UK
| | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute, Imperial College London, London, UK; Medical Research Council and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK; Centre for Respiratory Infection, Imperial College, London, UK; Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
37
|
A novel cardiac bio-marker: ST2: a review. Molecules 2013; 18:15314-28. [PMID: 24335613 PMCID: PMC6270545 DOI: 10.3390/molecules181215314] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/05/2013] [Accepted: 12/05/2013] [Indexed: 01/07/2023] Open
Abstract
Cardiovascular diseases (CVD) are the major cause of death worldwide. The identification of markers able to detect the early stages of such diseases and/or their progression is fundamental in order to adopt the best actions in order to reduce the worsening of clinical condition. Brain natriuretic peptide (BNP) and NT-proBNP are the best known markers of heart failure (HF), while troponins ameliorated the diagnosis of acute and chronic coronary artery diseases. Nevertheless, many limitations reduce their accuracy. Physicians have tried to develop further detectable molecules in order to improve the detection of the early moments of CVD and prevent their development. Soluble ST2 (suppression of tumorigenicity 2) is a blood protein confirmed to act as a decoy receptor for interleukin-33. It seems to be markedly induced in mechanically overloaded cardiac myocytes. Thus, HF onset or worsening of a previous chronic HF status, myocardial infarct able to induce scars that make the myocardium unable to stretch well, etc, are all conditions that could be detected by measuring blood levels of soluble ST2. The aim of this review is to explore the possible role of ST2 derived-protein as an early marker of cardiovascular diseases, above all in heart failure and ischemic heart diseases.
Collapse
|
38
|
Potaczek DP. Links between allergy and cardiovascular or hemostatic system. Int J Cardiol 2013; 170:278-85. [PMID: 24315352 DOI: 10.1016/j.ijcard.2013.11.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 11/03/2013] [Accepted: 11/17/2013] [Indexed: 12/28/2022]
Abstract
In addition to a well-known immunologic background of atherosclerosis and influences of inflammation on arterial and venous thrombosis, there is growing evidence for the presence of links between allergy and vascular or thrombotic disorders. In this interpretative review, five pretty well-documented areas of such overlap are described and discussed, including: (1) links between atherosclerosis and immunoglobulin E or atopy, (2) mutual effects of blood lipids and allergy, (3) influence of atopy and related disorders on venous thromboembolism, (4) the role of platelets in allergic diseases, and (5) the functions of protein C system in atopic disorders.
Collapse
Affiliation(s)
- Daniel P Potaczek
- Institute of Laboratory Medicine, Philipps-Universität Marburg, Marburg, Germany; John Paul II Hospital, Krakow, Poland.
| |
Collapse
|
39
|
GATA-1 regulates the generation and function of basophils. Proc Natl Acad Sci U S A 2013; 110:18620-5. [PMID: 24167252 DOI: 10.1073/pnas.1311668110] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Developmental processes of hematopoietic cells are orchestrated by transcriptional networks. GATA-1, the founding member of the GATA family of transcription factors, has been demonstrated to play crucial roles in the differentiation of erythroid cells, magakaryocytes, eosinophils, and mast cells. However, the role of GATA-1 in basophils remains elusive. Here we show that basophils abundantly express Gata1 mRNAs, and that siRNA-mediated knockdown of Gata1 resulted in impaired production of IL-4 by basophils in response to the stimulation with IgE plus antigens. ΔdblGATA mice that carry the mutated Gata1 promoter and are widely used for functional analysis of eosinophils owing to their selective loss of eosinophils showed a decreased number of basophils with reduced expression of Gata1 mRNAs. The number of basophil progenitors in bone marrow was reduced in these mice, and the generation of basophils from their bone marrow cells in culture with IL-3 or thymic stromal lymphopoietin was impaired. ΔdblGATA basophils responded poorly ex vivo to stimulation with IgE plus antigens compared with wild-type basophils as assessed by degranulation and production of IL-4 and IL-6. Moreover, ΔdblGATA mice showed impaired responses in basophil-mediated protective immunity against intestinal helminth infection. Thus, ΔdblGATA mice showed numerical and functional aberrancy in basophils in addition to the known deficiency of eosinophils. Our findings demonstrate that GATA-1 plays a key role in the generation and function of basophils and underscore the need for careful distinction of the cell lineage responsible for each phenotype observed in ΔdblGATA mice.
Collapse
|