1
|
Homma H, Yoshioka Y, Fujita K, Shirai S, Hama Y, Komano H, Saito Y, Yabe I, Okano H, Sasaki H, Tanaka H, Okazawa H. Dynamic molecular network analysis of iPSC-Purkinje cells differentiation delineates roles of ISG15 in SCA1 at the earliest stage. Commun Biol 2024; 7:413. [PMID: 38594382 PMCID: PMC11003991 DOI: 10.1038/s42003-024-06066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 03/18/2024] [Indexed: 04/11/2024] Open
Abstract
Better understanding of the earliest molecular pathologies of all neurodegenerative diseases is expected to improve human therapeutics. We investigated the earliest molecular pathology of spinocerebellar ataxia type 1 (SCA1), a rare familial neurodegenerative disease that primarily induces death and dysfunction of cerebellum Purkinje cells. Extensive prior studies have identified involvement of transcription or RNA-splicing factors in the molecular pathology of SCA1. However, the regulatory network of SCA1 pathology, especially central regulators of the earliest developmental stages and inflammatory events, remains incompletely understood. Here, we elucidated the earliest developmental pathology of SCA1 using originally developed dynamic molecular network analyses of sequentially acquired RNA-seq data during differentiation of SCA1 patient-derived induced pluripotent stem cells (iPSCs) to Purkinje cells. Dynamic molecular network analysis implicated histone genes and cytokine-relevant immune response genes at the earliest stages of development, and revealed relevance of ISG15 to the following degradation and accumulation of mutant ataxin-1 in Purkinje cells of SCA1 model mice and human patients.
Collapse
Affiliation(s)
- Hidenori Homma
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Yuki Yoshioka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
- Research Center for Child Mental Development, Kanazawa University, 13-1 Takaramachi, Kanazawa-shi, Ishikawa, 920-8640, Japan
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Yuka Hama
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hajime Komano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yuko Saito
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidenao Sasaki
- Department of Neurology, Faculty of Medicine, Graduate School of Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan.
| |
Collapse
|
2
|
Yousefi P, Tabibzadeh A, Jawaziri AK, Mehrjoo M, Akhavan M, Allahqoli L, Salehiniya H. Autophagy-related genes polymorphism in hepatitis B virus-associated hepatocellular carcinoma: A systematic review. Immun Inflamm Dis 2024; 12:e1182. [PMID: 38353395 PMCID: PMC10865419 DOI: 10.1002/iid3.1182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Chronic hepatitis B (CHB) virus is the most common risk factor for developing liver malignancy. Autophagy is an essential element in human cell maintenance. Several studies have demonstrated that autophagy plays a vital role in liver cancer at different stages. In this systematic review, we intend to investigate the role of polymorphism and mutations of autophagy-related genes (ATGs) in the pathogenesis and carcinogenesis of the hepatitis B virus (HBV). MATERIALS AND METHODS The search was conducted in online databases (Web of Science, PubMed, and Scopus) using Viruses, Infections, Polymorphism, Autophagy, and ATG. The study was conducted based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. RESULTS The primary search results led to 422 studies. By screening and eligibility evaluation, only four studies were relevant. The most important polymorphisms in hepatocellular carcinoma were rs2241880 in ATG16L1, rs77859116, rs510432, and rs548234 in ATG5. Furthermore, some polymorphisms are associated with an increased risk of HBV infection including, rs2241880 in ATG16L1 and rs6568431 in ATG5. CONCLUSION The current study highlights the importance of rs2241880 in ATG16L1 and rs77859116, rs510432, and rs548234 in ATG5 for HBV-induced HCC. Additionally, some mutations in ATG16L1 and ATG5 were important in risk of HBV infection. The study highlights the gap of knowledge in the field of ATG polymorphisms in HBV infection and HBV-induced HCC.
Collapse
Affiliation(s)
- Parastoo Yousefi
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | - Alireza Tabibzadeh
- Department of Virology, School of MedicineIran University of Medical SciencesTehranIran
| | | | - Mohsen Mehrjoo
- Department of Biochemistry and Genetics, School of MedicineLorestan University of Medical SciencesKhorramabadIran
| | - Mandana Akhavan
- Department of Microbiology, Faculty of Medical SciencesIslamic Azad University, Arak BranchArakIran
| | - Leila Allahqoli
- Department of MidwiferyMinistry of Health and Medical EducationTehranIran
| | - Hamid Salehiniya
- Department of Epidemiology and Biostatistics, School of Health, Social Determinants of Health Research CenterBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
3
|
Albert M, Vázquez J, Falcón-Pérez JM, Balboa MA, Liesa M, Balsinde J, Guerra S. ISG15 Is a Novel Regulator of Lipid Metabolism during Vaccinia Virus Infection. Microbiol Spectr 2022; 10:e0389322. [PMID: 36453897 PMCID: PMC9769738 DOI: 10.1128/spectrum.03893-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/10/2022] [Indexed: 12/03/2022] Open
Abstract
Interferon-stimulated gene 15 (ISG15) is a 15-kDa ubiquitin-like modifier that binds to target proteins in a process termed ISGylation. ISG15, first described as an antiviral molecule against many viruses, participates in numerous cellular processes, from immune modulation to the regulation of genome stability. Interestingly, the role of ISG15 as a regulator of cell metabolism has recently gained strength. We previously described ISG15 as a regulator of mitochondrial functions in bone marrow-derived macrophages (BMDMs) in the context of Vaccinia virus (VACV) infection. Here, we demonstrate that ISG15 regulates lipid metabolism in BMDMs and that ISG15 is necessary to modulate the impact of VACV infection on lipid metabolism. We show that Isg15-/- BMDMs demonstrate alterations in the levels of several key proteins of lipid metabolism that result in differences in the lipid profile compared with Isg15+/+ (wild-type [WT]) BMDMs. Specifically, Isg15-/- BMDMs present reduced levels of neutral lipids, reflected by decreased lipid droplet number. These alterations are linked to increased levels of lipases and are independent of enhanced fatty acid oxidation (FAO). Moreover, we demonstrate that VACV causes a dysregulation in the proteomes of BMDMs and alterations in the lipid content of these cells, which appear exacerbated in Isg15-/- BMDMs. Such metabolic changes are likely caused by increased expression of the metabolic regulators peroxisome proliferator-activated receptor-γ (PPARγ) and PPARγ coactivator-1α (PGC-1α). In summary, our results highlight that ISG15 controls BMDM lipid metabolism during viral infections, suggesting that ISG15 is an important host factor to restrain VACV impact on cell metabolism. IMPORTANCE The functions of ISG15 are continuously expanding, and growing evidence supports its role as a relevant modulator of cell metabolism. In this work, we highlight how the absence of ISG15 impacts macrophage lipid metabolism in the context of viral infections and how poxviruses modulate metabolism to ensure successful replication. Our results open the door to new advances in the comprehension of macrophage immunometabolism and the interaction between VACV and the host.
Collapse
Affiliation(s)
- Manuel Albert
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC-ISCIII), Madrid, Spain
| | | | - María A. Balboa
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología y Genética Molecular, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Liesa
- Department of Medicine, Endocrinology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
- Institut de Biologia Molecular de Barcelona, IBMB, CSIC, Barcelona, Spain
| | - Jesús Balsinde
- Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Biología y Genética Molecular, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III, Madrid, Spain
| | - Susana Guerra
- Department of Preventive Medicine, Public Health and Microbiology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
4
|
The diverse repertoire of ISG15: more intricate than initially thought. Exp Mol Med 2022; 54:1779-1792. [PMID: 36319753 PMCID: PMC9722776 DOI: 10.1038/s12276-022-00872-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/05/2022] Open
Abstract
ISG15, the product of interferon (IFN)-stimulated gene 15, is the first identified ubiquitin-like protein (UBL), which plays multifaceted roles not only as a free intracellular or extracellular molecule but also as a post-translational modifier in the process of ISG15 conjugation (ISGylation). ISG15 has only been identified in vertebrates, indicating that the functions of ISG15 and its conjugation are restricted to higher eukaryotes and have evolved with IFN signaling. Despite the highlighted complexity of ISG15 and ISGylation, it has been suggested that ISG15 and ISGylation profoundly impact a variety of cellular processes, including protein translation, autophagy, exosome secretion, cytokine secretion, cytoskeleton dynamics, DNA damage response, telomere shortening, and immune modulation, which emphasizes the necessity of reassessing ISG15 and ISGylation. However, the underlying mechanisms and molecular consequences of ISG15 and ISGylation remain poorly defined, largely due to a lack of knowledge on the ISG15 target repertoire. In this review, we provide a comprehensive overview of the mechanistic understanding and molecular consequences of ISG15 and ISGylation. We also highlight new insights into the roles of ISG15 and ISGylation not only in physiology but also in the pathogenesis of various human diseases, especially in cancer, which could contribute to therapeutic intervention in human diseases.
Collapse
|
5
|
Clarkson BDS, Grund E, David K, Johnson RK, Howe CL. ISGylation is induced in neurons by demyelination driving ISG15-dependent microglial activation. J Neuroinflammation 2022; 19:258. [PMID: 36261842 PMCID: PMC9583544 DOI: 10.1186/s12974-022-02618-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
The causes of grey matter pathology and diffuse neuron injury in MS remain incompletely understood. Axonal stress signals arising from white matter lesions has been suggested to play a role in initiating this diffuse grey matter pathology. Therefore, to identify the most upstream transcriptional responses in neurons arising from demyelinated axons, we analyzed the transcriptome of actively translating neuronal transcripts in mouse models of demyelinating disease. Among the most upregulated genes, we identified transcripts associated with the ISGylation pathway. ISGylation refers to the covalent attachment of the ubiquitin-like molecule interferon stimulated gene (ISG) 15 to lysine residues on substrates targeted by E1 ISG15-activating enzyme, E2 ISG15-conjugating enzymes and E3 ISG15-protein ligases. We further confirmed that ISG15 expression is increased in MS cortical and deep gray matter. Upon investigating the functional impact of neuronal ISG15 upregulation, we noted that ISG15 expression was associated changes in neuronal extracellular vesicle protein and miRNA cargo. Specifically, extracellular vesicle-associated miRNAs were skewed toward increased frequency of proinflammatory and neurotoxic miRNAs and decreased frequency of anti-inflammatory and neuroprotective miRNAs. Furthermore, we found that ISG15 directly activated microglia in a CD11b-dependent manner and that microglial activation was potentiated by treatment with EVs from neurons expressing ISG15. Further study of the role of ISG15 and ISGylation in neurons in MS and neurodegenerative diseases is warranted.
Collapse
Affiliation(s)
- Benjamin D. S. Clarkson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDepartment of Laboratory Medicine and Pathology, Mayo Clinic, Guggenheim 1521C, 200 First Street SW, Rochester, MN 55905 USA
| | - Ethan Grund
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XMayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic Alix School of Medicine and Mayo Clinic Medical Scientist Training Program, MN 55905 Rochester, USA
| | - Kenneth David
- grid.418935.20000 0004 0436 053XConcordia College, Moorhead, MN USA
| | - Renee K. Johnson
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA
| | - Charles L. Howe
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XDivision of Experimental Neurology, Mayo Clinic, Rochester, MN 55905 USA ,grid.66875.3a0000 0004 0459 167XCenter for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
6
|
Kumari A, Rahaman A, Zeng XA, Farooq MA, Huang Y, Yao R, Ali M, Ishrat R, Ali R. Temporal Cortex Microarray Analysis Revealed Impaired Ribosomal Biogenesis and Hyperactivity of the Glutamatergic System: An Early Signature of Asymptomatic Alzheimer's Disease. Front Neurosci 2022; 16:966877. [PMID: 35958988 PMCID: PMC9359077 DOI: 10.3389/fnins.2022.966877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 11/21/2022] Open
Abstract
Pathogenic aging is regarded as asymptomatic AD when there is no cognitive deficit except for neuropathology consistent with Alzheimer's disease. These individuals are highly susceptible to developing AD. Braak and Braak's theory specific to tau pathology illustrates that the brain's temporal cortex region is an initiation site for early AD progression. So, the hub gene analysis of this region may reveal early altered biological cascades that may be helpful to alleviate AD in an early stage. Meanwhile, cognitive processing also drags its attention because cognitive impairment is the ultimate result of AD. Therefore, this study aimed to explore changes in gene expression of aged control, asymptomatic AD (AsymAD), and symptomatic AD (symAD) in the temporal cortex region. We used microarray data sets to identify differentially expressed genes (DEGs) with the help of the R programming interface. Further, we constructed the protein-protein interaction (PPI) network by performing the STRING plugin in Cytoscape and determined the hub genes via the CytoHubba plugin. Furthermore, we conducted Gene Ontology (GO) enrichment analysis via Bioconductor's cluster profile package. Resultant, the AsymAD transcriptome revealed the early-stage changes of glutamatergic hyperexcitability. Whereas the connectivity of major hub genes in this network indicates a shift from initially reduced rRNA biosynthesis in the AsymAD group to impaired protein synthesis in the symAD group. Both share the phenomenon of breaking tight junctions and others. In conclusion, this study offers new understandings of the early biological vicissitudes that occur in the brain before the manifestation of symAD and gives new promising therapeutic targets for early AD intervention.
Collapse
Affiliation(s)
- Ankita Kumari
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- Abdul Rahaman
| | - Xin-An Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
- *Correspondence: Xin-An Zeng
| | - Muhammad Adil Farooq
- Institute of Food Science and Technology, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Yanyan Huang
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
| | - Runyu Yao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Murtaza Ali
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- Guangdong Key Laboratory of Food Intelligent Manufacturing, Foshan University, Foshan, China
- Overseas Expertise Introduction Centre for Discipline Innovation of Food Nutrition and Human Health (111 Centre), Guangzhou, China
| | - Romana Ishrat
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
- Romana Ishrat
| | - Rafat Ali
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
7
|
Kakouri AC, Votsi C, Oulas A, Nicolaou P, Aureli M, Lunghi G, Samarani M, Compagnoni GM, Salani S, Di Fonzo A, Christophides T, Tanteles GA, Zamba-Papanicolaou E, Pantzaris M, Spyrou GM, Christodoulou K. Transcriptomic characterization of tissues from patients and subsequent pathway analyses reveal biological pathways that are implicated in spastic ataxia. Cell Biosci 2022; 12:29. [PMID: 35277195 PMCID: PMC8917697 DOI: 10.1186/s13578-022-00754-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/04/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Spastic ataxias (SAs) encompass a group of rare and severe neurodegenerative diseases, characterized by an overlap between ataxia and spastic paraplegia clinical features. They have been associated with pathogenic variants in a number of genes, including GBA2. This gene codes for the non-lysososomal β-glucosylceramidase, which is involved in sphingolipid metabolism through its catalytic role in the degradation of glucosylceramide. However, the mechanism by which GBA2 variants lead to the development of SA is still unclear. METHODS In this work, we perform next-generation RNA-sequencing (RNA-seq), in an attempt to discover differentially expressed genes (DEGs) in lymphoblastoid, fibroblast cell lines and induced pluripotent stem cell-derived neurons derived from patients with SA, homozygous for the GBA2 c.1780G > C missense variant. We further exploit DEGs in pathway analyses in order to elucidate candidate molecular mechanisms that are implicated in the development of the GBA2 gene-associated SA. RESULTS Our data reveal a total of 5217 genes with significantly altered expression between patient and control tested tissues. Furthermore, the most significant extracted pathways are presented and discussed for their possible role in the pathogenesis of the disease. Among them are the oxidative stress, neuroinflammation, sphingolipid signaling and metabolism, PI3K-Akt and MAPK signaling pathways. CONCLUSIONS Overall, our work examines for the first time the transcriptome profiles of GBA2-associated SA patients and suggests pathways and pathway synergies that could possibly have a role in SA pathogenesis. Lastly, it provides a list of DEGs and pathways that could be further validated towards the discovery of disease biomarkers.
Collapse
Affiliation(s)
- Andrea C. Kakouri
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Christina Votsi
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Anastasis Oulas
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Paschalis Nicolaou
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Massimo Aureli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milano, Italy
| | - Giulia Lunghi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, 20090 Milano, Italy
| | - Maura Samarani
- Unité de Trafic Membranaire ét PathogénèseDépartement de Biologie Cellulaire et Infection, Institut Pasteur, 75015 Paris, France
| | - Giacomo M. Compagnoni
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- School of Medicine and Surgery, University of Milano-Bicocca, 20126 Monza, Milan Italy
| | - Sabrina Salani
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Alessio Di Fonzo
- Neurology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | | | - George A. Tanteles
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- Department of Clinical Genetics and Genomics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Eleni Zamba-Papanicolaou
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- Neurology Clinic D, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Marios Pantzaris
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- Neurology Clinic C, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| | - Kyproula Christodoulou
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, 2370 Nicosia, Cyprus
| |
Collapse
|
8
|
Mirzalieva O, Juncker M, Schwartzenburg J, Desai S. ISG15 and ISGylation in Human Diseases. Cells 2022; 11:cells11030538. [PMID: 35159348 PMCID: PMC8834048 DOI: 10.3390/cells11030538] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/18/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022] Open
Abstract
Type I Interferons (IFNs) induce the expression of >500 genes, which are collectively called ISGs (IFN-stimulated genes). One of the earliest ISGs induced by IFNs is ISG15 (Interferon-Stimulated Gene 15). Free ISG15 protein synthesized from the ISG15 gene is post-translationally conjugated to cellular proteins and is also secreted by cells into the extracellular milieu. ISG15 comprises two ubiquitin-like domains (UBL1 and UBL2), each of which bears a striking similarity to ubiquitin, accounting for its earlier name ubiquitin cross-reactive protein (UCRP). Like ubiquitin, ISG15 harbors a characteristic β-grasp fold in both UBL domains. UBL2 domain has a conserved C-terminal Gly-Gly motif through which cellular proteins are appended via an enzymatic cascade similar to ubiquitylation called ISGylation. ISG15 protein is minimally expressed under physiological conditions. However, its IFN-dependent expression is aberrantly elevated or compromised in various human diseases, including multiple types of cancer, neurodegenerative disorders (Ataxia Telangiectasia and Amyotrophic Lateral Sclerosis), inflammatory diseases (Mendelian Susceptibility to Mycobacterial Disease (MSMD), bacteriopathy and viropathy), and in the lumbar spinal cords of veterans exposed to Traumatic Brain Injury (TBI). ISG15 and ISGylation have both inhibitory and/or stimulatory roles in the etiology and pathogenesis of human diseases. Thus, ISG15 is considered a “double-edged sword” for human diseases in which its expression is elevated. Because of the roles of ISG15 and ISGylation in cancer cell proliferation, migration, and metastasis, conferring anti-cancer drug sensitivity to tumor cells, and its elevated expression in cancer, neurodegenerative disorders, and veterans exposed to TBI, both ISG15 and ISGylation are now considered diagnostic/prognostic biomarkers and therapeutic targets for these ailments. In the current review, we shall cover the exciting journey of ISG15, spanning three decades from the bench to the bedside.
Collapse
Affiliation(s)
| | | | | | - Shyamal Desai
- Correspondence: ; Tel.: +1-504-568-4388; Fax: +1-504-568-2093
| |
Collapse
|
9
|
Ricci A, Biancucci F, Morganti G, Magnani M, Menotta M. New human ATM variants are able to regain ATM functions in ataxia telangiectasia disease. Cell Mol Life Sci 2022; 79:601. [PMID: 36422718 PMCID: PMC9691487 DOI: 10.1007/s00018-022-04625-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022]
Abstract
Ataxia telangiectasia is a rare neurodegenerative disease caused by biallelic mutations in the ataxia telangiectasia mutated gene. No cure is currently available for these patients but positive effects on neurologic features in AT patients have been achieved by dexamethasone administration through autologous erythrocytes (EryDex) in phase II and phase III clinical trials, leading us to explore the molecular mechanisms behind the drug action. During these investigations, new ATM variants, which originated from alternative splicing of ATM messenger, were discovered, and detected in vivo in the blood of AT patients treated with EryDex. Some of the new ATM variants, alongside an in silico designed one, were characterized and examined in AT fibroblast cell lines. ATM variants were capable of rescuing ATM activity in AT cells, particularly in the nuclear role of DNA DSBs recognition and repair, and in the cytoplasmic role of modulating autophagy, antioxidant capacity and mitochondria functionality, all of the features that are compromised in AT but essential for neuron survival. These outcomes are triggered by the kinase and further functional domains of the tested ATM variants, that are useful for restoring cellular functionality. The in silico designed ATM variant eliciting most of the functionality recover may be exploited in gene therapy or gene delivery for the treatment of AT patients.
Collapse
Affiliation(s)
- Anastasia Ricci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy.
| | - Federica Biancucci
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy
| | - Gianluca Morganti
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy
| | - Michele Menotta
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Via Saffi 2, 61029, Urbino, Italy
| |
Collapse
|
10
|
Juncker M, Kim C, Reed R, Haas A, Schwartzenburg J, Desai S. ISG15 attenuates post-translational modifications of mitofusins and congression of damaged mitochondria in Ataxia Telangiectasia cells. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166102. [PMID: 33617986 DOI: 10.1016/j.bbadis.2021.166102] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 10/22/2022]
Abstract
Mitophagy is defective in several neurodegenerative diseases, including Ataxia Telangiectasia (A-T). However, the molecular mechanism underlying defective mitophagy in A-T is unknown. Literature indicates that damaged mitochondria are transported to the perinuclear region prior to their removal via mitophagy. Our previous work has indicated that conjugation of SUMO2 (Small Ubiquitin-like Modifier 2) to mitofusins (Mfns) may be necessary for congression of mitochondria into SUMO2-/ubiquitin-/LC3-positive compact structures resembling mito-aggresomes at the perinuclear region in CCCP-treated HEK293 cells. Here, we demonstrate that Mfns are SUMOylated, and mitochondria are transported to the perinuclear region; however, mitochondria fail to congress into mito-aggresome-like structures in CCCP-treated A-T cells. Defect in mitochondrial congression is causally related to constitutively elevated ISG15 (Interferon-Stimulated Gene 15), an antagonist of the ubiquitin pathway, in A-T cells. Suppression of the ISG15 pathway restores mitochondrial congression, reduce oxidative stress, and level of unhealthy mitochondria, which is suggestive of restoration of mitophagy in A-T cells. ISG15 is also constitutively elevated and mitophagy is defective in Amytrophic Lateral Sclerosis (ALS). The constitutively elevated ISG15 pathway therefore appears to be a common unifying biochemical mechanism underlying defective mitophagy in neurodegenerative disorders thus, implying the broader significance of our findings, and suggest the potential role of ISG15 inhibitors in their treatment.
Collapse
Affiliation(s)
- Meredith Juncker
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Catherine Kim
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Ryan Reed
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Arthur Haas
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Joshua Schwartzenburg
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Shyamal Desai
- Department of Biochemistry & Molecular Biology, LSU Health Sciences Center-School of Medicine, 1901 Perdido Street, New Orleans, LA 70112, USA.
| |
Collapse
|
11
|
Cyclobutane pyrimidine dimers from UVB exposure induce a hypermetabolic state in keratinocytes via mitochondrial oxidative stress. Redox Biol 2020; 38:101808. [PMID: 33264701 PMCID: PMC7708942 DOI: 10.1016/j.redox.2020.101808] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022] Open
Abstract
Ultraviolet B radiation (UVB) is an environmental complete carcinogen, which induces and promotes keratinocyte carcinomas, the most common human malignancies. UVB induces the formation of cyclobutane pyrimidine dimers (CPDs). Repairing CPDs through nucleotide excision repair is slow and error-prone in placental mammals. In addition to the mutagenic and malignancy-inducing effects, UVB also elicits poorly understood complex metabolic changes in keratinocytes, possibly through CPDs. To determine the effects of CPDs, CPD-photolyase was overexpressed in keratinocytes using an N1-methyl pseudouridine-containing in vitro-transcribed mRNA. CPD-photolyase, which is normally not present in placental mammals, can efficiently and rapidly repair CPDs to block signaling pathways elicited by CPDs. Keratinocytes surviving UVB irradiation turn hypermetabolic. We show that CPD-evoked mitochondrial reactive oxygen species production, followed by the activation of several energy sensor enzymes, including sirtuins, AMPK, mTORC1, mTORC2, p53, and ATM, is responsible for the compensatory metabolic adaptations in keratinocytes surviving UVB irradiation. Compensatory metabolic changes consist of enhanced glycolytic flux, Szent-Györgyi-Krebs cycle, and terminal oxidation. Furthermore, mitochondrial fusion, mitochondrial biogenesis, and lipophagy characterize compensatory hypermetabolism in UVB-exposed keratinocytes. These properties not only support the survival of keratinocytes, but also contribute to UVB-induced differentiation of keratinocytes. Our results indicate that CPD-dependent signaling acutely maintains skin integrity by supporting cellular energy metabolism.
Collapse
|
12
|
Sandy Z, da Costa IC, Schmidt CK. More than Meets the ISG15: Emerging Roles in the DNA Damage Response and Beyond. Biomolecules 2020; 10:E1557. [PMID: 33203188 PMCID: PMC7698331 DOI: 10.3390/biom10111557] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/13/2022] Open
Abstract
Maintenance of genome stability is a crucial priority for any organism. To meet this priority, robust signalling networks exist to facilitate error-free DNA replication and repair. These signalling cascades are subject to various regulatory post-translational modifications that range from simple additions of chemical moieties to the conjugation of ubiquitin-like proteins (UBLs). Interferon Stimulated Gene 15 (ISG15) is one such UBL. While classically thought of as a component of antiviral immunity, ISG15 has recently emerged as a regulator of genome stability, with key roles in the DNA damage response (DDR) to modulate p53 signalling and error-free DNA replication. Additional proteomic analyses and cancer-focused studies hint at wider-reaching, uncharacterised functions for ISG15 in genome stability. We review these recent discoveries and highlight future perspectives to increase our understanding of this multifaceted UBL in health and disease.
Collapse
Affiliation(s)
| | | | - Christine K. Schmidt
- Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M20 4GJ, UK; (Z.S.); (I.C.d.C.)
| |
Collapse
|
13
|
Cheng A, Tse KH, Chow HM, Gan Y, Song X, Ma F, Qian YXY, She W, Herrup K. ATM loss disrupts the autophagy-lysosomal pathway. Autophagy 2020; 17:1998-2010. [PMID: 32757690 DOI: 10.1080/15548627.2020.1805860] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
ATM (ataxia telangiectasia mutated) protein is found associated with multiple organelles including synaptic vesicles, endosomes and lysosomes, often in cooperation with ATR (ataxia telangiectasia and Rad3 related). Mutation of the ATM gene results in ataxia-telangiectasia (A-T), an autosomal recessive disorder with defects in multiple organs including the nervous system. Precisely how ATM deficiency leads to the complex phenotypes of A-T, however, remains elusive. Here, we reported that part of the connection may lie in autophagy and lysosomal abnormalities. We found that ATM was degraded through the autophagy pathway, while ATR was processed by the proteasome. Autophagy and lysosomal trafficking were both abnormal in atm-/- neurons and the deficits impacted cellular functions such as synapse maintenance, neuronal survival and glucose uptake. Upregulated autophagic flux was observed in atm-/- lysosomes, associated with a more acidic pH. Significantly, we found that the ATP6V1A (ATPase, H+ transporting, lysosomal V1 subunit A) proton pump was an ATM kinase target. In atm-/- neurons, lysosomes showed enhanced retrograde transport and accumulated in the perinuclear regions. We attributed this change to an unexpected physical interaction between ATM and the retrograde transport motor protein, dynein. As a consequence, SLC2A4/GLUT4 (solute carrier family 4 [facilitated glucose transporter], member 4) translocation to the plasma membrane was inhibited and trafficking to the lysosomes was increased, leading to impaired glucose uptake capacity. Together, these data underscored the involvement of ATM in a variety of neuronal vesicular trafficking processes, offering new and therapeutically useful insights into the pathogenesis of A-T.Abbreviations: 3-MA: 3-methyladenine; A-T: ataxia-telangiectasia; ALG2: asparagine-linked glycosylation 2 (alpha-1,3-mannosyltransferase); AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; ATG5: autophagy related 5; ATM: ataxia telangiectasia mutated; ATP6V1A: ATPase, H+ transporting, lysosomal V1 subunit A; ATR: ataxia-telangiectasia and Rad3 related; BFA1: bafilomycin A1; CC3: cleaved-CASP3; CGN: cerebellar granule neuron; CLQ: chloroquine; CN: neocortical neuron; CTSB: cathepsin B; CTSD: cathepsin D; DYNLL1: the light chain1 of dynein; EIF4EBP1/4E-BP1: eukaryotic translation initiation factor 4E binding protein 1; Etop: etoposide; FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HBS: HEPES-buffered saline; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; HOMER1: homer protein homolog 1; KU: KU-60019; LAMP1: lysosomal-associated membrane protein 1; LC3B-II: LC3-phosphatidylethanolamine conjugate; Lyso: lysosome; LysopH-GFP: lysopHluorin-GFP; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; MAP2: microtubule associated protein 2; MAPK14: mitogen-activated protein kinase 14; MAPK8/JNK1: mitogen-activated protein kinase 8; MCOLN1/TRPML1: mucolipin 1; OSBPL1A: oxysterol binding protein like 1A; PIKK: phosphatidylinositol 3 kinase related kinase; Rapa: rapamycin; RILP: rab interacting lysosomal protein; ROS: reactive oxygen species; SEM: standard error of mean; SLC2A4/GLUT4: solute carrier family 2 (facilitated glucose transporter), member 4; TSC2/tuberin: TSC complex subunit 2; ULK1: unc-51 like kinase 1; UPS: ubiquitin-proteasome system; VE: VE-822; WCL: whole-cell lysate; WT: wild type.
Collapse
Affiliation(s)
- Aifang Cheng
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong.,Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Kai-Hei Tse
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong.,Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong
| | - Hei-Man Chow
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Yunqiao Gan
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Xuan Song
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Fulin Ma
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong
| | | | - Weiyi She
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong
| | - Karl Herrup
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong.,Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
14
|
Nakka VP, Mohammed AQ. A Critical Role for ISGylation, Ubiquitination and, SUMOylation in Brain Damage: Implications for Neuroprotection. Neurochem Res 2020; 45:1975-1985. [DOI: 10.1007/s11064-020-03066-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/12/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
|
15
|
Han HG, Moon HW, Jeon YJ. ISG15 in cancer: Beyond ubiquitin-like protein. Cancer Lett 2018; 438:52-62. [DOI: 10.1016/j.canlet.2018.09.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023]
|
16
|
Huang C, Yu XH, Zheng XL, Ou X, Tang CK. Interferon-stimulated gene 15 promotes cholesterol efflux by activating autophagy via the miR-17-5p/Beclin-1 pathway in THP-1 macrophage-derived foam cells. Eur J Pharmacol 2018. [PMID: 29518394 DOI: 10.1016/j.ejphar.2018.02.042] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Macrophage autophagy contributes to the hydrolysis of cholesteryl ester into free cholesterol mainly for ATP-binding cassette transporter A1 (ABCA1)-dependent efflux. Interferon-stimulated gene 15 (ISG15) has been shown to regulate autophagy in multiple types of cells. The present study aimed to examine the effects of ISG15 on autophagy and cholesterol efflux in THP-1 macrophage-derived foam cells and to explore the underlying molecular mechanisms. Our results showed that overexpression of ISG15 promoted autophagy and cholesterol efflux and inhibited lipid accumulation without impact on ABCA1 expression. Inhibition of autophagy by 3-methyladenine (3-MA) abrogated the enhancing effects of ISG15 on cholesterol efflux. Both bioinformatics analysis and dual luciferase reporter assay identified Beclin-1 as a direct target of miR-17-5p. Moreover, ISG15 overexpression markedly decreased miR-17-5p levels and upregulated Beclin-1 expression. ISG15-induced enhancement of autophagy and cholesterol efflux was reversed by pretreatment with either miR-17-5p mimic or Beclin-1 siRNA. In conclusion, these findings suggest that ISG15 reduces miR-17-5p levels and thereby promotes Beclin-1-mediated autophagy, resulting in increased cholesterol efflux from THP-1 macrophage-derived foam cells.
Collapse
Affiliation(s)
- Chong Huang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Hua Yu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Health Sciences Center, 3330 Hospital Dr NW, Calgary, Alberta, Canada T2N 4N1
| | - Xiang Ou
- Department of Endocrinology, The First Hospital of Changsha, Changsha, Hunan 410005, China.
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, Medical Research Experiment Center, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
17
|
Wei Y, Li C, Zhang Y, He H, Zhang G, Hao X, Liu H, Wang H, Tian W. Hydroxycamptothecin mediates antiproliferative effects through apoptosis and autophagy in A549 cells. Oncol Lett 2018; 15:6322-6328. [PMID: 29616109 PMCID: PMC5876437 DOI: 10.3892/ol.2018.8107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 11/02/2017] [Indexed: 12/15/2022] Open
Abstract
Hydroxycamptothecin (HCPT) represents a new generation of anticancer drugs, with almost no side effects when used for the treatment of a number of types of cancer. Autophagy is becoming recognized as an important biological mechanism in human cancer, including lung cancer. However, the involvement of autophagy in the antiproliferative effects of HCPT on lung cancer remains unclear. In the present study, A549 cells, an accepted model of non-small cell lung cancer (NSCLC) cells, were employed. It was demonstrated that HCPT was able to suppress proliferation and induce apoptosis and autophagy in A549 cells. The molecular mechanism underlying HCPT-induced cell death was attributed to apoptosis and autophagy. Furthermore, it was demonstrated that an autophagy inhibitor, 3-methyladenine, accelerated HCPT-induced cell death in A549 cells. The results of the present study may lead to a deeper understanding of the molecular mechanism by which HCPT regulates NSCLC A549 cells. These results highlight the potential use of autophagy inhibitors in combination with traditional chemotherapy drugs for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yanjie Wei
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Chenhao Li
- Department of Oncology, Cangzhou Central Hospital, Cangzhou, Hebei 061000, P.R. China
| | - Yuan Zhang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Hailan He
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Guozhi Zhang
- Department of General Surgery, North China University of Science and Technology Affiliated Hospital, Tangshan, Hebei 063000, P.R. China
| | - Xiaohui Hao
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Heliang Liu
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Hongli Wang
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China.,Public Health School, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Wei Tian
- Medical Research Center, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
18
|
Dong X, Cong S. Identification of differentially expressed genes and regulatory relationships in Huntington's disease by bioinformatics analysis. Mol Med Rep 2018; 17:4317-4326. [PMID: 29328442 PMCID: PMC5802203 DOI: 10.3892/mmr.2018.8410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022] Open
Abstract
Huntington's disease (HD) is an inherited, progressive neurodegenerative disease caused by a CAG expansion in the huntingtin (HTT) gene; various dysfunctions of biological processes in HD have been proposed. However, at present the exact pathogenesis of HD is not fully understood. The present study aimed to explore the pathogenesis of HD using a computational bioinformatics analysis of gene expression. GSE11358 was downloaded from the Gene Expression Omnibus andthe differentially expressed genes (DEGs) in the mutant HTT knock-in cell model STHdhQ111/Q111 were predicted. DEGs between the HD and control samples were screened using the limma package in R. Functional and pathway enrichment analyses were conducted using the database for annotation, visualization and integrated discovery software. A protein-protein interaction (PPI) network was established by the search tool for the retrieval of interacting genes and visualized by Cytoscape. Module analysis of the PPI network was performed utilizing MCODE. A total of 471 DEGs were identified, including ribonuclease A family member 4 (RNASE4). In addition, 41 significantly enriched Kyoto Encyclopedia of Genes and Genomes pathways, as well as several significant Gene Ontology terms (including cytokine-cytokine receptor interaction and cytosolic DNA-sensing) were identified. A total of 18 significant modules were identified from the PPI network. Furthermore, a novel transcriptional regulatory relationship was identified, namely signal transducer and activator of transcription 3 (STAT3), which is regulated by miRNA-124 in HD. In conclusion, deregulation of 18 critical genes may contribute to the occurrence of HD. RNASE4, STAT3, and miRNA-124 may have a regulatory association with the pathological mechanisms in HD.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
19
|
Desai S, Juncker M, Kim C. Regulation of mitophagy by the ubiquitin pathway in neurodegenerative diseases. Exp Biol Med (Maywood) 2018; 243:554-562. [PMID: 29316798 DOI: 10.1177/1535370217752351] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mitophagy is a cellular process by which dysfunctional mitochondria are degraded via autophagy. Increasing empirical evidence proposes that this mitochondrial quality-control mechanism is defective in neurons of patients with various neurodegenerative diseases such as Ataxia Telangiectasia, Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis. Accumulation of defective mitochondria and the production of reactive oxygen species due to defective mitophagy have been identified as causes underlying neurodegenerative disease pathogenesis. However, the reason mitophagy is defective in most neurodegenerative diseases is unclear. Like mitophagy, defects in the ubiquitin/26S proteasome pathway have been linked to neurodegeneration, resulting in the characteristic protein aggregates often seen in neurons of affected patients. Although initiation of mitophagy requires a functional ubiquitin pathway, whether defects in the ubiquitin pathway are causally responsible for defective mitophagy is not known. In this mini-review, we introduce mitophagy and ubiquitin pathways and provide a summary of our current understanding of the regulation of mitophagy by the ubiquitin pathway. We will then briefly review empirical evidence supporting mitophagy defects in neurodegenerative diseases. The review will conclude with a discussion of the constitutively elevated expression of ubiquitin-like protein Interferon-Stimulated Gene 15 (ISG15), an antagonist of the ubiquitin pathway, as a potential cause of defective mitophagy in neurodegenerative diseases. Impact statement Neurodegenerative diseases place an enormous burden on patients and caregivers globally. Over six million people in the United States alone suffer from neurodegenerative diseases, all of which are chronic, incurable, and with causes unknown. Identifying a common molecular mechanism underpinning neurodegenerative disease pathology is urgently needed to aid in the design of effective therapies to ease suffering, reduce economic cost, and improve the quality of life for these patients. Although the development of neurodegeneration may vary between neurodegenerative diseases, they have common cellular hallmarks, including defects in the ubiquitin-proteasome system and mitophagy. In this review, we will provide a summary of our current understanding of the regulation of mitophagy by the ubiquitin pathway and discuss the potential of targeting mitophagy and ubiquitin pathways for the treatment of neurodegeneration.
Collapse
Affiliation(s)
- Shyamal Desai
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| | - Meredith Juncker
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| | - Catherine Kim
- Department of Biochemistry and Molecular Biology, LSUHSC-School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Villarroya-Beltri C, Guerra S, Sánchez-Madrid F. ISGylation - a key to lock the cell gates for preventing the spread of threats. J Cell Sci 2017; 130:2961-2969. [PMID: 28842471 DOI: 10.1242/jcs.205468] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Interferon stimulated gene 15 (ISG15) is an ubiquitin-like protein whose expression and conjugation to targets (ISGylation) is induced by infection, interferon (IFN)-α and -β, ischemia, DNA damage and aging. Attention has historically focused on the antiviral effects of ISGylation, which blocks the entry, replication or release of different intracellular pathogens. However, recently, new functions of ISGylation have emerged that implicate it in multiple cellular processes, such as DNA repair, autophagy, protein translation and exosome secretion. In this Review, we discuss the induction and conjugation of ISG15, as well as the functions of ISGylation in the prevention of infections and in cancer progression. We also offer a novel perspective with regard to the latest findings on this pathway, with special attention to the role of ISGylation in the inhibition of exosome secretion, which is mediated by fusion of multivesicular bodies with lysosomes. Finally, we propose that under conditions of stress or infection, ISGylation acts as a defense mechanism to inhibit normal protein translation by modifying protein kinase R (PKR, also known as EIF2AK2), while any newly synthesized proteins are being tagged and thus marked as potentially dangerous. Then, the endosomal system is re-directed towards protein degradation at the lysosome, to effectively 'lock' the cell gates and thus prevent the spread of pathogens, prions and deleterious aggregates through exosomes.
Collapse
Affiliation(s)
- Carolina Villarroya-Beltri
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain.,Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Susana Guerra
- Preventive Medicine Department, Facultad de Medicina, Universidad Autónoma de Madrid, 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Vascular Pathophysiology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain .,Immunology Service, Hospital de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain.,CIBER de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
21
|
In vivo effects of dexamethasone on blood gene expression in ataxia telangiectasia. Mol Cell Biochem 2017; 438:153-166. [DOI: 10.1007/s11010-017-3122-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/15/2017] [Indexed: 12/21/2022]
|
22
|
Kim CD, Reed RE, Juncker MA, Fang Z, Desai SD. Evidence for the Deregulation of Protein Turnover Pathways in Atm-Deficient Mouse Cerebellum: An Organotypic Study. J Neuropathol Exp Neurol 2017; 76:578-584. [DOI: 10.1093/jnen/nlx038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
23
|
Li QX, Zhou X, Huang TT, Tang Y, Liu B, Peng P, Sun L, Wang YH, Yuan XL. The Thr300Ala variant of ATG16L1 is associated with decreased risk of brain metastasis in patients with non-small cell lung cancer. Autophagy 2017; 13:1053-1063. [PMID: 28441070 DOI: 10.1080/15548627.2017.1308997] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) often metastasizes to the brain, but identifying which patients will develop brain metastases (BM) is difficult. Macroautophagy/autophagy is critical for cancer initiation and progression. We hypothesized that genetic variants of autophagy-related genes may affect brain metastases (BM) in NSCLC patients. We genotyped 16 single nucleotide polymorphisms (SNPs) in 7 autophagy-related (ATG) genes (ATG3, ATG5, ATG7, ATG10, ATG12, ATG16L1, and MAP1LC3/LC3) by using DNA from blood samples of 323 NSCLC patients. Further, we evaluated the potential associations of these genes with subsequent BM development. Lung cancer cell lines stably transfected with ATG16L1: rs2241880 (T300A) were established. Mouse models of brain metastasis were developed using cells transfected with ATG16L1-300T or ATG16L1-300A. ATG10: rs10036653 and ATG16L1: rs2241880 were significantly associated with a decreased risk of BM (respective hazard ratios [HRs]=0.596, 95% confidence interval [CI] 0.398-0.894, P = 0.012; and HR = 0. 655, 95% CI 0.438-0.978, P = 0.039, respectively). ATG12: rs26532 was significantly associated with an increased risk of BM (HR=1.644, 95% CI 1.049-2.576, P = 0.030). Invasion and migration assays indicated that transfection with ATG16L1-300T (vs. 300A) stimulated the migration of A549 cells. An in vivo metastasis assay revealed that transfection with ATG16L1-300T (vs. 300A) significantly increased brain metastasis. Our results indicate that genetic variations in autophagy-related genes can predict BM and that genome analysis would facilitate stratification of patients for BM prevention trials.
Collapse
Affiliation(s)
- Qian-Xia Li
- a Department of Oncology , Tongji Hospital, Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| | - Xiao Zhou
- a Department of Oncology , Tongji Hospital, Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| | - Ting-Ting Huang
- a Department of Oncology , Tongji Hospital, Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| | - Yang Tang
- a Department of Oncology , Tongji Hospital, Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| | - Bo Liu
- a Department of Oncology , Tongji Hospital, Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| | - Ping Peng
- a Department of Oncology , Tongji Hospital, Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| | - Li Sun
- a Department of Oncology , Tongji Hospital, Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| | - Yi-Hua Wang
- b Biological Sciences , Faculty of Natural & Environmental Sciences, University of Southampton , Southampton , UK
| | - Xiang-Lin Yuan
- a Department of Oncology , Tongji Hospital, Huazhong University of Science and Technology , Wuhan , Hubei Province , China
| |
Collapse
|
24
|
Identification and characterization of a novel ISG15-ubiquitin mixed chain and its role in regulating protein homeostasis. Sci Rep 2015. [PMID: 26226047 PMCID: PMC4520236 DOI: 10.1038/srep12704] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
As a ubiquitin-like modifier, ISG15 is conjugated to many cellular proteins in a process termed protein ISGylation. However, the crosstalk between protein ISGylation and the ubiquitin proteasome system is not fully understood. Here, we report that cellular ubiquitin is a substrate of ISG15 and Lys 29 on ubiquitin is the major ISG15 acceptor site. Using a model substrate, we demonstrate that ISG15 can modify ubiquitin, which is immobilized on its substrate, to form ISG15-ubiquitin mixed chains. Furthermore, our results indicate that ISG15-ubiquitin mixed chains do not serve as degradation signals for a ubiquitin fusion degradation substrate. Accordingly, an ISG15-ubiquitin fusion protein, which mimics an ISG15-ubiquitin mixed chain, negatively regulates cellular turnover of ubiquitylated proteins. In addition, ISG15-ubiquitin mixed chains, which are detectable on endogenously ubiquitylated proteins, dampen cellular turnover of these proteins. Thus, our studies unveil an unanticipated interplay between two protein modification systems and highlight its role in coordinating protein homeostasis.
Collapse
|
25
|
Ji GR, Yu NC, Xue X, Li ZG. PERK-mediated Autophagy in Osteosarcoma Cells Resists ER Stress-induced Cell Apoptosis. Int J Biol Sci 2015; 11:803-12. [PMID: 26078722 PMCID: PMC4466461 DOI: 10.7150/ijbs.11100] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 02/27/2015] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma is a bone cancer that develops commonly in children and adolescents. However, osteosarcoma treatments often fail by the development of chemoresistance to apoptosis, and the molecular mechanisms remain unclear. In this study, we propose that autophagy is responsible for osteosarcomatous resistance to apoptosis. We implicate PERK-mediated autophagy as a significant contributor to apoptosis resistance due to ER stress in osteosarcoma cells. By immunostainings and western blots, we identified that PERK activated osteosarcomatous autophagy via inhibiting mTORC1 pathway, thereby preventing cell apoptosis. While using RNAi, we knocked down PERK and found that autophagy was suppressed, result in osteosarcomatous apoptosis. Our results identify a novel role of PERK-mediated autophagy as a significant mechanism for osteosarcoma cell survival. These results will help to understand the mechanism of chemoresistance in osteosarcoma cells, and indicate a novel target for improving osteosarcoma therapy.
Collapse
Affiliation(s)
- Guang-rong Ji
- Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Nai-chun Yu
- Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xiang Xue
- Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zong-guang Li
- Department of Orthopaedics, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| |
Collapse
|
26
|
Saura AV, Marín MJ, Burguete MI, Russell DA, Galindo F, Luis SV. The synthesis of new fluorescent bichromophoric compounds as ratiometric pH probes for intracellular measurements. Org Biomol Chem 2015; 13:7736-49. [DOI: 10.1039/c5ob00704f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Three different bichromophoric compounds (1–3) containing an aminomethyl anthracene moiety linked to a second chromophore have been prepared and their fluorescent properties studied.
Collapse
Affiliation(s)
- A. Vanessa Saura
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | | | - M. Isabel Burguete
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | | | - Francisco Galindo
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| | - Santiago V. Luis
- Departamento de Química Inorgánica y Orgánica
- Universitat Jaume I
- Castellón
- Spain
| |
Collapse
|
27
|
LprG-mediated surface expression of lipoarabinomannan is essential for virulence of Mycobacterium tuberculosis. PLoS Pathog 2014; 10:e1004376. [PMID: 25232742 PMCID: PMC4169494 DOI: 10.1371/journal.ppat.1004376] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/28/2014] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis employs various virulence strategies to subvert host immune responses in order to persist and cause disease. Interaction of M. tuberculosis with mannose receptor on macrophages via surface-exposed lipoarabinomannan (LAM) is believed to be critical for cell entry, inhibition of phagosome-lysosome fusion, and intracellular survival, but in vivo evidence is lacking. LprG, a cell envelope lipoprotein that is essential for virulence of M. tuberculosis, has been shown to bind to the acyl groups of lipoglycans but the role of LprG in LAM biosynthesis and localization remains unknown. Using an M. tuberculosis lprG mutant, we show that LprG is essential for normal surface expression of LAM and virulence of M. tuberculosis attributed to LAM. The lprG mutant had a normal quantity of LAM in the cell envelope, but its surface was altered and showed reduced expression of surface-exposed LAM. Functionally, the lprG mutant was defective for macrophage entry and inhibition of phagosome-lysosome fusion, was attenuated in macrophages, and was killed in the mouse lung with the onset of adaptive immunity. This study identifies the role of LprG in surface-exposed LAM expression and provides in vivo evidence for the essential role surface LAM plays in M. tuberculosis virulence. Findings have translational implications for therapy and vaccine development. Mycobacterium tuberculosis is among the leading infectious causes of human death. A better understanding of its virulence mechanisms is needed to facilitate development of novel therapeutics and a preventative vaccine. Lipoarabinomannan (LAM), an abundant surface-exposed lipoglycan, is believed to be a critical virulence determinant for intracellular survival and latency of M. tuberculosis. In vitro experiments with purified LAM have led to a model in which surface-exposed LAM binds to macrophage mannose receptor and facilitates bacterium entry, inhibition of phagosome-lysosome fusion, and modulation of innate immune responses. However, confirmation of these findings in vivo has not been possible due to the essentiality of genes involved in the LAM biosynthetic pathway. It was recently shown that LprG, a cell envelope lipoprotein, binds to the acyl groups of lipoglycan, but the role of LprG in LAM biosynthesis and localization remains unknown. Here, using an M. tuberculosis lprG mutant and a novel cell-imprinting assay, we show that LprG is essential for normal surface expression of LAM and virulence of M. tuberculosis attributed to LAM. Our study provides new insights into the mechanism of surface expression of LAM and confirms the essential role surface LAM serves in pathogenesis of M. tuberculosis.
Collapse
|
28
|
How chemistry supports cell biology: the chemical toolbox at your service. Trends Cell Biol 2014; 24:751-60. [PMID: 25108565 DOI: 10.1016/j.tcb.2014.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/10/2014] [Accepted: 07/10/2014] [Indexed: 01/07/2023]
Abstract
Chemical biology is a young and rapidly developing scientific field. In this field, chemistry is inspired by biology to create various tools to monitor and modulate biochemical and cell biological processes. Chemical contributions such as small-molecule inhibitors and activity-based probes (ABPs) can provide new and unique insights into previously unexplored cellular processes. This review provides an overview of recent breakthroughs in chemical biology that are likely to have a significant impact on cell biology. We also discuss the application of several chemical tools in cell biology research.
Collapse
|
29
|
The role of autophagy in the neurotoxicity of cationic PAMAM dendrimers. Biomaterials 2014; 35:7588-97. [PMID: 24906346 DOI: 10.1016/j.biomaterials.2014.05.029] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 05/13/2014] [Indexed: 01/13/2023]
Abstract
Poly(amidoamine) (PAMAM) dendrimers, are among the most common classes of dendrimers that are intended for a wide range of biomedical applications and extensively investigated for brain-specific drug delivery, imaging and diagnosis. Unfortunately, neurotoxicity of PAMAM dendrimers, the underlying mechanism of which is poorly-elucidated, poses a far-reaching challenge to their practical applications. In this study, we reported that PAMAM dendrimers induced both cytotoxicity and autophagic flux in a panel of human glioma cell lines. Meanwhile, inhibition of autophagy significantly reversed cell death caused by PAMAM dendrimers, indicating the cytotoxic role of autophagy in neurotoxicity caused by PAMAM dendrimers. Akt/mTOR pathway was most likely to participate in initiation of PAMAM dendrimers-induced autophagy. Moreover, autophagy induced by PAMAM dendrimers might be partially mediated by intracellular ROS generation. Collectively, these data elucidated the critical role of autophagy in neurotoxicity associated with exposure to cationic PAMAM dendrimers in vitro, raising concerns about possible neurotoxic reaction caused by future clinical applications of PAMAM dendrimers and providing potential strategies to ameliorate toxic effects of PAMAM dendrimers.
Collapse
|
30
|
Xu X, Fu Y, Tong J, Fan S, Xu K, Sun H, Liang Y, Yan C, Yuan Z, Ge Y. MicroRNA-216b/Beclin 1 axis regulates autophagy and apoptosis in human Tenon's capsule fibroblasts upon hydroxycamptothecin exposure. Exp Eye Res 2014; 123:43-55. [DOI: 10.1016/j.exer.2014.03.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
|
31
|
Polge C, Uttenweiler-Joseph S, Leulmi R, Heng AE, Burlet-Schiltz O, Attaix D, Taillandier D. Deciphering the ubiquitin proteome: Limits and advantages of high throughput global affinity purification-mass spectrometry approaches. Int J Biochem Cell Biol 2013; 45:2136-46. [PMID: 23764619 DOI: 10.1016/j.biocel.2013.05.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/24/2013] [Accepted: 05/26/2013] [Indexed: 11/19/2022]
Abstract
Ubiquitination is a posttranslational modification of proteins that involves the covalent attachment of ubiquitin, either as a single moiety or as polymers. This process controls almost every cellular metabolic pathway through a variety of combinations of linkages. Mass spectrometry now allows high throughput approaches for the identification of the thousands of ubiquitinated proteins and of their ubiquitination sites. Despite major technological improvements in mass spectrometry in terms of sensitivity, resolution and acquisition speed, the use of efficient purification methods of ubiquitinated proteins prior to mass spectrometry analysis is critical to achieve an efficient characterization of the ubiquitome. This critical step is achieved using different approaches that possess advantages and pitfalls. Here, we discuss the limits that can be encountered when deciphering the ubiquitome. This article is part of a Directed Issue entitled: Molecular basis of muscle wasting.
Collapse
Affiliation(s)
- Cécile Polge
- INRA, UMR 1019, UNH, CRNH Auvergne, F-63122 Saint Genès Champanelle, France
| | | | | | | | | | | | | |
Collapse
|