1
|
Sever B, Otsuka M, Fujita M, Ciftci H. A Review of FDA-Approved Anti-HIV-1 Drugs, Anti-Gag Compounds, and Potential Strategies for HIV-1 Eradication. Int J Mol Sci 2024; 25:3659. [PMID: 38612471 PMCID: PMC11012182 DOI: 10.3390/ijms25073659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is an enormous global health threat stemming from human immunodeficiency virus (HIV-1) infection. Up to now, the tremendous advances in combination antiretroviral therapy (cART) have shifted HIV-1 infection from a fatal illness into a manageable chronic disorder. However, the presence of latent reservoirs, the multifaceted nature of HIV-1, drug resistance, severe off-target effects, poor adherence, and high cost restrict the efficacy of current cART targeting the distinct stages of the virus life cycle. Therefore, there is an unmet need for the discovery of new therapeutics that not only bypass the limitations of the current therapy but also protect the body's health at the same time. The main goal for complete HIV-1 eradication is purging latently infected cells from patients' bodies. A potential strategy called "lock-in and apoptosis" targets the budding phase of the life cycle of the virus and leads to susceptibility to apoptosis of HIV-1 infected cells for the elimination of HIV-1 reservoirs and, ultimately, for complete eradication. The current work intends to present the main advantages and disadvantages of United States Food and Drug Administration (FDA)-approved anti-HIV-1 drugs as well as plausible strategies for the design and development of more anti-HIV-1 compounds with better potency, favorable pharmacokinetic profiles, and improved safety issues.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Türkiye;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Bioengineering Sciences, Izmir Katip Celebi University, Izmir 35620, Türkiye
| |
Collapse
|
2
|
Alfadhli A, Romanaggi C, Barklis RL, Barklis E. Second site reversion of HIV-1 envelope protein baseplate mutations maps to the matrix protein. J Virol 2024; 98:e0174223. [PMID: 38193694 PMCID: PMC10878238 DOI: 10.1128/jvi.01742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
The HIV-1 Envelope (Env) protein cytoplasmic tail (CT) recently has been shown to assemble an unusual trimeric baseplate structure that locates beneath Env ectodomain trimers. Mutations at linchpin residues that help organize the baseplate impair virus replication in restrictive T cell lines but not in permissive cell lines. We have identified and characterized a second site suppressor of these baseplate mutations, located at residue 34 in the viral matrix (MA) protein, that rescues viral replication in restrictive cells. The suppressor mutation was dependent on the CT to exert its activity and did not appear to affect Env protein traffic or fusion functions in restrictive cells. Instead, the suppressor mutation increased Env incorporation into virions 3-fold and virus infectivity in single-round infections 10-fold. We also found that a previously described suppressor of Env-incorporation defects that stabilizes the formation of MA trimers was ineffective at rescuing Env baseplate mutations. Our results support an interpretation in which changes at MA residue 34 induce conformational changes that stabilize MA lattice trimer-trimer interactions and/or direct MA-CT associations.IMPORTANCEHow HIV-1 Env trimers assemble into virus particles remains incompletely understood. In restrictive cells, viral incorporation of Env is dependent on the Env CT and on the MA protein, which assembles lattices composed of hexamers of trimers in immature and mature viruses. Recent evidence indicates that CT assembles trimeric baseplate structures that require membrane-proximal residues to interface with trimeric transmembrane domains and C-terminal helices in the CT. We found that mutations of these membrane-proximal residues impaired replication in restrictive cells. This defect was countered by a MA mutation that does not localize to any obvious interprotein regions but was only inefficiently suppressed by a MA mutation that stabilizes MA trimers and has been shown to suppress other CT-dependent Env defects. Our results suggest that efficient suppression of baseplate mutations involves stabilization of MA inter-trimer contacts and/or direct MA-CT associations. These observations shed new light on how Env assembles into virions.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - CeAnn Romanaggi
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| |
Collapse
|
3
|
Li Q, Kang C. Targeting RNA-binding proteins with small molecules: Perspectives, pitfalls and bifunctional molecules. FEBS Lett 2023; 597:2031-2047. [PMID: 37519019 DOI: 10.1002/1873-3468.14710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 08/01/2023]
Abstract
RNA-binding proteins (RBPs) play vital roles in organisms through binding with RNAs to regulate their functions. Small molecules affecting the function of RBPs have been developed, providing new avenues for drug discovery. Herein, we describe the perspectives on developing small molecule regulators of RBPs. The following types of small molecule modulators are of great interest in drug discovery: small molecules binding to RBPs to affect interactions with RNA molecules, bifunctional molecules binding to RNA or RBP to influence their interactions, and other types of molecules that affect the stability of RNA or RBPs. Moreover, we emphasize that the bifunctional molecules may play important roles in small molecule development to overcome the challenges encountered in the process of drug discovery.
Collapse
Affiliation(s)
- Qingxin Li
- Guangdong Provincial Engineering Laboratory of Biomass High Value Utilization, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Congbao Kang
- Experimental Drug Development Centre, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
4
|
Bertoldo JB, Müller S, Hüttelmaier S. RNA-binding proteins in cancer drug discovery. Drug Discov Today 2023; 28:103580. [PMID: 37031812 DOI: 10.1016/j.drudis.2023.103580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
RNA-binding proteins (RBPs) are crucial players in tumorigenesis and, hence, promising targets in cancer drug discovery. However, they are largely regarded as 'undruggable', because of the often noncatalytic and complex interactions between protein and RNA, which limit the discovery of specific inhibitors. Nonetheless, over the past 10 years, drug discovery efforts have uncovered RBP inhibitors with clinical relevance, highlighting the disruption of RNA-protein networks as a promising avenue for cancer therapeutics. In this review, we discuss the role of structurally distinct RBPs in cancer, and the mechanisms of RBP-directed small-molecule inhibitors (SMOIs) focusing on drug-protein interactions, binding surfaces, potency, and translational potential. Additionally, we underline the limitations of RBP-targeting drug discovery assays and comment on future trends in the field.
Collapse
Affiliation(s)
- Jean B Bertoldo
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, Australia; School of Clinical Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Simon Müller
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany; New York Genome Center, New York, NY, USA; Department of Biology, New York University, New York, NY, USA
| | - Stefan Hüttelmaier
- Institute for Molecular Medicine, Faculty of Medicine, Martin-Luther University of Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
5
|
Alfadhli A, Romanaggi C, Barklis RL, Barklis E. Analysis of HIV-1 envelope cytoplasmic tail effects on viral replication. Virology 2023; 579:54-66. [PMID: 36603533 PMCID: PMC10003682 DOI: 10.1016/j.virol.2022.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Trimers of the HIV-1 envelope (Env) protein perform receptor binding and virus-cell fusion functions during the virus life cycle. The cytoplasmic tail (CT) of Env forms an unusual baseplate structure, and is palmitoylated, rich in arginines, carries trafficking motifs, binds cholesterol, and interacts with host proteins. To dissect CT activities, we examined a panel of Env variants, including CT truncations, mutations, and an extension. We found that whereas all variants could replicate in permissive cells, viruses with CT truncations or baseplate mutations were defective in restrictive cells. We also identified a determinant in HIV-1 amphotericin sensitivity, and characterized variants that escape amphotericin inhibition via viral protease-mediated CT cleavage. Results additionally showed that full-length, his tagged Env can oligomerize and be co-assembled with CT truncations that delete portions of the baseplate, host protein binding sites, and trafficking signals. Our observations illuminate novel aspects of HIV-1 CT structure, interactions, and functions.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - CeAnn Romanaggi
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, OR, USA.
| |
Collapse
|
6
|
Alfadhli A, Romanaggi C, Barklis RL, Merutka I, Bates TA, Tafesse FG, Barklis E. Capsid-specific nanobody effects on HIV-1 assembly and infectivity. Virology 2021; 562:19-28. [PMID: 34246112 DOI: 10.1016/j.virol.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/15/2022]
Abstract
The capsid (CA) domain of the HIV-1 precursor Gag (PrGag) protein plays multiple roles in HIV-1 replication, and is central to the assembly of immature virions, and mature virus cores. CA proteins themselves are composed of N-terminal domains (NTDs) and C-terminal domains (CTDs). We have investigated the interactions of CA with anti-CA nanobodies, which derive from the antigen recognition regions of camelid heavy chain-only antibodies. The one CA NTD-specific and two CTD-specific nanobodies we analyzed proved sensitive and specific HIV-1 CA detection reagents in immunoassays. When co-expressed with HIV-1 Gag proteins in cells, the NTD-specific nanobody was efficiently assembled into virions and did not perturb virus assembly. In contrast, the two CTD-specific nanobodies reduced PrGag processing, virus release and HIV-1 infectivity. Our results demonstrate the feasibility of Gag-targeted nanobody inhibition of HIV-1.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - CeAnn Romanaggi
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Ilaria Merutka
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Timothy A Bates
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239-3098, USA.
| |
Collapse
|
7
|
Barklis E, Alfadhli A, Kyle JE, Bramer LM, Bloodsworth KJ, Barklis RL, Leier HC, Petty RM, Zelnik ID, Metz TO, Futerman AH, Tafesse FG. Ceramide synthase 2 deletion decreases the infectivity of HIV-1. J Biol Chem 2021; 296:100340. [PMID: 33515546 PMCID: PMC7949126 DOI: 10.1016/j.jbc.2021.100340] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023] Open
Abstract
The lipid composition of HIV-1 virions is enriched in sphingomyelin (SM), but the roles that SM or other sphingolipids (SLs) might play in the HIV-1 replication pathway have not been elucidated. In human cells, SL levels are regulated by ceramide synthase (CerS) enzymes that produce ceramides, which can be converted to SMs, hexosylceramides, and other SLs. In many cell types, CerS2, which catalyzes the synthesis of very long chain ceramides, is the major CerS. We have examined how CerS2 deficiency affects the assembly and infectivity of HIV-1. As expected, we observed that very long chain ceramide, hexosylceramide, and SM were reduced in CerS2 knockout cells. CerS2 deficiency did not affect HIV-1 assembly or the incorporation of the HIV-1 envelope (Env) protein into virus particles, but it reduced the infectivites of viruses produced in the CerS2-deficient cells. The reduced viral infection levels were dependent on HIV-1 Env, since HIV-1 particles that were pseudotyped with the vesicular stomatitis virus glycoprotein did not exhibit reductions in infectivity. Moreover, cell-cell fusion assays demonstrated that the functional defect of HIV-1 Env in CerS2-deficient cells was independent of other viral proteins. Overall, our results indicate that the altered lipid composition of CerS2-deficient cells specifically inhibit the HIV-1 Env receptor binding and/or fusion processes.
Collapse
Affiliation(s)
- Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA.
| | - Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Jennifer E Kyle
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Lisa M Bramer
- Computing and Analytics Division, National Security Directorate PNNL, Richland, Washington, USA
| | - Kent J Bloodsworth
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Robin Lid Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Hans C Leier
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - R Max Petty
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA
| | - Iris D Zelnik
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Thomas O Metz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Anthony H Futerman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Fikadu G Tafesse
- Department of Molecular Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, USA.
| |
Collapse
|
8
|
Abstract
Protein-RNA interactions have crucial roles in various cellular activities, which, when dysregulated, can lead to a range of human diseases. The identification of small molecules that target the interaction between RNA-binding proteins (RBPs) and RNA is progressing rapidly and represents a novel strategy for the discovery of chemical probes that facilitate understanding of the cellular functions of RBPs and of therapeutic agents with new mechanisms of action. In this Review, I present a current overview of targeting emerging RBPs using small-molecule inhibitors and recent progress in this burgeoning field. Small-molecule inhibitors that were reported for three representative emerging classes of RBPs, the microRNA-binding protein LIN28, the single-stranded or double-stranded RNA-binding Toll-like receptors and the CRISPR-associated (Cas) proteins, are highlighted from a medicinal-chemistry and chemical-biology perspective. However, although this field is burgeoning, challenges remain in the discovery and characterization of small-molecule inhibitors of RBPs.
Collapse
|
9
|
Dick A, Cocklin S. Recent Advances in HIV-1 Gag Inhibitor Design and Development. Molecules 2020; 25:molecules25071687. [PMID: 32272714 PMCID: PMC7181048 DOI: 10.3390/molecules25071687] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Acquired Immune Deficiency Syndrome (AIDS) treatment with combination antiretroviral therapy (cART) has improved the life quality of many patients since its implementation. However, resistance mutations and the accumulation of severe side effects associated with cART remain enormous challenges that need to be addressed with the continual design and redesign of anti-HIV drugs. In this review, we focus on the importance of the HIV-1 Gag polyprotein as the master coordinator of HIV-1 assembly and maturation and as an emerging drug target. Due to its multiple roles in the HIV-1 life cycle, the individual Gag domains are attractive but also challenging targets for inhibitor design. However, recent encouraging developments in targeting the Gag domains such as the capsid protein with highly potent and potentially long-acting inhibitors, as well as the exploration and successful targeting of challenging HIV-1 proteins such as the matrix protein, have demonstrated the therapeutic viability of this important protein. Such Gag-directed inhibitors have great potential for combating the AIDS pandemic and to be useful tools to dissect HIV-1 biology.
Collapse
|
10
|
Alfadhli A, Staubus AO, Tedbury PR, Novikova M, Freed EO, Barklis E. Analysis of HIV-1 Matrix-Envelope Cytoplasmic Tail Interactions. J Virol 2019; 93:e01079-19. [PMID: 31375589 PMCID: PMC6803273 DOI: 10.1128/jvi.01079-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 07/30/2019] [Indexed: 01/08/2023] Open
Abstract
The matrix (MA) domains of HIV-1 precursor Gag (PrGag) proteins direct PrGag proteins to plasma membrane (PM) assembly sites where envelope (Env) protein trimers are incorporated into virus particles. MA targeting to PM sites is facilitated by its binding to phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P2], and MA binding to cellular RNAs appears to serve a chaperone function that prevents MA from associating with intracellular membranes prior to arrival at the PI(4,5)P2-rich PM. Investigations have shown genetic evidence of an interaction between MA and the cytoplasmic tails (CTs) of Env trimers that contributes to Env incorporation into virions, but demonstrations of direct MA-CT interactions have proven more difficult. In direct binding assays, we show here that MA binds to Env CTs. Using MA mutants, matrix-capsid (MACA) proteins, and MA proteins incubated in the presence of inositol polyphosphate, we show a correlation between MA trimerization and CT binding. RNA ligands with high affinities for MA reduced MA-CT binding levels, suggesting that MA-RNA binding interferes with trimerization and/or directly or indirectly blocks MA-CT binding. Rough-mapping studies indicate that C-terminal CT helices are involved in MA binding and are in agreement with cell culture studies with replication-competent viruses. Our results support a model in which full-length HIV-1 Env trimers are captured in assembling PrGag lattices by virtue of their binding to MA trimers.IMPORTANCE The mechanism by which HIV-1 envelope (Env) protein trimers assemble into virus particles is poorly understood but involves an interaction between Env cytoplasmic tails (CTs) and the matrix (MA) domain of the structural precursor Gag (PrGag) proteins. We show here that direct binding of MA to Env CTs correlates with MA trimerization, suggesting models where MA lattices regulate CT interactions and/or MA-CT trimer-trimer associations increase the avidity of MA-CT binding. We also show that MA binding to RNA ligands impairs MA-CT binding, potentially by interfering with MA trimerization and/or directly or allosterically blocking MA-CT binding sites. Rough mapping implicated CT C-terminal helices in MA binding, in agreement with cell culture studies on MA-CT interactions. Our results indicate that targeting HIV-1 MA-CT interactions may be a promising avenue for antiviral therapy.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - August O Staubus
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| | - Philip R Tedbury
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Mariia Novikova
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric O Freed
- Virus-Cell Interaction Section, HIV Drug Resistance Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University, Portland, Oregon, USA
| |
Collapse
|
11
|
Li XD, Liu L, Cheng L. Identification of thienopyridine carboxamides as selective binders of HIV-1 trans Activation Response (TAR) and Rev Response Element (RRE) RNAs. Org Biomol Chem 2019; 16:9191-9196. [PMID: 30465585 DOI: 10.1039/c8ob02753f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Small organic molecules that can selectively bind to RNA with specificity are relatively rare. Here we report the synthesis, biochemical and structural studies of thienopyridine carboxamide derivatives with the capacity of selectively recognizing and binding with HIV-1 TAR and RRE RNAs that are essential elements for viral replication.
Collapse
Affiliation(s)
- Xue-Dong Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | | | | |
Collapse
|
12
|
D'Agostino VG, Sighel D, Zucal C, Bonomo I, Micaelli M, Lolli G, Provenzani A, Quattrone A, Adami V. Screening Approaches for Targeting Ribonucleoprotein Complexes: A New Dimension for Drug Discovery. SLAS DISCOVERY 2019; 24:314-331. [PMID: 30616427 DOI: 10.1177/2472555218818065] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
RNA-binding proteins (RBPs) are pleiotropic factors that control the processing and functional compartmentalization of transcripts by binding primarily to mRNA untranslated regions (UTRs). The competitive and/or cooperative interplay between RBPs and an array of coding and noncoding RNAs (ncRNAs) determines the posttranscriptional control of gene expression, influencing protein production. Recently, a variety of well-recognized and noncanonical RBP domains have been revealed by modern system-wide analyses, underlying an evolving classification of ribonucleoproteins (RNPs) and their importance in governing physiological RNA metabolism. The possibility of targeting selected RNA-protein interactions with small molecules is now expanding the concept of protein "druggability," with new implications for medicinal chemistry and for a deeper characterization of the mechanism of action of bioactive compounds. Here, taking SF3B1, HuR, LIN28, and Musashi proteins as paradigmatic case studies, we review the strategies applied for targeting RBPs, with emphasis on the technological advancements to study protein-RNA interactions and on the requirements of appropriate validation strategies to parallel high-throughput screening (HTS) efforts.
Collapse
Affiliation(s)
- Vito Giuseppe D'Agostino
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Denise Sighel
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Chiara Zucal
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Isabelle Bonomo
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Mariachiara Micaelli
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Graziano Lolli
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Alessandro Provenzani
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Alessandro Quattrone
- 1 University of Trento, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| | - Valentina Adami
- 2 University of Trento, HTS Core Facility, Department of Cellular, Computational and Integrative Biology (CIBIO), Trento, Italy
| |
Collapse
|
13
|
Socas LBP, Ambroggio EE. Myristoylation and Oligonucleotide Interaction Modulate Peptide and Protein Surface Properties: The Case of the HIV-1 Matrix Domain. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6051-6062. [PMID: 29727193 DOI: 10.1021/acs.langmuir.8b01005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Myristoylated proteins typically develop a tight association with membranes. One example is the matrix domain (MA) of the HIV-1 Gag protein. In addition, MA is able to bind the Sel25 RNA sequence, a ligand that can act as a competitor for the interaction with the membrane. These properties make HIV-1 MA an attractive molecule to understand how protein and peptide surface properties can be controlled by myristoylation and oligonucleotide interaction. In this line, we analyzed the stability, thermodynamics, and the topography of Langmuir monolayers composed of the myristoylated or unmyristoylated versions of MA in the presence or the absence of a single-strand DNA (ssDNASel25) analogue of the Sel25 RNA sequence. With a similar approach, we compared the MA surface properties with those obtained from monolayers of myristoylated and unmyristoylated MA-derived peptides (first 21 residues of the MA sequence). Our results show that the protein or peptide films are destabilized by the presence of ssDNASel25, inducing solubilization of the monolayer components into the bulk phase. In addition, the oligonucleotide affects the protein-protein or peptide-peptide lateral interactions, provoking interfacial topography changes of the monolayers, visualized by Brewster angle microscopy. Furthermore, we also show how the myristoyl group has major effects on the lateral stability and the elasticity of the monolayers. Altogether, here we propose a general model considering the effect of myristoylation and the interaction with oligonucleotides on the interfacial properties of MA and derived peptides. In this model, we introduce a new role of the core region of MA (sequence of MA after the 21st residue) that confers higher lateral interfacial stability to the protein.
Collapse
Affiliation(s)
- Luis B P Socas
- Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , Haya de la Torre y Medina Allende s/n , Córdoba X5000HUA , Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) , Haya de la Torre y Medina Allende s/n , Córdoba X5000HUA , Argentina
| | - Ernesto E Ambroggio
- Departamento de Química Biológica-Ranwel Caputto, Facultad de Ciencias Químicas , Universidad Nacional de Córdoba , Haya de la Torre y Medina Allende s/n , Córdoba X5000HUA , Argentina
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC) , Haya de la Torre y Medina Allende s/n , Córdoba X5000HUA , Argentina
| |
Collapse
|
14
|
Konagaya Y, Miyakawa R, Sato M, Matsugami A, Watanabe S, Hayashi F, Kigawa T, Nishimura C. Effect of Glu12-His89 Interaction on Dynamic Structures in HIV-1 p17 Matrix Protein Elucidated by NMR. PLoS One 2016; 11:e0167176. [PMID: 27907055 PMCID: PMC5132258 DOI: 10.1371/journal.pone.0167176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/09/2016] [Indexed: 11/18/2022] Open
Abstract
To test the existence of the salt bridge and stability of the HIV-1 p17 matrix protein, an E12A (mutated at helix 1) was established to abolish possible electrostatic interactions. The chemical shift perturbation from the comparison between wild type and E12A suggested the existence of an electrostatic interaction in wild type between E12 and H89 (located in helix 4). Unexpectedly, the studies using urea denaturation indicated that the E12A substitution slightly stabilized the protein. The dynamic structure of E12A was examined under physiological conditions by both amide proton exchange and relaxation studies. The quick exchange method of amide protons revealed that the residues with faster exchange were located at the mutated region, around A12, compared to those of the wild-type protein. In addition, some residues at the region of helix 4, including H89, exhibited faster exchange in the mutant. In contrast, the average values of the kinetic rate constants for amide proton exchange for residues located in all loop regions were slightly lower in E12A than in wild type. Furthermore, the analyses of the order parameter revealed that less flexible structures existed at each loop region in E12A. Interestingly, the structures of the regions including the alpha1-2 loop and helix 5 of E12A exhibited more significant conformational exchanges with the NMR time-scale than those of wild type. Under lower pH conditions, for further destabilization, the helix 1 and alpha2-3 loop in E12A became more fluctuating than at physiological pH. Because the E12A mutant lacks the activities for trimer formation on the basis of the analytical ultra-centrifuge studies on the sedimentation distribution of p17 (Fledderman et al. Biochemistry 49, 9551–9562, 2010), it is possible that the changes in the dynamic structures induced by the absence of the E12-H89 interaction in the p17 matrix protein contributes to a loss of virus assembly.
Collapse
Affiliation(s)
- Yuta Konagaya
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
| | - Rina Miyakawa
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
| | - Masumi Sato
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
| | - Akimasa Matsugami
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Satoru Watanabe
- Laboratory for Biomolecular Structure and Dynamics, RIKEN Quantitative Biology Center, Yokohama, Kanagawa, Japan
| | - Fumiaki Hayashi
- Division of Structural and Synthetic Biology, RIKEN Center for Life Science Technologies, Yokohama, Kanagawa, Japan
| | - Takanori Kigawa
- Laboratory for Biomolecular Structure and Dynamics, RIKEN Quantitative Biology Center, Yokohama, Kanagawa, Japan
| | - Chiaki Nishimura
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, Nakano, Tokyo, Japan
- * E-mail:
| |
Collapse
|
15
|
Alfadhli A, Mack A, Harper L, Berk S, Ritchie C, Barklis E. Analysis of quinolinequinone reactivity, cytotoxicity, and anti-HIV-1 properties. Bioorg Med Chem 2016; 24:5618-5625. [PMID: 27663546 DOI: 10.1016/j.bmc.2016.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/07/2016] [Accepted: 09/10/2016] [Indexed: 12/15/2022]
Abstract
We have analyzed a set of quinolinequinones with respect to their reactivities, cytotoxicities, and anti-HIV-1 properties. Most of the quinolinequinones were reactive with glutathione, and several acted as sulfhydryl crosslinking agents. Quinolinequinones inhibited binding of the HIV-1 matrix protein to RNA to varying degrees, and several quinolinequinones showed the capacity to crosslink HIV-1 matrix proteins in vitro, and HIV-1 structural proteins in virus particles. Cytotoxicity assays yielded quinolinequinone CC50 values in the low micromolar range, reducing the potential therapeutic value of these compounds. However, one compound, 6,7-dichloro-5,8-quinolinequinone potently inactivated HIV-1, suggesting that quinolinequinones may prove useful in the preparation of inactivated virus vaccines or for other virucidal purposes.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Andrew Mack
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Logan Harper
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Sam Berk
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Christopher Ritchie
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States
| | - Eric Barklis
- Oregon Health & Sciences University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, United States.
| |
Collapse
|
16
|
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
Affiliation(s)
- Guangdi Li
- Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| |
Collapse
|
17
|
HIV Genome-Wide Protein Associations: a Review of 30 Years of Research. Microbiol Mol Biol Rev 2016; 80:679-731. [PMID: 27357278 DOI: 10.1128/mmbr.00065-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The HIV genome encodes a small number of viral proteins (i.e., 16), invariably establishing cooperative associations among HIV proteins and between HIV and host proteins, to invade host cells and hijack their internal machineries. As a known example, the HIV envelope glycoprotein GP120 is closely associated with GP41 for viral entry. From a genome-wide perspective, a hypothesis can be worked out to determine whether 16 HIV proteins could develop 120 possible pairwise associations either by physical interactions or by functional associations mediated via HIV or host molecules. Here, we present the first systematic review of experimental evidence on HIV genome-wide protein associations using a large body of publications accumulated over the past 3 decades. Of 120 possible pairwise associations between 16 HIV proteins, at least 34 physical interactions and 17 functional associations have been identified. To achieve efficient viral replication and infection, HIV protein associations play essential roles (e.g., cleavage, inhibition, and activation) during the HIV life cycle. In either a dispensable or an indispensable manner, each HIV protein collaborates with another viral protein to accomplish specific activities that precisely take place at the proper stages of the HIV life cycle. In addition, HIV genome-wide protein associations have an impact on anti-HIV inhibitors due to the extensive cross talk between drug-inhibited proteins and other HIV proteins. Overall, this study presents for the first time a comprehensive overview of HIV genome-wide protein associations, highlighting meticulous collaborations between all viral proteins during the HIV life cycle.
Collapse
|
18
|
Trimer Enhancement Mutation Effects on HIV-1 Matrix Protein Binding Activities. J Virol 2016; 90:5657-5664. [PMID: 27030269 DOI: 10.1128/jvi.00509-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The HIV-1 matrix (MA) protein is the amino-terminal domain of the HIV-1 precursor Gag (Pr55Gag) protein. MA binds to membranes and RNAs, helps transport Pr55Gag proteins to virus assembly sites at the plasma membranes of infected cells, and facilitates the incorporation of HIV-1 envelope (Env) proteins into virions by virtue of an interaction with the Env protein cytoplasmic tails (CTs). MA has been shown to crystallize as a trimer and to organize on membranes in hexamer lattices. MA mutations that localize to residues near the ends of trimer spokes have been observed to impair Env protein assembly into virus particles, and several of these are suppressed by the 62QR mutation at the hubs of trimer interfaces. We have examined the binding activities of wild-type (WT) MA and 62QR MA variants and found that the 62QR mutation stabilized MA trimers but did not alter the way MA proteins organized on membranes. Relative to WT MA, the 62QR protein showed small effects on membrane and RNA binding. However, 62QR proteins bound significantly better to Env CTs than their WT counterparts, and CT binding efficiencies correlated with trimerization efficiencies. Our data suggest a model in which multivalent binding of trimeric HIV-1 Env proteins to MA trimers contributes to the process of Env virion incorporation. IMPORTANCE The HIV-1 Env proteins assemble as trimers, and incorporation of the proteins into virus particles requires an interaction of Env CT domains with the MA domains of the viral precursor Gag proteins. Despite this knowledge, little is known about the mechanisms by which MA facilitates the virion incorporation of Env proteins. To help elucidate this process, we examined the binding activities of an MA mutant that stabilizes MA trimers. We found that the mutant proteins organized similarly to WT proteins on membranes, and that mutant and WT proteins revealed only slight differences in their binding to RNAs or lipids. However, the mutant proteins showed better binding to Env CTs than the WT proteins, and CT binding correlated with MA trimerization. Our results suggest that multivalent binding of trimeric HIV-1 Env proteins to MA trimers contributes to the process of Env virion incorporation.
Collapse
|
19
|
Madara JJ, Han Z, Ruthel G, Freedman BD, Harty RN. The multifunctional Ebola virus VP40 matrix protein is a promising therapeutic target. Future Virol 2015; 10:537-546. [PMID: 26120351 DOI: 10.2217/fvl.15.6] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The highly virulent nature of Ebola virus, evident from the 2014 West African pandemic, highlights the need to develop vaccines or therapeutic agents that limit the pathogenesis and spread of this virus. While vaccines represent an obvious approach, targeting virus interactions with host proteins that critically regulate the virus lifecycle also represent important therapeutic strategies. Among Ebola virus proteins at this critical interface is its matrix protein, VP40, which is abundantly expressed during infection and plays a number of critical roles in the viral lifecycle. In addition to regulating viral transcription, VP40 coordinates virion assembly and budding from infected cells. Details of the molecular mechanisms underpinning these essential functions are currently being elucidated, with a particular emphasis on its interactions with host proteins that control virion assembly and egress. This review focuses on the strategies geared toward developing novel therapeutic agents that target VP40-specific control of host functions critical to virion transcription, assembly and egress.
Collapse
Affiliation(s)
- Jonathan J Madara
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ziying Han
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ronald N Harty
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| |
Collapse
|
20
|
Abstract
UNLABELLED We have examined the interactions of wild-type (WT) and matrix protein-deleted (ΔMA) HIV-1 precursor Gag (PrGag) proteins in virus-producing cells using a biotin ligase-tagging approach. To do so, WT and ΔMA PrGag proteins were tagged with the Escherichia coli promiscuous biotin ligase (BirA*), expressed in cells, and examined. Localization patterns of PrGag proteins and biotinylated proteins overlapped, consistent with observations that BirA*-tagged proteins biotinylate neighbor proteins that are in close proximity. Results indicate that BirA*-tagged PrGag proteins biotinylated themselves as well as WT PrGag proteins in trans. Previous data have shown that the HIV-1 Envelope (Env) protein requires an interaction with MA for assembly into virions. Unexpectedly, ΔMA proteins biotinylated Env, whereas WT BirA*-tagged proteins did not, suggesting that the presence of MA made Env inaccessible to biotinylation. We also identified over 50 cellular proteins that were biotinylated by BirA*-tagged PrGag proteins. These included membrane proteins, cytoskeleton-associated proteins, nuclear transport factors, lipid metabolism regulators, translation factors, and RNA-processing proteins. The identification of these biotinylated proteins offers new insights into HIV-1 Gag protein trafficking and activities and provides new potential targets for antiviral interference. IMPORTANCE We have employed a novel strategy to analyze the interactions of the HIV-1 structural Gag proteins, which involved tagging wild-type and mutant Gag proteins with a biotin ligase. Expression of the tagged proteins in cells allowed us to analyze proteins that came in close proximity to the Gag proteins as they were synthesized, transported, assembled, and released from cells. The tagged proteins biotinylated proteins encoded by the HIV-1 pol gene and neighbor Gag proteins, but, surprisingly, only the mutant Gag protein biotinylated the HIV-1 Envelope protein. We also identified over 50 cellular proteins that were biotinylated, including membrane and cytoskeletal proteins and proteins involved in lipid metabolism, nuclear import, translation, and RNA processing. Our results offer new insights into HIV-1 Gag protein trafficking and activities and provide new potential targets for antiviral interference.
Collapse
|
21
|
Olety B, Ono A. Roles played by acidic lipids in HIV-1 Gag membrane binding. Virus Res 2014; 193:108-15. [PMID: 24998886 PMCID: PMC4252750 DOI: 10.1016/j.virusres.2014.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 06/18/2014] [Accepted: 06/23/2014] [Indexed: 10/25/2022]
Abstract
The MA domain mediates plasma membrane (PM) targeting of HIV-1 Gag, leading to particle assembly at the PM. The interaction between MA and acidic phospholipids, in addition to N-terminal myristoyl moiety, promotes Gag binding to lipid membranes. Among acidic phospholipids, PI(4,5)P2, a PM-specific phosphoinositide, is essential for proper HIV-1 Gag localization to the PM and efficient virus particle production. Recent studies further revealed that MA-bound RNA negatively regulates HIV-1 Gag membrane binding and that PI(4,5)P2 is necessary to overcome this RNA-imposed block. In this review, we will summarize the current understanding of Gag-membrane interactions and discuss potential roles played by acidic phospholipids.
Collapse
Affiliation(s)
- Balaji Olety
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States
| | - Akira Ono
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, United States.
| |
Collapse
|
22
|
Alfadhli A, Barklis E. The roles of lipids and nucleic acids in HIV-1 assembly. Front Microbiol 2014; 5:253. [PMID: 24917853 PMCID: PMC4042026 DOI: 10.3389/fmicb.2014.00253] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/08/2014] [Indexed: 11/23/2022] Open
Abstract
During HIV-1 assembly, precursor Gag (PrGag) proteins are delivered to plasma membrane (PM) assembly sites, where they are triggered to oligomerize and bud from cells as immature virus particles. The delivery and triggering processes are coordinated by the PrGag matrix (MA) and nucleocapsid (NC) domains. Targeting of PrGag proteins to membranes enriched in cholesterol and phosphatidylinositol-4,5-bisphosphate (PI[4,5]P2) is mediated by the MA domain, which also has been shown to bind both RNA and DNA. Evidence suggests that the nucleic-acid-binding function of MA serves to inhibit PrGag binding to inappropriate intracellular membranes, prior to delivery to the PM. At the PM, MA domains putatively trade RNA ligands for PI(4,5)P2 ligands, fostering high-affinity membrane binding. Triggering of oligomerization, budding, and virus particle release results when NC domains on adjacent PrGag proteins bind to viral RNA, leading to capsid (CA) domain oligomerization. This process leads to the assembly of immature virus shells in which hexamers of membrane-bound MA trimers appear to organize above interlinked CA hexamers. Here, we review the functions of retroviral MA proteins, with an emphasis on the nucleic-acid-binding capability of the HIV-1 MA protein, and its effects on membrane binding.
Collapse
Affiliation(s)
- Ayna Alfadhli
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University Portland, OR, USA
| | - Eric Barklis
- Department of Molecular Microbiology and Immunology, Oregon Health & Sciences University Portland, OR, USA
| |
Collapse
|
23
|
[Membrane Binding of Retroviral Gag Proteins]. Uirusu 2014; 64:155-64. [PMID: 26437838 DOI: 10.2222/jsv.64.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Location of virus assembly in infected cells has major influences on efficiencies of virus assembly and release and on post-assembly processes including cell-to-cell transmission. Therefore, for better understanding of virus spread and for developing new antiviral strategies, it is important to elucidate mechanisms by which the subcellular site of virus particle assembly is determined. Retrovirus particle assembly is driven by viral structural protein Gag. In the case of HIV-1, Gag binds to the plasma membrane (PM) via the N-terminal MA domain and forms nascent particles at this location. Recent studies reveled that PM-specific phospholipid PI(4,5)P2 plays an important role in directing Gag to the PM through its interaction with MA. In this review, I will summarize our current understanding of relationships between retroviral MA domains and phospholipids in cellular membranes and discuss possible mechanisms by which lipids and other factors regulate membrane binding and subcellular localization of retroviral Gag proteins.
Collapse
|
24
|
Li G, Verheyen J, Rhee SY, Voet A, Vandamme AM, Theys K. Functional conservation of HIV-1 Gag: implications for rational drug design. Retrovirology 2013; 10:126. [PMID: 24176092 PMCID: PMC4228425 DOI: 10.1186/1742-4690-10-126] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 10/21/2013] [Indexed: 11/25/2022] Open
Abstract
Background HIV-1 replication can be successfully blocked by targeting gag gene products, offering a promising strategy for new drug classes that complement current HIV-1 treatment options. However, naturally occurring polymorphisms at drug binding sites can severely compromise HIV-1 susceptibility to gag inhibitors in clinical and experimental studies. Therefore, a comprehensive understanding of gag natural diversity is needed. Findings We analyzed the degree of functional conservation in 10862 full-length gag sequences across 8 major HIV-1 subtypes and identified the impact of natural variation on known drug binding positions targeted by more than 20 gag inhibitors published to date. Complete conservation across all subtypes was detected in 147 (29%) out of 500 gag positions, with the highest level of conservation observed in capsid protein. Almost half (41%) of the 136 known drug binding positions were completely conserved, but all inhibitors were confronted with naturally occurring polymorphisms in their binding sites, some of which correlated with HIV-1 subtype. Integration of sequence and structural information revealed one drug binding pocket with minimal genetic variability, which is situated at the N-terminal domain of the capsid protein. Conclusions This first large-scale analysis of full-length HIV-1 gag provided a detailed mapping of natural diversity across major subtypes and highlighted the considerable variation in current drug binding sites. Our results contribute to the optimization of gag inhibitors in rational drug design, given that drug binding sites should ideally be conserved across all HIV-1 subtypes.
Collapse
Affiliation(s)
- Guangdi Li
- Rega Institute for Medical Research, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium.
| | | | | | | | | | | |
Collapse
|