1
|
Buracco S, Döring H, Engelbart S, Singh SP, Paschke P, Whitelaw J, Thomason PA, Paul NR, Tweedy L, Lilla S, McGarry L, Corbyn R, Claydon S, Mietkowska M, Machesky LM, Rottner K, Insall RH. Scar/WAVE drives actin protrusions independently of its VCA domain using proline-rich domains. Curr Biol 2024; 34:4436-4451.e9. [PMID: 39332399 DOI: 10.1016/j.cub.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/04/2024] [Accepted: 08/13/2024] [Indexed: 09/29/2024]
Abstract
Cell migration requires the constant modification of cellular shape by reorganization of the actin cytoskeleton. Fine-tuning of this process is critical to ensure new actin filaments are formed only at specific times and in defined regions of the cell. The Scar/WAVE complex is the main catalyst of pseudopod and lamellipodium formation during cell migration. It is a pentameric complex highly conserved through eukaryotic evolution and composed of Scar/WAVE, Abi, Nap1/NCKAP1, Pir121/CYFIP, and HSPC300/Brk1. Its function is usually attributed to activation of the Arp2/3 complex through Scar/WAVE's VCA domain, while other parts of the complex are expected to mediate spatial-temporal regulation and have no direct role in actin polymerization. Here, we show in both B16-F1 mouse melanoma and Dictyostelium discoideum cells that Scar/WAVE without its VCA domain still induces the formation of morphologically normal, actin-rich protrusions, extending at comparable speeds despite a drastic reduction of Arp2/3 recruitment. However, the proline-rich regions in Scar/WAVE and Abi subunits are essential, though either is sufficient for the generation of actin protrusions in B16-F1 cells. We further demonstrate that N-WASP can compensate for the absence of Scar/WAVE's VCA domain and induce lamellipodia formation, but it still requires an intact WAVE complex, even if without its VCA domain. We conclude that the Scar/WAVE complex does more than directly activating Arp2/3, with proline-rich domains playing a central role in promoting actin protrusions. This implies a broader function for the Scar/WAVE complex, concentrating and simultaneously activating many actin-regulating proteins as a lamellipodium-producing core.
Collapse
Affiliation(s)
- Simona Buracco
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK.
| | - Hermann Döring
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Stefanie Engelbart
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | | | - Peggy Paschke
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Jamie Whitelaw
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Peter A Thomason
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Nikki R Paul
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Luke Tweedy
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Sergio Lilla
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Lynn McGarry
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Ryan Corbyn
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK
| | - Sophie Claydon
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Magdalena Mietkowska
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Laura M Machesky
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig, Spielmannstrasse 7, 38106 Braunschweig, Germany; Department of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany; Braunschweig Integrated Centre of Systems Biology (BRICS), 38106 Braunschweig, Germany
| | - Robert H Insall
- Cancer Research UK Scotland Institute, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
2
|
Liu T, Cao L, Mladenov M, Jegou A, Way M, Moores CA. Cortactin stabilizes actin branches by bridging activated Arp2/3 to its nucleated actin filament. Nat Struct Mol Biol 2024; 31:801-809. [PMID: 38267598 PMCID: PMC11102864 DOI: 10.1038/s41594-023-01205-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/18/2023] [Indexed: 01/26/2024]
Abstract
Regulation of the assembly and turnover of branched actin filament networks nucleated by the Arp2/3 complex is essential during many cellular processes, including cell migration and membrane trafficking. Cortactin is important for actin branch stabilization, but the mechanism by which this occurs is unclear. Given this, we determined the structure of vertebrate cortactin-stabilized Arp2/3 actin branches using cryogenic electron microscopy. We find that cortactin interacts with the new daughter filament nucleated by the Arp2/3 complex at the branch site, rather than the initial mother actin filament. Cortactin preferentially binds activated Arp3. It also stabilizes the F-actin-like interface of activated Arp3 with the first actin subunit of the new filament, and its central repeats extend along successive daughter-filament subunits. The preference of cortactin for activated Arp3 explains its retention at the actin branch and accounts for its synergy with other nucleation-promoting factors in regulating branched actin network dynamics.
Collapse
Affiliation(s)
- Tianyang Liu
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK
| | - Luyan Cao
- The Francis Crick Institute, London, UK
| | | | - Antoine Jegou
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Michael Way
- The Francis Crick Institute, London, UK.
- Department of Infectious Disease, Imperial College, London, UK.
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Birkbeck College, London, UK.
| |
Collapse
|
3
|
Vizcaíno-Castillo A, Kotila T, Kogan K, Yanase R, Como J, Antenucci L, Michelot A, Sunter JD, Lappalainen P. Leishmania profilin interacts with actin through an unusual structural mechanism to control cytoskeletal dynamics in parasites. J Biol Chem 2024; 300:105740. [PMID: 38340794 PMCID: PMC10907219 DOI: 10.1016/j.jbc.2024.105740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Diseases caused by Leishmania and Trypanosoma parasites are a major health problem in tropical countries. Because of their complex life cycle involving both vertebrate and insect hosts, and >1 billion years of evolutionarily distance, the cell biology of trypanosomatid parasites exhibits pronounced differences to animal cells. For example, the actin cytoskeleton of trypanosomatids is divergent when compared with other eukaryotes. To understand how actin dynamics are regulated in trypanosomatid parasites, we focused on a central actin-binding protein profilin. Co-crystal structure of Leishmania major actin in complex with L. major profilin revealed that, although the overall folds of actin and profilin are conserved in eukaryotes, Leishmania profilin contains a unique α-helical insertion, which interacts with the target binding cleft of actin monomer. This insertion is conserved across the Trypanosomatidae family and is similar to the structure of WASP homology-2 (WH2) domain, a small actin-binding motif found in many other cytoskeletal regulators. The WH2-like motif contributes to actin monomer binding and enhances the actin nucleotide exchange activity of Leishmania profilin. Moreover, Leishmania profilin inhibited formin-catalyzed actin filament assembly in a mechanism that is dependent on the presence of the WH2-like motif. By generating profilin knockout and knockin Leishmania mexicana strains, we show that profilin is important for efficient endocytic sorting in parasites, and that the ability to bind actin monomers and proline-rich proteins, and the presence of a functional WH2-like motif, are important for the in vivo function of Leishmania profilin. Collectively, this study uncovers molecular principles by which profilin regulates actin dynamics in trypanosomatids.
Collapse
Affiliation(s)
| | - Tommi Kotila
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Konstantin Kogan
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Ryuji Yanase
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK
| | - Juna Como
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Lina Antenucci
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Alphee Michelot
- Aix Marseille University, CNRS, IBDM, Turing Centre for Living Systems, Marseille, France
| | - Jack D Sunter
- Oxford Brookes University, Department of Biological and Medical Sciences, Oxford, UK.
| | - Pekka Lappalainen
- HiLIFE Institute of Biotechnology, University of Helsinki, Helsinki, Finland; Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
4
|
Dong S, Zheng W, Pinkerton N, Hansen J, Tikunova SB, Davis JP, Heissler SM, Kudryashova E, Egelman EH, Kudryashov DS. Photorhabdus luminescens TccC3 Toxin Targets the Dynamic Population of F-Actin and Impairs Cell Cortex Integrity. Int J Mol Sci 2022; 23:7026. [PMID: 35806028 PMCID: PMC9266650 DOI: 10.3390/ijms23137026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/30/2022] Open
Abstract
Due to its essential role in cellular processes, actin is a common target for bacterial toxins. One such toxin, TccC3, is an effector domain of the ABC-toxin produced by entomopathogenic bacteria of Photorhabdus spp. Unlike other actin-targeting toxins, TccC3 uniquely ADP-ribosylates actin at Thr-148, resulting in the formation of actin aggregates and inhibition of phagocytosis. It has been shown that the fully modified F-actin is resistant to depolymerization by cofilin and gelsolin, but their effects on partially modified actin were not explored. We found that only F-actin unprotected by tropomyosin is the physiological TccC3 substrate. Yet, ADP-ribosylated G-actin can be produced upon cofilin-accelerated F-actin depolymerization, which was only mildly inhibited in partially modified actin. The affinity of TccC3-ADP-ribosylated G-actin for profilin and thymosin-β4 was weakened moderately but sufficiently to potentiate spontaneous polymerization in their presence. Interestingly, the Arp2/3-mediated nucleation was also potentiated by T148-ADP-ribosylation. Notably, even partially modified actin showed reduced bundling by plastins and α-actinin. In agreement with the role of these and other tandem calponin-homology domain actin organizers in the assembly of the cortical actin network, TccC3 induced intense membrane blebbing in cultured cells. Overall, our data suggest that TccC3 imposes a complex action on the cytoskeleton by affecting F-actin nucleation, recycling, and interaction with actin-binding proteins involved in the integration of actin filaments with each other and cellular elements.
Collapse
Affiliation(s)
- Songyu Dong
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (S.D.); (N.P.); (J.H.); (E.K.)
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| | - Weili Zheng
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA; (W.Z.); (E.H.E.)
| | - Nicholas Pinkerton
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (S.D.); (N.P.); (J.H.); (E.K.)
| | - Jacob Hansen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (S.D.); (N.P.); (J.H.); (E.K.)
| | - Svetlana B. Tikunova
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.B.T.); (J.P.D.); (S.M.H.)
| | - Jonathan P. Davis
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.B.T.); (J.P.D.); (S.M.H.)
| | - Sarah M. Heissler
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; (S.B.T.); (J.P.D.); (S.M.H.)
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (S.D.); (N.P.); (J.H.); (E.K.)
| | - Edward H. Egelman
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22903, USA; (W.Z.); (E.H.E.)
| | - Dmitri S. Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA; (S.D.); (N.P.); (J.H.); (E.K.)
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Wnt signaling polarizes cortical actin polymerization to increase daughter cell asymmetry. Cell Discov 2022; 8:22. [PMID: 35228529 PMCID: PMC8885824 DOI: 10.1038/s41421-022-00376-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/06/2022] [Indexed: 01/02/2023] Open
Abstract
Asymmetric positioning of the mitotic spindle contributes to the generation of two daughter cells with distinct sizes and fates. Here, we investigated an asymmetric division in the Caenorhabditis elegans Q neuroblast lineage. In this division, beginning with an asymmetrically positioned spindle, the daughter-cell size differences continuously increased during cytokinesis, and the smaller daughter cell in the posterior eventually underwent apoptosis. We found that Arp2/3-dependent F-actin assembled in the anterior but not posterior cortex during division, suggesting that asymmetric expansion forces generated by actin polymerization may enlarge the anterior daughter cell. Consistent with this, inhibition of cortical actin polymerization or artificially equalizing actin assembly led to symmetric cell division. Furthermore, disruption of the Wnt gradient or its downstream components impaired asymmetric cortical actin assembly and caused symmetric division. Our results show that Wnt signaling establishes daughter cell asymmetry by polarizing cortical actin polymerization in a dividing cell.
Collapse
|
6
|
Held MA, Greenfest-Allen E, Jachimowicz E, Stoeckert CJ, Stokes MP, Wood AW, Wojchowski DM. Phospho-proteomic discovery of novel signal transducers including thioredoxin-interacting protein as mediators of erythropoietin-dependent human erythropoiesis. Exp Hematol 2020; 84:29-44. [PMID: 32259549 DOI: 10.1016/j.exphem.2020.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 01/19/2023]
Abstract
Erythroid cell formation critically depends on signals transduced via erythropoietin (EPO)/EPO receptor (EPOR)/JAK2 complexes. This includes not only core response modules (e.g., JAK2/STAT5, RAS/MEK/ERK), but also specialized effectors (e.g., erythroferrone, ASCT2 glutamine transport, Spi2A). By using phospho-proteomics and a human erythroblastic cell model, we identify 121 new EPO target proteins, together with their EPO-modulated domains and phosphosites. Gene ontology (GO) enrichment for "Molecular Function" identified adaptor proteins as one top EPO target category. This includes a novel EPOR/JAK2-coupled network of actin assemblage modifiers, with adaptors DLG-1, DLG-3, WAS, WASL, and CD2AP as prime components. "Cellular Component" GO analysis further identified 19 new EPO-modulated cytoskeletal targets including the erythroid cytoskeletal targets spectrin A, spectrin B, adducin 2, and glycophorin C. In each, EPO-induced phosphorylation occurred at pY sites and subdomains, which suggests coordinated regulation by EPO of the erythroid cytoskeleton. GO analysis of "Biological Processes" further revealed metabolic regulators as a likewise unexpected EPO target set. Targets included aldolase A, pyruvate dehydrogenase α1, and thioredoxin-interacting protein (TXNIP), with EPO-modulated p-Y sites in each occurring within functional subdomains. In TXNIP, EPO-induced phosphorylation occurred at novel p-T349 and p-S358 sites, and was paralleled by rapid increases in TXNIP levels. In UT7epo-E and primary human stem cell (HSC)-derived erythroid progenitor cells, lentivirus-mediated short hairpin RNA knockdown studies revealed novel pro-erythropoietic roles for TXNIP. Specifically, TXNIP's knockdown sharply inhibited c-KIT expression; compromised EPO dose-dependent erythroblast proliferation and survival; and delayed late-stage erythroblast formation. Overall, new insight is provided into EPO's diverse action mechanisms and TXNIP's contributions to EPO-dependent human erythropoiesis.
Collapse
Affiliation(s)
- Matthew A Held
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH
| | | | - Edward Jachimowicz
- Molecular Medicine Department, Maine Medical Center Research Institute, Scarborough, ME
| | | | | | | | - Don M Wojchowski
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH.
| |
Collapse
|
7
|
Janssen E, Geha RS. Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunol Rev 2019; 287:121-134. [PMID: 30565251 DOI: 10.1111/imr.12716] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022]
Abstract
The identification of patients with monogenic gene defects have illuminated the function of different proteins in the immune system, including proteins that regulate the actin cytoskeleton. Many of these actin regulatory proteins are exclusively expressed in leukocytes and regulate the formation and branching of actin filaments. Their absence or abnormal function leads to defects in immune cell shape, cellular projections, migration, and signaling. Through the study of patients' mutations and generation of mouse models that recapitulate the patients' phenotypes, our laboratory and others have gained a better understanding of the role these proteins play in cell biology and the underlying pathogenesis of immunodeficiencies and immune dysregulatory syndromes.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raif S Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
8
|
Investigation into Early Steps of Actin Recognition by the Intrinsically Disordered N-WASP Domain V. Int J Mol Sci 2019; 20:ijms20184493. [PMID: 31514372 PMCID: PMC6770570 DOI: 10.3390/ijms20184493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 09/08/2019] [Indexed: 12/21/2022] Open
Abstract
Cellular regulation or signaling processes are mediated by many proteins which often have one or several intrinsically disordered regions (IDRs). These IDRs generally serve as binders to different proteins with high specificity. In many cases, IDRs undergo a disorder-to-order transition upon binding, following a mechanism between two possible pathways, the induced fit or the conformational selection. Since these mechanisms contribute differently to the kinetics of IDR associations, it is important to investigate them in order to gain insight into the physical factors that determine the biomolecular recognition process. The verprolin homology domain (V) of the Neural Wiskott-Aldrich Syndrome Protein (N-WASP), involved in the regulation of actin polymerization, is a typical example of IDR. It is composed of two WH2 motifs, each being able to bind one actin molecule. In this study, we investigated the early steps of the recognition process of actin by the WH2 motifs of N-WASP domain V. Using docking calculations and molecular dynamics simulations, our study shows that actin is first recognized by the N-WASP domain V regions which have the highest propensity to form transient α -helices. The WH2 motif consensus sequences "LKKV" subsequently bind to actin through large conformational changes of the disordered domain V.
Collapse
|
9
|
Oda T, Takeda S, Narita A, Maéda Y. Structural Polymorphism of Actin. J Mol Biol 2019; 431:3217-3228. [DOI: 10.1016/j.jmb.2019.05.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/17/2019] [Accepted: 05/30/2019] [Indexed: 12/18/2022]
|
10
|
Chan-Yao-Chong M, Deville C, Pinet L, van Heijenoort C, Durand D, Ha-Duong T. Structural Characterization of N-WASP Domain V Using MD Simulations with NMR and SAXS Data. Biophys J 2019; 116:1216-1227. [PMID: 30878202 DOI: 10.1016/j.bpj.2019.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 11/19/2022] Open
Abstract
Because of their large conformational heterogeneity, structural characterization of intrinsically disordered proteins (IDPs) is very challenging using classical experimental methods alone. In this study, we use NMR and small-angle x-ray scattering (SAXS) data with multiple molecular dynamics (MD) simulations to describe the conformational ensemble of the fully disordered verprolin homology domain of the neural Aldrich syndrome protein involved in the regulation of actin polymerization. First, we studied several back-calculation software of SAXS scattering intensity and optimized the adjustable parameters to accurately calculate the SAXS intensity from an atomic structure. We also identified the most appropriate force fields for MD simulations of this IDP. Then, we analyzed four conformational ensembles of neural Aldrich syndrome protein verprolin homology domain, two generated with the program flexible-meccano with or without NMR-derived information as input and two others generated by MD simulations with two different force fields. These four conformational ensembles were compared to available NMR and SAXS data for validation. We found that MD simulations with the AMBER-03w force field and the TIP4P/2005s water model are able to correctly describe the conformational ensemble of this 67-residue IDP at both local and global level.
Collapse
Affiliation(s)
- Maud Chan-Yao-Chong
- BioCIS, University Paris-Sud, CNRS UMR 8076, University Paris-Saclay, Châtenay-Malabry, France; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Célia Deville
- IGBMC, University of Strasbourg, CNRS UMR 7104, Illkirch, France
| | - Louise Pinet
- ICSN, CNRS UPR 2301, University Paris-Saclay, Gif-sur-Yvette, France
| | | | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Tâp Ha-Duong
- BioCIS, University Paris-Sud, CNRS UMR 8076, University Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|
11
|
Bitard‐Feildel T, Lamiable A, Mornon J, Callebaut I. Order in Disorder as Observed by the "Hydrophobic Cluster Analysis" of Protein Sequences. Proteomics 2018; 18:e1800054. [PMID: 30299594 PMCID: PMC7168002 DOI: 10.1002/pmic.201800054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/29/2018] [Indexed: 12/17/2022]
Abstract
Hydrophobic cluster analysis (HCA) is an original approach for protein sequence analysis, which provides access to the foldable repertoire of the protein universe, including yet unannotated protein segments ("dark proteome"). Foldable segments correspond to ordered regions, as well as to intrinsically disordered regions (IDRs) undergoing disorder to order transitions. In this review, how HCA can be used to give insight into this last category of foldable segments is illustrated, with examples matching known 3D structures. After reviewing the HCA principles, examples of short foldable segments are given, which often contain short linear motifs, typically matching hydrophobic clusters. These segments become ordered upon contact with partners, with secondary structure preferences generally corresponding to those observed in the 3D structures within the complexes. Such small foldable segments are sometimes larger than the segments of known 3D structures, including flanking hydrophobic clusters that may be critical for interaction specificity or regulation, as well as intervening sequences allowing fuzziness. Cases of larger conditionally disordered domains are also presented, with lower density in hydrophobic clusters than well-folded globular domains or with exposed hydrophobic patches, which are stabilized by interaction with partners.
Collapse
Affiliation(s)
- Tristan Bitard‐Feildel
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
- Laboratoire de Biologie Computationnelle et Quantitative (LCQB)Institute of Biology Paris‐Seine (IBPS)Centre national de la recherche scientifique (CNRS)Sorbonne Université75005ParisFrance
| | - Alexis Lamiable
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
| | - Jean‐Paul Mornon
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
| | - Isabelle Callebaut
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC)Institut de recherche pour le développement (IRD)UMR CNRS 7590Muséum National d'Histoire NaturelleSorbonne Université75005ParisFrance
| |
Collapse
|
12
|
Popinako A, Antonov M, Dibrova D, Chemeris A, Sokolova OS. Analysis of the interactions between GMF and Arp2/3 complex in two binding sites by molecular dynamics simulation. Biochem Biophys Res Commun 2018; 496:529-535. [PMID: 29339159 DOI: 10.1016/j.bbrc.2018.01.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/11/2018] [Indexed: 12/17/2022]
Abstract
The Arp2/3 complex plays a key role in nucleating actin filaments branching. The glia maturation factor (GMF) competes with activators for interacting with the Arp2/3 complex and initiates the debranching of actin filaments. In this study, we performed a comparative analysis of interactions between GMF and the Arp2/3 complex and identified new amino acid residues involved in GMF binding to the Arp2/3 complex at two separate sites, revealed by X-ray and single particle EM techniques. Using molecular dynamics simulations we demonstrated the quantitative and qualitative changes in hydrogen bonds upon binding with GMF. We identified the specific amino acid residues in GMF and Arp2/3 complex that stabilize the interactions and estimated the mean force profile for the GMF using umbrella sampling. Phylogenetic and structural analyses of the recently defined GMF binding site on the Arp3 subunit indicate a new mechanism for Arp2/3 complex inactivation that involves interactions between the Arp2/3 complex and GMF at two binding sites.
Collapse
Affiliation(s)
- A Popinako
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology of RAS, 33 Leninsky Ave, bld. 2, Moscow, 119071, Russia
| | - M Antonov
- M.K. Ammosov North-Eastern Federal University, 58 Belinskiy str, suite 312, Yakutsk, 677980, Republic of Sakha (Yakutia), Russia
| | - D Dibrova
- Lomonosov Moscow State University, Faculty of Biology, 1 Leninskie gory, bld 12, Moscow, 119234, Russia
| | - A Chemeris
- Lomonosov Moscow State University, Faculty of Biology, 1 Leninskie gory, bld 12, Moscow, 119234, Russia
| | - O S Sokolova
- Lomonosov Moscow State University, Faculty of Biology, 1 Leninskie gory, bld 12, Moscow, 119234, Russia.
| |
Collapse
|
13
|
Yamagishi Y, Abe H. Actin assembly mediated by a nucleation promoting factor WASH is involved in MTOC–TMA formation during
Xenopus
oocyte maturation. Cytoskeleton (Hoboken) 2018; 75:131-143. [DOI: 10.1002/cm.21428] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/16/2017] [Accepted: 12/18/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Yuka Yamagishi
- Department of Nanobiology, Graduate School of Advanced Integration ScienceChiba University Chiba263‐8522 Japan
| | - Hiroshi Abe
- Department of Nanobiology, Graduate School of Advanced Integration ScienceChiba University Chiba263‐8522 Japan
- Department of Biology, Graduate School of ScienceChiba UniversityChiba, 263‐8522 Japan
| |
Collapse
|
14
|
Wu Y, Zhuang J, Zhao D, Zhang F, Ma J, Xu C. Cyclic stretch-induced the cytoskeleton rearrangement and gene expression of cytoskeletal regulators in human periodontal ligament cells. Acta Odontol Scand 2017; 75:507-516. [PMID: 28681629 DOI: 10.1080/00016357.2017.1347823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aimed to explore the mechanism of the stretch-induced cell realignment and cytoskeletal rearrangement by identifying several mechanoresponsive genes related to cytoskeletal regulators in human PDL cells. MATERIAL AND METHODS After the cells were stretched by 1, 10 and 20% strains for 0.5, 1, 2, 4, 6, 12 or 24 h, the changes of the morphology and content of microfilaments were recorded and calculated. Meanwhile, the expression of 84 key genes encoding cytoskeletal regulators after 6 and 24 h stretches with 20% strain was detected by using real-time PCR array. Western blot was applied to identify the protein expression level of several cytoskeletal regulators encoded by these differentially expressed genes. RESULTS The confocal fluorescent staining results confirmed that stretch-induced realignment of cells and rearrangement of microfilaments. Among the 84 genes screened, one gene was up-regulated while two genes were down-regulated after 6 h stretch. Meanwhile, three genes were up-regulated while two genes were down-regulated after 24 h stretch. These genes displaying differential expression included genes regulating polymerization/depolymerization of microfilaments (CDC42EP2, FNBP1L, NCK2, PIKFYVE, WASL), polymerization/depolymerization of microtubules (STMN1), interacting between microfilaments and microtubules (MACF1), as well as a phosphatase (PPP1R12B). Among the proteins encoded by these genes, the protein expression level of Cdc42 effector protein-2 (encoded by CDC42EP2) and Stathmin-1 (encoded by STMN1) was down-regulated, while the protein expression level of N-WASP (encoded by WASL) was up-regulated. CONCLUSION The present study confirmed the cyclic stretch-induced cellular realignment and rearrangement of microfilaments in the human PDL cells and indicated several force-sensitive genes with regard to cytoskeletal regulators.
Collapse
Affiliation(s)
- Yaqin Wu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiabao Zhuang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dan Zhao
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Fuqiang Zhang
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jiayin Ma
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chun Xu
- Department of Prosthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
15
|
Carlier MF, Shekhar S. Global treadmilling coordinates actin turnover and controls the size of actin networks. Nat Rev Mol Cell Biol 2017. [PMID: 28248322 DOI: 10.1038/nrm.(2016)172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Various cellular processes (including cell motility) are driven by the regulated, polarized assembly of actin filaments into distinct force-producing arrays of defined size and architecture. Branched, linear, contractile and cytosolic arrays coexist in vivo, and cells intricately control the number, length and assembly rate of filaments in these arrays. Recent in vitro and in vivo studies have revealed novel molecular mechanisms that regulate the number of filament barbed and pointed ends and their respective assembly and disassembly rates, thus defining classes of dynamically different filaments, which coexist in the same cell. We propose that a global treadmilling process, in which a steady-state amount of polymerizable actin monomers is established by the dynamics of each network, is responsible for defining the size and turnover of coexisting actin networks. Furthermore, signal-induced changes in the partitioning of actin to distinct arrays (mediated by RHO GTPases) result in the establishment of various steady-state concentrations of polymerizable monomers, thereby globally influencing the growth rate of actin filaments.
Collapse
Affiliation(s)
- Marie-France Carlier
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Gif-sur-Yvette, Paris 91190, France
| | - Shashank Shekhar
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Gif-sur-Yvette, Paris 91190, France
| |
Collapse
|
16
|
Carlier MF, Shekhar S. Global treadmilling coordinates actin turnover and controls the size of actin networks. Nat Rev Mol Cell Biol 2017; 18:389-401. [DOI: 10.1038/nrm.2016.172] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
Belyy A, Raoux-Barbot D, Saveanu C, Namane A, Ogryzko V, Worpenberg L, David V, Henriot V, Fellous S, Merrifield C, Assayag E, Ladant D, Renault L, Mechold U. Actin activates Pseudomonas aeruginosa ExoY nucleotidyl cyclase toxin and ExoY-like effector domains from MARTX toxins. Nat Commun 2016; 7:13582. [PMID: 27917880 PMCID: PMC5150216 DOI: 10.1038/ncomms13582] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/13/2016] [Indexed: 12/15/2022] Open
Abstract
The nucleotidyl cyclase toxin ExoY is one of the virulence factors injected by the Pseudomonas aeruginosa type III secretion system into host cells. Inside cells, it is activated by an unknown eukaryotic cofactor to synthesize various cyclic nucleotide monophosphates. ExoY-like adenylate cyclases are also found in Multifunctional-Autoprocessing Repeats-in-ToXin (MARTX) toxins produced by various Gram-negative pathogens. Here we demonstrate that filamentous actin (F-actin) is the hitherto unknown cofactor of ExoY. Association with F-actin stimulates ExoY activity more than 10,000 fold in vitro and results in stabilization of actin filaments. ExoY is recruited to actin filaments in transfected cells and alters F-actin turnover. Actin also activates an ExoY-like adenylate cyclase MARTX effector domain from Vibrio nigripulchritudo. Finally, using a yeast genetic screen, we identify actin mutants that no longer activate ExoY. Our results thus reveal a new sub-group within the class II adenylyl cyclase family, namely actin-activated nucleotidyl cyclase (AA-NC) toxins.
Collapse
Affiliation(s)
- Alexander Belyy
- Institut Pasteur, CNRS UMR3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 25-28 rue du Docteur Roux, 75724 Paris cedex 15, France
- Department of Bacterial Infections, Gamaleya Research Center, Moscow 123098, Russia
| | - Dorothée Raoux-Barbot
- Institut Pasteur, CNRS UMR3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 25-28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Cosmin Saveanu
- Institut Pasteur, CNRS UMR3525, Génétique des Interactions Macromoléculaires, Département de Génomes et Génétique, 25-28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Abdelkader Namane
- Institut Pasteur, CNRS UMR3525, Génétique des Interactions Macromoléculaires, Département de Génomes et Génétique, 25-28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Vasily Ogryzko
- Institut Gustave Roussy, CNRS UMR 8126, Unité de Signaling, Nuclei and Innovations in Oncology, 94805 Villejuif, France
| | - Lina Worpenberg
- Institut Pasteur, CNRS UMR3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 25-28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Violaine David
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Veronique Henriot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Souad Fellous
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Christien Merrifield
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Elodie Assayag
- Institut Pasteur, CNRS UMR3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 25-28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Daniel Ladant
- Institut Pasteur, CNRS UMR3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 25-28 rue du Docteur Roux, 75724 Paris cedex 15, France
| | - Louis Renault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Undine Mechold
- Institut Pasteur, CNRS UMR3528, Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, 25-28 rue du Docteur Roux, 75724 Paris cedex 15, France
| |
Collapse
|
18
|
Deville C, Girard-Blanc C, Assrir N, Nhiri N, Jacquet E, Bontems F, Renault L, Petres S, van Heijenoort C. Mutations in actin used for structural studies partially disrupt β-thymosin/WH2 domains interaction. FEBS Lett 2016; 590:3690-3699. [PMID: 27680677 DOI: 10.1002/1873-3468.12423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/25/2016] [Accepted: 09/06/2016] [Indexed: 11/10/2022]
Abstract
Understanding the structural basis of actin cytoskeleton remodeling requires stabilization of actin monomers, oligomers, and filaments in complex with partner proteins, using various biochemical strategies. Here, we report a dramatic destabilization of the dynamic interaction with a model β-thymosin/WH2 domain induced by mutations in actin. This result underlines that mutant actins should be used with prudence to characterize interactions with intrinsically disordered partners as destabilization of dynamic interactions, although identifiable by NMR, may be invisible to other structural techniques. It also highlights how both β-thymosin/WH2 domains and actin tune local structure and dynamics in regulatory processes involving intrinsically disordered domains.
Collapse
Affiliation(s)
- Célia Deville
- Structural Chemistry and Biology Team, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Nadine Assrir
- Structural Chemistry and Biology Team, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Naïma Nhiri
- Structural Chemistry and Biology Team, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Eric Jacquet
- Structural Chemistry and Biology Team, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - François Bontems
- Structural Chemistry and Biology Team, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Louis Renault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Carine van Heijenoort
- Structural Chemistry and Biology Team, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
19
|
Allwood EG, Tyler JJ, Urbanek AN, Smaczynska-de Rooij II, Ayscough KR. Elucidating Key Motifs Required for Arp2/3-Dependent and Independent Actin Nucleation by Las17/WASP. PLoS One 2016; 11:e0163177. [PMID: 27637067 PMCID: PMC5026357 DOI: 10.1371/journal.pone.0163177] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/02/2016] [Indexed: 12/21/2022] Open
Abstract
Actin nucleation is the key rate limiting step in the process of actin polymerization, and tight regulation of this process is critical to ensure actin filaments form only at specific times and at defined regions of the cell. Arp2/3 is a well-characterised protein complex that can promote nucleation of new filaments, though its activity requires additional nucleation promotion factors (NPFs). The best recognized of these factors are the WASP family of proteins that contain binding motifs for both monomeric actin and for Arp2/3. Previously we demonstrated that the yeast WASP homologue, Las17, in addition to activating Arp2/3 can also nucleate actin filaments de novo, independently of Arp2/3. This activity is dependent on its polyproline rich region. Through biochemical and in vivo analysis we have now identified key motifs within the polyproline region that are required for nucleation and elongation of actin filaments, and have addressed the role of the WH2 domain in the context of actin nucleation without Arp2/3. We have also demonstrated that full length Las17 is able to bind liposomes giving rise to the possibility of direct linkage of nascent actin filaments to specific membrane sites to which Las17 has been recruited. Overall, we propose that Las17 functions as the key initiator of de novo actin filament formation at endocytic sites by nucleating, elongating and tethering nascent filaments which then serve as a platform for Arp2/3 recruitment and function.
Collapse
Affiliation(s)
- Ellen G. Allwood
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Joe J. Tyler
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Agnieszka N. Urbanek
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | | | - Kathryn R. Ayscough
- Department of Biomedical Science, Firth Court, University of Sheffield, Sheffield S10 2TN, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Hamp J, Löwer A, Dottermusch-Heidel C, Beck L, Moussian B, Flötenmeyer M, Önel SF. Drosophila Kette coordinates myoblast junction dissolution and the ratio of Scar-to-WASp during myoblast fusion. J Cell Sci 2016; 129:3426-36. [PMID: 27521427 PMCID: PMC5047678 DOI: 10.1242/jcs.175638] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 07/25/2016] [Indexed: 12/31/2022] Open
Abstract
The fusion of founder cells and fusion-competent myoblasts (FCMs) is crucial for muscle formation in Drosophila. Characteristic events of myoblast fusion include the recognition and adhesion of myoblasts, and the formation of branched F-actin by the Arp2/3 complex at the site of cell–cell contact. At the ultrastructural level, these events are reflected by the appearance of finger-like protrusions and electron-dense plaques that appear prior to fusion. Severe defects in myoblast fusion are caused by the loss of Kette (a homolog of Nap1 and Hem-2, also known as NCKAP1 and NCKAP1L, respectively), a member of the regulatory complex formed by Scar or WAVE proteins (represented by the single protein, Scar, in flies). kette mutants form finger-like protrusions, but the electron-dense plaques are extended. Here, we show that the electron-dense plaques in wild-type and kette mutant myoblasts resemble other electron-dense structures that are known to function as cellular junctions. Furthermore, analysis of double mutants and attempts to rescue the kette mutant phenotype with N-cadherin, wasp and genes of members of the regulatory Scar complex revealed that Kette has two functions during myoblast fusion. First, Kette controls the dissolution of electron-dense plaques. Second, Kette controls the ratio of the Arp2/3 activators Scar and WASp in FCMs. Summary: The Drosophila protein Kette is essential for myoblast fusion. It controls the dissolution of electron-dense plaques and the ratio of Scar and WASp proteins in fusion-competent myoblasts during fusion pore formation.
Collapse
Affiliation(s)
- Julia Hamp
- Philipps-Universität Marburg, FB Biologie, Entwicklungsbiologie, Karl-von-Frisch Str. 8, Marburg 35043, Germany
| | - Andreas Löwer
- Philipps-Universität Marburg, FB Biologie, Entwicklungsbiologie, Karl-von-Frisch Str. 8, Marburg 35043, Germany
| | | | - Lothar Beck
- Fachbereich Biologie, Spezielle Zoologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 8, Marburg 35043, Germany
| | - Bernard Moussian
- Interfaculty Institute for Cell Biology, Section Animal Genetics, University of Tübingen, Tübingen 72076, Germany
| | - Matthias Flötenmeyer
- Max Planck Institute for Developmental Biology, Section Electron Microscopy, Tübingen 72076, Germany
| | - Susanne-Filiz Önel
- Philipps-Universität Marburg, FB Biologie, Entwicklungsbiologie, Karl-von-Frisch Str. 8, Marburg 35043, Germany
| |
Collapse
|
21
|
Renault L. Intrinsic, Functional, and Structural Properties of β-Thymosins and β-Thymosin/WH2 Domains in the Regulation and Coordination of Actin Self-Assembly Dynamics and Cytoskeleton Remodeling. VITAMINS AND HORMONES 2016; 102:25-54. [PMID: 27450729 DOI: 10.1016/bs.vh.2016.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
β-Thymosins are a family of heat-stable multifunctional polypeptides that are expressed as small proteins of about 5kDa (~45 amino acids) almost exclusively in multicellular animals. They were first isolated from the thymus. As full-length or truncated polypeptides, they appear to stimulate a broad range of extracellular activities in various signaling pathways, including tissue repair and regeneration, inflammation, cell migration, and immune defense. However, their cell surface receptors and structural mechanisms of regulations in these multiple pathways remain still poorly understood. Besides their extracellular activities, they belong to a larger family of small, intrinsically disordered actin-binding domains called WH2/β-thymosin domains that have been identified in more than 1800 multidomain proteins found in different taxonomic domains of life and involved in various actin-based motile processes including cell morphogenesis, motility, adhesions, tissue development, intracellular trafficking, or pathogen infections. This review briefly surveys the main recent findings to understand how these small, intrinsically disordered but functional domains can interact with many unrelated partners and can thus integrate and coordinate various intracellular activities in actin self-assembly dynamics and cell signaling pathways linked to their cytoskeleton remodeling.
Collapse
Affiliation(s)
- L Renault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
22
|
Fetics S, Thureau A, Campanacci V, Aumont-Nicaise M, Dang I, Gautreau A, Pérez J, Cherfils J. Hybrid Structural Analysis of the Arp2/3 Regulator Arpin Identifies Its Acidic Tail as a Primary Binding Epitope. Structure 2016; 24:252-60. [PMID: 26774128 DOI: 10.1016/j.str.2015.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 01/25/2023]
Abstract
Arpin is a newly discovered regulator of actin polymerization at the cell leading edge, which steers cell migration by exerting a negative control on the Arp2/3 complex. Arpin proteins have an acidic tail homologous to the acidic motif of the VCA domain of nucleation-promoting factors (NPFs). This tail is predicted to compete with the VCA of NPFs for binding to the Arp2/3 complex, thereby mitigating activation and/or tethering of the complex to sites of actin branching. Here, we investigated the structure of full-length Arpin using synchrotron small-angle X-ray scattering, and of its acidic tail in complex with an ankyrin repeats domain using X-ray crystallography. The data were combined in a hybrid model in which the acidic tail extends from the globular core as a linear peptide and forms a primary epitope that is readily accessible in unbound Arpin and suffices to tether Arpin to interacting proteins with high affinity.
Collapse
Affiliation(s)
- Susan Fetics
- Laboratoire de Pharmacologie et Biologie Appliquée, UMR 8113, CNRS-Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France; Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, 91190 Gif-sur-Yvette, France
| | | | - Valérie Campanacci
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, 91190 Gif-sur-Yvette, France
| | - Magali Aumont-Nicaise
- Institut de Biochimie et Biophysique Moléculaire et Cellulaire, CNRS-Université Paris-Sud UMR 8619, 91400 Orsay, France
| | - Irène Dang
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, 91190 Gif-sur-Yvette, France; Ecole Polytechnique-CNRS UMR7654, 91120 Palaiseau, France
| | - Alexis Gautreau
- Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, 91190 Gif-sur-Yvette, France; Ecole Polytechnique-CNRS UMR7654, 91120 Palaiseau, France
| | - Javier Pérez
- Synchrotron SOLEIL, 91190 Gif-sur-Yvette, France
| | - Jacqueline Cherfils
- Laboratoire de Pharmacologie et Biologie Appliquée, UMR 8113, CNRS-Ecole Normale Supérieure de Cachan, 61 Avenue du Président Wilson, 94235 Cachan Cedex, France; Laboratoire d'Enzymologie et Biochimie Structurales, CNRS UPR3082, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
23
|
Structural analysis of the transitional state of Arp2/3 complex activation by two actin-bound WCAs. Nat Commun 2015; 5:3308. [PMID: 24518936 DOI: 10.1038/ncomms4308] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 01/22/2014] [Indexed: 11/08/2022] Open
Abstract
Actin filament nucleation and branching by Arp2/3 complex is activated by nucleation-promoting factors (NPFs), whose C-terminal WCA region contains binding sites for actin (W) and Arp2/3 complex (CA). It is debated whether one or two NPFs are required for activation. Here we present evidence in support of the two-NPF model and show that actin plays a crucial role in the interactions of two mammalian NPFs, N-WASP and WAVE2, with Arp2/3 complex. Competition between actin-WCA and glia maturation factor (GMF) for binding to Arp2/3 complex suggests that during activation the first actin monomer binds at the barbed end of Arp2. Based on distance constraints obtained by time-resolved fluorescence resonance energy transfer, we define the relative position of the two actin-WCAs on Arp2/3 complex and propose an atomic model of the 11-subunit transitional complex.
Collapse
|
24
|
Control of polarized assembly of actin filaments in cell motility. Cell Mol Life Sci 2015; 72:3051-67. [PMID: 25948416 PMCID: PMC4506460 DOI: 10.1007/s00018-015-1914-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/02/2015] [Accepted: 04/23/2015] [Indexed: 10/25/2022]
Abstract
Actin cytoskeleton remodeling, which drives changes in cell shape and motility, is orchestrated by a coordinated control of polarized assembly of actin filaments. Signal responsive, membrane-bound protein machineries initiate and regulate polarized growth of actin filaments by mediating transient links with their barbed ends, which elongate from polymerizable actin monomers. The barbed end of an actin filament thus stands out as a hotspot of regulation of filament assembly. It is the target of both soluble and membrane-bound agonists as well as antagonists of filament assembly. Here, we review the molecular mechanisms by which various regulators of actin dynamics bind, synergize or compete at filament barbed ends. Two proteins can compete for the barbed end via a mutually exclusive binding scheme. Alternatively, two regulators acting individually at barbed ends may be bound together transiently to terminal actin subunits at barbed ends, leading to the displacement of one by the other. The kinetics of these reactions is a key in understanding how filament length and membrane-filament linkage are controlled. It is also essential for understanding how force is produced to shape membranes by mechano-sensitive, processive barbed end tracking machineries like formins and by WASP-Arp2/3 branched filament arrays. A combination of biochemical and biophysical approaches, including bulk solution assembly measurements using pyrenyl-actin fluorescence, single filament dynamics, single molecule fluorescence imaging and reconstituted self-organized filament assemblies, have provided mechanistic insight into the role of actin polymerization in motile processes.
Collapse
|
25
|
Jiao Y, Walker M, Trinick J, Pernier J, Montaville P, Carlier MF. Mutagenetic and electron microscopy analysis of actin filament severing by Cordon-Bleu, a WH2 domain protein. Cytoskeleton (Hoboken) 2014; 71:170-83. [PMID: 24415668 DOI: 10.1002/cm.21161] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/11/2013] [Accepted: 12/30/2013] [Indexed: 12/29/2022]
Abstract
Cordon-Bleu (Cobl) is a regulator of actin dynamics in neural development and ciliogenesis. Its function is associated with three adjacent actin binding WASP Homology 2 (WH2) domains. We showed that these WH2 repeats confer multifunctional regulation of actin dynamics, which makes Cobl a « dynamizer » of actin assembly, inducing fast turnover of actin filaments and oscillatory polymerization regime via nucleation, severing, and rapid depolymerization activities. Cobl is the most efficient severer of actin filaments characterized so far. To understand which primary sequence elements determine the filament severing activity of the WH2 repeats, here we combine a mutagenetic/domain swapping approach of the minimal fully active Cobl-KAB construct, which comprises the lysine rich region K preceding the two first WH2 domains A and B. The mutated Cobl constructs display variable loss of the original filament nucleating activities of native Cobl-KAB, without any strict correlation with a loss in actin binding, which emphasizes the functional importance of the electrostatic environment of WH2 domains. Filament severing displayed the greatest stringency and was abolished in all mutated forms of Cobl-KAB. Filament severing and re-annealing by Cobl-KAB, which is key in its rapid remodeling of a population of actin filaments, and most likely responsible for its function in ciliogenesis, was analyzed by electron microscopy in comparison with Spire and ADF.
Collapse
Affiliation(s)
- Yue Jiao
- Cytoskeleton Dynamics and Cell Motility Team, Laboratoire d'Enzymologie et Biochimie Structurales, Centre National de la Recherche Scientifique, 91198, Gif-sur-Yvette, France
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Clustered N-WASP binds directly to actin-filament barbed ends and can either slow individual filament growth or processively accelerate the assembly of bundled actin filaments. This novel Arp2/3-independent mechanism of N-WASP likely plays a role in invadopodia and podosome formation, in which both N-WASP and actin filaments are tightly clustered. Neuronal Wiskott–Aldrich syndrome protein (N-WASP)–activated actin polymerization drives extension of invadopodia and podosomes into the basement layer. In addition to activating Arp2/3, N-WASP binds actin-filament barbed ends, and both N-WASP and barbed ends are tightly clustered in these invasive structures. We use nanofibers coated with N-WASP WWCA domains as model cell surfaces and single-actin-filament imaging to determine how clustered N-WASP affects Arp2/3-independent barbed-end assembly. Individual barbed ends captured by WWCA domains grow at or below their diffusion-limited assembly rate. At high filament densities, however, overlapping filaments form buckles between their nanofiber tethers and myosin attachment points. These buckles grew ∼3.4-fold faster than the diffusion-limited rate of unattached barbed ends. N-WASP constructs with and without the native polyproline (PP) region show similar rate enhancements in the absence of profilin, but profilin slows barbed-end acceleration from constructs containing the PP region. Increasing Mg2+ to enhance filament bundling increases the frequency of filament buckle formation, consistent with a requirement of accelerated assembly on barbed-end bundling. We propose that this novel N-WASP assembly activity provides an Arp2/3-independent force that drives nascent filament bundles into the basement layer during cell invasion.
Collapse
Affiliation(s)
- Nimisha Khanduja
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
| | | |
Collapse
|
27
|
Renault L, Deville C, van Heijenoort C. Structural features and interfacial properties of WH2, β-thymosin domains and other intrinsically disordered domains in the regulation of actin cytoskeleton dynamics. Cytoskeleton (Hoboken) 2013; 70:686-705. [DOI: 10.1002/cm.21140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Louis Renault
- Laboratoire d'Enzymologie et Biochimie Structurales; Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| | - Célia Deville
- Laboratoire de Chimie et Biologie Structurales; Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| | - Carine van Heijenoort
- Laboratoire de Chimie et Biologie Structurales; Institut de Chimie des Substances Naturelles, Centre de Recherche de Gif, CNRS; Gif-sur-Yvette France
| |
Collapse
|
28
|
Guardians of the actin monomer. Eur J Cell Biol 2013; 92:316-32. [DOI: 10.1016/j.ejcb.2013.10.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 10/03/2013] [Accepted: 10/23/2013] [Indexed: 11/22/2022] Open
|
29
|
Helgeson LA, Nolen BJ. Mechanism of synergistic activation of Arp2/3 complex by cortactin and N-WASP. eLife 2013; 2:e00884. [PMID: 24015358 PMCID: PMC3762189 DOI: 10.7554/elife.00884] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/31/2013] [Indexed: 01/06/2023] Open
Abstract
Nucleation promoting factors (NPFs) initiate branched actin network assembly by activating Arp2/3 complex, a branched actin filament nucleator. Cellular actin networks contain multiple NPFs, but how they coordinately regulate Arp2/3 complex is unclear. Cortactin is an NPF that activates Arp2/3 complex weakly on its own, but with WASP/N-WASP, another class of NPFs, potently activates. We dissect the mechanism of synergy and propose a model in which cortactin displaces N-WASP from nascent branches as a prerequisite for nucleation. Single-molecule imaging revealed that unlike WASP/N-WASP, cortactin remains bound to junctions during nucleation, and specifically targets junctions with a ∼160-fold increased on rate over filament sides. N-WASP must be dimerized for potent synergy, and targeted mutations indicate release of dimeric N-WASP from nascent branches limits nucleation. Mathematical modeling shows cortactin-mediated displacement but not N-WASP recycling or filament recruitment models can explain synergy. Our results provide a molecular basis for coordinate Arp2/3 complex regulation. DOI:http://dx.doi.org/10.7554/eLife.00884.001.
Collapse
Affiliation(s)
- Luke A Helgeson
- Institute of Molecular Biology , University of Oregon , Eugene , United States ; Department of Chemistry and Biochemistry , University of Oregon , Eugene , United States
| | | |
Collapse
|
30
|
Helal MA, Khalifa S, Ahmed S. Differential binding of latrunculins to G-actin: a molecular dynamics study. J Chem Inf Model 2013; 53:2369-75. [PMID: 23988111 DOI: 10.1021/ci400317j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Latrunculins are unique macrolides containing a thiazolidinone moiety. Latrunculin A (1), latrunculin B (2), 16-epi-latrunculin B (3), and latrunculin T (4) were isolated from the Red Sea sponge Negombata magnifica. In the present study, after testing compounds 2-4 for cytotoxic activity, they were docked into the crystal structure of G-actin and subjected to binding energy calculation and a 20 ns MD simulation. The modeling study shows that latrunculins binding depends on both hydrophobic interaction of the macrocycle as well as H bonding of the thiazolidinone ring with Asp157 and Thr186. It was noticed that epimerization at C16 of latrunculin B was well tolerated as it could form an alternative H bonding network. However, opening of the macrocyclic ring deteriorates the actin binding due to reduced hydrophobicity. MD simulation showed that latrunculin B (2) possesses a more significant stabilizing effect on G-actin than latrunculin T (4) and could efficiently hinder the flattening transition of G-actin into F-actin. These findings could explain, at the molecular level, the impact of epimerization and macrolide ring-opening on latrunculins activity, an issue that has not been addressed before. Also, the study gives insights into the mechanism of cytotoxicity of diverse latrunculins and provides direction for future lead optimization studies.
Collapse
Affiliation(s)
- Mohamed A Helal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Suez Canal University , Ismailia, Egypt
| | | | | |
Collapse
|
31
|
Carlier MF, Pernier J, Avvaru BS. Control of actin filament dynamics at barbed ends by WH2 domains: From capping to permissive and processive assembly. Cytoskeleton (Hoboken) 2013; 70:540-9. [DOI: 10.1002/cm.21124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 01/01/2023]
Affiliation(s)
| | - Julien Pernier
- Cytoskeleton Dynamics and Motility Team; LEBS; CNRS; Gif-Sur-Yvette France
| | | |
Collapse
|
32
|
Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change. ACTA ACUST UNITED AC 2013; 20:701-12. [PMID: 23623350 DOI: 10.1016/j.chembiol.2013.03.019] [Citation(s) in RCA: 238] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/27/2013] [Accepted: 03/19/2013] [Indexed: 11/24/2022]
Abstract
Actin-related protein 2/3 (Arp2/3) complex is a seven-subunit assembly that nucleates branched actin filaments. Small molecule inhibitors CK-666 and CK-869 bind to Arp2/3 complex and inhibit nucleation, but their modes of action are unknown. Here, we use biochemical and structural methods to determine the mechanism of each inhibitor. Our data indicate that CK-666 stabilizes the inactive state of the complex, blocking movement of the Arp2 and Arp3 subunits into the activated filament-like (short pitch) conformation, while CK-869 binds to a serendipitous pocket on Arp3 and allosterically destabilizes the short pitch Arp3-Arp2 interface. These results provide key insights into the relationship between conformation and activity in Arp2/3 complex and will be critical for interpreting the influence of the inhibitors on actin filament networks in vivo.
Collapse
|
33
|
Suetsugu S. Activation of nucleation promoting factors for directional actin filament elongation: allosteric regulation and multimerization on the membrane. Semin Cell Dev Biol 2013; 24:267-71. [PMID: 23380397 DOI: 10.1016/j.semcdb.2013.01.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/11/2013] [Accepted: 01/17/2013] [Indexed: 01/02/2023]
Abstract
Nucleation promoting factors (NPFs) activate the Arp2/3 complex to produce branched actin filaments. Branched actin filaments are observed in most organelles, and specific NPFs, such as WASP, N-WASP, WAVEs, WASH, and WHAMM, exist for each organelle. Interestingly, Arp2/3 and NPFs are both inactive by themselves, and thus require activation. The exposure of the Arp2/3 activating region, the VCA fragment, is recognized to be a key event in the activation of the NPFs. Together, small GTPase binding, phosphorylation, SH3 binding, and membrane binding promote VCA exposure synergistically. The increase in the local concentration of NPF by multimerization is thought to occur with the combination of such activators, to maximally activate the NPF and confine the region of actin polymerization. The mechanism of uni-directional filament extension beneath the membrane also is discussed.
Collapse
Affiliation(s)
- Shiro Suetsugu
- Laboratory of Membrane and Cytoskeleton Dynamics, Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
34
|
Burianek LE, Soderling SH. Under lock and key: spatiotemporal regulation of WASP family proteins coordinates separate dynamic cellular processes. Semin Cell Dev Biol 2013; 24:258-66. [PMID: 23291261 DOI: 10.1016/j.semcdb.2012.12.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 11/21/2012] [Accepted: 12/14/2012] [Indexed: 02/03/2023]
Abstract
WASP family proteins are nucleation promoting factors that bind to and activate the Arp2/3 complex in order to stimulate nucleation of branched actin filaments. The WASP family consists of WASP, N-WASP, WAVE1-3, WASH, and the novel family members WHAMM and JMY. Each of the family members contains a C-terminus responsible for their nucleation promoting activity and unique N-termini that allow for them to be regulated in a spatiotemporal manner. Upon activation they reorganize the cytoskeleton for different cellular functions depending on their subcellular localization and regulatory protein interactions. Emerging evidence indicates that WASH, WHAMM, and JMY have functions that require the coordination of both actin polymerization and microtubule dynamics. Here, we review the mechanisms of regulation for each family member and their associated in vivo functions including cell migration, vesicle trafficking, and neuronal development.
Collapse
|
35
|
Hansen MDH, Kwiatkowski AV. Control of actin dynamics by allosteric regulation of actin binding proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 303:1-25. [PMID: 23445807 DOI: 10.1016/b978-0-12-407697-6.00001-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The regulated assembly and organization of actin filaments allows the cell to construct a large diversity of actin-based structures specifically suited to a range of cellular processes. A vast array of actin regulatory proteins must work in concert to form specific actin networks within cells, and spatial and temporal requirements for actin assembly necessitate rapid regulation of protein activity. This chapter explores a common mechanism of controlling the activity of actin binding proteins: allosteric autoinhibition by interdomain head-tail interactions. Intramolecular interactions maintain these proteins in a closed conformation that masks protein domains needed to regulate actin dynamics. Autoinhibition is typically relieved by two or more ligand binding and/or posttranslational modification events that expose key protein domains. Regulation through multiple inputs permits precise temporal and spatial control of protein activity to guide actin network formation.
Collapse
Affiliation(s)
- Marc D H Hansen
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT, USA.
| | | |
Collapse
|
36
|
Rotty JD, Wu C, Bear JE. New insights into the regulation and cellular functions of the ARP2/3 complex. Nat Rev Mol Cell Biol 2012; 14:7-12. [DOI: 10.1038/nrm3492] [Citation(s) in RCA: 359] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|