1
|
Luo H, Ieong HC, Li R, Huang D, Chen D, Chen X, Guo Y, Qing Y, Guo B, Li R, Teng Y, Li W, Cao Y, Zhou C, Wang W. Lhx6 deficiency causes human embryonic palatal mesenchymal cell mitophagy dysfunction in cleft palate. Mol Med 2024; 30:183. [PMID: 39438838 PMCID: PMC11494960 DOI: 10.1186/s10020-024-00960-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Overconsumption of retinoic acid (RA) or its analogues/derivatives has been linked to severe craniomaxillofacial malformations, such as cleft palate and midface hypoplasia. It has been noted that RA disturbed the proliferation and migration of embryonic palatal mesenchymal (EPM) cells in these malformations, yet the exact mechanisms underlying these disruptions remained unclear. METHODS A model of retinoic acid (RA)-induced cleft palate in fetal mice was successfully established. Histological alterations in the palate were evaluated using Hematoxylin and Eosin (H&E) staining and RNA in situ hybridization (RNAscope). Cellular proliferation levels were quantified via the Cell Counting Kit-8 (CCK-8) assay and EdU incorporation assay, while cell migration capabilities were investigated using wound healing and Transwell assays. Mitochondrial functions were assessed through Mito-Tracker fluorescence, mitochondrial reactive oxygen species (ROS) measurement, ATP level quantification, and mitochondrial DNA (mtDNA) copy number analysis. Differential gene expression and associated signaling pathways were identified through bioinformatics analysis. Alterations in the transcriptional and translational levels of Lhx6 and genes associated with mitophagy were quantified using quantitative PCR (qPCR) and Western blot analysis, respectively. Mitochondrial morphology and the mitochondrial autophagosomes within cells were examined through transmission electron microscopy (TEM). RESULTS Abnormal palatal development in mice, along with impaired proliferation and migration of human embryonic palatal mesenchymal (HEPM) cells, was associated with RA affecting mitochondrial function and concomitant downregulation of Lhx6. Knockdown of Lhx6 in HEPM cells resulted in altered cell proliferation, migration, and mitochondrial function. Conversely, the aberrant mitochondrial function, proliferation, and migration observed in RA-induced HEPM cells were ameliorated by overexpression of Lhx6. Subsequent research demonstrated that Lhx6 ameliorated RA-induced dysfunction in HEPM cells by modulating PINK1/Parkin-mediated mitophagy, thereby activating the MAPK signaling pathways. CONCLUSION Lhx6 is essential for mitochondrial homeostasis via tuning PINK1/Parkin-mediated mitophagy and MAPK signaling pathways. Downregulation of Lhx6 by RA transcriptionally disturbs the mitochondrial homeostasis, which in turn leads to the proliferation and migration defect in HEPM cells, ultimately causing the cleft palate.
Collapse
Affiliation(s)
- Haotian Luo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Hio Cheng Ieong
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Runze Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Delan Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Danying Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Xin Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Yuqing Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Yangqiao Qing
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Bingyan Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Ruoyu Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Yungshan Teng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Wenfeng Li
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China
| | - Yang Cao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.
| | - Chen Zhou
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.
| | - Weicai Wang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, 510055, China.
| |
Collapse
|
2
|
Dvoretskova E, Ho MC, Kittke V, Neuhaus F, Vitali I, Lam DD, Delgado I, Feng C, Torres M, Winkelmann J, Mayer C. Spatial enhancer activation influences inhibitory neuron identity during mouse embryonic development. Nat Neurosci 2024; 27:862-872. [PMID: 38528203 PMCID: PMC11088997 DOI: 10.1038/s41593-024-01611-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/23/2024] [Indexed: 03/27/2024]
Abstract
The mammalian telencephalon contains distinct GABAergic projection neuron and interneuron types, originating in the germinal zone of the embryonic basal ganglia. How genetic information in the germinal zone determines cell types is unclear. Here we use a combination of in vivo CRISPR perturbation, lineage tracing and ChIP-sequencing analyses and show that the transcription factor MEIS2 favors the development of projection neurons by binding enhancer regions in projection-neuron-specific genes during mouse embryonic development. MEIS2 requires the presence of the homeodomain transcription factor DLX5 to direct its functional activity toward the appropriate binding sites. In interneuron precursors, the transcription factor LHX6 represses the MEIS2-DLX5-dependent activation of projection-neuron-specific enhancers. Mutations of Meis2 result in decreased activation of regulatory enhancers, affecting GABAergic differentiation. We propose a differential binding model where the binding of transcription factors at cis-regulatory elements determines differential gene expression programs regulating cell fate specification in the mouse ganglionic eminence.
Collapse
Affiliation(s)
- Elena Dvoretskova
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - May C Ho
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Volker Kittke
- Institute of Neurogenomics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuhererg, Germany
- TUM School of Medicine and Health, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- DZPG (German Center for Mental Health), Munich, Germany
| | - Florian Neuhaus
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Ilaria Vitali
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Daniel D Lam
- Institute of Neurogenomics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuhererg, Germany
- TUM School of Medicine and Health, Institute of Human Genetics, Technical University of Munich, Munich, Germany
| | - Irene Delgado
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
- Departamento de Genética, Fisiología y Microbiología, Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| | - Chao Feng
- Max Planck Institute for Biological Intelligence, Martinsried, Germany
- Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Miguel Torres
- Cardiovascular Development Program, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München GmbH, German Research Center for Environmental Health, Neuhererg, Germany
- TUM School of Medicine and Health, Institute of Human Genetics, Technical University of Munich, Munich, Germany
- DZPG (German Center for Mental Health), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Christian Mayer
- Max Planck Institute for Biological Intelligence, Martinsried, Germany.
- Max Planck Institute of Neurobiology, Martinsried, Germany.
| |
Collapse
|
3
|
Szalai R, Till A, Szabo A, Melegh B, Hadzsiev K, Czako M. Overlapping Interstitial Deletions of the Region 9q22.33 to 9q33.3 of Three Patients Allow Pinpointing Candidate Genes for Epilepsy and Cleft Lip and Palate. Mol Syndromol 2023; 14:109-122. [PMID: 37064343 PMCID: PMC10090976 DOI: 10.1159/000525976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/07/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Patients carrying interstitial deletions of the long arm of chromosome 9 show similar features. These phenotypes are often characterized by developmental delay, intellectual disability, short stature, and dysmorphism. Previously reported deletions differ in size and location spanning from 9q21 to 9q34 and were mostly detected by conventional cytogenetic techniques. Methods Based on clinical features suggesting primarily chromosomal diseases, aCGH analysis was indicated. We report on de novo overlapping interstitial 9q deletions in 3 unrelated individuals presenting neurodevelopmental disorder and multiple congenital anomalies. Results An 8.03-Mb (90 genes), a 15.71-Mb (193 genes), and a 15.81-Mb (203 genes) deletion were identified in 9q affecting 9q22.33q33.3. The overlapping region was 1.50 Mb, including 2 dosage-sensitive genes, namely EPB41L4B (OMIM #610340) and SVEP1 (OMIM #611691). These genes are thought to be involved in cellular adhesion, migration, and motility. The non-overlapping regions contain 24 dosage-sensitive genes. Conclusion Besides the frequently described symptoms (developmental delay, intellectual disability, skeletal abnormalities, short stature, and dysmorphic facial features) shared by the patients with interstitial deletions of chromosome 9q reported thus far, two of our patients showed distinct forms of epilepsy, which were successfully treated, and one had a bilateral cleft lip and palate. Possible candidate genes for epilepsy and cleft lip and palate are discussed.
Collapse
Affiliation(s)
- Renata Szalai
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Agnes Till
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Andras Szabo
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Bela Melegh
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Marta Czako
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
4
|
Hii EPW, Ramanathan A, Pandarathodiyil AK, Wong GR, Sekhar EVS, Binti Talib R, Zaini ZM, Zain RB. Homeobox Genes in Odontogenic Lesions: A Scoping Review. Head Neck Pathol 2023; 17:218-232. [PMID: 36344906 PMCID: PMC10063701 DOI: 10.1007/s12105-022-01481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Homeobox genes play crucial roles in tooth morphogenesis and development and thus mutations in homeobox genes cause developmental disorders such as odontogenic lesions. The aim of this scoping review is to identify and compile available data from the literatures on the topic of homeobox gene expression in odontogenic lesions. METHOD An electronic search to collate all the information on studies on homeobox gene expression in odontogenic lesions was carried out in four databases (PubMed, EBSCO host, Web of Science and Cochrane Library) with selected keywords. All papers which reported expression of homeobox genes in odontogenic lesions were considered. RESULTS A total of eleven (11) papers describing expression of homeobox genes in odontogenic lesions were identified. Methods of studies included next generation sequencing, microarray analysis, RT-PCR, Western blotting, in situ hybridization, and immunohistochemistry. The homeobox reported in odontogenic lesions includes LHX8 and DLX3 in odontoma; PITX2, MSX1, MSX2, DLX, DLX2, DLX3, DLX4, DLX5, DLX6, ISL1, OCT4 and HOX C in ameloblastoma; OCT4 in adenomatoid odontogenic tumour; PITX2 and MSX2 in primordial odontogenic tumour; PAX9 and BARX1 in odontogenic keratocyst; PITX2, ZEB1 and MEIS2 in ameloblastic carcinoma while there is absence of DLX2, DLX3 and MSX2 in clear cell odontogenic carcinoma. CONCLUSIONS This paper summarized and reviews the possible link between homeobox gene expression in odontogenic lesions. Based on the current available data, there are insufficient evidence to support any definite role of homeobox gene in odontogenic lesions.
Collapse
Affiliation(s)
- Erica Pey Wen Hii
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Gou Rean Wong
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - E V Soma Sekhar
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | | | - Zuraiza Mohamad Zaini
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| |
Collapse
|
5
|
Eliason S, Su D, Pinho F, Sun Z, Zhang Z, Li X, Sweat M, Venugopalan SR, He B, Bustin M, Amendt BA. HMGN2 represses gene transcription via interaction with transcription factors Lef-1 and Pitx2 during amelogenesis. J Biol Chem 2022; 298:102295. [PMID: 35872015 PMCID: PMC9418915 DOI: 10.1016/j.jbc.2022.102295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/06/2022] Open
Abstract
The chromatin-associated high mobility group protein N2 (HMGN2) cofactor regulates transcription factor activity through both chromatin and protein interactions. Hmgn2 expression is known to be developmentally regulated, but the post-transcriptional mechanisms that regulate Hmgn2 expression and its precise roles in tooth development remain unclear. Here, we demonstrate that HMGN2 inhibits the activity of multiple transcription factors as a general mechanism to regulate early development. Bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays show that HMGN2 interacts with the transcription factor Lef-1 through its HMG-box domain as well as with other early development transcription factors, Dlx2, FoxJ1, and Pitx2. Furthermore, EMSAs demonstrate that HMGN2 binding to Lef-1 inhibits its DNA-binding activity. We found that Pitx2 and Hmgn2 associate with H4K5ac and H3K4me2 chromatin marks in the proximal Dlx2 promoter, demonstrating Hmgn2 association with open chromatin. In addition, we demonstrate that microRNAs (miRs) mir-23a and miR-23b directly target Hmgn2, promoting transcriptional activation at several gene promoters, including the amelogenin promoter. In vivo, we found that decreased Hmgn2 expression correlates with increased miR-23 expression in craniofacial tissues as the murine embryo develops. Finally, we show that ablation of Hmgn2 in mice results in increased amelogenin expression because of increased Pitx2, Dlx2, Lef-1, and FoxJ1 transcriptional activity. Taken together, our results demonstrate both post-transcriptional regulation of Hmgn2 by miR-23a/b and post-translational regulation of gene expression by Hmgn2–transcription factor interactions. We conclude that HMGN2 regulates tooth development through its interaction with multiple transcription factors.
Collapse
Affiliation(s)
- Steven Eliason
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA
| | - Dan Su
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA
| | | | - Zhao Sun
- Washington University St. Louis, St. Louis, MO
| | | | - Xiao Li
- Texas Heart Institute, Houston, TX
| | | | | | - Bing He
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Michael Bustin
- Protein Section, Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Brad A Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA; Department of Orthodontics, The University of Iowa, Iowa City, IA.
| |
Collapse
|
6
|
Coto-Vílchez C, Martínez-Magaña JJ, Mora-Villalobos L, Valerio D, Genis-Mendoza AD, Silverman JM, Nicolini H, Raventós H, Chavarria-Soley G. Genome-wide DNA methylation profiling in nonagenarians suggests an effect of PM20D1 in late onset Alzheimer's disease. CNS Spectr 2021; 28:1-27. [PMID: 34911598 DOI: 10.1017/s109285292100105x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractBackgroundThe aim of this study is to identify differentially methylated regions (DMRs) in the genomes of a sample of cognitively healthy individuals and a sample of individuals with LOAD, all of them nonagenarians from Costa Rica.MethodsIn this study, we compared whole blood DNA methylation profiles of 32 individuals: 21 cognitively healthy and 11 with LOAD, using the Infinium MethylationEPIC BeadChip. First, we calculated the epigenetic age of the participants based on Horvath’s epigenetic clock. DMRcate and Bumphunter were used to identify DMRs. After in silico and knowledge-based filtering of the DMRs, we performed a methylation quantitative loci (mQTL) analysis (rs708727 and rs960603).ResultsOn average, the epigenetic age was 73 years in both groups, which represents a difference of over 20 years between epigenetic and chronological age in both affected and unaffected individuals. Methylation analysis revealed 11 DMRs between groups, which contain six genes and two pseudogenes. These genes are involved in cell cycle regulation, embryogenesis, synthesis of ceramides, and migration of interneurons to the cerebral cortex. One of the six genes is PM20D1, for which altered expression has been reported in LOAD. After genotyping previously reported mQTL SNPs for the gene, we found that average methylation in the PM20D1 DMR differs between genotypes for rs708727, but not for rs960603.ConclusionsThis work supports the possible role of PM20D1 in protection against AD, by showing differential methylation in blood of affected and unaffected nonagenarians. Our results also support the influence of genetic factors on PM20D1 methylation levels.
Collapse
|
7
|
He J, Jing J, Feng J, Han X, Yuan Y, Guo T, Pei F, Ma Y, Cho C, Ho TV, Chai Y. Lhx6 regulates canonical Wnt signaling to control the fate of mesenchymal progenitor cells during mouse molar root patterning. PLoS Genet 2021; 17:e1009320. [PMID: 33596195 PMCID: PMC7920342 DOI: 10.1371/journal.pgen.1009320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 03/01/2021] [Accepted: 12/21/2020] [Indexed: 02/05/2023] Open
Abstract
Mammalian tooth crown formation has long served as a model for investigating how patterning and morphogenesis are orchestrated during development. However, the mechanism underlying root patterning and morphogenesis remains poorly understood. In this study, we find that Lhx6 labels a subpopulation of root progenitor cells in the apical dental mesenchyme, which is closely associated with furcation development. Loss of Lhx6 leads to furcation and root number defects, indicating that Lhx6 is a key root patterning regulator. Among the multiple cellular events regulated by Lhx6 is the odontoblast fate commitment of progenitor cells, which it controls in a cell-autonomous manner. Specifically, Lhx6 loss leads to elevated expression of the Wnt antagonist Sfrp2 and down-regulation of Wnt signaling in the furcation region, while overactivation of Wnt signaling in Lhx6+ progenitor cells partially restore the furcation defects in Lhx6-/- mice. Collectively, our findings have important implications for understanding organ morphogenesis and future strategies for tooth root regeneration.
Collapse
Affiliation(s)
- Jinzhi He
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Chengdu, Sichuan province, China
| | - Junjun Jing
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Xia Han
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Tingwei Guo
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Fei Pei
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Yuanyuan Ma
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Courtney Cho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
8
|
Wang Q, Liao J, He Z, Su Y, Lin D, Xu L, Xu H, Lin J. LHX6 Affects Erlotinib Resistance and Migration of EGFR-Mutant Non-Small-Cell Lung Cancer HCC827 Cells Through Suppressing Wnt/β-Catenin Signaling. Onco Targets Ther 2020; 13:10983-10994. [PMID: 33149613 PMCID: PMC7605383 DOI: 10.2147/ott.s258896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022] Open
Abstract
Background miR-214 has been reported to contribute to erlotinib resistance in non-small-cell lung cancer (NSCLC) through targeting LHX6; however, the molecular mechanisms underlying the involvement of LHX6 in mediating the resistance to EGFR-TKIs in erlotinib-resistant NSCLC HCC827 (HCC827/ER) cells remain unknown. This study aimed to investigate the mechanisms responsible for the contribution of LHX6 to EGFR-TKIs resistance in HCC827/ER cells. Materials and Methods HCC827/ER cells were generated by erlotinib treatment at a dose-escalation scheme. LHX6 knockout or overexpression was modeled in HCC827 and HCC827/ER cells, and then erlotinib IC50 values were measured. The cell migration ability was evaluated using a transwell migration assay, and the TCF/LEF luciferase activity was assessed with a TCF/LEF reporter luciferase assay. LHX6, β-catenin and Cyclin D1 expression was quantified using qPCR and Western blotting assays. In addition, the LHX6 expression was detected in lung cancer and peri-cancer specimens using immunohistochemical staining, and the associations of LHX expression with the clinicopathological characteristics of lung cancer were evaluated. Results Lower LHX6 expression was detected in HCC827/ER cells than in HCC827 cells (P < 0.0001), while higher β-catenin expression was seen in HCC827/ER cells than in HCC827 cells (P < 0.001). LHX6 knockout increased erlotinib resistance and cell migration ability in HCC827 cells, and LHX6 overexpression inhibited erlotinib resistance and cell migration ability in HCC827/ER cells. In addition, LHX6 mediated erlotinib resistance and cell migration ability in HCC827/ER cells via the Wnt/β-catenin pathway. Immunohistochemical staining showed lower LHX6 expression in lung cancer specimens relative to peri-cancer specimens, and there were no associations of LHX6 expression with pathologic stage, gender, age or tumor size in lung cancer patients (P > 0.05). Conclusion LHX6 down-regulation may induce EGFR-TKIs resistance and increase the migration ability of HCC827/ER cells via activation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Thoracic Medical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Jinrong Liao
- Department of Radiobiology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Zhiyong He
- Department of Thoracic Medical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China.,Fujian Provincial Key Laboratory of Translation Cancer Medicine, Fuzhou 350014, People's Republic of China
| | - Ying Su
- Department of Radiobiology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Dong Lin
- Department of Thoracic Medical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Ling Xu
- Department of Thoracic Medical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Haipeng Xu
- Department of Thoracic Medical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| | - Jinghui Lin
- Department of Thoracic Medical Oncology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou 350014, People's Republic of China
| |
Collapse
|
9
|
Ihn HJ, Kim JA, Lim J, Nam SH, Hwang SH, Kim YK, Kim JY, Kim JE, Cho ES, Jiang R, Park EK. Bobby sox homolog regulates tooth root formation through modulation of dentin sialophosphoprotein. J Cell Physiol 2020; 236:480-488. [PMID: 32537777 DOI: 10.1002/jcp.29875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 11/09/2022]
Abstract
Tooth root development occurs through the interaction of multiple growth factors and transcription factors expressed in Hertwig's epithelial root sheath (HERS) and dental mesenchyme. Previously, we demonstrated that bobby sox homolog (Bbx) regulates odontoblast differentiation of human dental pulp stem cells. Here, we generated Bbx knockout (Bbx-/- ) mice to address the functional role of Bbx in tooth formation. During tooth development, Bbx was expressed in both dental epithelium and mesenchyme. However, molar and incisor morphology in Bbx-/- mice at postnatal Day 0 (P0) exhibited no prominent abnormalities compared with their wild-type (Bbx+/+ ) littermates. Until P28, the crown morphology in Bbx-/- mice was not distinctively different from Bbx+/+ littermates. Meanwhile, the length of the mandibular base in Bbx-/- mice was notably less at P28. Compared with Bbx+/+ mice, the mesial and distal root lengths of the first molar were reduced by 21.33% and 16.28% at P14 and 16.28% and 16.24% at P28, respectively, in Bbx-/- mice. The second molar of Bbx-/- mice also showed 10.16% and 6.4% reductions at P28 in the mesial and distal lengths, compared with Bbx+/+ mice, respectively. The gene expression analysis during early tooth root formation (P13) showed that the expression of dentin sialophosphoprotein (Dspp) was significantly decreased in Bbx-/- mice. Collectively, our data suggest that Bbx participates in tooth root formation and might be associated with the regulation of Dspp expression.
Collapse
Affiliation(s)
- Hye Jung Ihn
- Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - Ju Ang Kim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - Jiwon Lim
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Hyeon Nam
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - So Hyeon Hwang
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| | - Young Kyung Kim
- Department of Conservative Dentistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Eui-Sic Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, School of Dentistry, Chonbuk National University, Jeonju, Republic of Korea
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Eui Kyun Park
- Department of Oral Pathology and Regenerative Medicine, School of Dentistry, Institute for Hard Tissue and Biotooth Regeneration, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
10
|
Lopes F, Torres F, Soares G, Barbosa M, Silva J, Duque F, Rocha M, Sá J, Oliveira G, Sá MJ, Temudo T, Sousa S, Marques C, Lopes S, Gomes C, Barros G, Jorge A, Rocha F, Martins C, Mesquita S, Loureiro S, Cardoso EM, Cálix MJ, Dias A, Martins C, Mota CR, Antunes D, Dupont J, Figueiredo S, Figueiroa S, Gama-de-Sousa S, Cruz S, Sampaio A, Eijk P, Weiss MM, Ylstra B, Rendeiro P, Tavares P, Reis-Lima M, Pinto-Basto J, Fortuna AM, Maciel P. Genomic imbalances defining novel intellectual disability associated loci. Orphanet J Rare Dis 2019; 14:164. [PMID: 31277718 PMCID: PMC6612161 DOI: 10.1186/s13023-019-1135-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/12/2019] [Indexed: 11/29/2022] Open
Abstract
Background High resolution genome-wide copy number analysis, routinely used in clinical diagnosis for several years, retrieves new and extremely rare copy number variations (CNVs) that provide novel candidate genes contributing to disease etiology. The aim of this work was to identify novel genetic causes of neurodevelopmental disease, inferred from CNVs detected by array comparative hybridization (aCGH), in a cohort of 325 Portuguese patients with intellectual disability (ID). Results We have detected CNVs in 30.1% of the patients, of which 5.2% corresponded to novel likely pathogenic CNVs. For these 11 rare CNVs (which encompass novel ID candidate genes), we identified those most likely to be relevant, and established genotype-phenotype correlations based on detailed clinical assessment. In the case of duplications, we performed expression analysis to assess the impact of the rearrangement. Interestingly, these novel candidate genes belong to known ID-related pathways. Within the 8% of patients with CNVs in known pathogenic loci, the majority had a clinical presentation fitting the phenotype(s) described in the literature, with a few interesting exceptions that are discussed. Conclusions Identification of such rare CNVs (some of which reported for the first time in ID patients/families) contributes to our understanding of the etiology of ID and for the ever-improving diagnosis of this group of patients. Electronic supplementary material The online version of this article (10.1186/s13023-019-1135-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fátima Lopes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fátima Torres
- CGC Genetics, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Gabriela Soares
- Center for Medical Genetics Dr. Jacinto Magalhães, Porto Hospital Center, Praça Pedro Nunes, Porto, Portugal
| | - Mafalda Barbosa
- Center for Medical Genetics Dr. Jacinto Magalhães, Porto Hospital Center, Praça Pedro Nunes, Porto, Portugal.,Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal.,The Mindich Child Health & Development Institute and the Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - João Silva
- Center for Medical Genetics Dr. Jacinto Magalhães, Porto Hospital Center, Praça Pedro Nunes, Porto, Portugal.,Centro de Genética Preditiva e Preventiva - CGPP, Instituto de Biologia Molecular e Celular - IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| | - Frederico Duque
- Unidade de Neurodesenvolvimento e Autismo do Serviço do Centro de Desenvolvimento da Criança and Centro de Investigação e Formação Clínica, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, 3041-80, Coimbra, Portugal.,University Clinic of Pediatrics and Institute for Biomedical Imaging and Life Science, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Miguel Rocha
- Center for Medical Genetics Dr. Jacinto Magalhães, Porto Hospital Center, Praça Pedro Nunes, Porto, Portugal.,Medical Genetics Unit, Hospital de Braga, Braga, Portugal
| | - Joaquim Sá
- CGC Genetics, Porto, Portugal.,Department of Medical Genetics, Hospital de Faro, Faro, Portugal
| | - Guiomar Oliveira
- Unidade de Neurodesenvolvimento e Autismo do Serviço do Centro de Desenvolvimento da Criança and Centro de Investigação e Formação Clínica, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, 3041-80, Coimbra, Portugal.,University Clinic of Pediatrics and Institute for Biomedical Imaging and Life Science, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Maria João Sá
- Center for Medical Genetics Dr. Jacinto Magalhães, Porto Hospital Center, Praça Pedro Nunes, Porto, Portugal.,Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Teresa Temudo
- Pediatric Neurology Department, Centro Materno-Infantil Centro Hospitalar do Porto, Porto, Portugal
| | - Susana Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Centro de Genética Preditiva e Preventiva - CGPP, Instituto de Biologia Molecular e Celular - IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| | - Carla Marques
- Unidade de Neurodesenvolvimento e Autismo do Serviço do Centro de Desenvolvimento da Criança and Centro de Investigação e Formação Clínica, Pediatric Hospital, Centro Hospitalar e Universitário de Coimbra, 3041-80, Coimbra, Portugal
| | - Sofia Lopes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Catarina Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gisela Barros
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Arminda Jorge
- Development Unit, Pediatrics Service, Hospital Centre of Cova da Beira, Covilhã, Portugal.,CICS - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Felisbela Rocha
- Department of Pediatrics, Médio Ave Hospital Center, Vila Nova de Famalicão, Portugal
| | - Cecília Martins
- Department of Pediatrics, Médio Ave Hospital Center, Vila Nova de Famalicão, Portugal
| | - Sandra Mesquita
- Development Unit, Pediatrics Service, Hospital Centre of Cova da Beira, Covilhã, Portugal
| | - Susana Loureiro
- Department of Pediatrics, Hospital S. Teotónio, Tondela/Viseu Hospital Center, Viseu, Portugal
| | - Elisa Maria Cardoso
- Department of Pediatrics, Hospital S. Teotónio, Tondela/Viseu Hospital Center, Viseu, Portugal
| | - Maria José Cálix
- Department of Pediatrics, Hospital S. Teotónio, Tondela/Viseu Hospital Center, Viseu, Portugal
| | - Andreia Dias
- Department of Pediatrics, Hospital S. Teotónio, Tondela/Viseu Hospital Center, Viseu, Portugal
| | - Cristina Martins
- Neuropaediatric Unit - Garcia de Orta Hospital, Almada, Portugal
| | - Céu R Mota
- Pediatric and Neonatal Intensive Care, Department of Pediatrics, Porto Hospital Center, Porto, Portugal
| | - Diana Antunes
- Department of Genetics, Hospital D. Estefânia, Lisboa-Norte Hospital Center, Lisbon, Portugal
| | - Juliette Dupont
- Genetics Service, Paediatric Department, University Hospital Santa Maria, Lisbon, Portugal
| | - Sara Figueiredo
- Department of Pediatrics, Médio Ave Hospital Center, Santo Tirso, Portugal
| | - Sónia Figueiroa
- Division of Pediatric Neurology, Department of Child and Adolescent, Centro Hospitalar do Porto e Hospital de Santo António, Porto, Portugal
| | - Susana Gama-de-Sousa
- Department of Pediatrics, Médio Ave Hospital Center, Vila Nova de Famalicão, Portugal
| | - Sara Cruz
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Adriana Sampaio
- Neuropsychophysiology Lab, CIPsi, School of Psychology, University of Minho, Braga, Portugal
| | - Paul Eijk
- Department of Pathology, VU University Medical Center, Amsterdam, 1007, MB, The Netherlands
| | - Marjan M Weiss
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, 1007, MB, The Netherlands
| | - Bauke Ylstra
- Department of Pathology, VU University Medical Center, Amsterdam, 1007, MB, The Netherlands
| | | | | | - Margarida Reis-Lima
- Center for Medical Genetics Dr. Jacinto Magalhães, Porto Hospital Center, Praça Pedro Nunes, Porto, Portugal.,GDPN- SYNLAB, Porto, Portugal
| | | | - Ana Maria Fortuna
- Center for Medical Genetics Dr. Jacinto Magalhães, Porto Hospital Center, Praça Pedro Nunes, Porto, Portugal
| | - Patrícia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
11
|
Sun Z, da Fontoura CSG, Moreno M, Holton NE, Sweat M, Sweat Y, Lee MK, Arbon J, Bidlack FB, Thedens DR, Nopoulos P, Cao H, Eliason S, Weinberg SM, Martin JF, Moreno-Uribe L, Amendt BA. FoxO6 regulates Hippo signaling and growth of the craniofacial complex. PLoS Genet 2018; 14:e1007675. [PMID: 30286078 PMCID: PMC6197693 DOI: 10.1371/journal.pgen.1007675] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 10/22/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2022] Open
Abstract
The mechanisms that regulate post-natal growth of the craniofacial complex and that ultimately determine the size and shape of our faces are not well understood. Hippo signaling is a general mechanism to control tissue growth and organ size, and although it is known that Hippo signaling functions in neural crest specification and patterning during embryogenesis and before birth, its specific role in postnatal craniofacial growth remains elusive. We have identified the transcription factor FoxO6 as an activator of Hippo signaling regulating neonatal growth of the face. During late stages of mouse development, FoxO6 is expressed specifically in craniofacial tissues and FoxO6-/- mice undergo expansion of the face, frontal cortex, olfactory component and skull. Enlargement of the mandible and maxilla and lengthening of the incisors in FoxO6-/- mice are associated with increases in cell proliferation. In vitro and in vivo studies demonstrated that FoxO6 activates Lats1 expression, thereby increasing Yap phosphorylation and activation of Hippo signaling. FoxO6-/- mice have significantly reduced Hippo Signaling caused by a decrease in Lats1 expression and decreases in Shh and Runx2 expression, suggesting that Shh and Runx2 are also linked to Hippo signaling. In vitro, FoxO6 activates Hippo reporter constructs and regulates cell proliferation. Furthermore PITX2, a regulator of Hippo signaling is associated with Axenfeld-Rieger Syndrome causing a flattened midface and we show that PITX2 activates FoxO6 expression. Craniofacial specific expression of FoxO6 postnatally regulates Hippo signaling and cell proliferation. Together, these results identify a FoxO6-Hippo regulatory pathway that controls skull growth, odontogenesis and face morphology.
Collapse
Affiliation(s)
- Zhao Sun
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Clarissa S. G. da Fontoura
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Myriam Moreno
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Nathan E. Holton
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Mason Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Yan Sweat
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Myoung Keun Lee
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh PA, United States of America
| | - Jed Arbon
- Private practice, Cary, North Carolina United States of America
| | | | - Daniel R. Thedens
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Peggy Nopoulos
- Department of Psychiatry, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Huojun Cao
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Steven Eliason
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
| | - Seth M. Weinberg
- Department of Oral Biology, School of Dental Medicine, University of Pittsburgh, Pittsburgh PA, United States of America
| | - James F. Martin
- Department of Physiology, Baylor College of Medicine, Houston, TX, United States of America
| | - Lina Moreno-Uribe
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology, and the Craniofacial Anomalies Research Center, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States of America
- Iowa Institute for Oral Health Research, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
- Department of Orthodontics, College of Dentistry, The University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
12
|
Downregulation of tumor-suppressor gene LHX6 in cancer: a systematic review. ROMANIAN JOURNAL OF INTERNAL MEDICINE 2018. [DOI: 10.2478/rjim-2018-0008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Abstract
Introduction. LIM Homeobox 6 (LHX6) encodes a LIM homeodomain transcription factor, contributes to tissue development and morphogenesis, and is mostly expressed in medial ganglionic eminence and odontogenic mesenchyme. However, it has been reported to play a role in cancer progression. This narrative review summarizes literatures that emphasize the molecular regulation of LHX6 in tumorigenesis.
Methods. In our systematic review, the PubMed database was used for the literature search using the combination of words that included “LHX6” and “cancer”. Relevant studies, including in vitro, in vivo experiments, and clinical studies, were analyzed in this review.
Results. We found evidences that LHX6 might be important in the inhibition of tumor cell proliferation, growth, invasion, and metastasis through the suppression of Wnt/β-catenin signaling pathway. Moreover, LHX6 is observed to be downregulated in certain types of cancer due to hypermethylation, thus hindering its tumor suppressing ability. In addition, hypermethylation can also be used to determine the stage of cancer development.
Conclusion. The downregulation of LHX6 expression might be responsible in promoting cancer progression. Future studies are necessary to investigate the potential of LHX6 as a novel cancer biomarker as well as its therapeutic implications towards certain types of cancer.
Collapse
|
13
|
ALX4, an epigenetically down regulated tumor suppressor, inhibits breast cancer progression by interfering Wnt/β-catenin pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2017; 36:170. [PMID: 29183346 PMCID: PMC5706407 DOI: 10.1186/s13046-017-0643-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/20/2017] [Indexed: 12/29/2022]
Abstract
Background ALX4 is a paired-like homedomain transcription factor mainly expressed in the mesenchymal compartment of variety of developing tissues, but its functions, regulation mechanisms and clinical values in breast cancer remains unclear. Methods The expression of ALX4 in breast cancer cell lines and patients’ tissues were detected by RT-PCR, qPCR and western blot. Furthermore TCGA database was applied to confirm these results. MSP and BSP methods were used to assess the methylation of ALX4 promoter region. In vitro proliferation, metastasis and in vivo nude mice model were used to evaluate the anti-tumor effect of ALX4 on breast cancer cell lines. Luciferase reporter assay, western blot and TCGA database were used to investigate the tumor suppression mechanisms of ALX4. TMA of 142 breast patients was generated to evaluate the clinical significance of ALX4. Results Expression analysis revealed that ALX4 expression is down regulated in breast cancer cell lines and tissues. MSP study showed that the promoter region of ALX4 was hyper-methylated 100% (3/3) in breast cancer cell lines and 69.44% (75/108) in primary breast tumors tissues while 0% (0/8) in normal breast tissues. 5-aza-dc de-methylation treatment restored ALX4 expression in breast cancer cell lines. Functional studies showed that ectopic expression of ALX4 in breast cancer cells inhibited cell proliferation, metastasis in vitro and in vivo. Mechanism study found that ALX4 exerted its anti-tumor function by suppressing the Wnt/β-catenin pathway through promoting the phosphorylation degradation of β-catenin in a GSK3β dependent manner. Clinically multivariate analysis showed that ALX4 expression was an independent favorable prognostic factor in breast cancer patients. Conclusions We reveal for the first time that ALX4 acts as a novel functional tumor suppressor inactivated by DNA methylation and is an independent prognostic factor in breast cancer. Electronic supplementary material The online version of this article (10.1186/s13046-017-0643-9) contains supplementary material, which is available to authorized users.
Collapse
|
14
|
Ramanathan A, Srijaya TC, Sukumaran P, Zain RB, Abu Kasim NH. Homeobox genes and tooth development: Understanding the biological pathways and applications in regenerative dental science. Arch Oral Biol 2017; 85:23-39. [PMID: 29031235 DOI: 10.1016/j.archoralbio.2017.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Homeobox genes are a group of conserved class of transcription factors that function as key regulators during the embryonic developmental processes. They act as master regulator for developmental genes, which involves coordinated actions of various auto and cross-regulatory mechanisms. In this review, we summarize the expression pattern of homeobox genes in relation to the tooth development and various signaling pathways or molecules contributing to the specific actions of these genes in the regulation of odontogenesis. MATERIALS AND METHODS An electronic search was undertaken using combination of keywords e.g. Homeobox genes, tooth development, dental diseases, stem cells, induced pluripotent stem cells, gene control region was used as search terms in PubMed and Web of Science and relevant full text articles and abstract were retrieved that were written in English. A manual hand search in text books were also carried out. Articles related to homeobox genes in dentistry and tissue engineering and regenerative medicine of odontogenesis were selected. RESULTS The possible perspective of stem cells technology in odontogenesis and subsequent analysis of gene correction pertaining to dental disorders through the possibility of induced pluripotent stem cells technology is also inferred. CONCLUSIONS We demonstrate the promising role of tissue engineering and regenerative medicine on odontogenesis, which can generate a new ray of hope in the field of dental science.
Collapse
Affiliation(s)
- Anand Ramanathan
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | | | - Prema Sukumaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia.
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
Abstract
The tooth root is an integral, functionally important part of our dentition. The formation of a functional root depends on epithelial-mesenchymal interactions and integration of the root with the jaw bone, blood supply and nerve innervations. The root development process therefore offers an attractive model for investigating organogenesis. Understanding how roots develop and how they can be bioengineered is also of great interest in the field of regenerative medicine. Here, we discuss recent advances in understanding the cellular and molecular mechanisms underlying tooth root formation. We review the function of cellular structure and components such as Hertwig's epithelial root sheath, cranial neural crest cells and stem cells residing in developing and adult teeth. We also highlight how complex signaling networks together with multiple transcription factors mediate tissue-tissue interactions that guide root development. Finally, we discuss the possible role of stem cells in establishing the crown-to-root transition, and provide an overview of root malformations and diseases in humans.
Collapse
Affiliation(s)
- Jingyuan Li
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, People's Republic of China
| | - Carolina Parada
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, 2250 Alcazar Street, Los Angeles, CA 90033, USA
| |
Collapse
|
16
|
Monteiro N, Yelick PC. Advances and perspectives in tooth tissue engineering. J Tissue Eng Regen Med 2017; 11:2443-2461. [PMID: 27151766 PMCID: PMC6625321 DOI: 10.1002/term.2134] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/20/2022]
Abstract
Bio-engineered teeth that can grow and remodel in a manner similar to that of natural teeth have the potential to serve as permanent replacements to the currently used prosthetic teeth, such as dental implants. A major challenge in designing functional bio-engineered teeth is to mimic both the structural and anisotropic mechanical characteristics of the native tooth. Therefore, the field of dental and whole tooth regeneration has advanced towards the molecular and nanoscale design of bio-active, biomimetic systems, using biomaterials, drug delivery systems and stem cells. The focus of this review is to discuss recent advances in tooth tissue engineering, using biomimetic scaffolds that provide proper architectural cues, exhibit the capacity to support dental stem cell proliferation and differentiation and sequester and release bio-active agents, such as growth factors and nucleic acids, in a spatiotemporal controlled manner. Although many in vitro and in vivo studies on tooth regeneration appear promising, before tooth tissue engineering becomes a reality for humans, additional research is needed to perfect methods that use adult human dental stem cells, as opposed to embryonic dental stem cells, and to devise the means to generate bio-engineered teeth of predetermined size and shape. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Nelson Monteiro
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| | - Pamela C. Yelick
- Department of Oral and Maxillofacial Pathology, Tufts University, Boston, MA, USA
| |
Collapse
|
17
|
Yang J, Han F, Liu W, Zhang M, Huang Y, Hao X, Jiang X, Yin L, Chen H, Cao J, Zhang H, Liu J. LHX6, An Independent Prognostic Factor, Inhibits Lung Adenocarcinoma Progression through Transcriptional Silencing of β-catenin. J Cancer 2017; 8:2561-2574. [PMID: 28900494 PMCID: PMC5595086 DOI: 10.7150/jca.19972] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/10/2017] [Indexed: 12/27/2022] Open
Abstract
Introduction: Our previous study identified LIM homeobox domain 6 (LHX6) as a frequently epigenetically silenced tumor-suppressor gene in lung cancer. However, its clinical value has never been evaluated, and the in-depth anti-tumor mechanism remains unclear. Methods: Public database was used for lung cancer, lung adenocarcinoma and lung squamous carcinoma patients and tissue microarray data was used for lung adenocarcinoma patients to study prognostic outcome of LHX6 expression by Kaplan-Meier and Cox-regression analysis. In vitro proliferation, metastasis and in vivo nude mice model were used to evaluate the anti-tumor effect of LHX6 on lung adenocarcinoma cell lines. The mechanisms were explored using western blot, TOP/FOP flash assays and luciferase reporter assays. LHX6 expression and clinical stages data were collected from The Cancer Genome Atlas database (TCGA). Results: Expression of LHX6 was found to be a favorable independent prognostic factor for overall survival (OS) of total lung adenocarcinoma patients (P=0.014) and patients with negative lymph nodes status (P=0.014) but not related the prognostic outcome of lung squamous cell carcinoma patients. The expression status of LHX6 significantly correlated to histological grade (P<0.01), tumor size (P=0.026), lymph node status (P=0.039) and clinical stages (P<0.01) of lung adenocarcinoma patients. Functionally, LHX6 inhibited the proliferation and metastasis of lung adenocarcinoma cells in vitro and in vivo. Furthermore, LHX6 suppressed the Wnt/β-catenin pathway through transcriptionally silencing the expression of β-catenin, and the promoter region (-1161 bp to +27 bp) was crucial for its inhibitory activity. Conclusions: Our data indicate that the expression of LHX6 may serve as a favorable prognostic biomarker for lung adenocarcinoma patients and provide a novel mechanism of LHX6 involving in the tumorigenesis of lung adenocarcinoma.
Collapse
Affiliation(s)
- Juntang Yang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Fei Han
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Wenbin Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Mingqian Zhang
- Department of emergency, Yan'an Hospital, Kunming Medical University, Kunming 650500, PR China
| | - Yongsheng Huang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Xianglin Hao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Li Yin
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Hongqiang Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Huidong Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China
| |
Collapse
|
18
|
Modulation of light-driven arousal by LIM-homeodomain transcription factor Apterous in large PDF-positive lateral neurons of the Drosophila brain. Sci Rep 2016; 6:37255. [PMID: 27853240 PMCID: PMC5112534 DOI: 10.1038/srep37255] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/26/2016] [Indexed: 11/29/2022] Open
Abstract
Apterous (Ap), the best studied LIM-homeodomain transcription factor in Drosophila, cooperates with the cofactor Chip (Chi) to regulate transcription of specific target genes. Although Ap regulates various developmental processes, its function in the adult brain remains unclear. Here, we report that Ap and Chi in the neurons expressing PDF, a neuropeptide, play important roles in proper sleep/wake regulation in adult flies. PDF-expressing neurons consist of two neuronal clusters: small ventral-lateral neurons (s-LNvs) acting as the circadian pacemaker and large ventral-lateral neurons (l-LNvs) regulating light-driven arousal. We identified that Ap localizes to the nuclei of s-LNvs and l-LNvs. In light-dark (LD) cycles, RNAi knockdown or the targeted expression of dominant-negative forms of Ap or Chi in PDF-expressing neurons or l-LNvs promoted arousal. In contrast, in constant darkness, knockdown of Ap in PDF-expressing neurons did not promote arousal, indicating that a reduced Ap function in PDF-expressing neurons promotes light-driven arousal. Furthermore, Ap expression in l-LNvs showed daily rhythms (peaking at midnight), which are generated by a direct light-dependent mechanism rather than by the endogenous clock. These results raise the possibility that the daily oscillation of Ap expression in l-LNvs may contribute to the buffering of light-driven arousal in wild-type flies.
Collapse
|
19
|
Gou Y, Zhang T, Xu J. Transcription Factors in Craniofacial Development: From Receptor Signaling to Transcriptional and Epigenetic Regulation. Curr Top Dev Biol 2015; 115:377-410. [PMID: 26589933 DOI: 10.1016/bs.ctdb.2015.07.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Craniofacial morphogenesis is driven by spatial-temporal terrains of gene expression, which give rise to stereotypical pattern formation. Transcription factors are key cellular components that control these gene expressions. They are information hubs that integrate inputs from extracellular factors and environmental cues, direct epigenetic modifications, and define transcriptional status. These activities allow transcription factors to confer specificity and potency to transcription regulation during development.
Collapse
Affiliation(s)
- Yongchao Gou
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA
| | - Tingwei Zhang
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA; State Key Laboratory of Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jian Xu
- Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA.
| |
Collapse
|
20
|
Zhou C, Yang G, Chen M, He L, Xiang L, Ricupero C, Mao JJ, Ling J. Lhx6 and Lhx8: cell fate regulators and beyond. FASEB J 2015; 29:4083-91. [PMID: 26148970 PMCID: PMC4566936 DOI: 10.1096/fj.14-267500] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
As transcription factors of the lines (LIN)-11/Islet (Isl)-1/mitosis entry checkpoint (MEC)-3 (LIM)-homeobox subfamily, LIM homeobox (Lhx)6 and -8 are remarkably conserved and involved in the morphogenesis of multiple organ systems. Lhx6 and -8 play overlapping and distinctive roles, but in general act as cell fate mediators and in turn are regulated by several transcriptional factors, such as sonic hedgehog, fibroblast growth factors, and wingless-int (Wnt)/β-catenin. In this review, we first summarize Lhx6 and -8 distributions in development and then explore how Lhx6 and -8 act as transcription factors and coregulators of cell lineage specification. Known Lhx6 and -8 functions and targets are outlined in neurogenesis, craniofacial development, and germ cell differentiation. The underlying mechanisms of Lhx6 and -8 in regulating cell fate remain elusive. Whether Lhx6 and -8 affect functions in tissues and organs other than neural, craniofacial, oocytes, and germ cells is largely unexplored. Taken together, Lhx6 and -8 are important regulators of cell lineage specification and may act as one of the pivotal mediators of stem cell fate. Undoubtedly, future investigations of Lhx6 and -8 biology will continue to yield fascinating insights into tissue development and homeostasis, in addition to their putative roles in tissue regeneration and ageing.
Collapse
Affiliation(s)
- Chen Zhou
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Guodong Yang
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Mo Chen
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ling He
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Lusai Xiang
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Christopher Ricupero
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jeremy J Mao
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Junqi Ling
- *Center for Craniofacial Regeneration, Columbia University Medical Center, New York, New York, USA; Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
21
|
Tavares ALP, Artinger KB, Clouthier DE. Regulating Craniofacial Development at the 3' End: MicroRNAs and Their Function in Facial Morphogenesis. Curr Top Dev Biol 2015; 115:335-75. [PMID: 26589932 DOI: 10.1016/bs.ctdb.2015.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Defects in craniofacial development represent a majority of observed human birth defects, occurring at a rate as high as 1:800 live births. These defects often occur due to changes in neural crest cell (NCC) patterning and development and can affect non-NCC-derived structures due to interactions between NCCs and the surrounding cell types. Proper craniofacial development requires an intricate array of gene expression networks that are tightly controlled spatiotemporally by a number of regulatory mechanisms. One of these mechanisms involves the action of microRNAs (miRNAs), a class of noncoding RNAs that repress gene expression by binding to miRNA recognition sequences typically located in the 3' UTR of target mRNAs. Recent evidence illustrates that miRNAs are crucial for vertebrate facial morphogenesis, with changes in miRNA expression leading to facial birth defects, including some in complex human syndromes such as 22q11 (DiGeorge Syndrome). In this review, we highlight the current understanding of miRNA biogenesis, the roles of miRNAs in overall craniofacial development, the impact that loss of miRNAs has on normal development and the requirement for miRNAs in the development of specific craniofacial structures, including teeth. From these studies, it is clear that miRNAs are essential for normal facial development and morphogenesis, and a potential key in establishing new paradigms for repair and regeneration of facial defects.
Collapse
Affiliation(s)
- Andre L P Tavares
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kristin B Artinger
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
22
|
Hu Z, Xie L. LHX6 inhibits breast cancer cell proliferation and invasion via repression of the Wnt/β-catenin signaling pathway. Mol Med Rep 2015; 12:4634-4639. [PMID: 26129710 DOI: 10.3892/mmr.2015.3997] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 06/11/2015] [Indexed: 11/05/2022] Open
Abstract
LIM homeobox domain 6 (LHX6), a member of the LHX family of proteins, has been implicated in cancer development. However, the involvement of LHX6 in the development of breast cancer remains unclear. In the present study, the epigenetic regulation, biological function and associated molecular mechanisms of LHX6 in breast cancer were analyzed. The expression levels of LHX6 were demonstrated to be markedly decreased in breast cancer tissues and cell lines. In addition, it was found that increased LHX6 expression in breast cancer cell lines inhibited cell proliferation and invasion. Furthermore, increased LHX6 expression significantly decreased the expression of β‑catenin in MDA‑MB‑231 breast cancer cells, and small interfering RNA‑β‑catenin enhanced LHX6‑induced inhibition of cell proliferation and invasion in MDA‑MB‑231 breast cancer cells. These results indicate that LHX6 inhibits breast cancer cell growth and invasion through suppression of the Wnt/β‑catenin signaling pathway. Thus, the present study provides a novel insight into the underlying mechanism of tumorigenesis in breast cancer, indicating the therapeutic potential of LHX6 in the treatment of breast cancer.
Collapse
Affiliation(s)
- Zhuang Hu
- Department of Breast and Thyroid Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, P.R. China
| | - Lingling Xie
- Operation Room, Zhangqiu City Hospital of Traditional Chinese Medicine, Zhangqiu, Shandong 250200, P.R. China
| |
Collapse
|
23
|
Landin Malt A, Cesario JM, Tang Z, Brown S, Jeong J. Identification of a face enhancer reveals direct regulation of LIM homeobox 8 (Lhx8) by wingless-int (WNT)/β-catenin signaling. J Biol Chem 2014; 289:30289-30301. [PMID: 25190800 DOI: 10.1074/jbc.m114.592014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Development of the mammalian face requires a large number of genes that are expressed with spatio-temporal specificity, and transcriptional regulation mediated by enhancers plays a key role in the precise control of gene expression. Using chromatin immunoprecipitation for a histone marker of active enhancers, we generated a genome-wide map of candidate enhancers from the maxillary arch (primordium for the upper jaw) of mouse embryos. Furthermore, we confirmed multiple novel craniofacial enhancers near the genes implicated in human palate defects through functional assays. We characterized in detail one of the enhancers (Lhx8_enh1) located upstream of Lhx8, a key regulatory gene for craniofacial development. Lhx8_enh1 contained an evolutionarily conserved binding site for lymphoid enhancer factor/T-cell factor family proteins, which mediate the transcriptional regulation by the WNT/β-catenin signaling pathway. We demonstrated in vitro that WNT/β-catenin signaling was indeed essential for the expression of Lhx8 in the maxillary arch cells and that Lhx8_enh1 was a direct target of the WNT/β-catenin pathway. Together, we uncovered a molecular mechanism for the regulation of Lhx8, and we provided valuable resources for further investigation into the gene regulatory network of craniofacial development.
Collapse
Affiliation(s)
- André Landin Malt
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010 and
| | - Jeffry M Cesario
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010 and
| | - Zuojian Tang
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York 10016
| | - Stuart Brown
- Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, New York 10016
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, New York 10010 and.
| |
Collapse
|
24
|
Hu JKH, Mushegyan V, Klein OD. On the cutting edge of organ renewal: Identification, regulation, and evolution of incisor stem cells. Genesis 2014; 52:79-92. [PMID: 24307456 PMCID: PMC4252016 DOI: 10.1002/dvg.22732] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 11/22/2013] [Accepted: 11/25/2013] [Indexed: 12/14/2022]
Abstract
The rodent incisor is one of a number of organs that grow continuously throughout the life of an animal. Continuous growth of the incisor arose as an evolutionary adaptation to compensate for abrasion at the distal end of the tooth. The sustained turnover of cells that deposit the mineralized dental tissues is made possible by epithelial and mesenchymal stem cells residing at the proximal end of the incisor. A complex network of signaling pathways and transcription factors regulates the formation, maintenance, and differentiation of these stem cells during development and throughout adulthood. Research over the past 15 years has led to significant progress in our understanding of this network, which includes FGF, BMP, Notch, and Hh signaling, as well as cell adhesion molecules and micro-RNAs. This review surveys key historical experiments that laid the foundation of the field and discusses more recent findings that definitively identified the stem cell population, elucidated the regulatory network, and demonstrated possible genetic mechanisms for the evolution of continuously growing teeth.
Collapse
Affiliation(s)
- Jimmy Kuang-Hsien Hu
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vagan Mushegyan
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences and Program in Craniofacial and Mesenchymal Biology, University of California San Francisco, San Francisco, CA 94143, USA
- Department of Pediatrics and Institute for Human Genetics, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Li X, Venugopalan SR, Cao H, Pinho FO, Paine ML, Snead ML, Semina EV, Amendt BA. A model for the molecular underpinnings of tooth defects in Axenfeld-Rieger syndrome. Hum Mol Genet 2014; 23:194-208. [PMID: 23975681 PMCID: PMC3857954 DOI: 10.1093/hmg/ddt411] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 08/19/2013] [Indexed: 12/18/2022] Open
Abstract
Patients with Axenfeld-Rieger Syndrome (ARS) present various dental abnormalities, including hypodontia, and enamel hypoplasia. ARS is genetically associated with mutations in the PITX2 gene, which encodes one of the earliest transcription factors to initiate tooth development. Thus, Pitx2 has long been considered as an upstream regulator of the transcriptional hierarchy in early tooth development. However, because Pitx2 is also a major regulator of later stages of tooth development, especially during amelogenesis, it is unclear how mutant forms cause ARS dental anomalies. In this report, we outline the transcriptional mechanism that is defective in ARS. We demonstrate that during normal tooth development Pitx2 activates Amelogenin (Amel) expression, whose product is required for enamel formation, and that this regulation is perturbed by missense PITX2 mutations found in ARS patients. We further show that Pitx2-mediated Amel activation is controlled by chromatin-associated factor Hmgn2, and that Hmgn2 prevents Pitx2 from efficiently binding to and activating the Amel promoter. Consistent with a physiological significance to this interaction, we show that K14-Hmgn2 transgenic mice display a severe loss of Amel expression on the labial side of the lower incisors, as well as enamel hypoplasia-consistent with the human ARS phenotype. Collectively, these findings define transcriptional mechanisms involved in normal tooth development and shed light on the molecular underpinnings of the enamel defect observed in ARS patients who carry PITX2 mutations. Moreover, our findings validate the etiology of the enamel defect in a novel mouse model of ARS.
Collapse
Affiliation(s)
- Xiao Li
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| | - Shankar R. Venugopalan
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| | - Huojun Cao
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| | - Flavia O. Pinho
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| | - Michael L. Paine
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA and
| | - Malcolm L. Snead
- Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA and
| | - Elena V. Semina
- Division of Developmental Biology, Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology and Craniofacial Anomalies Research Center, The University of Iowa, Iowa City, IA 52244, USA
| |
Collapse
|
26
|
Liu WB, Jiang X, Han F, Li YH, Chen HQ, Liu Y, Cao J, Liu JY. LHX6 acts as a novel potential tumour suppressor with epigenetic inactivation in lung cancer. Cell Death Dis 2013; 4:e882. [PMID: 24157876 PMCID: PMC3824675 DOI: 10.1038/cddis.2013.366] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/07/2013] [Accepted: 08/07/2013] [Indexed: 12/23/2022]
Abstract
LIM homeobox domain 6 (LHX6) is a putative transcriptional regulator that controls the differentiation and development of neural and lymphoid cells. However, the function of LHX6 in cancer development remains largely unclear. Recently, we found that LHX6 is hypermethylated in lung cancer. In this study, we analysed its epigenetic regulation, biological functions, and related molecular mechanisms in lung cancer. Methylation status was evaluated by methylation-specific PCR and bisulfite genomic sequencing. LHX6 mRNA levels were measured in relation to the methylation status. The effects of LHX6 expression on tumourigenesis were studied in vitro and in vivo. LHX6 was readily expressed in normal lung tissues without methylation, but was downregulated or silenced in lung cancer cell lines and tissues with hypermethylation status. Treatment of lung cancer cells with the demethylating agent 5-aza-2′-deoxycytidine restored LHX6 expression. Moreover, LHX6 hypermethylation was detected in 56% (52/93) of primary lung cancers compared with none (0/20) of the tested normal lung tissues. In lung cancer cell lines 95D and H358, forced expression of LHX6 suppressed cell viability, colony formation, and migration, induced apoptosis and G1/S arrest, and inhibited their tumorigenicity in nude mice. On the other hand, knockdown of LHX6 expression by RNA interference increased cell proliferation and inhibited apoptosis and cell cycle arrest. These effects were associated with upregulation of p21 and p53, and downregulation of Bcl-2, cyclinD1, c-myc, CD44, and MMP7. In conclusion, our results suggest that LHX6 is a putative tumour suppressor gene with epigenetic silencing in lung cancer.
Collapse
Affiliation(s)
- W-b Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Bao ZS, Zhang CB, Wang HJ, Yan W, Liu YW, Li MY, Zhang W. Whole-genome mRNA expression profiling identifies functional and prognostic signatures in patients with mesenchymal glioblastoma multiforme. CNS Neurosci Ther 2013; 19:714-20. [PMID: 23663361 DOI: 10.1111/cns.12118] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/01/2013] [Accepted: 04/01/2013] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The Cancer Genome Atlas (TCGA) has divided patients with glioblastoma multiforme (GBM) into four subtypes based on mRNA expression microarray. The mesenchymal subtype, with a larger proportion, is considered a more lethal one. Clinical outcome prediction is required to better guide more personalized treatment for these patients. AIMS The objective of this study was to identify a mRNA expression signature to improve outcome prediction for patients with mesenchymal GBM. RESULTS For signature identification and validation, we downloaded mRNA expression microarray data from TCGA as training set and data from Rembrandt and GSE16011 as validation set. Cox regression and risk-score analysis were used to develop the 4 signatures, which were function and prognosis associated as revealed by Gene Ontology (GO) analysis and Gene Set Variation Analysis (GSVA). Patients who had high-risk scores according to the signatures had poor overall survival compared with patients who had low-risk scores. CONCLUSIONS The signatures were identified as risk predictors that patients who had a high-risk score tended to have unfavorable outcome, demonstrating their potential for personalizing cancer management.
Collapse
Affiliation(s)
- Zhao-Shi Bao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|