1
|
Marada A, Walter C, Suhm T, Shankar S, Nandy A, Brummer T, Dhaouadi I, Vögtle FN, Meisinger C. DYRK1A signalling synchronizes the mitochondrial import pathways for metabolic rewiring. Nat Commun 2024; 15:5265. [PMID: 38902238 PMCID: PMC11189921 DOI: 10.1038/s41467-024-49611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/12/2024] [Indexed: 06/22/2024] Open
Abstract
Mitochondria require an extensive proteome to maintain a variety of metabolic reactions, and changes in cellular demand depend on rapid adaptation of the mitochondrial protein composition. The TOM complex, the organellar entry gate for mitochondrial precursors in the outer membrane, is a target for cytosolic kinases to modulate protein influx. DYRK1A phosphorylation of the carrier import receptor TOM70 at Ser91 enables its efficient docking and thus transfer of precursor proteins to the TOM complex. Here, we probe TOM70 phosphorylation in molecular detail and find that TOM70 is not a CK2 target nor import receptor for MIC19 as previously suggested. Instead, we identify TOM20 as a MIC19 import receptor and show off-target inhibition of the DYRK1A-TOM70 axis with the clinically used CK2 inhibitor CX4945 which activates TOM20-dependent import pathways. Taken together, modulation of DYRK1A signalling adapts the central mitochondrial protein entry gate via synchronization of TOM70- and TOM20-dependent import pathways for metabolic rewiring. Thus, DYRK1A emerges as a cytosolic surveillance kinase to regulate and fine-tune mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Adinarayana Marada
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Corvin Walter
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Tamara Suhm
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Sahana Shankar
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Arpita Nandy
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- German Cancer Consortium DKTK Partner Site Freiburg, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ines Dhaouadi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - F-Nora Vögtle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany.
- Network Aging Research, Heidelberg University, 69120, Heidelberg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| | - Chris Meisinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Harada H, Moriya K, Kobuchi H, Ishihara N, Utsumi T. Protein N-myristoylation plays a critical role in the mitochondrial localization of human mitochondrial complex I accessory subunit NDUFB7. Sci Rep 2023; 13:22991. [PMID: 38151566 PMCID: PMC10752898 DOI: 10.1038/s41598-023-50390-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/19/2023] [Indexed: 12/29/2023] Open
Abstract
The present study examined human N-myristoylated proteins that specifically localize to mitochondria among the 1,705 human genes listed in MitoProteome, a mitochondrial protein database. We herein employed a strategy utilizing cellular metabolic labeling with a bioorthogonal myristic acid analog in transfected COS-1 cells established in our previous studies. Four proteins, DMAC1, HCCS, NDUFB7, and PLGRKT, were identified as N-myristoylated proteins that specifically localize to mitochondria. Among these proteins, DMAC1 and NDUFB7 play critical roles in the assembly of complex I of the mitochondrial respiratory chain. DMAC1 functions as an assembly factor, and NDUFB7 is an accessory subunit of complex I. An analysis of the intracellular localization of non-myristoylatable G2A mutants revealed that protein N-myristoylation occurring on NDUFB7 was important for the mitochondrial localization of this protein. Furthermore, an analysis of the role of the CHCH domain in NDUFB7 using Cys to Ser mutants revealed that it was essential for the mitochondrial localization of NDUFB7. Therefore, the present results showed that NDUFB7, a vital component of human mitochondrial complex I, was N-myristoylated, and protein N-myrisotylation and the CHCH domain were both indispensable for the specific targeting and localization of NDUFB7 to mitochondria.
Collapse
Affiliation(s)
- Haruna Harada
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Koko Moriya
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Hirotsugu Kobuchi
- Department of Cell Chemistry, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Naotada Ishihara
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Toshihiko Utsumi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan.
| |
Collapse
|
3
|
Usey MM, Huet D. ATP synthase-associated coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing proteins are critical for mitochondrial function in Toxoplasma gondii. mBio 2023; 14:e0176923. [PMID: 37796022 PMCID: PMC10653836 DOI: 10.1128/mbio.01769-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain protein family are transported into the mitochondrial intermembrane space, where they play important roles in the biogenesis and function of the organelle. Unexpectedly, the ATP synthase of the apicomplexan Toxoplasma gondii harbors CHCH domain-containing subunits of unknown function. As no other ATP synthase studied to date contains this class of proteins, characterizing their function will be of broad interest to the fields of molecular parasitology and mitochondrial evolution. Here, we demonstrate that that two T. gondii ATP synthase subunits containing CHCH domains are required for parasite survival and for stability and function of the ATP synthase. We also show that knockdown disrupts multiple aspects of the mitochondrial morphology of T. gondii and that mutation of key residues in the CHCH domains caused mis-localization of the proteins. This work provides insight into the unique features of the apicomplexan ATP synthase, which could help to develop therapeutic interventions against this parasite and other apicomplexans, such as the malaria-causing parasite Plasmodium falciparum.
Collapse
Affiliation(s)
- Madelaine M. Usey
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | - Diego Huet
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Yang S, Yin X, Wang J, Li H, Shen H, Sun Q, Li X. MIC19 Exerts Neuroprotective Role via Maintaining the Mitochondrial Structure in a Rat Model of Intracerebral Hemorrhage. Int J Mol Sci 2023; 24:11553. [PMID: 37511310 PMCID: PMC10380515 DOI: 10.3390/ijms241411553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
As an essential constituent of the mitochondrial contact site and cristae organization system (MICOS), MIC19 plays a crucial role in maintaining the stability of mitochondrial function and microstructure. However, the mechanisms and functions of MIC19 in intracerebral hemorrhage (ICH) remain unknown and need to be investigated. Sprague Dawley (SD) rats injected with autologous blood obtained from the caudal artery, and cultured neurons exposed to oxygen hemoglobin (OxyHb) were used to establish and emulate the ICH model in vivo and in vitro. Lentiviral vector encoding MIC19 or MIC19 short hairpin ribonucleic acid (shRNA) was constructed and administered to rats by intracerebroventricular injection to overexpress or knock down MIC19, respectively. First, MIC19 protein levels were increased after ICH modeling. After virus transfection and subsequent ICH modeling, we observed that overexpression of MIC19 could mitigate cell apoptosis and neuronal death, as well as abnormalities in mitochondrial structure and function, oxidative stress within mitochondria, and neurobehavioral deficits in rats following ICH. Conversely, knockdown of MIC19 had the opposite effect. Moreover, we found that the connection between MIC19 and SAM50 was disrupted after ICH, which may be a reason for the impairment of the mitochondrial structure after ICH. In conclusion, MIC19 exerts a protective role in the subsequent injury induced by ICH. The investigation of MIC19 may offer clinicians novel therapeutic insights for patients afflicted with ICH.
Collapse
Affiliation(s)
- Siyuan Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xulong Yin
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Jiahe Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Qing Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
- Institute of Stroke Research, Soochow University, Suzhou 215006, China
| |
Collapse
|
5
|
Quintana-Cabrera R, Scorrano L. Determinants and outcomes of mitochondrial dynamics. Mol Cell 2023; 83:857-876. [PMID: 36889315 DOI: 10.1016/j.molcel.2023.02.012] [Citation(s) in RCA: 75] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/13/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Abstract
Mitochondria are not only central organelles in metabolism and energy conversion but are also platforms for cellular signaling cascades. Classically, the shape and ultrastructure of mitochondria were depicted as static. The discovery of morphological transitions during cell death and of conserved genes controlling mitochondrial fusion and fission contributed to establishing the concept that mitochondrial morphology and ultrastructure are dynamically regulated by mitochondria-shaping proteins. These finely tuned, dynamic changes in mitochondrial shape can in turn control mitochondrial function, and their alterations in human diseases suggest that this space can be explored for drug discovery. Here, we review the basic tenets and molecular mechanisms of mitochondrial morphology and ultrastructure, describing how they can coordinately define mitochondrial function.
Collapse
Affiliation(s)
| | - Luca Scorrano
- Veneto Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy.
| |
Collapse
|
6
|
Wischhof L, Scifo E, Ehninger D, Bano D. AIFM1 beyond cell death: An overview of this OXPHOS-inducing factor in mitochondrial diseases. EBioMedicine 2022; 83:104231. [PMID: 35994922 PMCID: PMC9420475 DOI: 10.1016/j.ebiom.2022.104231] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial intermembrane space flavoprotein with diverse functions in cellular physiology. In this regard, a large number of studies have elucidated AIF's participation to chromatin condensation during cell death in development, cancer, cardiovascular and brain disorders. However, the discovery of rare AIFM1 mutations in patients has shifted the interest of biomedical researchers towards AIF's contribution to pathogenic mechanisms underlying inherited AIFM1-linked metabolic diseases. The functional characterization of AIF binding partners has rapidly advanced our understanding of AIF biology within the mitochondria and beyond its widely reported role in cell death. At the present time, it is reasonable to assume that AIF contributes to cell survival by promoting biogenesis and maintenance of the mitochondrial oxidative phosphorylation (OXPHOS) system. With this review, we aim to outline the current knowledge around the vital role of AIF by primarily focusing on currently reported human diseases that have been linked to AIFM1 deficiency.
Collapse
Affiliation(s)
- Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Enzo Scifo
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
7
|
Martinez-Banaclocha M. N-Acetyl-Cysteine: Modulating the Cysteine Redox Proteome in Neurodegenerative Diseases. Antioxidants (Basel) 2022; 11:antiox11020416. [PMID: 35204298 PMCID: PMC8869501 DOI: 10.3390/antiox11020416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
In the last twenty years, significant progress in understanding the pathophysiology of age-associated neurodegenerative diseases has been made. However, the prevention and treatment of these diseases remain without clinically significant therapeutic advancement. While we still hope for some potential genetic therapeutic approaches, the current reality is far from substantial progress. With this state of the issue, emphasis should be placed on early diagnosis and prompt intervention in patients with increased risk of neurodegenerative diseases to slow down their progression, poor prognosis, and decreasing quality of life. Accordingly, it is urgent to implement interventions addressing the psychosocial and biochemical disturbances we know are central in managing the evolution of these disorders. Genomic and proteomic studies have shown the high molecular intricacy in neurodegenerative diseases, involving a broad spectrum of cellular pathways underlying disease progression. Recent investigations indicate that the dysregulation of the sensitive-cysteine proteome may be a concurrent pathogenic mechanism contributing to the pathophysiology of major neurodegenerative diseases, opening new therapeutic opportunities. Considering the incidence and prevalence of these disorders and their already significant burden in Western societies, they will become a real pandemic in the following decades. Therefore, we propose large-scale investigations, in selected groups of people over 40 years of age with decreased blood glutathione levels, comorbidities, and/or mild cognitive impairment, to evaluate supplementation of the diet with low doses of N-acetyl-cysteine, a promising and well-tolerated therapeutic agent suitable for long-term use.
Collapse
|
8
|
Yang Z, Wang L, Yang C, Pu S, Guo Z, Wu Q, Zhou Z, Zhao H. Mitochondrial Membrane Remodeling. Front Bioeng Biotechnol 2022; 9:786806. [PMID: 35059386 PMCID: PMC8763711 DOI: 10.3389/fbioe.2021.786806] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/22/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondria are key regulators of many important cellular processes and their dysfunction has been implicated in a large number of human disorders. Importantly, mitochondrial function is tightly linked to their ultrastructure, which possesses an intricate membrane architecture defining specific submitochondrial compartments. In particular, the mitochondrial inner membrane is highly folded into membrane invaginations that are essential for oxidative phosphorylation. Furthermore, mitochondrial membranes are highly dynamic and undergo constant membrane remodeling during mitochondrial fusion and fission. It has remained enigmatic how these membrane curvatures are generated and maintained, and specific factors involved in these processes are largely unknown. This review focuses on the current understanding of the molecular mechanism of mitochondrial membrane architectural organization and factors critical for mitochondrial morphogenesis, as well as their functional link to human diseases.
Collapse
Affiliation(s)
- Ziyun Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, High-Tech Development Zone, Chengdu, China
| | - Cheng Yang
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Shiming Pu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Ziqi Guo
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Qiong Wu
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Zuping Zhou
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China
| | - Hongxia Zhao
- School of Life Sciences, Guangxi Normal University, Guilin, China.,Guangxi Universities, Key Laboratory of Stem Cell and Biopharmaceutical Technology, Guangxi Normal University, Guilin, China.,Research Center for Biomedical Sciences, Guangxi Normal University, Guilin, China.,Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Gottschalk B, Madreiter-Sokolowski CT, Graier WF. Cristae junction as a fundamental switchboard for mitochondrial ion signaling and bioenergetics. Cell Calcium 2022; 101:102517. [PMID: 34915234 DOI: 10.1016/j.ceca.2021.102517] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/08/2021] [Indexed: 12/31/2022]
Abstract
OPA1 and MICU1 are both involved in the regulation of mitochondrial Ca2+ uptake and the stabilization of the cristae junction, which separates the inner mitochondrial membrane into the interboundary membrane and the cristae membrane. In this mini-review, we focus on the synergetic control of OPA1 and MICU1 on the cristae junction that serves as a fundamental regulator of multiple mitochondrial functions. In particular, we point to the critical role of an adaptive cristae junction permeability in mitochondrial Ca2+ signaling, spatial H+ gradients and mitochondrial membrane potential, metabolic activity, and apoptosis. These characteristics bear on a distinct localization of the oxidative phosphorylation machinery, the FoF1-ATPase, and mitochondrial Ca2+uniporter (MCU) within sections of the inner mitochondrial membrane isolated by the cristae junction and regulated by proteins like OPA1 and MICU1. We specifically focus on the impact of MICU1-regulated cristae junction on the activity and distribution of MCU within the complex ultrastructure of mitochondria.
Collapse
Affiliation(s)
- Benjamin Gottschalk
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz, 8010 Austria
| | - Corina T Madreiter-Sokolowski
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz, 8010 Austria
| | - Wolfgang F Graier
- Gottfried Schatz Research Center: Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6/6, Graz, 8010 Austria; BioTechMed, Graz.
| |
Collapse
|
10
|
Alleviation of CCCP-induced mitochondrial injury by augmenter of liver regeneration via the PINK1/Parkin pathway-dependent mitophagy. Exp Cell Res 2021; 409:112866. [PMID: 34655600 DOI: 10.1016/j.yexcr.2021.112866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/21/2022]
Abstract
The occurrence of liver diseases is attributed to mitochondrial damage. Mitophagy selectively removes dysfunctional mitochondria, thereby preserving mitochondrial function. Augmenter of liver regeneration (ALR) protects the mitochondria from injury. However, whether ALR protection is associated with mitophagy remains unclear. In this study, mitochondrial damage was induced by carbonyl cyanide 3-chlorophenylhydrazone (CCCP), and long-form ALR (lfRNA)-mediated protection against this damage was investigated. Treatment of HepG2 cells with CCCP elevated the level of intracellular ROS, inhibited ATP production, and increased the mitochondrial membrane potential and cell apoptotic rate. However, in lfALR-transfected cells, CCCP-induced cell injury was clearly alleviated, the apoptosis and ROS levels clearly declined, and the ATP production was significantly enhanced as compared with that in vector-Tx cells. Furthermore, lfALR overexpression promoted autophagy and mitophagy via a PINK1/Parkin-dependent pathway, whereas knockdown of ALR suppressed mitophagy. In lfALR-transfected cells, the phosphorylation of AKT was decreased, thus, downregulating the phosphorylation of the transcription factor FOXO3a at Ser315. In contrast, the phosphorylation of AMPK was enhanced, thereby upregulating the phosphorylation of FOXO3a at Ser413. Consequently, FOXO3a's nuclear translocation and binding to the promoter region of PINK1 was enhanced, and the accumulation of PINK1/Parkin in mitochondria increased. Meanwhile, short-form ALR (sfALR) also increased PINK1 expression through FOXO3a with the similar pathway to lfALR. In conclusion, our data suggest a novel mechanism through which both lfALR and sfALR protect mitochondria by promoting PINK1/Parkin-dependent mitophagy through FOXO3a activation.
Collapse
|
11
|
Geldon S, Fernández-Vizarra E, Tokatlidis K. Redox-Mediated Regulation of Mitochondrial Biogenesis, Dynamics, and Respiratory Chain Assembly in Yeast and Human Cells. Front Cell Dev Biol 2021; 9:720656. [PMID: 34557489 PMCID: PMC8452992 DOI: 10.3389/fcell.2021.720656] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/04/2021] [Indexed: 12/24/2022] Open
Abstract
Mitochondria are double-membrane organelles that contain their own genome, the mitochondrial DNA (mtDNA), and reminiscent of its endosymbiotic origin. Mitochondria are responsible for cellular respiration via the function of the electron oxidative phosphorylation system (OXPHOS), located in the mitochondrial inner membrane and composed of the four electron transport chain (ETC) enzymes (complexes I-IV), and the ATP synthase (complex V). Even though the mtDNA encodes essential OXPHOS components, the large majority of the structural subunits and additional biogenetical factors (more than seventy proteins) are encoded in the nucleus and translated in the cytoplasm. To incorporate these proteins and the rest of the mitochondrial proteome, mitochondria have evolved varied, and sophisticated import machineries that specifically target proteins to the different compartments defined by the two membranes. The intermembrane space (IMS) contains a high number of cysteine-rich proteins, which are mostly imported via the MIA40 oxidative folding system, dependent on the reduction, and oxidation of key Cys residues. Several of these proteins are structural components or assembly factors necessary for the correct maturation and function of the ETC complexes. Interestingly, many of these proteins are involved in the metalation of the active redox centers of complex IV, the terminal oxidase of the mitochondrial ETC. Due to their function in oxygen reduction, mitochondria are the main generators of reactive oxygen species (ROS), on both sides of the inner membrane, i.e., in the matrix and the IMS. ROS generation is important due to their role as signaling molecules, but an excessive production is detrimental due to unwanted oxidation reactions that impact on the function of different types of biomolecules contained in mitochondria. Therefore, the maintenance of the redox balance in the IMS is essential for mitochondrial function. In this review, we will discuss the role that redox regulation plays in the maintenance of IMS homeostasis as well as how mitochondrial ROS generation may be a key regulatory factor for ETC biogenesis, especially for complex IV.
Collapse
Affiliation(s)
| | - Erika Fernández-Vizarra
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
12
|
Zinsmaier KE. Mitochondrial Miro GTPases coordinate mitochondrial and peroxisomal dynamics. Small GTPases 2021; 12:372-398. [PMID: 33183150 PMCID: PMC8583064 DOI: 10.1080/21541248.2020.1843957] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
Mitochondria and peroxisomes are highly dynamic, multifunctional organelles. Both perform key roles for cellular physiology and homoeostasis by mediating bioenergetics, biosynthesis, and/or signalling. To support cellular function, they must be properly distributed, of proper size, and be able to interact with other organelles. Accumulating evidence suggests that the small atypical GTPase Miro provides a central signalling node to coordinate mitochondrial as well as peroxisomal dynamics. In this review, I summarize our current understanding of Miro-dependent functions and molecular mechanisms underlying the proper distribution, size and function of mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Konrad E. Zinsmaier
- Departments of Neuroscience and Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Mukherjee I, Ghosh M, Meinecke M. MICOS and the mitochondrial inner membrane morphology - when things get out of shape. FEBS Lett 2021; 595:1159-1183. [PMID: 33837538 DOI: 10.1002/1873-3468.14089] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 12/21/2022]
Abstract
Mitochondria play a key role in cellular signalling, metabolism and energetics. Proper architecture and remodelling of the inner mitochondrial membrane are essential for efficient respiration, apoptosis and quality control in the cell. Several protein complexes including mitochondrial contact site and cristae organizing system (MICOS), F1 FO -ATP synthase, and Optic Atrophy 1 (OPA1), facilitate formation, maintenance and stability of cristae membranes. MICOS, the F1 FO -ATP synthase, OPA1 and inner membrane phospholipids such as cardiolipin and phosphatidylethanolamine interact with each other to organize the inner membrane ultra-structure and remodel cristae in response to the cell's demands. Functional alterations in these proteins or in the biosynthesis pathway of cardiolipin and phosphatidylethanolamine result in an aberrant inner membrane architecture and impair mitochondrial function. Mitochondrial dysfunction and abnormalities hallmark several human conditions and diseases including neurodegeneration, cardiomyopathies and diabetes mellitus. Yet, they have long been regarded as secondary pathological effects. This review discusses emerging evidence of a direct relationship between protein- and lipid-dependent regulation of the inner mitochondrial membrane morphology and diseases such as fatal encephalopathy, Leigh syndrome, Parkinson's disease, and cancer.
Collapse
Affiliation(s)
- Indrani Mukherjee
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Mausumi Ghosh
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany
| | - Michael Meinecke
- Department of Cellular Biochemistry, University Medical Center Göttingen, Germany.,Göttinger Zentrum für Molekulare Biowissenschaften - GZMB, Göttingen, Germany
| |
Collapse
|
14
|
Finger Y, Riemer J. Protein import by the mitochondrial disulfide relay in higher eukaryotes. Biol Chem 2021; 401:749-763. [PMID: 32142475 DOI: 10.1515/hsz-2020-0108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
The proteome of the mitochondrial intermembrane space (IMS) contains more than 100 proteins, all of which are synthesized on cytosolic ribosomes and consequently need to be imported by dedicated machineries. The mitochondrial disulfide relay is the major import machinery for soluble proteins in the IMS. Its major component, the oxidoreductase MIA40, interacts with incoming substrates, retains them in the IMS, and oxidatively folds them. After this reaction, MIA40 is reoxidized by the sulfhydryl oxidase augmenter of liver regeneration, which couples disulfide formation by this machinery to the activity of the respiratory chain. In this review, we will discuss the import of IMS proteins with a focus on recent findings showing the diversity of disulfide relay substrates, describing the cytosolic control of this import system and highlighting the physiological relevance of the disulfide relay machinery in higher eukaryotes.
Collapse
Affiliation(s)
- Yannik Finger
- Institute for Biochemistry, Redox Biochemistry, University of Cologne, Zülpicher Str. 47a/R. 3.49, D-50674 Cologne, Germany
| | - Jan Riemer
- Department of Chemistry, Institute for Biochemistry, Redox Biochemistry, University of Cologne, and Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases, Zülpicher Str. 47a/R. 3.49, D-50674 Cologne, Germany
| |
Collapse
|
15
|
Murari A, Rhooms SK, Goparaju NS, Villanueva M, Owusu-Ansah E. An antibody toolbox to track complex I assembly defines AIF's mitochondrial function. J Cell Biol 2021; 219:152090. [PMID: 32936885 PMCID: PMC7659709 DOI: 10.1083/jcb.202001071] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/01/2020] [Accepted: 06/26/2020] [Indexed: 01/09/2023] Open
Abstract
An ability to comprehensively track the assembly intermediates (AIs) of complex I (CI) biogenesis in Drosophila will enable the characterization of the precise mechanism(s) by which various CI regulators modulate CI assembly. Accordingly, we generated 21 novel antibodies to various mitochondrial proteins and used this resource to characterize the mechanism by which apoptosis-inducing factor (AIF) regulates CI biogenesis by tracking the AI profile observed when AIF expression is impaired. We find that when the AIF–Mia40 translocation complex is disrupted, the part of CI that transfers electrons to ubiquinone is synthesized but fails to progress in the CI biosynthetic pathway. This is associated with a reduction in intramitochondrial accumulation of the Mia40 substrate, MIC19. Importantly, knockdown of either MIC19 or MIC60, components of the mitochondrial contact site and cristae organizing system (MICOS), fully recapitulates the AI profile observed when AIF is inhibited. Thus, AIF’s effect on CI assembly is principally due to compromised intramitochondrial transport of the MICOS complex.
Collapse
Affiliation(s)
- Anjaneyulu Murari
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Shauna-Kay Rhooms
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Naga Sri Goparaju
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Maximino Villanueva
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY
| | - Edward Owusu-Ansah
- Department of Physiology and Cellular Biophysics, Columbia University Medical Center, New York, NY.,The Robert N. Butler Columbia Aging Center, Columbia University Medical Center, New York, NY
| |
Collapse
|
16
|
Sabiha B, Bhatti A, Fan KH, John P, Aslam MM, Ali J, Feingold E, Demirci FY, Kamboh MI. Assessment of genetic risk of type 2 diabetes among Pakistanis based on GWAS-implicated loci. Gene 2021; 783:145563. [PMID: 33705809 DOI: 10.1016/j.gene.2021.145563] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 02/28/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022]
Abstract
Genome-wide association studies (GWAS) have identified multiple type 2 diabetes (T2D) loci, mostly among populations of European descent. There is a high prevalence of T2D among Pakistanis. Both genetic and environmental factors may be responsible for this high prevalence. In order to understand the shared genetic basis of T2D among Pakistanis and Europeans, we examined 77 genome-wide significant variants previously implicated among European populations. We genotyped 77 single-nucleotide polymorphisms (SNPs) by iPLEX® Gold or TaqMan® assays in a case-control sample of 1,683 individuals. Association analysis was performed using logistic regression. A total of 16 SNPs (TCF7L2/rs7903146, GLIS3/rs7041847, CHCHD9/rs13292136, PLEKHA1/rs2292626, FTO/rs9936385, CDKAL1/rs7756992, KCNJ11/rs5215, LOC105372155/rs12970134, KCNQ1/rs163182, CTRB1/rs7202877, ST6GAL1/rs16861329, ADAMTS9-AS2/rs6795735, LOC105370275/rs1359790, C5orf67/rs459193, ZBED3-AS1/rs6878122 and UBE2E2/rs7612463) showed statistically significant associations after controlling for the false discovery rate. While KCNQ1/rs163182 and ZBED3-AS1/rs6878122 showed opposite allelic effects, the remaining significant SNPs had the same allelic effects as reported previously. Our data indicate that a selected number of T2D loci previously identified among populations of European descent also affect the risk of T2D in the Pakistani population.
Collapse
Affiliation(s)
- Bibi Sabiha
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Attya Bhatti
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| | - Kang-Hsien Fan
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Peter John
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Muhammad Muaaz Aslam
- Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan; Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - Johar Ali
- Center for Genome Sciences, Rehman Medical College, Phase-V, Hayatabad, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - F Yesim Demirci
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| | - M Ilyas Kamboh
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
17
|
Latorre-Muro P, O'Malley KE, Bennett CF, Perry EA, Balsa E, Tavares CDJ, Jedrychowski M, Gygi SP, Puigserver P. A cold-stress-inducible PERK/OGT axis controls TOM70-assisted mitochondrial protein import and cristae formation. Cell Metab 2021; 33:598-614.e7. [PMID: 33592173 PMCID: PMC7962155 DOI: 10.1016/j.cmet.2021.01.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/20/2020] [Accepted: 01/13/2021] [Indexed: 12/14/2022]
Abstract
The architecture of cristae provides a spatial mitochondrial organization that contains functional respiratory complexes. Several protein components including OPA1 and MICOS complex subunits organize cristae structure, but upstream regulatory mechanisms are largely unknown. Here, in vivo and in vitro reconstitution experiments show that the endoplasmic reticulum (ER) kinase PERK promotes cristae formation by increasing TOM70-assisted mitochondrial import of MIC19, a critical subunit of the MICOS complex. Cold stress or β-adrenergic stimulation activates PERK that phosphorylates O-linked N-acetylglucosamine transferase (OGT). Phosphorylated OGT glycosylates TOM70 on Ser94, enhancing MIC19 protein import into mitochondria and promoting cristae formation and respiration. In addition, PERK-activated OGT O-GlcNAcylates and attenuates CK2α activity, which mediates TOM70 Ser94 phosphorylation and decreases MIC19 mitochondrial protein import. We have identified a cold-stress inter-organelle PERK-OGT-TOM70 axis that increases cell respiration through mitochondrial protein import and subsequent cristae formation. These studies have significant implications in cellular bioenergetics and adaptations to stress conditions.
Collapse
Affiliation(s)
- Pedro Latorre-Muro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Katherine E O'Malley
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Christopher F Bennett
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Elizabeth A Perry
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Eduardo Balsa
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Clint D J Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Mark Jedrychowski
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
18
|
Viana MP, Levytskyy RM, Anand R, Reichert AS, Khalimonchuk O. Protease OMA1 modulates mitochondrial bioenergetics and ultrastructure through dynamic association with MICOS complex. iScience 2021; 24:102119. [PMID: 33644718 PMCID: PMC7892988 DOI: 10.1016/j.isci.2021.102119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Remodeling of mitochondrial ultrastructure is a process that is critical for organelle physiology and apoptosis. Although the key players in this process-mitochondrial contact site and cristae junction organizing system (MICOS) and Optic Atrophy 1 (OPA1)-have been characterized, the mechanisms behind its regulation remain incompletely defined. Here, we found that in addition to its role in mitochondrial division, metallopeptidase OMA1 is required for the maintenance of intermembrane connectivity through dynamic association with MICOS. This association is independent of OPA1, mediated via the MICOS subunit MIC60, and is important for stability of MICOS and the intermembrane contacts. The OMA1-MICOS relay is required for optimal bioenergetic output and apoptosis. Loss of OMA1 affects these activities; remarkably it can be alleviated by MICOS-emulating intermembrane bridge. Thus, OMA1-dependent ultrastructure support is required for mitochondrial architecture and bioenergetics under basal and stress conditions, suggesting a previously unrecognized role for OMA1 in mitochondrial physiology.
Collapse
Affiliation(s)
| | - Roman M. Levytskyy
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University of Dusseldorf, Dusseldorf 40225, Germany
| | - Andreas S. Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University of Dusseldorf, Dusseldorf 40225, Germany
| | - Oleh Khalimonchuk
- Department of Biochemistry, University of Nebraska, Lincoln, NE 68588, USA
- Nebraska Redox Biology Center, University of Nebraska, Lincoln, NE 68588, USA
- Center for Integrated Biomolecular Communication, University of Nebraska, Lincoln, NE 68588, USA
- Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| |
Collapse
|
19
|
Ryan ÉB, Yan J, Miller N, Dayanidhi S, Ma YC, Deng HX, Siddique T. Early death of ALS-linked CHCHD10-R15L transgenic mice with central nervous system, skeletal muscle, and cardiac pathology. iScience 2021; 24:102061. [PMID: 33659869 PMCID: PMC7890413 DOI: 10.1016/j.isci.2021.102061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 08/27/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Mutations in coiled-coil-helix-coiled-coil-helix domain containing 10 (CHCHD10) have been identified in patients suffering from various degenerative diseases including mitochondrial myopathy, spinal muscular atrophy Jokela type, frontotemporal dementia, and/or amyotrophic lateral sclerosis (ALS). The pathogenic mechanism underlying CHCHD10-linked divergent disorders remains largely unknown. Here we show that transgenic mice overexpressing an ALS-linked CHCHD10 p.R15L mutation leads to an abbreviated lifespan compared with CHCHD10-WT transgenic mice. The occurrence and severity of the phenotype correlates to transgene copy number. Central nervous system (CNS), skeletal muscle, and cardiac pathology is apparent in CHCHD10-R15L transgenic mice. Despite the pathology, CHCHD10-R15L transgenic mice perform comparably to control mice in motor behavioral tasks until very close to death. Although paralysis is not observed, these models provide insight into the pleiotropic nature of CHCHD10 and suggest a contribution of CNS, skeletal muscle, and cardiac pathology to CHCHD10 p.R15L-ALS pathogenesis.
Collapse
Affiliation(s)
- Éanna B. Ryan
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
| | - Jianhua Yan
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Nimrod Miller
- Ann and Robert H. Lurie Children's Hospital of Chicago and Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sudarshan Dayanidhi
- Shirley Ryan AbilityLab and Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Yongchao C. Ma
- Ann and Robert H. Lurie Children's Hospital of Chicago and Departments of Pediatrics, Neurology and Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Han-Xiang Deng
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Teepu Siddique
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Tarry Building, Room 13-715, 303 East Chicago Avenue, Chicago, IL 60611, USA
- Northwestern University Interdepartmental Neuroscience Program, Chicago, IL, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
20
|
Yeh CW, Huang WC, Hsu PH, Yeh KH, Wang LC, Hsu PWC, Lin HC, Chen YN, Chen SC, Yeang CH, Yen HCS. The C-degron pathway eliminates mislocalized proteins and products of deubiquitinating enzymes. EMBO J 2021; 40:e105846. [PMID: 33469951 PMCID: PMC8013793 DOI: 10.15252/embj.2020105846] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/22/2023] Open
Abstract
Protein termini are determinants of protein stability. Proteins bearing degradation signals, or degrons, at their amino‐ or carboxyl‐termini are eliminated by the N‐ or C‐degron pathways, respectively. We aimed to elucidate the function of C‐degron pathways and to unveil how normal proteomes are exempt from C‐degron pathway‐mediated destruction. Our data reveal that C‐degron pathways remove mislocalized cellular proteins and cleavage products of deubiquitinating enzymes. Furthermore, the C‐degron and N‐degron pathways cooperate in protein removal. Proteome analysis revealed a shortfall in normal proteins targeted by C‐degron pathways, but not of defective proteins, suggesting proteolysis‐based immunity as a constraint for protein evolution/selection. Our work highlights the importance of protein termini for protein quality surveillance, and the relationship between the functional proteome and protein degradation pathways.
Collapse
Affiliation(s)
- Chi-Wei Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Wei-Chieh Huang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Pang-Hung Hsu
- Department of Life Science, Institute of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Li-Chin Wang
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | | | - Hsiu-Chuan Lin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Yi-Ning Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Shu-Chuan Chen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chen-Hsiang Yeang
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan.,Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Hsueh-Chi S Yen
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| |
Collapse
|
21
|
Colina-Tenorio L, Horten P, Pfanner N, Rampelt H. Shaping the mitochondrial inner membrane in health and disease. J Intern Med 2020; 287:645-664. [PMID: 32012363 DOI: 10.1111/joim.13031] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 12/19/2019] [Accepted: 01/20/2020] [Indexed: 12/16/2022]
Abstract
Mitochondria play central roles in cellular energetics, metabolism and signalling. Efficient respiration, mitochondrial quality control, apoptosis and inheritance of mitochondrial DNA depend on the proper architecture of the mitochondrial membranes and a dynamic remodelling of inner membrane cristae. Defects in mitochondrial architecture can result in severe human diseases affecting predominantly the nervous system and the heart. Inner membrane morphology is generated and maintained in particular by the mitochondrial contact site and cristae organizing system (MICOS), the F1 Fo -ATP synthase, the fusion protein OPA1/Mgm1 and the nonbilayer-forming phospholipids cardiolipin and phosphatidylethanolamine. These protein complexes and phospholipids are embedded in a network of functional interactions. They communicate with each other and additional factors, enabling them to balance different aspects of cristae biogenesis and to dynamically remodel the inner mitochondrial membrane. Genetic alterations disturbing these membrane-shaping factors can lead to human pathologies including fatal encephalopathy, dominant optic atrophy, Leigh syndrome, Parkinson's disease and Barth syndrome.
Collapse
Affiliation(s)
- L Colina-Tenorio
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - P Horten
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - N Pfanner
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - H Rampelt
- From the, Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
22
|
Jian F, Chen D, Chen L, Yan C, Lu B, Zhu Y, Chen S, Shi A, Chan DC, Song Z. Sam50 Regulates PINK1-Parkin-Mediated Mitophagy by Controlling PINK1 Stability and Mitochondrial Morphology. Cell Rep 2019; 23:2989-3005. [PMID: 29874585 DOI: 10.1016/j.celrep.2018.05.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 04/01/2018] [Accepted: 05/03/2018] [Indexed: 10/14/2022] Open
Abstract
PINK1 and Parkin mediate mitophagy, the cellular process that clears dysfunctional mitochondria. Mitophagy is regulated by mitochondrial dynamics, but the molecules linking these two processes remain poorly understood. Here, we show that Sam50, the core component of the sorting and assembly machinery (SAM), is a critical regulator of mitochondrial dynamics and PINK1-Parkin-mediated mitophagy. In response to Sam50 depletion, normal tubular mitochondria are first fragmented and subsequently merged into large spheres. Sam50 interacts with PINK1 to facilitate its processing and degradation. Depletion of Sam50 results in PINK1 accumulation, Parkin recruitment, and mitophagy. Interestingly, Sam50 deficiency induces a piecemeal mode of mitophagy that eliminates mitochondria "bit by bit" but spares mtDNA. In C. elegans, the Sam50 homolog gop-3 is required for the maintenance of mitochondrial morphology and mass. Our findings reveal that Sam50 directly links mitochondrial dynamics and mitophagy and that Sam50 depletion induces elimination of mitochondria without affecting mtDNA content.
Collapse
Affiliation(s)
- Fenglei Jian
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Dan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Li Chen
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Chaojun Yan
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Bin Lu
- Attardi Institute of Mitochondrial Biomedicine, School of Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yushan Zhu
- Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Medical Research Institute, Wuhan University, Hubei, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Zhiyin Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
23
|
Sam50-Mic19-Mic60 axis determines mitochondrial cristae architecture by mediating mitochondrial outer and inner membrane contact. Cell Death Differ 2019; 27:146-160. [PMID: 31097788 DOI: 10.1038/s41418-019-0345-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial cristae are critical for efficient oxidative phosphorylation, however, how cristae architecture is precisely organized remains largely unknown. Here, we discovered that Mic19, a core component of MICOS (mitochondrial contact site and cristae organizing system) complex, can be cleaved at N-terminal by mitochondrial protease OMA1 under certain physiological stresses. Mic19 directly interacts with mitochondrial outer-membrane protein Sam50 (the key subunit of SAM complex) and inner-membrane protein Mic60 (the key component of MICOS complex) to form Sam50-Mic19-Mic60 axis, which dominantly connects SAM and MICOS complexes to assemble MIB (mitochondrial intermembrane space bridging) supercomplex for mediating mitochondrial outer- and inner-membrane contact. OMA1-mediated Mic19 cleavage causes Sam50-Mic19-Mic60 axis disruption, which separates SAM and MICOS and leads to MIB disassembly. Disrupted Sam50-Mic19-Mic60 axis, even in the presence of SAM and MICOS complexes, causes the abnormal mitochondrial morphology, loss of mitochondrial cristae junctions, abnormal cristae distribution and reduced ATP production. Importantly, Sam50 displays punctate distribution at mitochondrial outer membrane, and acts as an anchoring point to guide the formation of mitochondrial cristae junctions. Therefore, we propose that Sam50-Mic19-Mic60 axis-mediated SAM-MICOS complexes integration determines mitochondrial cristae architecture.
Collapse
|
24
|
Imai Y, Meng H, Shiba-Fukushima K, Hattori N. Twin CHCH Proteins, CHCHD2, and CHCHD10: Key Molecules of Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. Int J Mol Sci 2019; 20:ijms20040908. [PMID: 30791515 PMCID: PMC6412816 DOI: 10.3390/ijms20040908] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations of coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and 10 (CHCHD10) have been found to be linked to Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and/or frontotemporal lobe dementia (FTD). CHCHD2 and CHCHD10 proteins, which are homologous proteins with 54% identity in amino acid sequence, belong to the mitochondrial coiled-coil-helix-coiled-coil-helix (CHCH) domain protein family. A series of studies reveals that these twin proteins form a multimodal complex, producing a variety of pathophysiology by the disease-causing variants of these proteins. In this review, we summarize the present knowledge about the physiological and pathological roles of twin proteins, CHCHD2 and CHCHD10, in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Hongrui Meng
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Kahori Shiba-Fukushima
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|
25
|
Ueda E, Tamura Y, Sakaue H, Kawano S, Kakuta C, Matsumoto S, Endo T. Myristoyl group-aided protein import into the mitochondrial intermembrane space. Sci Rep 2019; 9:1185. [PMID: 30718713 PMCID: PMC6362269 DOI: 10.1038/s41598-018-38016-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022] Open
Abstract
The MICOS complex mediates formation of the crista junctions in mitochondria. Here we analyzed the mitochondrial import pathways for the six yeast MICOS subunits as a step toward understanding of the assembly mechanisms of the MICOS complex. Mic10, Mic12, Mic26, Mic27, and Mic60 used the presequence pathway to reach the intermembrane space (IMS). In contrast, Mic19 took the TIM40/MIA pathway, through its CHCH domain, to reach the IMS. Unlike canonical TIM40/MIA substrates, presence of the N-terminal unfolded DUF domain impaired the import efficiency of Mic19, yet N-terminal myristoylation of Mic19 circumvented this effect. The myristoyl group of Mic19 binds to Tom20 of the TOM complex as well as the outer membrane, which may lead to "entropy pushing" of the DUF domain followed by the CHCH domain of Mic19 into the import channel, thereby achieving efficient import.
Collapse
Affiliation(s)
- Eri Ueda
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya, 464-8602, Japan
- Department of Biological Science, Graduate School of Science, Osaka University, 1-1 machikaneyama-cho, Toyonaka, 560-0043, Osaka, Japan
| | - Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, 990-8560, Japan
| | - Haruka Sakaue
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Shin Kawano
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Chika Kakuta
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Shunsuke Matsumoto
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
- Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan.
- Research Center for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku, Kyoto, 603-8555, Japan.
| |
Collapse
|
26
|
Utsumi T, Matsuzaki K, Kiwado A, Tanikawa A, Kikkawa Y, Hosokawa T, Otsuka A, Iuchi Y, Kobuchi H, Moriya K. Identification and characterization of protein N-myristoylation occurring on four human mitochondrial proteins, SAMM50, TOMM40, MIC19, and MIC25. PLoS One 2018; 13:e0206355. [PMID: 30427857 PMCID: PMC6235283 DOI: 10.1371/journal.pone.0206355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 10/11/2018] [Indexed: 11/29/2022] Open
Abstract
Previously, we showed that SAMM50, a mitochondrial outer membrane protein, is N-myristoylated, and this lipid modification is required for the proper targeting of SAMM50 to mitochondria. In this study, we characterized protein N-myristoylation occurring on four human mitochondrial proteins, SAMM50, TOMM40, MIC19, and MIC25, three of which are components of the mitochondrial intermembrane space bridging (MIB) complex, which plays a critical role in the structure and function of mitochondria. In vitro and in vivo metabolic labeling experiments revealed that all four of these proteins were N-myristoylated. Analysis of intracellular localization of wild-type and non-myristoylated G2A mutants of these proteins by immunofluorescence microscopic analysis and subcellular fractionation analysis indicated that protein N-myristoylation plays a critical role in mitochondrial targeting and membrane binding of two MIB components, SAMM50 and MIC19, but not those of TOMM40 and MIC25. Immunoprecipitation experiments using specific antibodies revealed that MIC19, but not MIC25, was a major N-myristoylated binding partner of SAMM50. Immunoprecipitation experiments using a stable transformant of MIC19 confirmed that protein N-myristoylation of MIC19 is required for the interaction between MIC19 and SAMM50, as reported previously. Thus, protein N-myristoylation occurring on two mitochondrial MIB components, SAMM50 and MIC19, plays a critical role in the mitochondrial targeting and protein-protein interaction between these two MIB components.
Collapse
Affiliation(s)
- Toshihiko Utsumi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan.,Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, Japan
| | - Kanako Matsuzaki
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Aya Kiwado
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Ayane Tanikawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yuki Kikkawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Takuro Hosokawa
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Aoi Otsuka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Yoshihito Iuchi
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Hirotsugu Kobuchi
- Department of Cell Chemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Koko Moriya
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
27
|
Li C, Liu H, Yang Y, Xu X, Lv T, Zhang H, Liu K, Zhang S, Chen Y. N-myristoylation of Antimicrobial Peptide CM4 Enhances Its Anticancer Activity by Interacting With Cell Membrane and Targeting Mitochondria in Breast Cancer Cells. Front Pharmacol 2018; 9:1297. [PMID: 30483133 PMCID: PMC6242968 DOI: 10.3389/fphar.2018.01297] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/22/2018] [Indexed: 01/10/2023] Open
Abstract
Development of antimicrobial peptides (AMPs) as highly effective and selective anticancer agents would represent great progress in cancer treatment. Here we show that myristoyl-CM4, a new synthetic analog generated by N-myristoylation of AMPs CM4, had anticancer activity against MCF-7, MDA-MB-231, MX-1 breast cancer cells (IC50 of 3–6 μM) and MDA-MB-231 xenograft tumors. The improved activity was attributed to the effect of myristoyl on the cell membrane. Flow cytometry and confocal laser scanning microscopy results showed that N-myristoylation significantly increased the membrane affinity toward breast cancer cells and also effectively mediated cellular entry. Despite increasing cytotoxicity against HEK293 and NIH3T3 cells and erythrocytes associated with its anticancer activity, myristoyl-CM4 maintained a certain selectivity toward breast cancer cells. Accordingly, the membrane affinity toward breast cancer cells was two to threefold higher than that of normal cells. Glycosylation analysis showed that sialic acid-containing oligosaccharides (including O-mucin and gangliosides) were important targets for myristoyl-CM4 binding to breast cancer cells. After internalization, co-localization analysis revealed that myristoyl-CM4 targeted mitochondria and induced mitochondrial dysfunction, including alterations in mitochondrial transmembrane potential, reactive oxygen species (ROS) generation and cytochrome c release. Activation of caspase 9, caspase 3 and cleavage of PARP were observed in MX-1, MCF-7, and MDA-MB-231 cells after myristoyl-CM4 treatment. The current work indicates that increasing hydrophobicity by myristoylation to modulate peptide-membrane interactions and then target mitochondria is a good strategy to develop AMPs as anticancer agents in the future.
Collapse
Affiliation(s)
- Caiyun Li
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, China
| | - Hongyan Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, China
| | - Yunqing Yang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, China
| | - Xixi Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, China
| | - Tongtong Lv
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, China
| | - Huidan Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, China
| | - Kehang Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, China
| | - Shuangquan Zhang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, China
| | - Yuqing Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Life Sciences College, Nanjing Normal University, Nanjing, China
| |
Collapse
|
28
|
Lehmer C, Schludi MH, Ransom L, Greiling J, Junghänel M, Exner N, Riemenschneider H, van der Zee J, Van Broeckhoven C, Weydt P, Heneka MT, Edbauer D. A novel CHCHD10 mutation implicates a Mia40-dependent mitochondrial import deficit in ALS. EMBO Mol Med 2018; 10:e8558. [PMID: 29789341 PMCID: PMC5991575 DOI: 10.15252/emmm.201708558] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 04/13/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022] Open
Abstract
CHCHD10 mutations are linked to amyotrophic lateral sclerosis, but their mode of action is unclear. In a 29-year-old patient with rapid disease progression, we discovered a novel mutation (Q108P) in a conserved residue within the coiled-coil-helix-coiled-coil-helix (CHCH) domain. The aggressive clinical phenotype prompted us to probe its pathogenicity. Unlike the wild-type protein, mitochondrial import of CHCHD10 Q108P was blocked nearly completely resulting in diffuse cytoplasmic localization and reduced stability. Other CHCHD10 variants reported in patients showed impaired mitochondrial import (C122R) or clustering within mitochondria (especially G66V and E127K) often associated with reduced expression. Truncation experiments suggest mitochondrial import of CHCHD10 is mediated by the CHCH domain rather than the proposed N-terminal mitochondrial targeting signal. Knockdown of Mia40, which introduces disulfide bonds into CHCH domain proteins, blocked mitochondrial import of CHCHD10. Overexpression of Mia40 rescued mitochondrial import of CHCHD10 Q108P by enhancing disulfide-bond formation. Since reduction in CHCHD10 inhibits respiration, mutations in its CHCH domain may cause aggressive disease by impairing mitochondrial import. Our data suggest Mia40 upregulation as a potential therapeutic salvage pathway.
Collapse
Affiliation(s)
- Carina Lehmer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Martin H Schludi
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Linnea Ransom
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Johanna Greiling
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Michaela Junghänel
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Nicole Exner
- Biomedical Center (BMC), Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | - Julie van der Zee
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases Group, Center for Molecular Neurology, VIB, Antwerp, Belgium
- Laboratory of Neurogenetics, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Patrick Weydt
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, Bonn University Hospital, Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, Bonn University Hospital, Bonn, Germany
- German Center for Neurodegenerative Disease (DZNE) Bonn, Bonn, Germany
| | - Dieter Edbauer
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
29
|
Sastri M, Darshi M, Mackey M, Ramachandra R, Ju S, Phan S, Adams S, Stein K, Douglas CR, Kim JJ, Ellisman MH, Taylor SS, Perkins GA. Sub-mitochondrial localization of the genetic-tagged mitochondrial intermembrane space-bridging components Mic19, Mic60 and Sam50. J Cell Sci 2017; 130:3248-3260. [PMID: 28808085 DOI: 10.1242/jcs.201400] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 08/02/2017] [Indexed: 01/14/2023] Open
Abstract
Each mitochondrial compartment contains varying protein compositions that underlie a diversity of localized functions. Insights into the localization of mitochondrial intermembrane space-bridging (MIB) components will have an impact on our understanding of mitochondrial architecture, dynamics and function. By using the novel visualizable genetic tags miniSOG and APEX2 in cultured mouse cardiac and human astrocyte cell lines and performing electron tomography, we have mapped at nanoscale resolution three key MIB components, Mic19, Mic60 and Sam50 (also known as CHCHD3, IMMT and SAMM50, respectively), in the environment of structural landmarks such as cristae and crista junctions (CJs). Tagged Mic19 and Mic60 were located at CJs, distributed in a network pattern along the mitochondrial periphery and also enriched inside cristae. We discovered an association of Mic19 with cytochrome c oxidase subunit IV. It was also found that tagged Sam50 is not uniformly distributed in the outer mitochondrial membrane and appears to incompletely overlap with Mic19- or Mic60-positive domains, most notably at the CJs.
Collapse
Affiliation(s)
- Mira Sastri
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Manjula Darshi
- Howard Hughes Medical Institute, University of California, San Diego, CA 92093, USA
| | - Mason Mackey
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Ranjan Ramachandra
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Saeyeon Ju
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Sebastien Phan
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Stephen Adams
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Kathryn Stein
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Christopher R Douglas
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Jiwan John Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA
| | - Mark H Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| | - Susan S Taylor
- Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA.,Howard Hughes Medical Institute, University of California, San Diego, CA 92093, USA.,Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Guy A Perkins
- National Center for Microscopy and Imaging Research, University of California, San Diego, CA 92093, USA
| |
Collapse
|
30
|
Regulated membrane remodeling by Mic60 controls formation of mitochondrial crista junctions. Nat Commun 2017; 8:15258. [PMID: 28561061 PMCID: PMC5460017 DOI: 10.1038/ncomms15258] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 03/14/2017] [Indexed: 01/20/2023] Open
Abstract
The mitochondrial contact site and cristae organizing system (MICOS) is crucial for the formation of crista junctions and mitochondrial inner membrane architecture. MICOS contains two core components. Mic10 shows membrane-bending activity, whereas Mic60 (mitofilin) forms contact sites between inner and outer membranes. Here we report that Mic60 deforms liposomes into thin membrane tubules and thus displays membrane-shaping activity. We identify a membrane-binding site in the soluble intermembrane space-exposed part of Mic60. This membrane-binding site is formed by a predicted amphipathic helix between the conserved coiled-coil and mitofilin domains. The mitofilin domain negatively regulates the membrane-shaping activity of Mic60. Binding of Mic19 to the mitofilin domain modulates this activity. Membrane binding and shaping by the conserved Mic60–Mic19 complex is crucial for crista junction formation, mitochondrial membrane architecture and efficient respiratory activity. Mic60 thus plays a dual role by shaping inner membrane crista junctions and forming contact sites with the outer membrane. The MICOS complex has an essential role in crista junction formation and mitochondrial inner membrane morphology. Here, the authors show that one of its components, Mic60, known to form contact sites between inner and outer membranes, also displays membrane-shaping activity.
Collapse
|
31
|
Quintana-Cabrera R, Mehrotra A, Rigoni G, Soriano ME. Who and how in the regulation of mitochondrial cristae shape and function. Biochem Biophys Res Commun 2017; 500:94-101. [PMID: 28438601 DOI: 10.1016/j.bbrc.2017.04.088] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 04/17/2017] [Indexed: 12/19/2022]
Abstract
Mitochondrial adaptation to different physiological conditions highly relies on the regulation of mitochondrial ultrastructure, particularly at the level of cristae compartment. Cristae represent the membrane hub where most of the respiratory complexes embed to account for OXPHOS and energy production in the form of adenosine triphosphate (ATP). Changes in cristae number and shape define the respiratory capacity as well as cell viability. The identification of key regulators of cristae morphology and the understanding of their contribution to the mitochondrial ultrastructure and function have become an strategic goal to understand mitochondrial disorders and to exploit as therapeutic targets. This review summarizes the known regulators of cristae ultrastructure and discusses their contribution and implications for mitochondrial dysfunction.
Collapse
Affiliation(s)
- R Quintana-Cabrera
- Department of Biology, University of Padova, Padova, 35121, Italy; Venetian Institute of Molecular Medicine, Padova 35129, Italy
| | - A Mehrotra
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - G Rigoni
- Department of Biology, University of Padova, Padova, 35121, Italy
| | - M E Soriano
- Department of Biology, University of Padova, Padova, 35121, Italy.
| |
Collapse
|
32
|
Rampelt H, Zerbes RM, van der Laan M, Pfanner N. Role of the mitochondrial contact site and cristae organizing system in membrane architecture and dynamics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:737-746. [DOI: 10.1016/j.bbamcr.2016.05.020] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/22/2022]
|
33
|
Granzyme B enters the mitochondria in a Sam50-, Tim22- and mtHsp70-dependent manner to induce apoptosis. Cell Death Differ 2017; 24:747-758. [PMID: 28338658 DOI: 10.1038/cdd.2017.3] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/07/2016] [Accepted: 12/23/2016] [Indexed: 12/22/2022] Open
Abstract
We have found that granzyme B (GB)-induced apoptosis also requires reactive oxygen species resulting from the alteration of mitochondrial complex I. How GB, which does not possess a mitochondrial targeting sequence, enter this organelle is unknown. We show that GB enters the mitochondria independently of the translocase of the outer mitochondrial membrane complex, but requires instead Sam50, the central subunit of the sorting and assembly machinery that integrates outer membrane β-barrel proteins. Moreover, GB breaches the inner membrane through Tim22, the metabolite carrier translocase pore, in a mitochondrial heat-shock protein 70 (mtHsp70)-dependent manner. Granzyme A (GA) and caspase-3 use a similar route to the mitochondria. Finally, preventing GB from entering the mitochondria either by mutating lysine 243 and arginine 244 or depleting Sam50 renders cells more resistant to GB-mediated reactive oxygen species and cell death. Similarly, Sam50 depletion protects cells from GA-, GM- and caspase-3-mediated cell death. Therefore, cytotoxic molecules enter the mitochondria to induce efficiently cell death through a noncanonical Sam50-, Tim22- and mtHsp70-dependent import pathway.
Collapse
|
34
|
Uhrig RG, Labandera AM, Tang LY, Sieben NA, Goudreault M, Yeung E, Gingras AC, Samuel MA, Moorhead GBG. Activation of Mitochondrial Protein Phosphatase SLP2 by MIA40 Regulates Seed Germination. PLANT PHYSIOLOGY 2017; 173:956-969. [PMID: 27923987 PMCID: PMC5291043 DOI: 10.1104/pp.16.01641] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/01/2016] [Indexed: 05/08/2023]
Abstract
Reversible protein phosphorylation catalyzed by protein kinases and phosphatases represents the most prolific and well-characterized posttranslational modification known. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) Shewanella-like protein phosphatase 2 (AtSLP2) is a bona fide Ser/Thr protein phosphatase that is targeted to the mitochondrial intermembrane space (IMS) where it interacts with the mitochondrial oxidoreductase import and assembly protein 40 (AtMIA40), forming a protein complex. Interaction with AtMIA40 is necessary for the phosphatase activity of AtSLP2 and is dependent on the formation of disulfide bridges on AtSLP2. Furthermore, by utilizing atslp2 null mutant, AtSLP2 complemented and AtSLP2 overexpressing plants, we identify a function for the AtSLP2-AtMIA40 complex in negatively regulating gibberellic acid-related processes during seed germination. Results presented here characterize a mitochondrial IMS-localized protein phosphatase identified in photosynthetic eukaryotes as well as a protein phosphatase target of the highly conserved eukaryotic MIA40 IMS oxidoreductase.
Collapse
Affiliation(s)
- R Glen Uhrig
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.);
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Anne-Marie Labandera
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.)
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Lay-Yin Tang
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.)
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Nicolas A Sieben
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.)
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Marilyn Goudreault
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.)
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Edward Yeung
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.)
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Anne-Claude Gingras
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.)
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Marcus A Samuel
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.)
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| | - Greg B G Moorhead
- Department of Biological Sciences, University of Calgary, Calgary, Alberta T2N 1N4, Canada (R.G.U., A.-M.L.,L.-Y.T., N.A.S., E.Y., M.A.S., G.B.G.M.);
- Group of Plant Biotechnology, Department of Biology, Swiss Federal Institute of Technology, 8092 Zurich, Switzerland (R.G.U.); and
- Samuel Lunenfeld Research Institute at Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada (M.G., A.-C.G.)
| |
Collapse
|
35
|
Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016; 7:7497-533. [PMID: 26848775 PMCID: PMC4884935 DOI: 10.18632/oncotarget.7120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
Collapse
|
36
|
Nguyen TD, Moon S, Oo MM, Tayade R, Soh MS, Song JT, Oh SA, Jung KH, Park SK. Application of rice microspore-preferred promoters to manipulate early pollen development in Arabidopsis: a heterologous system. PLANT REPRODUCTION 2016; 29:291-300. [PMID: 27796586 DOI: 10.1007/s00497-016-0293-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/23/2016] [Indexed: 06/06/2023]
Abstract
Rice microspore-promoters. Based on microarray data analyzed for developing anthers and pollen grains, we identified nine rice microspore-preferred (RMP) genes, designated RMP1 through RMP9. To extend their biotechnological applicability, we then investigated the activity of RMP promoters originating from monocotyledonous rice in a heterologous system of dicotyledonous Arabidopsis. Expression of GUS was significantly induced in transgenic plants from the microspore to the mature pollen stages and was driven by the RMP1, RMP3, RMP4, RMP5, and RMP9 promoters. We found it interesting that, whereas RMP2 and RMP6 directed GUS expression in microspore at the early unicellular and bicellular stages, RMP7 and RMP8 seemed to be expressed at the late tricellular and mature pollen stages. Moreover, GUS was expressed in seven promoters, RMP3 through RMP9, during the seedling stage, in immature leaves, cotyledons, and roots. To confirm microspore-specific expression, we used complementation analysis with an Arabidopsis male-specific gametophytic mutant, sidecar pollen-2 (scp-2), to verify the activity of three promoters. That mutant shows defects in microspore development prior to pollen mitosis I. These results provide strong evidence that the SIDECAR POLLEN gene, driven by RMP promoters, successfully complements the scp-2 mutation, and they strongly suggest that these promoters can potentially be applied for manipulating the expression of target genes at the microspore stage in various species.
Collapse
Affiliation(s)
- Tien Dung Nguyen
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea
| | - Moe Moe Oo
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Rupesh Tayade
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Moon-Soo Soh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea
| | - Ki Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 17104, Korea.
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
37
|
Zhou ZD, Saw WT, Tan EK. Mitochondrial CHCHD-Containing Proteins: Physiologic Functions and Link with Neurodegenerative Diseases. Mol Neurobiol 2016; 54:5534-5546. [PMID: 27631878 DOI: 10.1007/s12035-016-0099-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/02/2016] [Indexed: 12/13/2022]
Abstract
The coiled-coil-helix-coiled-coil-helix domain (CHCHD)-containing proteins are evolutionarily conserved nucleus-encoded small mitochondrial proteins with important functions. So far, nine members have been identified in this protein family. All CHCHD proteins have at least one functional coiled-coil-helix-coiled-coil-helix (CHCH) domain, which is stabilized by two pairs of disulfide bonds between two helices. CHCHD proteins have various important pathophysiological roles in mitochondria and other key cellular processes. Mutations of CHCHD proteins have been associated with various human neurodegenerative diseases. Mutations of CHCHD10 are associated with amyotrophic lateral sclerosis (ALS) and/or frontotemporal lobe dementia (FTD), motor neuron disease, and late-onset spinal muscular atrophy and autosomal dominant mitochondrial myopathy. CHCHD10 stabilizes mitochondrial crista ultrastructure and maintains its integrity. In patients with CHCHD10 mutations, there are abnormal mitochondrial crista structure, deficiencies of respiratory chain complexes, impaired mitochondrial respiration, and multiple mitochondrial DNA (mtDNA) deletions. Recently, CHCHD2 mutations are linked with autosomal dominant and sporadic Parkinson's disease (PD). The CHCHD2 is a multifunctional protein and plays roles in regulation of mitochondrial metabolism, synthesis of respiratory chain components, and modulation of cell apoptosis. With a better understanding of the pathophysiologic roles of CHCHD proteins, they may be potential novel therapeutic targets for human neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhi-Dong Zhou
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore.
| | - Wuan-Ting Saw
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore
| | - Eng-King Tan
- National Neuroscience Institute of Singapore, 11 Jalan Tan Tock Seng, Singapore, 308433, Singapore. .,Signature Research Program in Neuroscience and Behavioural Disorders, Duke-NUS Graduate Medical School Singapore, 8 College Road, Singapore, 169857, Singapore. .,Department of Neurology, Singapore General Hospital, Outram Road, Singapore, 169608, Singapore.
| |
Collapse
|
38
|
Moriya K, Kimoto M, Matsuzaki K, Kiwado A, Takamitsu E, Utsumi T. Identification of dually acylated proteins from complementary DNA resources by cell-free and cellular metabolic labeling. Anal Biochem 2016; 511:1-9. [PMID: 27480498 DOI: 10.1016/j.ab.2016.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 01/06/2023]
Abstract
To establish a strategy to identify dually fatty acylated proteins from cDNA resources, seven N-myristoylated proteins with cysteine (Cys) residues within the 10 N-terminal residues were selected as potential candidates among 27 N-myristoylated proteins identified from a model human cDNA resource. Seven proteins C-terminally tagged with FLAG tag or EGFP were generated and their susceptibility to protein N-myristoylation and S-palmitoylation were evaluated by metabolic labeling with [(3)H]myristic acid or [(3)H]palmitic acid either in an insect cell-free protein synthesis system or in transfected mammalian cells. As a result, EEPD1, one of five proteins (RFTN1, EEPD1, GNAI1, PDE2A, RNF11) found to be dually acylated, was shown to be a novel dually fatty acylated protein. Metabolic labeling experiments using G2A and C7S mutants of EEPD1-EGFP revealed that the palmitoylation site of EEPD1 is Cys at position 7. Analysis of the intracellular localization of EEPD1 C-terminally tagged with FLAG tag or EGFP and its G2A and C7S mutants revealed that the dual acylation directs EEPD1 to localize to the plasma membrane. Thus, dually fatty acylated proteins can be identified from cDNA resources by cell-free and cellular metabolic labeling of N-myristoylated proteins with Cys residue(s) close to the N-myristoylated N-terminus.
Collapse
Affiliation(s)
- Koko Moriya
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Mayumi Kimoto
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kanako Matsuzaki
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Aya Kiwado
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Emi Takamitsu
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Toshihiko Utsumi
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan.
| |
Collapse
|
39
|
Nuebel E, Manganas P, Tokatlidis K. Orphan proteins of unknown function in the mitochondrial intermembrane space proteome: New pathways and metabolic cross-talk. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2613-2623. [PMID: 27425144 PMCID: PMC5404111 DOI: 10.1016/j.bbamcr.2016.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 12/14/2022]
Abstract
The mitochondrial intermembrane space (IMS) is involved in protein transport, lipid homeostasis and metal ion exchange, while further acting in signalling pathways such as apoptosis. Regulation of these processes involves protein modifications, as well as stress-induced import or release of proteins and other signalling molecules. Even though the IMS is the smallest sub-compartment of mitochondria, its redox state seems to be tightly regulated. However, the way in which this compartment participates in the cross-talk between the multiple organelles and the cytosol is far from understood. Here we focus on newly identified IMS proteins that may represent future challenges in mitochondrial research. We present an overview of the import pathways, the recently discovered new components of the IMS proteome and how these relate to key aspects of cell signalling and progress made in stem cell and cancer research. A brief overview of the classic mitochondrial import pathways is featured Recent studies assigning a number of new proteins to the mitochondrial IMS are discussed Analysis of the expanded IMS proteomes can provide insights into organelle cross-talk and signalling pathways
Collapse
Affiliation(s)
- Esther Nuebel
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Phanee Manganas
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Kostas Tokatlidis
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| |
Collapse
|
40
|
Mitochondria, calcium, and tumor suppressor Fus1: At the crossroad of cancer, inflammation, and autoimmunity. Oncotarget 2016; 6:20754-72. [PMID: 26246474 PMCID: PMC4673227 DOI: 10.18632/oncotarget.4537] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/27/2015] [Indexed: 12/12/2022] Open
Abstract
Mitochondria present a unique set of key intracellular functions such as ATP synthesis, production of reactive oxygen species (ROS) and Ca2+ buffering. Mitochondria both encode and decode Ca2+ signals and these interrelated functions have a direct impact on cell signaling and metabolism. High proliferative potential is a key energy-demanding feature shared by cancer cells and activated T lymphocytes. Switch of a metabolic state mediated by alterations in mitochondrial homeostasis plays a fundamental role in maintenance of the proliferative state. Recent studies show that tumor suppressors have the ability to affect mitochondrial homeostasis controlling both cancer and autoimmunity. Herein, we discuss established and putative mechanisms of calcium–dependent regulation of both T cell and tumor cell activities. We use the mitochondrial protein Fus1 as a case of tumor suppressor that controls immune response and tumor growth via maintenance of mitochondrial homeostasis. We focus on the regulation of mitochondrial Ca2+ handling as a key function of Fus1 and highlight the mechanisms of a crosstalk between Ca2+ accumulation and mitochondrial homeostasis. Given the important role of Ca2+ signaling, mitochondrial Ca2+ transport and ROS production in the activation of NFAT and NF-κB transcription factors, we outline the importance of Fus1 activities in this context.
Collapse
|
41
|
Kozjak-Pavlovic V. The MICOS complex of human mitochondria. Cell Tissue Res 2016; 367:83-93. [PMID: 27245231 DOI: 10.1007/s00441-016-2433-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 05/09/2016] [Indexed: 11/25/2022]
Abstract
Mitochondria are organelles of endosymbiotic origin, surrounded by two membranes. The inner membrane forms invaginations called cristae that enhance its surface and are important for mitochondrial function. A recently described mitochondrial contact site and cristae organizing system (MICOS) in the inner mitochondrial membrane is crucial for the formation and maintenance of cristae structure. The MICOS complex in human mitochondria exhibits specificities and greater complexity in comparison to the yeast system. Many subunits of this complex have been previously described, but several others and their function remain to be explored. This review will summarize our present knowledge about the human MICOS complex and its constituents, while discussing the future research perspectives in this exciting and important field.
Collapse
Affiliation(s)
- Vera Kozjak-Pavlovic
- Biocenter, Chair of Microbiology, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
42
|
Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J Bioenerg Biomembr 2016; 49:75-99. [DOI: 10.1007/s10863-016-9662-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022]
|
43
|
Modjtahedi N, Tokatlidis K, Dessen P, Kroemer G. Mitochondrial Proteins Containing Coiled-Coil-Helix-Coiled-Coil-Helix (CHCH) Domains in Health and Disease. Trends Biochem Sci 2016; 41:245-260. [PMID: 26782138 DOI: 10.1016/j.tibs.2015.12.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022]
Abstract
Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein family that carry (CX9C) type motifs are imported into the mitochondrion with the help of the disulfide relay-dependent MIA import pathway. These evolutionarily conserved proteins are emerging as new cellular factors that control mitochondrial respiration, redox regulation, lipid homeostasis, and membrane ultrastructure and dynamics. We discuss recent insights on the activity of known (CX9C) motif-carrying proteins in mammals and review current data implicating the Mia40/CHCHD4 import machinery in the regulation of their mitochondrial import. Recent findings and the identification of disease-associated mutations in specific (CX9C) motif-carrying proteins have highlighted members of this family of proteins as potential therapeutic targets in a variety of human disorders.
Collapse
Affiliation(s)
- Nazanine Modjtahedi
- Institut National de la Santé et de la Recherche Médicale, U1030, Villejuif, France; Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France.
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Philippe Dessen
- Gustave Roussy Cancer Campus, Villejuif, France; Faculty of Medicine, Université Paris-Saclay, Kremlin-Bicêtre, France; Groupe bioinformatique Gustave Roussy Cancer Campus, Villejuif, France
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Nationale Contre le Cancer, Centre de Recherche des Cordeliers, Paris, France; Institut National de la Santé et de la Recherche Médicale, U1138, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, AP-HP, France; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
44
|
Ding C, Wu Z, Huang L, Wang Y, Xue J, Chen S, Deng Z, Wang L, Song Z, Chen S. Mitofilin and CHCHD6 physically interact with Sam50 to sustain cristae structure. Sci Rep 2015; 5:16064. [PMID: 26530328 PMCID: PMC4632003 DOI: 10.1038/srep16064] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/05/2015] [Indexed: 12/27/2022] Open
Abstract
The inner mitochondrial membrane (IMM) invaginates to form cristae and the maintenance of cristae depends on the mitochondrial contact site (MICOS) complex. Mitofilin and CHCHD6, which physically interact, are two components of the MICOS. In this study, we performed immunoprecipitation experiments with Mitofilin and CHCHD6 antibodies and identified a complex containing Mitofilin, Sam50, and CHCHD 3 and 6. Using transcription activator-like effector nucleases (TALENs), we generated knockdown/knockout clones of Mitofilin and CHCHD6. Transmission electron microscopy (TEM) revealed that vesicle-like cristae morphology appeared in cell lines lacking Mitofilin, and mitochondria exhibited lower cristae density in CHCHD6-knockout cells. Immunoblot analysis showed that knockdown of Mitofilin, but not knockout of CHCHD6, affected their binding partners that control cristae morphology. We also demonstrated that Mitofilin and CHCHD6 directly interacted with Sam50. Additionally, we observed that Mitofilin-knockdown cells showed decreased mitochondrial membrane potential (ΔΨm) and intracellular ATP content, which were minimally affected in CHCHD6-knockout cells. Taken together, we conclude that the integrity of MICOS and its efficient interaction with Sam50 are indispensable for cristae organization, which is relevant to mitochondrial function.
Collapse
Affiliation(s)
- Chengli Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhifei Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Lei Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Yajie Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China.,Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jie Xue
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Si Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Lianrong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| | - Zhiyin Song
- College of Life Sciences, Wuhan University, Wuhan, China
| | - Shi Chen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, and Medical Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
45
|
The Oxidation Status of Mic19 Regulates MICOS Assembly. Mol Cell Biol 2015; 35:4222-37. [PMID: 26416881 PMCID: PMC4648825 DOI: 10.1128/mcb.00578-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 09/04/2015] [Indexed: 02/04/2023] Open
Abstract
The function of mitochondria depends on the proper organization of mitochondrial membranes. The morphology of the inner membrane is regulated by the recently identified mitochondrial contact site and crista organizing system (MICOS) complex. MICOS mutants exhibit alterations in crista formation, leading to mitochondrial dysfunction. However, the mechanisms that underlie MICOS regulation remain poorly understood. MIC19, a peripheral protein of the inner membrane and component of the MICOS complex, was previously reported to be required for the proper function of MICOS in maintaining the architecture of the inner membrane. Here, we show that human and Saccharomyces cerevisiae MIC19 proteins undergo oxidation in mitochondria and require the mitochondrial intermembrane space assembly (MIA) pathway, which couples the oxidation and import of mitochondrial intermembrane space proteins for mitochondrial localization. Detailed analyses identified yeast Mic19 in two different redox forms. The form that contains an intramolecular disulfide bond is bound to Mic60 of the MICOS complex. Mic19 oxidation is not essential for its integration into the MICOS complex but plays a role in MICOS assembly and the maintenance of the proper inner membrane morphology. These findings suggest that Mic19 is a redox-dependent regulator of MICOS function.
Collapse
|
46
|
Structure of subcomplex Iβ of mammalian respiratory complex I leads to new supernumerary subunit assignments. Proc Natl Acad Sci U S A 2015; 112:12087-92. [PMID: 26371297 DOI: 10.1073/pnas.1510577112] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial complex I (proton-pumping NADH:ubiquinone oxidoreductase) is an essential respiratory enzyme. Mammalian complex I contains 45 subunits: 14 conserved "core" subunits and 31 "supernumerary" subunits. The structure of Bos taurus complex I, determined to 5-Å resolution by electron cryomicroscopy, described the structure of the mammalian core enzyme and allowed the assignment of 14 supernumerary subunits. Here, we describe the 6.8-Å resolution X-ray crystallography structure of subcomplex Iβ, a large portion of the membrane domain of B. taurus complex I that contains two core subunits and a cohort of supernumerary subunits. By comparing the structures and composition of subcomplex Iβ and complex I, supported by comparisons with Yarrowia lipolytica complex I, we propose assignments for eight further supernumerary subunits in the structure. Our new assignments include two CHCH-domain containing subunits that contain disulfide bridges between CX9C motifs; they are processed by the Mia40 oxidative-folding pathway in the intermembrane space and probably stabilize the membrane domain. We also assign subunit B22, an LYR protein, to the matrix face of the membrane domain. We reveal that subunit B22 anchors an acyl carrier protein (ACP) to the complex, replicating the LYR protein-ACP structural module that was identified previously in the hydrophilic domain. Thus, we significantly extend knowledge of how the mammalian supernumerary subunits are arranged around the core enzyme, and provide insights into their roles in biogenesis and regulation.
Collapse
|
47
|
Abstract
![]()
Mitochondria are fundamental intracellular organelles with key
roles in important cellular processes like energy production, Fe/S
cluster biogenesis, and homeostasis of lipids and inorganic ions.
Mitochondrial dysfunction is consequently linked to many human pathologies
(cancer, diabetes, neurodegeneration, stroke) and apoptosis. Mitochondrial
biogenesis relies on protein import as most mitochondrial proteins
(about 10–15% of the human proteome) are imported after their
synthesis in the cytosol. Over the last several years many mitochondrial
translocation pathways have been discovered. Among them, the import
pathway that targets proteins to the intermembrane space (IMS) stands
out as it is the only one that couples import to folding and oxidation
and results in the covalent modification of the incoming precursor
that adopt internal disulfide bonds in the process (the MIA pathway).
The discovery of this pathway represented a significant paradigm shift
as it challenged the prevailing dogma that the endoplasmic reticulum
is the only compartment of eukaryotic cells where oxidative folding
can occur. The concept of the oxidative folding pathway was
first proposed
on the basis of folding and import data for the small Tim proteins
that have conserved cysteine motifs and must adopt intramolecular
disulfides after import so that they are retained in the organelle.
The introduction of disulfides in the IMS is catalyzed by Mia40 that
functions as a chaperone inducing their folding. The sulfhydryl oxidase
Erv1 generates the disulfide pairs de novo using either molecular
oxygen or, cytochrome c and other proteins as terminal
electron acceptors that eventually link this folding process to respiration.
The solution NMR structure of Mia40 (and supporting biochemical experiments)
showed that Mia40 is a novel type of disulfide donor whose recognition
capacity for its substrates relies on a hydrophobic binding cleft
found adjacent to a thiol active CPC motif. Targeting of the substrates
to this pathway is guided by a novel type of IMS targeting signal
called ITS or MISS. This consists of only 9 amino acids, found upstream
or downstream of a unique Cys that is primed for docking to Mia40
when the substrate is accommodated in the Mia40 binding cleft. Different
routes exist to complete the folding of the substrates and their final
maturation in the IMS. Identification of new Mia40 substrates (some
even without the requirement of their cysteines) reveals an expanded
chaperone-like activity of this protein in the IMS. New evidence on
the targeting of redox active proteins like thioredoxin, glutaredoxin,
and peroxiredoxin into the IMS suggests the presence of redox-dependent
regulatory mechanisms of the protein folding and import process in
mitochondria. Maintenance of redox balance in mitochondria is crucial
for normal cell physiology and depends on the cross-talk between the
various redox signaling processes and the mitochondrial oxidative
folding pathway.
Collapse
Affiliation(s)
- Amelia Mordas
- Institute
of Molecular Cell and Systems Biology, College of Medical Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Kostas Tokatlidis
- Institute
of Molecular Cell and Systems Biology, College of Medical Veterinary
and Life Sciences, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
48
|
Guarani V, McNeill EM, Paulo JA, Huttlin EL, Fröhlich F, Gygi SP, Van Vactor D, Harper JW. QIL1 is a novel mitochondrial protein required for MICOS complex stability and cristae morphology. eLife 2015; 4:e06265. [PMID: 25997101 PMCID: PMC4439739 DOI: 10.7554/elife.06265] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 04/27/2015] [Indexed: 01/12/2023] Open
Abstract
The mitochondrial contact site and cristae junction (CJ) organizing system (MICOS) dynamically regulate mitochondrial membrane architecture. Through systematic proteomic analysis of human MICOS, we identified QIL1 (C19orf70) as a novel conserved MICOS subunit. QIL1 depletion disrupted CJ structure in cultured human cells and in Drosophila muscle and neuronal cells in vivo. In human cells, mitochondrial disruption correlated with impaired respiration. Moreover, increased mitochondrial fragmentation was observed upon QIL1 depletion in flies. Using quantitative proteomics, we show that loss of QIL1 resulted in MICOS disassembly with the accumulation of a MIC60-MIC19-MIC25 sub-complex and degradation of MIC10, MIC26, and MIC27. Additionally, we demonstrated that in QIL1-depleted cells, overexpressed MIC10 fails to significantly restore its interaction with other MICOS subunits and SAMM50. Collectively, our work uncovers a previously unrecognized subunit of the MICOS complex, necessary for CJ integrity, cristae morphology, and mitochondrial function and provides a resource for further analysis of MICOS architecture.
Collapse
Affiliation(s)
- Virginia Guarani
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | | | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Edward L Huttlin
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Florian Fröhlich
- Department of Cell Biology, Harvard Medical School, Boston, United States
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - David Van Vactor
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
49
|
Hangen E, Féraud O, Lachkar S, Mou H, Doti N, Fimia GM, Lam NV, Zhu C, Godin I, Muller K, Chatzi A, Nuebel E, Ciccosanti F, Flamant S, Bénit P, Perfettini JL, Sauvat A, Bennaceur-Griscelli A, Ser-Le Roux K, Gonin P, Tokatlidis K, Rustin P, Piacentini M, Ruvo M, Blomgren K, Kroemer G, Modjtahedi N. Interaction between AIF and CHCHD4 Regulates Respiratory Chain Biogenesis. Mol Cell 2015; 58:1001-14. [PMID: 26004228 DOI: 10.1016/j.molcel.2015.04.020] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/27/2015] [Accepted: 04/14/2015] [Indexed: 12/19/2022]
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, beyond its apoptotic function, is required for the normal expression of major respiratory chain complexes. Here we identified an AIF-interacting protein, CHCHD4, which is the central component of a redox-sensitive mitochondrial intermembrane space import machinery. Depletion or hypomorphic mutation of AIF caused a downregulation of CHCHD4 protein by diminishing its mitochondrial import. CHCHD4 depletion sufficed to induce a respiratory defect that mimicked that observed in AIF-deficient cells. CHCHD4 levels could be restored in AIF-deficient cells by enforcing its AIF-independent mitochondrial localization. This modified CHCHD4 protein reestablished respiratory function in AIF-deficient cells and enabled AIF-deficient embryoid bodies to undergo cavitation, a process of programmed cell death required for embryonic morphogenesis. These findings explain how AIF contributes to the biogenesis of respiratory chain complexes, and they establish an unexpected link between the vital function of AIF and the propensity of cells to undergo apoptosis.
Collapse
Affiliation(s)
- Emilie Hangen
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France
| | - Olivier Féraud
- Université Paris Sud/Paris XI, 94270 Kremlin Bicêtre, France; INSERM U935, 94805 Villejuif, France; ESTeam Paris Sud, Stem Cell Core Facility, Institut André Lwoff, 94800 Villejuif, France
| | - Sylvie Lachkar
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France
| | - Haiwei Mou
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France
| | - Nunzianna Doti
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Napoli, Italy
| | - Gian Maria Fimia
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS "L. Spallanzani," 00149 Rome, Italy; Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce 73100, Italy
| | - Ngoc-Vy Lam
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France
| | - Changlian Zhu
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Isabelle Godin
- Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Sud/Paris XI, 94270 Kremlin Bicêtre, France; INSERM U1009, 94805 Villejuif, France
| | - Kevin Muller
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France
| | - Afroditi Chatzi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, G12 8QQ Glasgow, UK; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion Crete 70013, Greece
| | - Esther Nuebel
- Institute of Molecular Cell and Systems Biology, University of Glasgow, G12 8QQ Glasgow, UK; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion Crete 70013, Greece
| | - Fabiola Ciccosanti
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS "L. Spallanzani," 00149 Rome, Italy
| | - Stéphane Flamant
- Université Paris Sud/Paris XI, 94270 Kremlin Bicêtre, France; INSERM U935, 94805 Villejuif, France
| | - Paule Bénit
- INSERM UMR1141, Hôpital Robert Debré, 75019 Paris, France; Faculté de Médecine Denis Diderot, Université Paris 7, 75013 Paris, France
| | - Jean-Luc Perfettini
- Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Sud/Paris XI, 94270 Kremlin Bicêtre, France; Cell Death and Aging Team, Gustave Roussy, 94805 Villejuif, France; INSERM U1030, Gustave Roussy, 94805 Villejuif, France
| | - Allan Sauvat
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France
| | - Annelise Bennaceur-Griscelli
- Université Paris Sud/Paris XI, 94270 Kremlin Bicêtre, France; INSERM U935, 94805 Villejuif, France; ESTeam Paris Sud, Stem Cell Core Facility, Institut André Lwoff, 94800 Villejuif, France; Laboratoire d'Hématologie, Hôpital Paul Brousse AP-HP, 94800 Villejuif, France
| | - Karine Ser-Le Roux
- Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Sud/Paris XI, 94270 Kremlin Bicêtre, France; Animal and Veterinary Resources, 94805 Villejuif, France
| | - Patrick Gonin
- Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Sud/Paris XI, 94270 Kremlin Bicêtre, France; Animal and Veterinary Resources, 94805 Villejuif, France
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, University of Glasgow, G12 8QQ Glasgow, UK; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion Crete 70013, Greece
| | - Pierre Rustin
- INSERM UMR1141, Hôpital Robert Debré, 75019 Paris, France; Faculté de Médecine Denis Diderot, Université Paris 7, 75013 Paris, France
| | - Mauro Piacentini
- Department of Epidemiology and Preclinical Research, National Institute for Infectious Diseases IRCCS "L. Spallanzani," 00149 Rome, Italy; Department of Biology, University of Rome "Tor Vergata," 00133 Rome, Italy
| | - Menotti Ruvo
- Istituto di Biostrutture e Bioimmagini, CNR, 80134 Napoli, Italy
| | - Klas Blomgren
- Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, University of Gothenburg, 40530 Gothenburg, Sweden; Department of Pediatrics, University of Gothenburg, The Queen Silvia Children's Hospital, 40530 Gothenburg, Sweden; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Guido Kroemer
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France; Cell Biology and Metabolomics Platforms, Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France.
| | - Nazanine Modjtahedi
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, 75006 Paris, France; INSERM, UMRS 1138, 75006 Paris, France; Gustave Roussy Comprehensive Cancer Center, 94805 Villejuif, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006 Paris, France; Université Pierre et Marie Curie, 75006 Paris, France.
| |
Collapse
|
50
|
Cooperation of protein machineries in mitochondrial protein sorting. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:1119-29. [DOI: 10.1016/j.bbamcr.2015.01.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 02/07/2023]
|