1
|
Ma YH, Liang ZS, Shao HC, Ren H, Pan XY, Zi MH, Shi LF, Zhang Y, Han S, Wan B, Yuan J, Lin W, He WR. VRK2 inhibits the replication of infectious bursal disease virus by phosphorylating RACK1 and suppressing apoptosis. Int J Biol Macromol 2025; 284:137940. [PMID: 39579830 DOI: 10.1016/j.ijbiomac.2024.137940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by the infectious bursal disease virus (IBDV). Despite significant efforts, the lack of knowledge about host proteins that counteract IBDV replication has hindered progress in preventing and controlling IBD in chickens. This study identifies the mitochondria-associated protein vaccinia virus-related kinase 2 (VRK2) as an inhibitor of IBDV. Overexpression of VRK2 significantly reduced IBDV proliferation in DF-1 cells and chicken embryo fibroblasts (CEFs). Conversely, the absence of VRK2 resulted in higher viral loads in these cells. Additionally, we found that VRK2 interacts with voltage-dependent anion channel 2 (VDAC2) and Receptor for Activated C Kinase 1 (RACK1). Mechanistic studies revealed that VRK2 inhibits IBDV-induced apoptosis by targeting RACK1 phosphorylation, leading to reduced viral growth. This study enhances our understanding of VRK2's role in host anti-apoptotic mechanisms and offers novel insights into IBDV pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Yu-He Ma
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China
| | - Zhi-Shan Liang
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China
| | - Han-Cheng Shao
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China
| | - Haojie Ren
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China
| | - Xiao-Ya Pan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China
| | - Meng-Hui Zi
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China
| | - Lan-Fang Shi
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China
| | - Yuhang Zhang
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China; Longhu Laboratory, Zhengzhou, Henan, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, PR China
| | - Shichong Han
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China; Longhu Laboratory, Zhengzhou, Henan, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, PR China
| | - Bo Wan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China; Longhu Laboratory, Zhengzhou, Henan, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, PR China
| | - Jin Yuan
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, PR China.
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, PR China; Guangdong Provincial Animal Virus Vector Vaccine Engineering Technology Research Center, South China Agricultural University, Guangzhou 510642, PR China.
| | - Wen-Rui He
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan, PR China; Longhu Laboratory, Zhengzhou, Henan, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan Agricultural University, Zhengzhou, PR China.
| |
Collapse
|
2
|
GWAK SEUNGHEE, LEE JUHYUN, OH EUNJI, LEE DOHYUN, HAN WONSHIK, KIM JONGMIN, KIM KYONGTAI. Vaccinia-related kinase 2 variants differentially affect breast cancer growth by regulating kinase activity. Oncol Res 2023; 32:421-432. [PMID: 38186576 PMCID: PMC10765118 DOI: 10.32604/or.2023.031031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/03/2023] [Indexed: 01/09/2024] Open
Abstract
Genetic information is transcribed from genomic DNA to mRNA, which is then translated into three-dimensional proteins. mRNAs can undergo various post-transcriptional modifications, including RNA editing that alters mRNA sequences, ultimately affecting protein function. In this study, RNA editing was identified at the 499th base (c.499) of human vaccinia-related kinase 2 (VRK2). This RNA editing changes the amino acid in the catalytic domain of VRK2 from isoleucine (with adenine base) to valine (with guanine base). Isoleucine-containing VRK2 has higher kinase activity than the valine-containing VRK2, which leads to an increase in tumor cell proliferation. Earlier we reported that VRK2 directly interacts with dystrobrevin-binding protein (dysbindin) and results in reducing its stability. Herein, we demonstrate that isoleucine-containing VRK2 decreases the level of dysbindin than valine-containing VRK2. Dysbindin interacts with cyclin D and thereby regulates its expression and function. The reduction in the level of dysbindin by isoleucine-containing VRK2 further enhances the cyclin D expression, resulting in increased tumor growth and reduction in survival rates. It has also been observed that in patient samples, VRK2 level was elevated in breast cancer tissue compared to normal breast tissue. Additionally, the isoleucine form of VRK2 exhibited a greater increase in breast cancer tissue. Therefore, it is concluded that VRK2, especially dependent on the 167th variant amino acid, can be one of the indexes of tumor progression and proliferation.
Collapse
Affiliation(s)
- SEUNG-HEE GWAK
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - JUHYUN LEE
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - EUNJI OH
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - DOHYUN LEE
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
- R&D Center, NovMetaPharma Co., Ltd., Pohang, 37668, Korea
| | - WONSHIK HAN
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - JONGMIN KIM
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - KYONG-TAI KIM
- Generative Genomics Research Center, Global Green Research & Development Center, Handong Global University, Pohang, 37554, Korea
| |
Collapse
|
3
|
Puja R, Dutta S, Bose K. Elucidating the interaction of C-terminal domain of Vaccinia-Related Kinase 2A (VRK2A) with B-cell lymphoma-extra Large (Bcl-xL) to decipher its anti-apoptotic role in cancer. Biochem J 2023; 480:1871-1885. [PMID: 37943248 DOI: 10.1042/bcj20230349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
Vaccinia-Related Kinase 2 (VRK2) is an anti-apoptotic Ser/Thr kinase that enhances drug sensitivity in cancer cells. This protein exists in two isoforms: VRK2A, the longer variant, and VRK2B, which lacks the C-terminal region and transmembrane domain. While the therapeutic importance of VRK2 family proteins is known, the specific roles of VRK2A and its interplay with apoptotic regulator Bcl-xL (B-cell lymphoma-extra Large) remain elusive. Bcl-xL regulates cell death by interacting with BAX (B-cell lymphoma-2 Associated X-protein), controlling its cellular localization and influencing BAX-associated processes and signaling pathways. As VRK2A interacts with the Bcl-xL-BAX complex, comprehending its regulatory engagement with Bcl-xL presents potential avenues for intervening in diseases. Using a multi-disciplinary approach, this study provides information on the cellular localization of VRK2A and establishes its interaction with Bcl-xL in the cellular milieu, pinpointing the interacting site and elucidating its anti-apoptotic property within the complex. Furthermore, this study also put forth a model that highlights the importance of VRK2A in stabilizing the ternary complex, formed with Bcl-xL and BAX, thereby impeding BAX dissociation and hence apoptosis. Therefore, further investigations associated with this important revelation will provide cues for designing cancer therapeutics in the future.
Collapse
Affiliation(s)
- Rashmi Puja
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Shubhankar Dutta
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| | - Kakoli Bose
- Integrated Biophysics and Structural Biology Lab, ACTREC, Tata Memorial Centre, Navi Mumbai 410210, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
4
|
Zhang J, Lin XT, Yu HQ, Fang L, Wu D, Luo YD, Zhang YJ, Xie CM. Elevated FBXL6 expression in hepatocytes activates VRK2-transketolase-ROS-mTOR-mediated immune evasion and liver cancer metastasis in mice. Exp Mol Med 2023; 55:2162-2176. [PMID: 37653031 PMCID: PMC10618235 DOI: 10.1038/s12276-023-01060-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/15/2023] [Accepted: 05/25/2023] [Indexed: 09/02/2023] Open
Abstract
Metastatic hepatocellular carcinoma (HCC) is the most lethal malignancy and lacks effective treatment. FBXL6 is overexpressed in human hepatocellular carcinoma (HCC), but whether this change drives liver tumorigenesis and lung metastasis in vivo remains unknown. In this study, we aimed to identify FBXL6 (F-Box and Leucine Rich Repeat Protein 6) as a key driver of HCC metastasis and to provide a new paradigm for HCC therapy. We found that elevated FBXL6 expression in hepatocytes drove HCC lung metastasis and was a much stronger driver than Kras mutation (KrasG12D/+;Alb-Cre), p53 haploinsufficiency (p53+/-) or Tsc1 loss (Tsc1fl/fl;Alb-Cre). Mechanistically, VRK2 promoted Thr287 phosphorylation of TKT and then recruited FBXL6 to promote TKT ubiquitination and activation. Activated TKT further increased PD-L1 and VRK2 expression via the ROS-mTOR axis, leading to immune evasion and HCC metastasis. Targeting or knockdown of TKT significantly blocked FBXL6-driven immune evasion and HCC metastasis in vitro and in vivo. Notably, the level of active TKT (p-Thr287 TKT) was increased and was positively correlated with the FBXL6 and VRK2 expression levels in HCC patients. Our work provides novel mechanistic insights into FBXL6-driven HCC metastasis and suggests that targeting the TKT-ROS-mTOR-PD-L1/VRK2 axis is a new paradigm for treating patients with metastatic HCC with high FBXL6 expression.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Xiao-Tong Lin
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hong-Qiang Yu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Lei Fang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Di Wu
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yuan-Deng Luo
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Yu-Jun Zhang
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Chuan-Ming Xie
- Key Laboratory of Hepatobiliary and Pancreatic Surgery, Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
5
|
Moore EK, Strazza M, Mor A. Combination Approaches to Target PD-1 Signaling in Cancer. Front Immunol 2022; 13:927265. [PMID: 35911672 PMCID: PMC9330480 DOI: 10.3389/fimmu.2022.927265] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer remains the second leading cause of death in the US, accounting for 25% of all deaths nationwide. Immunotherapy techniques bolster the immune cells' ability to target malignant cancer cells and have brought immense improvements in the field of cancer treatments. One important inhibitory protein in T cells, programmed cell death protein 1 (PD-1), has become an invaluable target for cancer immunotherapy. While anti-PD-1 antibody therapy is extremely successful in some patients, in others it fails or even causes further complications, including cancer hyper-progression and immune-related adverse events. Along with countless translational studies of the PD-1 signaling pathway, there are currently close to 5,000 clinical trials for antibodies against PD-1 and its ligand, PD-L1, around 80% of which investigate combinations with other therapies. Nevertheless, more work is needed to better understand the PD-1 signaling pathway and to facilitate new and improved evidence-based combination strategies. In this work, we consolidate recent discoveries of PD-1 signaling mediators and their therapeutic potential in combination with anti-PD-1/PD-L1 agents. We focus on the phosphatases SHP2 and PTPN2; the kinases ITK, VRK2, GSK-3, and CDK4/6; and the signaling adaptor protein PAG. We discuss their biology both in cancer cells and T cells, with a focus on their role in relation to PD-1 to determine their potential in therapeutic combinations. The literature discussed here was obtained from a search of the published literature and ClinicalTrials.gov with the following key terms: checkpoint inhibition, cancer immunotherapy, PD-1, PD-L1, SHP2, PTPN2, ITK, VRK2, CDK4/6, GSK-3, and PAG. Together, we find that all of these proteins are logical and promising targets for combination therapy, and that with a deeper mechanistic understanding they have potential to improve the response rate and decrease adverse events when thoughtfully used in combination with checkpoint inhibitors.
Collapse
Affiliation(s)
- Emily K. Moore
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Marianne Strazza
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
| | - Adam Mor
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, NY, United States
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
6
|
Wu J, Li T, Ji H, Chen Z, Zhai B. VRK1 Predicts Poor Prognosis and Promotes Bladder Cancer Growth and Metastasis In Vitro and In Vivo. Front Pharmacol 2022; 13:874235. [PMID: 35559251 PMCID: PMC9086458 DOI: 10.3389/fphar.2022.874235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer (BC) is one of the most common malignant tumors in the urinary system with growing morbidity and diagnostic rate in recent years. Therefore, identifying new molecular biomarkers that inhibit the progression of bladder cancer is needed for developing further therapeutics. This study found a new potential treatment target: vaccinia-related kinase 1 (VRK1) and explored the function and mechanism of VRK1 in the development of bladder cancer. First, TCGA database and tissue microarray analysis showed that VRK1 was significantly upregulated in bladder cancer. Kaplan-Meier survival analysis indicates that the OS and PFS of the VRK1 high expression group were significantly lower than the VRK1 low expression group (p = 0.002, p = 0.005). Cox multi-factor analysis results show that VRK1 expression is an independent risk factor affecting tumor progress. The maximum tumor diameter, staging, and adjuvant chemotherapy also have a certain impact on tumor progression (p < 0.05). In internal validation, the column C index is 0.841 (95% CI, 0.803-0.880). In addition, cell functional studies have shown that VRK1 can significantly inhibit the proliferation, migration, and invasiveness of bladder cancer cells. In vivo, nude mice transplanted tumors further prove that low VRK1 can significantly inhibit the proliferation capacity of bladder cancer cells. In summary, VRK1 expression is significantly related to the staging, grade, and poor prognosis of patients with bladder cancer. At the same time, in vivo and in vitro experiments have shown that downregulation of VRK1 can significantly inhibit the proliferation of bladder cancer cells. These findings provide a basis for using VRK1 as a potential therapeutic target for patients with bladder cancer.
Collapse
Affiliation(s)
- Jiacheng Wu
- Department of Urology, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Tao Li
- Department of Medical Oncology, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Hao Ji
- Department of Urology, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Zhi Chen
- Department of Pathology, The First People's Hospital of Longquanyi District, Chengdu, China
| | - Baoqian Zhai
- Department of Oncology Radiotherapy, Yancheng No. 1 People's Hospital, Yancheng, China
| |
Collapse
|
7
|
Differentially Expressed Genes in Nasopharyngeal Carcinoma Tissues and Their Correlation with Recurrence and Metastasis of Nasopharyngeal Carcinoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:1941412. [PMID: 35509856 PMCID: PMC9061011 DOI: 10.1155/2022/1941412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
In this study, bioinformatics tools were used to identify key genes to study the molecular mechanism of nasopharyngeal carcinoma (NPC) development and to explore the correlation of these key genes with the recurrence and metastasis of NPC. The GSE61218 microarray dataset obtained from the Gene Expression Omnibus Database (GEO) was used. The limma R package was used to screen differentially expressed genes (DEGs) between NPC and normal nasopharyngeal (NP) tissues. KEGG functional enrichment was performed on these selected DEGs. Protein-protein interaction (PPI) networks were constructed using Cytoscape software to identify key node proteins. The NPC-metastasis microarray dataset GSE103611 was obtained from GEO to analyze the expression of DEGs in NPC metastasis. A total of 239 DEGs were identified. DEGs were mainly enriched in oocyte maturation-related pathways, cytokine-related pathways, cell cycle-related pathways, cancer-related pathways, and homologous recombination-related pathways. In addition, the top 10 nodes with the higher degree in the DEG PPI network were as follows: CDK1, CCNB2, BUB1, CCNA2, AURKB, BUB1B, MAD2L1, NDC80, BIRC5, and CENPF. The results indicated that DEGs may be involved in the pathogenesis of NPC by regulating cell cycle and mitosis, which can be used as molecular biomarkers for the diagnosis of NPC. In addition, we identified 87 DEGs with
and
from the metastasis spectrum of NPC. The intersection gene between DEGs of NPC and normal NP tissue samples and those of the metastatic spectrum of NPC was identified to be VRK2. The expression of VRK2 in NPC samples was significantly higher than that in normal NP tissue, and similarly, VRK2 expression was significantly upregulated in metastatic samples compared with nonmetastatic samples (
). Therefore, VRK2 may be a biomarker for predicting the metastasis of NPC patients after treatment.
Collapse
|
8
|
Chen J, Qiao K, Zhang C, Zhou X, Du Q, Deng Y, Cao L. VRK2 activates TNFα/NF-κB signaling by phosphorylating IKKβ in pancreatic cancer. Int J Biol Sci 2022; 18:1288-1302. [PMID: 35173553 PMCID: PMC8771851 DOI: 10.7150/ijbs.66313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/31/2021] [Indexed: 11/05/2022] Open
Abstract
NF-κB signaling is active in more than 50% of patients with pancreatic cancer and plays an important role in promoting the progression of pancreatic cancer. Revealing the activation mechanism of NF-κB signaling is important for the treatment of pancreatic cancer. In this study, the regulation of TNFα/NF-κB signaling by VRK2 (vaccinia-related kinase 2) was investigated. The levels of VRK2 protein were examined by immunohistochemistry (IHC). The functions of VRK2 in the progression of pancreatic cancer were examined using CCK8 assay, anchorage-independent assay, EdU assay and tumorigenesis assay. The regulation of VRK2 on the NF-κB signaling was investigated by immunoprecipitation and invitro kinase assay. It was discovered in this study that the expression of VRK2 was upregulated in pancreatic cancer and that the VRK2 expression level was significantly correlated with the pathological characteristics and the survival time of patients. VRK2 promoted the growth, sphere formation and subcutaneous tumorigenesis of pancreatic carcinoma cells as well as the organoid growth derived from the pancreatic cancer mouse model. Investigation of the molecular mechanism indicated that VRK2 interacts with IKKβ, phosphorylating its Ser177 and Ser181 residues and thus activating the TNFα/NF-κB signaling pathway. An IKKβ inhibitors abolished the promotive effect of VRK2 on the growth of organoids. The findings of this study indicate that VRK2 promotes the progression of pancreatic cancer by activating the TNFα/NF-κB signaling pathway, suggesting that VRK2 is a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Jionghuang Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexiong Qiao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chaolei Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyang Zhou
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qian Du
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuezhen Deng
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha, China
| | - Liping Cao
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Shen T, Yue C, Wang X, Wang Z, Wu Y, Zhao C, Chang P, Sun X, Wang W. NFATc1 promotes epithelial-mesenchymal transition and facilitates colorectal cancer metastasis by targeting SNAI1. Exp Cell Res 2021; 408:112854. [PMID: 34597678 DOI: 10.1016/j.yexcr.2021.112854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 01/16/2023]
Abstract
Metastatic recurrence remains a major cause of colorectal cancer (CRC) mortality. In this study, we investigated the mechanistic role of nuclear factor of activated T cells 1 (NFATc1) in CRC metastasis. First, we explored the potential role of NFATc1 in CRC using bioinformatics and hypothesized that NFATc1 might play different roles at different stages of CRC development. Then, we examined the relative expression of NFATc1 in 25 CRC tissues and adjacent normal tissues, and further analyzed the correlation between NFATc1 expression levels and clinical stages in 120 CRC patients. The role of NFATc1 in CRC metastasis and the molecular mechanisms were investigated in both in vitro and in vivo models. Our results showed that the expression of NFATc1 was increased in metastatic CRC tissues and positively associated with clinical stages (stage I vs. stage II, III or IV) of CRC. Overexpression of NFATc1 promoted CRC cell migration, invasion, and epithelial-mesenchymal transition (EMT). Moreover, SNAI1 was verified as the direct transcriptional target of NFATc1 and interacted with SLUG to promote EMT. Remarkably, our lung and liver metastasis mouse model demonstrated that NFATc1 overexpression accelerated CRC metastasis, and treatment with FK506, a calcineurin-NFAT pathway inhibitor, could suppress CRC metastasis in vivo. Taken together, our findings suggest that NFATc1 could transcriptionally activate SNAI1, which in turn interacts with SLUG to mediate EMT to promote CRC metastasis. Thus, making NFATc1 a promising therapeutic target in the treatment of metastatic CRC.
Collapse
Affiliation(s)
- Tianli Shen
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chenyang Yue
- Department of Biology, York University, Toronto, Ontario, Canada
| | - Xingjie Wang
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Zijun Wang
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Yunhua Wu
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Chenye Zhao
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Pengkang Chang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China
| | - Xuejun Sun
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| | - Wei Wang
- Department of General Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi Province, China.
| |
Collapse
|
10
|
Ozkan E, Bakar-Ates F. The Trinity of Matrix Metalloproteinases, Inflammation, and Cancer: A Literature Review of Recent Updates. Antiinflamm Antiallergy Agents Med Chem 2021; 19:206-221. [PMID: 32178620 PMCID: PMC7499348 DOI: 10.2174/1871523018666191023141807] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/02/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
The critical link between cancer and inflammation has been known for many years. This complex network was further complexed by revealing the association of the matrix metalloproteinase family members with inflammatory cytokines, which were previously known to be responsible for the development of metastasis. This article summarizes the current studies which evaluate the relationship between cancer and inflammatory microenvironment as well as the roles of MMPs on invasion and metastasis together.
Collapse
Affiliation(s)
- Erva Ozkan
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Filiz Bakar-Ates
- Department of Biochemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
11
|
Zhu H, Li Q, Zhao Y, Peng H, Guo L, Zhu J, Jiang Z, Zeng Z, Xu B, Chen S. Vaccinia-related kinase 2 drives pancreatic cancer progression by protecting Plk1 from Chfr-mediated degradation. Oncogene 2021; 40:4663-4674. [PMID: 34140642 DOI: 10.1038/s41388-021-01893-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/22/2021] [Accepted: 06/04/2021] [Indexed: 12/22/2022]
Abstract
As a key cell cycle regulator, polo-like kinase 1 (Plk1) has been recognized as a crucial factor involved in the progression of pancreatic cancer (PC). However, its regulatory mechanism is poorly understood. Here, we present evidence that Plk1 is a novel substrate of vaccinia-related kinase 2 (VRK2), a serine-threonine kinase that is highly expressed and predicts poor prognosis in PC. VRK2 phosphorylates Plk1 at threonine 210 and protects it from ubiquitin-dependent proteasomal degradation. We showed that mechanistically complement factor H-related protein (CFHR), as a major E3 ligase, promotes Plk1 degradation by ubiquitinating it at lysine 209. Phosphorylation of Plk1 at threonine 210 by VRK2 interferes with the interaction of Chfr with Plk1 and antagonizes Plk1 ubiquitination, thereby stabilizing the Plk1 protein. Taken together, our data reveal a mechanism of Plk1 overexpression in PC and provide evidence for targeting VRK2 as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Hengqing Zhu
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Thyroid Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qing Li
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yulan Zhao
- Department of Ultrasound in Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hong Peng
- Department of Colorectal Surgery, 908th Hospital of Chinese People's Liberation Army Joint, Nanchang, China
| | - Liangyun Guo
- Department of Ultrasound, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Zhu
- Department of Pharmacy, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zi Jiang
- Department of Pharmacy, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Zeng
- Department of Radiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Xu
- Department of Burns, First Affiliated Hospital of Nanchang University, Nanchang, China.
| | - Sisi Chen
- Department of Neurology, Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
12
|
He WR, Cao LB, Yang YL, Hua D, Hu MM, Shu HB. VRK2 is involved in the innate antiviral response by promoting mitostress-induced mtDNA release. Cell Mol Immunol 2021; 18:1186-1196. [PMID: 33785841 PMCID: PMC8093274 DOI: 10.1038/s41423-021-00673-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/07/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial stress (mitostress) triggered by viral infection or mitochondrial dysfunction causes the release of mitochondrial DNA (mtDNA) into the cytosol and activates the cGAS-mediated innate immune response. The regulation of mtDNA release upon mitostress remains uncharacterized. Here, we identified mitochondria-associated vaccinia virus-related kinase 2 (VRK2) as a key regulator of this process. VRK2 deficiency inhibited the induction of antiviral genes and caused earlier and higher mortality in mice after viral infection. Upon viral infection, VRK2 associated with voltage-dependent anion channel 1 (VDAC1) and promoted VDAC1 oligomerization and mtDNA release, leading to the cGAS-mediated innate immune response. VRK2 was also required for mtDNA release and cGAS-mediated innate immunity triggered by nonviral factors that cause Ca2+ overload but was not required for the cytosolic nucleic acid-triggered innate immune response. Thus, VRK2 plays a crucial role in the mtDNA-triggered innate immune response and may be a potential therapeutic target for infectious and autoimmune diseases associated with mtDNA release.
Collapse
Affiliation(s)
- Wen-Rui He
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Li-Bo Cao
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Yu-Lin Yang
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Duo Hua
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China
| | - Ming-Ming Hu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China.
| | - Hong-Bing Shu
- Department of Infectious Diseases, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, China.
- Research Unit of Innate Immune and Inflammatory Diseases, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
13
|
Chen S, Du Y, Xu B, Li Q, Yang L, Jiang Z, Zeng Z, Chen L. Vaccinia-related kinase 2 blunts sorafenib's efficacy against hepatocellular carcinoma by disturbing the apoptosis-autophagy balance. Oncogene 2021; 40:3378-3393. [PMID: 33875785 DOI: 10.1038/s41388-021-01780-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 03/04/2021] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) is a lethal malignancy with limited treatment options. Sorafenib is the only Food and Drug Administration (FDA)-approved first-line targeted drug for the treatment of advanced HCC. However, its effect on patient survival is limited. Recently, studies have demonstrated that the imbalance between apoptosis and autophagy plays a critical role in chemoresistance, and it is hypothesised that restoring the balance between these processes is a potential treatment strategy for improving chemoresistance in cancer. However, there is currently no evidence supporting this hypothesis. We aimed to investigate if vaccinia-related kinase 2 (VRK2), a serine/threonine protein kinase, confers sorafenib resistance in HCC cells. Here, we found that VRK2 was enriched in sorafenib-resistant HCC cells and patient-derived xenografts. Both in vivo and in vitro evidences showed that VRK2 blunts the efficacy of sorafenib against hepatocellular carcinoma by disturbing the balance between apoptosis and autophagy. Mechanistically, VRK2 promotes the phosphorylation of Bcl-2 by activating JNK1/MAPK8, thereby enhancing the dissociation of Bcl-2 from Beclin-1 and promoting the formation of the Beclin-1-Atg14-Vps34 complex, which facilitates autophagy. Furthermore, VRK2-induced phosphorylation of Bcl-2 promotes the interaction of Bcl-2 with BAX, thereby inhibiting apoptosis. In conclusion, targeting VRK2 for modulation of the balance between autophagy and apoptosis may be a novel strategy for overcoming sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Sisi Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunyan Du
- Department of Medical, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, China
| | - Bin Xu
- Department of Burns, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qing Li
- Department of Pathology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Le Yang
- Department of Pharmacy, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zi Jiang
- Department of Pharmacy, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaoxia Zeng
- Department of Radiology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leifeng Chen
- Department of General Surgery, Second Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
14
|
Peled M, Tocheva AS, Adam K, Mor A. VRK2 inhibition synergizes with PD-1 blockade to improve T cell responses. Immunol Lett 2021; 233:42-47. [PMID: 33741379 DOI: 10.1016/j.imlet.2021.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/11/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
Therapeutic programmed cell death protein 1 (PD-1) blockade enhances T cell mediated anti-tumor immunity but many patients do not respond and a significant proportion develops inflammatory toxicities. To develop better therapeutics and to understand the signaling pathways downstream of PD-1 we performed phosphoproteomic analysis of PD-1 and identified vaccinia related kinase 2 (VRK2) as a key mediator of PD-1 signaling. Using genetic and pharmacological approaches, we discovered that VRK2 is required for PD-1-induced phosphorylation of the protein p21 activated kinase 2 (PAK2), and for the inhibition of IL-2, IL-8, and IFN-γ secretion. Moving into in vivo syngeneic tumor models, pharmacologic inhibition of VRK2 in combination with PD-1 blockade enhanced tumor clearance through T cell activation. This study suggests that VRK2 is a unique therapeutic target and that combination of VRK2 inhibitors with PD-1 blockade may improve cancer immunotherapy.
Collapse
Affiliation(s)
- Michael Peled
- Institute of Pulmonary Medicine, Chaim Sheba Medical Center, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Anna S Tocheva
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kieran Adam
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, NY, 10032, USA; Division of Rheumatology, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
15
|
Yang CX, Schon E, Obeidat M, Kobor MS, McEwen L, MacIsaac J, Lin D, Novak RM, Hudson F, Klinker H, Dharan N, Horvath S, Bourbeau J, Tan W, Sin DD, Man SFP, Kunisaki K, Leung JM. Occurrence of Accelerated Epigenetic Aging and Methylation Disruptions in Human Immunodeficiency Virus Infection Before Antiretroviral Therapy. J Infect Dis 2020; 223:1681-1689. [PMID: 32959881 DOI: 10.1093/infdis/jiaa599] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Whether accelerated aging develops over the course of chronic human immunodeficiency virus (HIV) infection or can be observed before significant immunosuppression on is unknown. We studied DNA methylation in blood to estimate cellular aging in persons living with HIV (PLWH) before the initiation of antiretroviral therapy (ART). METHODS A total of 378 ART-naive PLWH who had CD4 T-cell counts >500/µL and were enrolled in the Strategic Timing of Antiretroviral Therapy trial (Pulmonary Substudy) were compared with 34 HIV-negative controls. DNA methylation was performed using the Illumina MethylationEPIC BeadChip. Differentially methylated positions (DMPs) and differentially methylated regions (DMRs) in PLWH compared with controls were identified using a robust linear model. Methylation age was calculated using a previously described epigenetic clock. RESULTS There were a total of 56 639 DMPs and 6103 DMRs at a false discovery rate of <0.1. The top 5 DMPs corresponded to genes NLRC5, VRK2, B2M, and GPR6 and were highly enriched for cancer-related pathways. PLWH had significantly higher methylation age than HIV-negative controls (P = .001), with black race, low CD4 and high CD8 T-cell counts, and duration of HIV being risk factors for age acceleration. CONCLUSIONS PLWH before the initiation of ART and with preserved immune status show evidence of advanced methylation aging.
Collapse
Affiliation(s)
- Chen Xi Yang
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| | - Emma Schon
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ma'en Obeidat
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lisa McEwen
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julie MacIsaac
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Lin
- Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Richard M Novak
- Section of Infectious Diseases, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Fleur Hudson
- MRC Clinical Trials Unit, University College London, London, United Kingdom
| | - Hartwig Klinker
- University of Würzburg Medical Center, Department of Internal Medicine II, Division of Infectious Diseases, Würzburg, Germany
| | | | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Jean Bourbeau
- Respiratory Epidemiology and Clinical Research Unit, McGill University, Montreal, Quebec, Canada
| | - Wan Tan
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Don D Sin
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - S F Paul Man
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ken Kunisaki
- Minneapolis Veterans Affairs Health Care System, Section of Pulmonary, Critical Care and Sleep Medicine, Minneapolis, Minnesota, USA.,Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Janice M Leung
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada.,Division of Respiratory Medicine, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
16
|
Liu HC, Peng YS, Lee HC. miRDRN-miRNA disease regulatory network: a tool for exploring disease and tissue-specific microRNA regulatory networks. PeerJ 2019; 7:e7309. [PMID: 31404401 PMCID: PMC6688598 DOI: 10.7717/peerj.7309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/17/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND MicroRNA (miRNA) regulates cellular processes by acting on specific target genes, and cellular processes proceed through multiple interactions often organized into pathways among genes and gene products. Hundreds of miRNAs and their target genes have been identified, as are many miRNA-disease associations. These, together with huge amounts of data on gene annotation, biological pathways, and protein-protein interactions are available in public databases. Here, using such data we built a database and web service platform, miRNA disease regulatory network (miRDRN), for users to construct disease and tissue-specific miRNA-protein regulatory networks, with which they may explore disease related molecular and pathway associations, or find new ones, and possibly discover new modes of drug action. METHODS Data on disease-miRNA association, miRNA-target association and validation, gene-tissue association, gene-tumor association, biological pathways, human protein interaction, gene ID, gene ontology, gene annotation, and product were collected from publicly available databases and integrated. A large set of miRNA target-specific regulatory sub-pathways (RSPs) having the form (T, G 1, G 2) was built from the integrated data and stored, where T is a miRNA-associated target gene, G 1 (G 2) is a gene/protein interacting with T (G 1). Each sequence (T, G 1, G 2) was assigned a p-value weighted by the participation of the three genes in molecular interactions and reaction pathways. RESULTS A web service platform, miRDRN (http://mirdrn.ncu.edu.tw/mirdrn/), was built. The database part of miRDRN currently stores 6,973,875 p-valued RSPs associated with 116 diseases in 78 tissue types built from 207 diseases-associated miRNA regulating 389 genes. miRDRN also provides facilities for the user to construct disease and tissue-specific miRNA regulatory networks from RSPs it stores, and to download and/or visualize parts or all of the product. User may use miRDRN to explore a single disease, or a disease-pair to gain insights on comorbidity. As demonstrations, miRDRN was applied: to explore the single disease colorectal cancer (CRC), in which 26 novel potential CRC target genes were identified; to study the comorbidity of the disease-pair Alzheimer's disease-Type 2 diabetes, in which 18 novel potential comorbid genes were identified; and, to explore possible causes that may shed light on recent failures of late-phase trials of anti-AD, BACE1 inhibitor drugs, in which genes downstream to BACE1 whose suppression may affect signal transduction were identified.
Collapse
Affiliation(s)
- Hsueh-Chuan Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Yi-Shian Peng
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Hoong-Chien Lee
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
- Department of Physics, Chung Yuan Christian University, Zhongli District, Taoyuan City, Taiwan
| |
Collapse
|
17
|
Lee J, Lee S, Ryu YJ, Lee D, Kim S, Seo JY, Oh E, Paek SH, Kim SU, Ha CM, Choi SY, Kim KT. Vaccinia-related kinase 2 plays a critical role in microglia-mediated synapse elimination during neurodevelopment. Glia 2019; 67:1667-1679. [PMID: 31050055 DOI: 10.1002/glia.23638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 04/17/2019] [Accepted: 04/18/2019] [Indexed: 01/08/2023]
Abstract
During postnatal neurodevelopment, excessive synapses must be eliminated by microglia to complete the establishment of neural circuits in the brain. The lack of synaptic regulation by microglia has been implicated in neurodevelopmental disorders such as autism, schizophrenia, and intellectual disability. Here we suggest that vaccinia-related kinase 2 (VRK2), which is expressed in microglia, may stimulate synaptic elimination by microglia. In VRK2-deficient mice (VRK2KO ), reduced numbers of presynaptic puncta within microglia were observed. Moreover, the numbers of presynaptic puncta and synapses were abnormally increased in VRK2KO mice by the second postnatal week. These differences did not persist into adulthood. Even though an increase in the number of synapses was normalized, adult VRK2KO mice showed behavioral defects in social behaviors, contextual fear memory, and spatial memory.
Collapse
Affiliation(s)
- Juhyun Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Seunghyun Lee
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Young-Jae Ryu
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ji-Young Seo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Eunji Oh
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung U Kim
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Chang-Man Ha
- Research Division and Brain Research Core Facilities of Korea Brain Research Institute, Daegu, Republic of Korea
| | - Se-Young Choi
- Department of Physiology, Dental Research Institute, Seoul National University School of Dentistry, Seoul, Republic of Korea
| | - Kyong-Tai Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Republic of Korea.,Department of Life Sciences, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
18
|
Jiang Y, Song Y, Wang R, Hu T, Zhang D, Wang Z, Tie X, Wang M, Han S. NFAT1-Mediated Regulation of NDEL1 Promotes Growth and Invasion of Glioma Stem-like Cells. Cancer Res 2019; 79:2593-2603. [PMID: 30940662 DOI: 10.1158/0008-5472.can-18-3297] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/04/2019] [Accepted: 03/27/2019] [Indexed: 11/16/2022]
Abstract
Glioma stem-like cells (GSC) promote tumor generation and progression. However, the mechanism of GSC induction or maintenance is largely unknown. We previously demonstrated that the calcium-responsive transcription factor nuclear factor of activated T cells-1 (NFAT1) is activated in glioblastomas and regulates the invasion of tumor cells. In this study, we further explored the role of NFAT1 in GSC. We found that NFAT1 expression was associated with an aggressive phenotype and predicted poor survival in gliomas. Compared with normal glioma cells, NFAT1 was upregulated in GSC. NFAT1 knockdown reduced GSC viability, invasion, and self-renewal in vitro and inhibited tumorigenesis in vivo, whereas NFAT1 overexpression enhanced the growth and invasion of GSCs. RNA sequencing showed that NFAT1 depletion was associated with reduced neurodevelopment protein 1-like 1 (NDEL1, a potential downstream target of NFAT1) expression, whereas NFAT1 overexpression induced NDEL1 expression. In addition, NFAT1 regulated the promoter activities of NDEL1, whereas rescue of NDEL1 in NFAT1-silenced GSC partially restored tumor growth and invasion. Upregulation of NFAT1-NDEL1 signaling elevated Erk activation, increased protein levels of stemness markers in GSC, and resulted in de-differentiation of normal neuronal cells and astrocytes. Our results indicate that NFAT1 controls the growth and invasion of GSC partially through regulation of NDEL1. Targeting the NFAT1-NDEL1 axis therefore might be of potential benefit in the treatment of patients with glioma. SIGNIFICANCE: NFAT1 controls the growth and invasion of GSCs, partially by regulating NDEL1. Targeting the NFAT1-NDEL1 axis might provide opportunities in treating patients with glioma.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.,Department of Neurosurgery, Shanghai First People's Hospital of Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifu Song
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Run Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | | | - Di Zhang
- Department of Pathology, China Medical University, Shenyang, China
| | - Zixun Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Xinxin Tie
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Minghao Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
19
|
Ryu HG, Kim S, Lee S, Lee E, Kim HJ, Kim DY, Kim KT. HNRNP Q suppresses polyglutamine huntingtin aggregation by post-transcriptional regulation of vaccinia-related kinase 2. J Neurochem 2019; 149:413-426. [PMID: 30488434 DOI: 10.1111/jnc.14638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 12/22/2022]
Abstract
Misfolded proteins with abnormal polyglutamine (polyQ) expansion cause neurodegenerative disorders, including Huntington's disease. Recently, it was found that polyQ aggregates accumulate as a result of vaccinia-related kinase 2 (VRK2)-mediated degradation of TCP-1 ring complex (TRiC)/chaperonin-containing TCP-1 (CCT), which has an essential role in the prevention of polyQ protein aggregation and cytotoxicity. The levels of VRK2 are known to be much higher in actively proliferating cells but are maintained at a low level in the brain via an unknown mechanism. Here, we found that basal levels of neuronal cell-specific VRK2 mRNA are maintained by post-transcriptional, rather than transcriptional, regulation. Moreover, heterogeneous nuclear ribonucleoprotein Q (HNRNP Q) specifically binds to the 3'untranslated region of VRK2 mRNA in neuronal cells to reduce the mRNA stability. As a result, we found a dramatic decrease in CCT4 protein levels in response to a reduction in HNRNP Q levels, which was followed by an increase in polyQ aggregation in human neuroblastoma cells and mouse cortical neurons. Taken together, these results provide new insights into how neuronal HNRNP Q decreases VRK2 mRNA stability and contributes to the prevention of Huntington's disease, while also identifying new prognostic markers of HD.
Collapse
Affiliation(s)
- Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Saebom Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eunju Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Advanced Bio Convergence Center, Pohang Technopark, Pohang, Korea
| | - Hyo-Jin Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,SL BIGEN, Seongnam, Korea
| | - Do-Yeon Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Korea.,Brain Science & Engineering Institute, Kyungpook National University, Daegu, Korea
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Korea
| |
Collapse
|
20
|
Li M, Yue W. VRK2, a Candidate Gene for Psychiatric and Neurological Disorders. MOLECULAR NEUROPSYCHIATRY 2018; 4:119-133. [PMID: 30643786 PMCID: PMC6323383 DOI: 10.1159/000493941] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 09/20/2018] [Indexed: 12/20/2022]
Abstract
Recent large-scale genetic approaches, such as genome-wide association studies, have identified multiple genetic variations that contribute to the risk of mental illnesses, among which single nucleotide polymorphisms (SNPs) within or near the vaccinia related kinase 2 (VRK2) gene have gained consistent support for their correlations with multiple psychiatric and neurological disorders including schizophrenia (SCZ), major depressive disorder (MDD), and genetic generalized epilepsy. For instance, the genetic variant rs1518395 in VRK2 showed genome-wide significant associations with SCZ (35,476 cases and 46,839 controls, p = 3.43 × 10-8) and MDD (130,620 cases and 347,620 controls, p = 4.32 × 10-12) in European populations. This SNP was also genome-wide significantly associated with SCZ in Han Chinese population (12,083 cases and 24,097 controls, p = 3.78 × 10-13), and all associations were in the same direction of allelic effects. These studies highlight the potential roles of VRK2 in the central nervous system, and this gene therefore might be a good candidate to investigate the shared genetic and molecular basis between SCZ and MDD, as it is one of the few genes known to show genome-wide significant associations with both illnesses. Furthermore, the VRK2 gene was found to be involved in multiple other congenital deficits related to the malfunction of neurodevelopment, adding further support for the involvement of this gene in the pathogenesis of these neurological and psychiatric illnesses. While the precise function of VRK2 in these conditions remains unclear, preliminary evidence suggests that it may affect neuronal proliferation and migration via interacting with multiple essential signaling pathways involving other susceptibility genes/proteins for psychiatric disorders. Here, we have reviewed the recent progress of genetic and molecular studies of VRK2, with an emphasis on its role in psychiatric illnesses and neurological functions. We believe that attention to this important gene is necessary, and further investigations of VRK2 may provide hints into the underlying mechanisms of SCZ and MDD.
Collapse
Affiliation(s)
- Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Weihua Yue
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China
- Key Laboratory of Mental Health, Ministry of Health (Peking University) and National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| |
Collapse
|
21
|
Birendra Kc, May DG, Benson BV, Kim DI, Shivega WG, Ali MH, Faustino RS, Campos AR, Roux KJ. VRK2A is an A-type lamin-dependent nuclear envelope kinase that phosphorylates BAF. Mol Biol Cell 2017. [PMID: 28637768 PMCID: PMC5555652 DOI: 10.1091/mbc.e17-03-0138] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
By the use of comparative BioID of nuclear envelope (NE) proteins lamin A and Sun2, as well as a minimal inner nuclear membrane targeting motif, VRK2 is identified as a novel constituent of the NE. A-type lamins retain the transmembrane kinase VRK2 at the NE, where it phosphorylates and regulates the nuclear mobility of BAF. The nuclear envelope (NE) is critical for numerous fundamental cellular functions, and mutations in several NE constituents can lead to a heterogeneous spectrum of diseases. We used proximity biotinylation to uncover new constituents of the inner nuclear membrane (INM) by comparative BioID analysis of lamin A, Sun2 and a minimal INM-targeting motif. These studies identify vaccinia-related kinase-2 (VRK2) as a candidate constituent of the INM. The transmembrane VRK2A isoform is retained at the NE by association with A-type lamins. Furthermore, VRK2A physically interacts with A-type, but not B-type, lamins. Finally, we show that VRK2 phosphorylates barrier to autointegration factor (BAF), a small and highly dynamic chromatin-binding protein, which has roles including NE reassembly, cell cycle, and chromatin organization in cells, and subtly alters its nuclear mobility. Together these findings support the value of using BioID to identify unrecognized constituents of distinct subcellular compartments refractory to biochemical isolation and reveal VRK2A as a transmembrane kinase in the NE that regulates BAF.
Collapse
Affiliation(s)
- Birendra Kc
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Danielle G May
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Benjamin V Benson
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Dae In Kim
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Winnie G Shivega
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Manaal H Ali
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104
| | - Randolph S Faustino
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104.,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| | - Alexandre R Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037
| | - Kyle J Roux
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, SD 57104 .,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105
| |
Collapse
|
22
|
Gabriel CH, Gross F, Karl M, Stephanowitz H, Hennig AF, Weber M, Gryzik S, Bachmann I, Hecklau K, Wienands J, Schuchhardt J, Herzel H, Radbruch A, Krause E, Baumgrass R. Identification of Novel Nuclear Factor of Activated T Cell (NFAT)-associated Proteins in T Cells. J Biol Chem 2016; 291:24172-24187. [PMID: 27637333 DOI: 10.1074/jbc.m116.739326] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
Transcription factors of the nuclear factor of activated T cell (NFAT) family are essential for antigen-specific T cell activation and differentiation. Their cooperative DNA binding with other transcription factors, such as AP1 proteins (FOS, JUN, and JUNB), FOXP3, IRFs, and EGR1, dictates the gene regulatory action of NFATs. To identify as yet unknown interaction partners of NFAT, we purified biotin-tagged NFATc1/αA, NFATc1/βC, and NFATc2/C protein complexes and analyzed their components by stable isotope labeling by amino acids in cell culture-based mass spectrometry. We revealed more than 170 NFAT-associated proteins, half of which are involved in transcriptional regulation. Among them are many hitherto unknown interaction partners of NFATc1 and NFATc2 in T cells, such as Raptor, CHEK1, CREB1, RUNX1, SATB1, Ikaros, and Helios. The association of NFATc2 with several other transcription factors is DNA-dependent, indicating cooperative DNA binding. Moreover, our computational analysis discovered that binding motifs for RUNX and CREB1 are found preferentially in the direct vicinity of NFAT-binding motifs and in a distinct orientation to them. Furthermore, we provide evidence that mTOR and CHEK1 kinase activity influence NFAT's transcriptional potency. Finally, our dataset of NFAT-associated proteins provides a good basis to further study NFAT's diverse functions and how these are modulated due to the interplay of multiple interaction partners.
Collapse
Affiliation(s)
- Christian H Gabriel
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Fridolin Gross
- the Institute for Theoretical Biology, Charité and Humboldt University Berlin, 10015 Berlin
| | - Martin Karl
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | | | - Anna Floriane Hennig
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Melanie Weber
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Stefanie Gryzik
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | | | - Katharina Hecklau
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Jürgen Wienands
- the Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, 37073 Göttingen, Germany
| | | | - Hanspeter Herzel
- the Institute for Theoretical Biology, Charité and Humboldt University Berlin, 10015 Berlin
| | - Andreas Radbruch
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin
| | - Eberhard Krause
- the Leibniz-Institut für Molekulare Pharmakologie, 13125 Berlin
| | - Ria Baumgrass
- From the German Rheumatism Research Center (DRFZ), Leibniz Institute, 10117 Berlin,
| |
Collapse
|
23
|
Glycogen synthase kinase 3β suppresses polyglutamine aggregation by inhibiting Vaccinia-related kinase 2 activity. Sci Rep 2016; 6:29097. [PMID: 27377031 PMCID: PMC4932512 DOI: 10.1038/srep29097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/09/2016] [Indexed: 12/19/2022] Open
Abstract
Huntington’s disease (HD) is a neurodegenerative disorder caused by an abnormal expansion of polyglutamine repeats in the N-terminal of huntingtin. The amount of aggregate-prone protein is controlled by various mechanisms, including molecular chaperones. Vaccinia-related kinase 2 (VRK2) is known to negatively regulate chaperonin TRiC, and VRK2-facilitated degradation of TRiC increases polyQ protein aggregation, which is involved in HD. We found that VRK2 activity was negatively controlled by glycogen synthase kinase 3β (GSK3β). GSK3β directly bound to VRK2 and inhibited the catalytic activity of VRK2 in a kinase activity-independent manner. Furthermore, GSK3β increased the stability of TRiC and decreased the formation of HttQ103-GFP aggregates by inhibiting VRK2. These results indicate that GSK3β signaling may be a regulatory mechanism of HD progression and suggest targets for further therapeutic trials for HD.
Collapse
|
24
|
Shou J, Jing J, Xie J, You L, Jing Z, Yao J, Han W, Pan H. Nuclear factor of activated T cells in cancer development and treatment. Cancer Lett 2015; 361:174-84. [PMID: 25766658 DOI: 10.1016/j.canlet.2015.03.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 01/03/2023]
Abstract
Since nuclear factor of activated T cells (NFAT) was first identified as a transcription factor in T cells, various NFAT isoforms have been discovered and investigated. Accumulating studies have suggested that NFATs are involved in many aspects of cancer, including carcinogenesis, cancer cell proliferation, metastasis, drug resistance and tumor microenvironment. Different NFAT isoforms have distinct functions in different cancers. The exact function of NFAT in cancer or the tumor microenvironment is context dependent. In this review, we summarize our current knowledge of NFAT regulation and function in cancer development and treatment. NFATs have emerged as a potential target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiawei Shou
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Jing
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhao Jing
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlin Yao
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongming Pan
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Vaccinia-Related Kinase 2 Controls the Stability of the Eukaryotic Chaperonin TRiC/CCT by Inhibiting the Deubiquitinating Enzyme USP25. Mol Cell Biol 2015; 35:1754-62. [PMID: 25755282 DOI: 10.1128/mcb.01325-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/25/2015] [Indexed: 11/20/2022] Open
Abstract
Molecular chaperones monitor the proper folding of misfolded proteins and function as the first line of defense against mutant protein aggregation in neurodegenerative diseases. The eukaryotic chaperonin TRiC is a potent suppressor of mutant protein aggregation and toxicity in early stages of disease progression. Elucidation of TRiC functional regulation will enable us to better understand the pathological mechanisms of neurodegeneration. We have previously shown that vaccinia-related kinase 2 (VRK2) downregulates TRiC protein levels through the ubiquitin-proteasome system by recruiting the E3 ligase COP1. However, although VRK2 activity was necessary in TRiC downregulation, the phosphorylated substrate was not determined. Here, we report that USP25 is a novel TRiC interacting protein that is also phosphorylated by VRK2. USP25 catalyzed deubiquitination of the TRiC protein and stabilized the chaperonin, thereby reducing accumulation of misfolded polyglutamine protein aggregates. Notably, USP25 deubiquitinating activity was suppressed when VRK2 phosphorylated the Thr(680), Thr(727), and Ser(745) residues. Impaired USP25 deubiquitinating activity after VRK2-mediated phosphorylation may be a critical pathway in TRiC protein destabilization.
Collapse
|
26
|
Salzano M, Vázquez-Cedeira M, Sanz-García M, Valbuena A, Blanco S, Fernández IF, Lazo PA. Vaccinia-related kinase 1 (VRK1) confers resistance to DNA-damaging agents in human breast cancer by affecting DNA damage response. Oncotarget 2015; 5:1770-8. [PMID: 24731990 PMCID: PMC4039124 DOI: 10.18632/oncotarget.1678] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Vaccinia-related kinase 1 (VRK1) belongs to a group of sixteen kinases associated to a poorer prognosis in human breast carcinomas, particularly in estrogen receptor positive cases based on gene expression arrays. In this work we have studied the potential molecular mechanism by which the VRK1 protein can contribute to a poorer prognosis in this disease. For this aim it was first analyzed by immunohistochemistry the VRK1 protein level in normal breast and in one hundred and thirty six cases of human breast cancer. The effect of VRK1 to protect against DNA damage was determined by studying the effect of its knockdown on the formation of DNA repair foci assembled on 53BP1 in response to treatment with ionizing radiation or doxorubicin in two breast cancer cell lines. VRK1 protein was detected in normal breast and in breast carcinomas at high levels in ER and PR positive tumors. VRK1 protein level was significantly lower in ERBB2 positive cases. Next, to identify a mechanism that can link VRK1 to poorer prognosis, VRK1 was knocked-down in two breast cancer cell lines that were treated with ionizing radiation or doxorubicin, both inducing DNA damage. Loss of VRK1 resulted in reduced formation of DNA-damage repair foci complexes assembled on the 53BP1 scaffold protein, and this effect was independent of damaging agent or cell type. This observation is consistent with detection of high VRK1 protein levels in ER and PR positive breast cancers. We conclude that VRK1 can contribute to make these tumors more resistant to DNA damage-based therapies, such as ionizing radiation or doxorubicin, which is consistent with its association to a poor prognosis in ER positive breast cancer. VRK1 is potential target kinase for development of new specific inhibitors which can facilitate sensitization to other treatments in combination therapies; or alternatively be used as a new cancer drugs.
Collapse
Affiliation(s)
- Marcella Salzano
- Experimental Therapeutics and Translational Oncology Program, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca, Salamanca, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
c-Rel is a critical mediator of NF-κB-dependent TRAIL resistance of pancreatic cancer cells. Cell Death Dis 2014; 5:e1455. [PMID: 25299780 PMCID: PMC4237244 DOI: 10.1038/cddis.2014.417] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 07/21/2014] [Accepted: 09/01/2014] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents one of the deadliest malignancies with an overall life expectancy of 6 months despite current therapies. NF-κB signalling has been shown to be critical for this profound cell-autonomous resistance against chemotherapeutic drugs and death receptor-induced apoptosis, but little is known about the role of the c-Rel subunit in solid cancer and PDAC apoptosis control. In the present study, by analysis of genome-wide patterns of c-Rel-dependent gene expression, we were able to establish c-Rel as a critical regulator of tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in PDAC. TRAIL-resistant cells exhibited a strong TRAIL-inducible NF-κB activity, whereas TRAIL-sensitive cells displayed only a small increase in NF-κB-binding activity. Transfection with siRNA against c-Rel sensitized the TRAIL-resistant cells in a manner comparable to siRNA targeting the p65/RelA subunit. Gel-shift analysis revealed that c-Rel is part of the TRAIL-inducible NF-κB complex in PDAC. Array analysis identified NFATc2 as a c-Rel target gene among the 12 strongest TRAIL-inducible genes in apoptosis-resistant cells. In line, siRNA targeting c-Rel strongly reduced TRAIL-induced NFATc2 activity in TRAIL-resistant PDAC cells. Furthermore, siRNA targeting NFATc2 sensitized these PDAC cells against TRAIL-induced apoptosis. Finally, TRAIL-induced expression of COX-2 was diminished through siRNA targeting c-Rel or NFATc2 and pharmacologic inhibition of COX-2 with celecoxib or siRNA targeting COX-2, enhanced TRAIL apoptosis. In conclusion, we were able to delineate a novel c-Rel-, NFATc2- and COX-2-dependent antiapoptotic signalling pathway in PDAC with broad clinical implications for pharmaceutical intervention strategies.
Collapse
|
28
|
Qin JJ, Nag S, Wang W, Zhou J, Zhang WD, Wang H, Zhang R. NFAT as cancer target: mission possible? Biochim Biophys Acta Rev Cancer 2014; 1846:297-311. [PMID: 25072963 DOI: 10.1016/j.bbcan.2014.07.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 12/30/2022]
Abstract
The NFAT signaling pathway regulates various aspects of cellular functions; NFAT acts as a calcium sensor, integrating calcium signaling with other pathways involved in development and growth, immune response, and inflammatory response. The NFAT family of transcription factors regulates diverse cellular functions such as cell survival, proliferation, migration, invasion, and angiogenesis. The NFAT isoforms are constitutively activated and overexpressed in several cancer types wherein they transactivate downstream targets that play important roles in cancer development and progression. Though the NFAT family has been conclusively proved to be pivotal in cancer progression, the different isoforms play distinct roles in different cellular contexts. In this review, our discussion is focused on the mechanisms that drive the activation of various NFAT isoforms in cancer. Additionally, we analyze the potential of NFAT as a valid target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Subhasree Nag
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Jianwei Zhou
- Department of Molecular Cell Biology and Toxicology, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 210029, PR China
| | - Wei-Dong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, PR China; Key Laboratory of Food Safety Risk Assessment, Ministry of Health, Beijing 100021, PR China
| | - Ruiwen Zhang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA.
| |
Collapse
|
29
|
Vaccinia-related kinase 2 mediates accumulation of polyglutamine aggregates via negative regulation of the chaperonin TRiC. Mol Cell Biol 2013; 34:643-52. [PMID: 24298020 DOI: 10.1128/mcb.00756-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Misfolding of proteins containing abnormal expansions of polyglutamine (polyQ) repeats is associated with cytotoxicity in several neurodegenerative disorders, including Huntington's disease. Recently, the eukaryotic chaperonin TRiC hetero-oligomeric complex has been shown to play an important role in protecting cells against the accumulation of misfolded polyQ protein aggregates. It is essential to elucidate how TRiC function is regulated to better understand the pathological mechanism of polyQ aggregation. Here, we propose that vaccinia-related kinase 2 (VRK2) is a critical enzyme that negatively regulates TRiC. In mammalian cells, overexpression of wild-type VRK2 decreased endogenous TRiC protein levels by promoting TRiC ubiquitination, but a VRK2 kinase-dead mutant did not. Interestingly, VRK2-mediated downregulation of TRiC increased aggregate formation of a polyQ-expanded huntingtin fragment. This effect was ameliorated by rescue of TRiC protein levels. Notably, small interference RNA-mediated knockdown of VRK2 enhanced TRiC protein stability and decreased polyQ aggregation. The VRK2-mediated reduction of TRiC protein levels was subsequent to the recruitment of COP1 E3 ligase. Among the members of the COP1 E3 ligase complex, VRK2 interacted with RBX1 and increased E3 ligase activity on TRiC in vitro. Taken together, these results demonstrate that VRK2 is crucial to regulate the ubiquitination-proteosomal degradation of TRiC, which controls folding of polyglutamine proteins involved in Huntington's disease.
Collapse
|
30
|
Tie X, Han S, Meng L, Wang Y, Wu A. NFAT1 is highly expressed in, and regulates the invasion of, glioblastoma multiforme cells. PLoS One 2013; 8:e66008. [PMID: 23762456 PMCID: PMC3675208 DOI: 10.1371/journal.pone.0066008] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/26/2013] [Indexed: 12/12/2022] Open
Abstract
Members of the nuclear factor of activated T cells (NFAT) family have been identified as regulators of oncogenic transformation in several human malignancies. A prominent member of this family, NFAT1, is associated with tumor cell survival, apoptosis, migration and invasion. Here, we investigated the role of NFAT1 in glioma cells. In 111 clinical samples, microarray analysis demonstrated that NFAT1 was over-expressed in glioblastoma multiforme (GBM), compared with low-grade gliomas, a result confirmed by RT-PCR in 24 clinical samples and in the U87 and U251 cell lines. Immunohistochemistry and immunofluorescence stain indicated that over-expressed NFAT1 was mainly located in the nucleus, where it acted as a transcription factor. After treatment with the NFAT antagonist cyclosporin A (CsA) and FK506, levels of NFAT1 in the nuclei of U87 GBM cells were dramatically reduced. The invasive potential of U87 cells was reduced by the same treatment, as well as by inhibition of NFAT1 expression using small hairpin RNA. Proliferation of U87 cells was unaffected by CsA, FK506 and NFAT1 shRNA transfection. Clustering analysis and Pearson correlation analysis of microarray data showed that the expression of NFAT1 correlated with the expression of the invasion-related genes cyclooxygenase-2 (COX-2), matrix metalloproteinase-7 (MMP-7) and MMP-9, a result confirmed by in vitro analysis. These findings demonstrate that NFAT1 contributes to the invasive potential but not the proliferation of GBM cells, and suggest that CsA may find application as an adjuvant in combined treatment strategies for GBM.
Collapse
Affiliation(s)
- Xinxin Tie
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Lingxuan Meng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yunjie Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
31
|
Molecular genetic analysis of VRK1 in mammary epithelial cells: depletion slows proliferation in vitro and tumor growth and metastasis in vivo. Oncogenesis 2013; 2:e48. [PMID: 23732708 PMCID: PMC3740298 DOI: 10.1038/oncsis.2013.11] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The vaccinia-related kinases (VRKs) comprise a branch of the casein kinase family. VRK1, a ser/thr kinase with a nuclear localization, is the most well-studied paralog and has been described as a proproliferative protein. In lower eukaryotes, a loss of VRK1 activity is associated with severe mitotic and meiotic defects. Mice that are hypomorphic for VRK1 expression are infertile, and depletion of VRK1 in tissue culture cells can impair cell proliferation and alter several signaling pathways. VRK1 has been implicated as part of a ‘gene-expression signature' whose overexpression correlates with poor clinical outcome in breast cancer patients. We present here our investigation of the role of VRK1 in the growth of normal (MCF10) and malignant (MDA-MB-231) human mammary epithelial cells, and demonstrate that shRNA-mediated depletion of VRK1 slows their proliferation significantly. Conversely, stable overexpression of a FLAG-tagged VRK1 transgene imparts a survival advantage to highly malignant MDA-MB-231 cells under conditions of nutrient and growth factor deprivation. Moreover, in a murine orthotopic xenograft model of breast cancer, we demonstrate that tumors depleted of VRK1 show a 50% reduction in size from 4–13 weeks postengraftment. The incidence and burden of distal metastases in the lungs and brain was also significantly reduced in mice engrafted with VRK1-depleted cells. These studies demonstrate that VRK1 depletion or overexpression has an impact on the proliferation and survival of cell lines derived from normal or malignant mammary tissue, and moreover show that depletion of VRK1 in MDA-MB-231 cells reduces their oncogenic and metastatic properties in vivo.
Collapse
|
32
|
Barcia-Sanjurjo I, Vázquez-Cedeira M, Barcia R, Lazo PA. Sensitivity of the kinase activity of human vaccinia-related kinase proteins to toxic metals. J Biol Inorg Chem 2013; 18:473-82. [DOI: 10.1007/s00775-013-0992-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 02/26/2013] [Indexed: 01/22/2023]
|
33
|
Abstract
VRK2 is a novel Ser-Thr kinase whose VRK2A isoform is located in the endoplasmic reticulum and mitochondrial membranes. We have studied the potential role that VRK2A has in the regulation of mitochondrial-mediated apoptosis. VRK2A can regulate the intrinsic apoptotic pathway in two different ways. The VRK2A protein directly interacts with Bcl-xL, but not with Bcl-2, Bax, Bad, PUMA or Binp-3L. VRK2A does not compete with Bax for interaction with Bcl-xL, and these proteins can form a complex that reduces apoptosis. Thus, high VRK2 levels confer protection against apoptosis. In addition, VRK2 knockdown results in an increased expression of BAX gene expression that is mediated by its proximal promoter, thus VRK2A behaves as a negative regulator of BAX. Low levels of VRK2A causes an increase in mitochondrial Bax protein level, leading to an increase in the release of cytochrome C and caspase activation, detected by PARP processing. VRK2A loss results in an increase in cell death that can be detected by an increase in annexinV+ cells. Low levels of VRK2A increase cell sensitivity to induction of apoptosis by chemotherapeutic drugs like camptothecin or doxorubicin. We conclude that VRK2A protein is a novel modulator of apoptosis.
Collapse
|