1
|
Xu ZQ, Jergic S, Lo ATY, Pradhan AC, Brown SHJ, Bouwer JC, Ghodke H, Lewis PJ, Tolun G, Oakley AJ, Dixon NE. Structural characterisation of the complete cycle of sliding clamp loading in Escherichia coli. Nat Commun 2024; 15:8372. [PMID: 39333521 PMCID: PMC11436948 DOI: 10.1038/s41467-024-52623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Ring-shaped DNA sliding clamps are essential for DNA replication and genome maintenance. Clamps need to be opened and chaperoned onto DNA by clamp loader complexes (CLCs). Detailed understanding of the mechanisms by which CLCs open and place clamps around DNA remains incomplete. Here, we present a series of six structures of the Escherichia coli CLC bound to an open or closed clamp prior to and after binding to a primer-template DNA, representing the most significant intermediates in the clamp loading process. We show that the ATP-bound CLC first binds to a clamp, then constricts to hold onto it. The CLC then expands to open the clamp with a gap large enough for double-stranded DNA to enter. Upon binding to DNA, the CLC constricts slightly, allowing clamp closing around DNA. These structures provide critical high-resolution snapshots of clamp loading by the E. coli CLC, revealing how the molecular machine works.
Collapse
Affiliation(s)
- Zhi-Qiang Xu
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
| | - Slobodan Jergic
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Allen T Y Lo
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Alok C Pradhan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, Australia
| | - Simon H J Brown
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, Australia
| | - James C Bouwer
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, Australia
| | - Harshad Ghodke
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Peter J Lewis
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- Hunter Biological Solutions, Hamilton, Australia
| | - Gökhan Tolun
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
- ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, Australia
| | - Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Nicholas E Dixon
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia.
- ARC Industrial Transformation Training Centre for Cryo-Electron Microscopy of Membrane Proteins, University of Wollongong, Wollongong, Australia.
| |
Collapse
|
2
|
Simonsen S, Søgaard CK, Olsen JG, Otterlei M, Kragelund BB. The bacterial DNA sliding clamp, β-clamp: structure, interactions, dynamics and drug discovery. Cell Mol Life Sci 2024; 81:245. [PMID: 38814467 PMCID: PMC11139829 DOI: 10.1007/s00018-024-05252-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/31/2024]
Abstract
DNA replication is a tightly coordinated event carried out by a multiprotein replication complex. An essential factor in the bacterial replication complex is the ring-shaped DNA sliding clamp, β-clamp, ensuring processive DNA replication and DNA repair through tethering of polymerases and DNA repair proteins to DNA. β -clamp is a hub protein with multiple interaction partners all binding through a conserved clamp binding sequence motif. Due to its central role as a DNA scaffold protein, β-clamp is an interesting target for antimicrobial drugs, yet little effort has been put into understanding the functional interactions of β-clamp. In this review, we scrutinize the β-clamp structure and dynamics, examine how its interactions with a plethora of binding partners are regulated through short linear binding motifs and discuss how contexts play into selection. We describe the dynamic process of clamp loading onto DNA and cover the recent advances in drug development targeting β-clamp. Despite decades of research in β-clamps and recent landmark structural insight, much remains undisclosed fostering an increased focus on this very central protein.
Collapse
Affiliation(s)
- Signe Simonsen
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Caroline K Søgaard
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Johan G Olsen
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
- Department of Biology, REPIN, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark
| | - Marit Otterlei
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.
| | - Birthe B Kragelund
- Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
- Structural Biology and NMR Laboratory, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
- Department of Biology, REPIN, University of Copenhagen, Ole Maaløes Vej 5, 2200, Copenhagen N, Denmark.
| |
Collapse
|
3
|
Landeck JT, Pajak J, Norman EK, Sedivy EL, Kelch BA. Differences between bacteria and eukaryotes in clamp loader mechanism, a conserved process underlying DNA replication. J Biol Chem 2024; 300:107166. [PMID: 38490435 PMCID: PMC11044049 DOI: 10.1016/j.jbc.2024.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader replication factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the Escherichia coli clamp loader at high resolution using cryo-electron microscopy. We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how the clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.
Collapse
Affiliation(s)
- Jacob T Landeck
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Joshua Pajak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Emily K Norman
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Emma L Sedivy
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Brian A Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
4
|
Landeck JT, Pajak J, Norman EK, Sedivy EL, Kelch BA. Differences in clamp loader mechanism between bacteria and eukaryotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569468. [PMID: 38076975 PMCID: PMC10705477 DOI: 10.1101/2023.11.30.569468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Clamp loaders are pentameric ATPases that place circular sliding clamps onto DNA, where they function in DNA replication and genome integrity. The central activity of a clamp loader is the opening of the ring-shaped sliding clamp, and the subsequent binding to primer-template (p/t)-junctions. The general architecture of clamp loaders is conserved across all life, suggesting that their mechanism is retained. Recent structural studies of the eukaryotic clamp loader Replication Factor C (RFC) revealed that it functions using a crab-claw mechanism, where clamp opening is coupled to a massive conformational change in the loader. Here we investigate the clamp loading mechanism of the E. coli clamp loader at high resolution using cryo-electron microscopy (cryo-EM). We find that the E. coli clamp loader opens the clamp using a crab-claw motion at a single pivot point, whereas the eukaryotic RFC loader uses motions distributed across the complex. Furthermore, we find clamp opening occurs in multiple steps, starting with a partly open state with a spiral conformation, and proceeding to a wide open clamp in a surprising planar geometry. Finally, our structures in the presence of p/t-junctions illustrate how clamp closes around p/t-junctions and how the clamp loader initiates release from the loaded clamp. Our results reveal mechanistic distinctions in a macromolecular machine that is conserved across all domains of life.
Collapse
Affiliation(s)
- Jacob T. Landeck
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Joshua Pajak
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Emily K. Norman
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Emma L. Sedivy
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| | - Brian A. Kelch
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester MA
| |
Collapse
|
5
|
Newcomb ESP, Douma LG, Morris LA, Bloom LB. The Escherichia coli clamp loader rapidly remodels SSB on DNA to load clamps. Nucleic Acids Res 2022; 50:12872-12884. [PMID: 36511874 PMCID: PMC9825162 DOI: 10.1093/nar/gkac1169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Single-stranded DNA binding proteins (SSBs) avidly bind ssDNA and yet enzymes that need to act during DNA replication and repair are not generally impeded by SSB, and are often stimulated by SSB. Here, the effects of Escherichia coli SSB on the activities of the DNA polymerase processivity clamp loader were investigated. SSB enhances binding of the clamp loader to DNA by increasing the lifetime on DNA. Clamp loading was measured on DNA substrates that differed in length of ssDNA overhangs to permit SSB binding in different binding modes. Even though SSB binds DNA adjacent to single-stranded/double-stranded DNA junctions where clamps are loaded, the rate of clamp loading on DNA was not affected by SSB on any of the DNA substrates. Direct measurements of the relative timing of DNA-SSB remodeling and enzyme-DNA binding showed that the clamp loader rapidly remodels SSB on DNA such that SSB has little effect on DNA binding rates. However, when SSB was mutated to reduce protein-protein interactions with the clamp loader, clamp loading was inhibited by impeding binding of the clamp loader to DNA. Thus, protein-protein interactions between the clamp loader and SSB facilitate rapid DNA-SSB remodeling to allow rapid clamp loader-DNA binding and clamp loading.
Collapse
Affiliation(s)
- Elijah S P Newcomb
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Lauren G Douma
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Leslie A Morris
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610-0245, USA
| | - Linda B Bloom
- To whom correspondence should be addressed. Tel: +1 352 294 8379; Fax: +1 352 392 2953;
| |
Collapse
|
6
|
Deep Analysis of Residue Constraints (DARC): identifying determinants of protein functional specificity. Sci Rep 2020; 10:1691. [PMID: 32015389 PMCID: PMC6997377 DOI: 10.1038/s41598-019-55118-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/23/2019] [Indexed: 01/03/2023] Open
Abstract
Protein functional constraints are manifest as superfamily and functional-subgroup conserved residues, and as pairwise correlations. Deep Analysis of Residue Constraints (DARC) aids the visualization of these constraints, characterizes how they correlate with each other and with structure, and estimates statistical significance. This can identify determinants of protein functional specificity, as we illustrate for bacterial DNA clamp loader ATPases. These load ring-shaped sliding clamps onto DNA to keep polymerase attached during replication and contain one δ, three γ, and one δ’ AAA+ subunits semi-circularly arranged in the order δ-γ1-γ2-γ3-δ’. Only γ is active, though both γ and δ’ functionally influence an adjacent γ subunit. DARC identifies, as functionally-congruent features linking allosterically the ATP, DNA, and clamp binding sites: residues distinctive of γ and of γ/δ’ that mutually interact in trans, centered on the catalytic base; several γ/δ’-residues and six γ/δ’-covariant residue pairs within the DNA binding N-termini of helices α2 and α3; and γ/δ’-residues associated with the α2 C-terminus and the clamp-binding loop. Most notable is a trans-acting γ/δ’ hydroxyl group that 99% of other AAA+ proteins lack. Mutation of this hydroxyl to a methyl group impedes clamp binding and opening, DNA binding, and ATP hydrolysis—implying a remarkably clamp-loader-specific function.
Collapse
|
7
|
Bhardwaj A, Ghose D, Thakur KG, Dutta D. Escherichia coli β-clamp slows down DNA polymerase I dependent nick translation while accelerating ligation. PLoS One 2018; 13:e0199559. [PMID: 29924849 PMCID: PMC6010275 DOI: 10.1371/journal.pone.0199559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/08/2018] [Indexed: 11/25/2022] Open
Abstract
The nick translation property of DNA polymerase I (Pol I) ensures the maturation of Okazaki fragments by removing primer RNAs and facilitating ligation. However, prolonged nick translation traversing downstream DNA is an energy wasting futile process, as Pol I simultaneously polymerizes and depolymerizes at the nick sites utilizing energy-rich dNTPs. Using an in vitro assay system, we demonstrate that the β-clamp of the Escherichia coli replisome strongly inhibits nick translation on the DNA substrate. To do so, β-clamp inhibits the strand displacement activity of Pol I by interfering with the interaction between the finger subdomain of Pol I and the downstream primer-template junction. Conversely, β-clamp stimulates the 5’ exonuclease property of Pol I to cleave single nucleotides or shorter oligonucleotide flaps. This single nucleotide flap removal at high frequency increases the probability of ligation between the upstream and downstream DNA strands at an early phase, terminating nick translation. Besides β-clamp-mediated ligation helps DNA ligase to seal the nick promptly during the maturation of Okazaki fragments.
Collapse
Affiliation(s)
- Amit Bhardwaj
- CSIR-Institute of Microbial Technology, Chandigarh, India
| | | | | | - Dipak Dutta
- CSIR-Institute of Microbial Technology, Chandigarh, India
- * E-mail:
| |
Collapse
|
8
|
Liu J, Zhou Y, Hingorani MM. Linchpin DNA-binding residues serve as go/no-go controls in the replication factor C-catalyzed clamp-loading mechanism. J Biol Chem 2017; 292:15892-15906. [PMID: 28808059 DOI: 10.1074/jbc.m117.798702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/02/2017] [Indexed: 11/06/2022] Open
Abstract
DNA polymerases depend on circular sliding clamps for processive replication. Clamps must be loaded onto primer-template DNA (ptDNA) by clamp loaders that open and close clamps around ptDNA in an ATP-fueled reaction. All clamp loaders share a core structure in which five subunits form a spiral chamber that binds the clamp at its base in a twisted open form and encloses ptDNA within, while binding and hydrolyzing ATP to topologically link the clamp and ptDNA. To understand how clamp loaders perform this complex task, here we focused on conserved arginines that might play a central coordinating role in the mechanism because they can alternately contact ptDNA or Walker B glutamate in the ATPase site and lie close to the clamp loader-clamp-binding interface. We mutated Arg-84, Arg-88, and Arg-101 in the ATPase-active B, C, and D subunits of Saccharomyces cerevisiae replication factor C (RFC) clamp loader, respectively, and assessed the impact on multiple transient events in the reaction: proliferating cell nuclear antigen (PCNA) clamp binding/opening/closure/release, ptDNA binding/release, and ATP hydrolysis/product release. The results show that these arginines relay critical information between the PCNA-binding, DNA-binding, and ATPase sites at all steps of the reaction, particularly at a checkpoint before RFC commits to ATP hydrolysis. Moreover, their actions are subunit-specific with RFC-C Arg-88 serving as an accelerator that enables rapid ATP hydrolysis upon contact with ptDNA and RFC-D Arg-101 serving as a brake that confers specificity for ptDNA as the correct substrate for loading PCNA.
Collapse
Affiliation(s)
- Juan Liu
- From the Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459
| | - Yayan Zhou
- From the Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459
| | - Manju M Hingorani
- From the Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, Connecticut 06459
| |
Collapse
|
9
|
Kelch BA. Review: The lord of the rings: Structure and mechanism of the sliding clamp loader. Biopolymers 2017; 105:532-46. [PMID: 26918303 DOI: 10.1002/bip.22827] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/15/2016] [Accepted: 02/23/2016] [Indexed: 12/15/2022]
Abstract
Sliding clamps are ring-shaped polymerase processivity factors that act as master regulators of cellular replication by coordinating multiple functions on DNA to ensure faithful transmission of genetic and epigenetic information. Dedicated AAA+ ATPase machines called clamp loaders actively place clamps on DNA, thereby governing clamp function by controlling when and where clamps are used. Clamp loaders are also important model systems for understanding the basic principles of AAA+ mechanism and function. After nearly 30 years of study, the ATP-dependent mechanism of opening and loading of clamps is now becoming clear. Here I review the structural and mechanistic aspects of the clamp loading process, as well as comment on questions that will be addressed by future studies. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 532-546, 2016.
Collapse
Affiliation(s)
- Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605
| |
Collapse
|
10
|
Abstract
A range of enzymes in DNA replication and repair bind to DNA-clamps: torus-shaped proteins that encircle double-stranded DNA and act as mobile tethers. Clamps from viruses (such as gp45 from the T4 bacteriophage) and eukaryotes (PCNAs) are homotrimers, each protomer containing two repeats of the DNA-clamp motif, while bacterial clamps (pol III β) are homodimers, each protomer containing three DNA-clamp motifs. Clamps need to be flexible enough to allow opening and loading onto primed DNA by clamp loader complexes. Equilibrium and steered molecular dynamics simulations have been used to study DNA-clamp conformation in open and closed forms. The E. coli and PCNA clamps appear to prefer closed, planar conformations. Remarkably, gp45 appears to prefer an open right-handed spiral conformation in solution, in agreement with previously reported biophysical data. The structural preferences of DNA clamps in solution have implications for understanding the duty cycle of clamp-loaders.
Collapse
|
11
|
Slow unloading leads to DNA-bound β2-sliding clamp accumulation in live Escherichia coli cells. Nat Commun 2014; 5:5820. [PMID: 25520215 PMCID: PMC4284645 DOI: 10.1038/ncomms6820] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 11/11/2014] [Indexed: 11/26/2022] Open
Abstract
The ubiquitous sliding clamp facilitates processivity of the replicative polymerase and acts as a platform to recruit proteins involved in replication, recombination and repair. While the dynamics of the E. coli β2-sliding clamp have been characterized in vitro, its in vivo stoichiometry and dynamics remain unclear. To probe both β2-clamp dynamics and stoichiometry in live E. coli cells, we use custom-built microfluidics in combination with single-molecule fluorescence microscopy and photoactivated fluorescence microscopy. We quantify the recruitment, binding and turnover of β2-sliding clamps on DNA during replication. These quantitative in vivo results demonstrate that numerous β2-clamps in E. coli remain on the DNA behind the replication fork for a protracted period of time, allowing them to form a docking platform for other enzymes involved in DNA metabolism. DNA replication is accomplished by the replisome, a multi-protein complex that comprises the sliding clamp. Here, Moolman et al. present quantitative and dynamic measurements of the number of β2-sliding clamps at the single-cell level in live E. coli cells to shed light on key aspects of DNA replication.
Collapse
|
12
|
Kinetic analysis of PCNA clamp binding and release in the clamp loading reaction catalyzed by Saccharomyces cerevisiae replication factor C. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1854:31-8. [PMID: 25450506 DOI: 10.1016/j.bbapap.2014.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/17/2014] [Accepted: 09/23/2014] [Indexed: 11/22/2022]
Abstract
DNA polymerases require a sliding clamp to achieve processive DNA synthesis. The toroidal clamps are loaded onto DNA by clamp loaders, members of the AAA+family of ATPases. These enzymes utilize the energy of ATP binding and hydrolysis to perform a variety of cellular functions. In this study, a clamp loader-clamp binding assay was developed to measure the rates of ATP-dependent clamp binding and ATP-hydrolysis-dependent clamp release for the Saccharomyces cerevisiae clamp loader (RFC) and clamp (PCNA). Pre-steady-state kinetics of PCNA binding showed that although ATP binding to RFC increases affinity for PCNA, ATP binding rates and ATP-dependent conformational changes in RFC are fast relative to PCNA binding rates. Interestingly, RFC binds PCNA faster than the Escherichia coli γ complex clamp loader binds the β-clamp. In the process of loading clamps on DNA, RFC maintains contact with PCNA while PCNA closes, as the observed rate of PCNA closing is faster than the rate of PCNA release, precluding the possibility of an open clamp dissociating from DNA. Rates of clamp closing and release are not dependent on the rate of the DNA binding step and are also slower than reported rates of ATP hydrolysis, showing that these rates reflect unique intramolecular reaction steps in the clamp loading pathway.
Collapse
|
13
|
Van den Bossche A, Ceyssens PJ, De Smet J, Hendrix H, Bellon H, Leimer N, Wagemans J, Delattre AS, Cenens W, Aertsen A, Landuyt B, Minakhin L, Severinov K, Noben JP, Lavigne R. Systematic identification of hypothetical bacteriophage proteins targeting key protein complexes of Pseudomonas aeruginosa. J Proteome Res 2014; 13:4446-56. [PMID: 25185497 DOI: 10.1021/pr500796n] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Addressing the functionality of predicted genes remains an enormous challenge in the postgenomic era. A prime example of genes lacking functional assignments are the poorly conserved, early expressed genes of lytic bacteriophages, whose products are involved in the subversion of the host metabolism. In this study, we focused on the composition of important macromolecular complexes of Pseudomonas aeruginosa involved in transcription, DNA replication, fatty acid biosynthesis, RNA regulation, energy metabolism, and cell division during infection with members of seven distinct clades of lytic phages. Using affinity purifications of these host protein complexes coupled to mass spectrometric analyses, 37 host complex-associated phage proteins could be identified. Importantly, eight of these show an inhibitory effect on bacterial growth upon episomal expression, suggesting that these phage proteins are potentially involved in hijacking the host complexes. Using complementary protein-protein interaction assays, we further mapped the inhibitory interaction of gp12 of phage 14-1 to the α subunit of the RNA polymerase. Together, our data demonstrate the powerful use of interactomics to unravel the biological role of hypothetical phage proteins, which constitute an enormous untapped source of novel antibacterial proteins. (Data are available via ProteomeXchange with identifier PXD001199.).
Collapse
|
14
|
Hayner JN, Douma LG, Bloom LB. The interplay of primer-template DNA phosphorylation status and single-stranded DNA binding proteins in directing clamp loaders to the appropriate polarity of DNA. Nucleic Acids Res 2014; 42:10655-67. [PMID: 25159615 PMCID: PMC4176372 DOI: 10.1093/nar/gku774] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Sliding clamps are loaded onto DNA by clamp loaders to serve the critical role of coordinating various enzymes on DNA. Clamp loaders must quickly and efficiently load clamps at primer/template (p/t) junctions containing a duplex region with a free 3′OH (3′DNA), but it is unclear how clamp loaders target these sites. To measure the Escherichia coli and Saccharomyces cerevisiae clamp loader specificity toward 3′DNA, fluorescent β and PCNA clamps were used to measure clamp closing triggered by DNA substrates of differing polarity, testing the role of both the 5′phosphate (5′P) and the presence of single-stranded binding proteins (SSBs). SSBs inhibit clamp loading by both clamp loaders on the incorrect polarity of DNA (5′DNA). The 5′P groups contribute selectivity to differing degrees for the two clamp loaders, suggesting variations in the mechanism by which clamp loaders target 3′DNA. Interestingly, the χ subunit of the E. coli clamp loader is not required for SSB to inhibit clamp loading on phosphorylated 5′DNA, showing that χ·SSB interactions are dispensable. These studies highlight a common role for SSBs in directing clamp loaders to 3′DNA, as well as uncover nuances in the mechanisms by which SSBs perform this vital role.
Collapse
Affiliation(s)
- Jaclyn N Hayner
- Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Lauren G Douma
- Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Linda B Bloom
- Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
15
|
Cho WK, Jergic S, Kim D, Dixon NE, Lee JB. Loading dynamics of a sliding DNA clamp. Angew Chem Int Ed Engl 2014; 53:6768-71. [PMID: 24854225 PMCID: PMC4320747 DOI: 10.1002/anie.201403063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Indexed: 11/17/2022]
Abstract
Sliding DNA clamps are loaded at a ss/dsDNA junction by a clamp loader that depends on ATP binding for clamp opening. Sequential ATP hydrolysis results in closure of the clamp so that it completely encircles and diffuses on dsDNA. We followed events during loading of an E. coli β clamp in real time by using single-molecule FRET (smFRET). Three successive FRET states were retained for 0.3 s, 0.7 s, and 9 min: Hydrolysis of the first ATP molecule by the γ clamp loader resulted in closure of the clamp in 0.3 s, and after 0.7 s in the closed conformation, the clamp was released to diffuse on the dsDNA for at least 9 min. An additional single-molecule polarization study revealed that the interfacial domain of the clamp rotated in plane by approximately 8° during clamp closure. The single-molecule polarization and FRET studies thus revealed the real-time dynamics of the ATP-hydrolysis-dependent 3D conformational change of the β clamp during loading at a ss/dsDNA junction.
Collapse
Affiliation(s)
- Won-Ki Cho
- Department of Physics, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH)Pohang (Korea)
| | - Slobodan Jergic
- Centre for Medical and Molecular Bioscience, School of Chemistry, University of WollongongWollongong, N.S.W. 2522 (Australia)
| | - Daehyung Kim
- Department of Physics, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH)Pohang (Korea)
| | - Nicholas E Dixon
- Centre for Medical and Molecular Bioscience, School of Chemistry, University of WollongongWollongong, N.S.W. 2522 (Australia)
| | - Jong-Bong Lee
- Department of Physics, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH)Pohang (Korea)
| |
Collapse
|
16
|
Cho WK, Jergic S, Kim D, Dixon NE, Lee JB. Loading Dynamics of a Sliding DNA Clamp. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Bauer RJ, Wolff ID, Zuo X, Lin HK, Trakselis MA. Assembly and distributive action of an archaeal DNA polymerase holoenzyme. J Mol Biol 2013; 425:4820-36. [PMID: 24035812 DOI: 10.1016/j.jmb.2013.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 11/25/2022]
Abstract
The assembly and enzymatic ability of the replication DNA polymerase holoenzyme from Sulfolobus solfataricus (Sso) was investigated using presteady-state fluorescence resonance energy transfer assays coupled with functional and structural studies. Kinetic experiments reveal that ATP binding to replication factor C (RFC) is sufficient for loading the heterotrimeric PCNA123 [proliferating cell nuclear antigen (PCNA)] clamp onto DNA that includes a rate-limiting conformational rearrangement of the complex. ATP hydrolysis is required for favorable recruitment and interactions with the replication polymerase (PolB1) that most likely include clamp closing and RFC dissociation. Surprisingly, the assembled holoenzyme complex synthesizes DNA distributively and with low processivity, unlike most other well-characterized DNA polymerase holoenzyme complexes. We show that PolB1 repeatedly disengages from the DNA template, leaving PCNA123 behind. Interactions with a newly identified C-terminal PCNA-interacting peptide (PIP) motif on PolB1 specifically with PCNA2 are required for holoenzyme formation and continuous re-recruitment during synthesis. The extended tail-like structure of the C-terminal PIP motif in PolB1 is revealed alone and when bound to DNA using small-angle X-ray scattering allowing us to develop a model for the holoenzyme complex. This is the first detailed kinetic description of clamp loading and holoenzyme assembly in crenarchaea and has revealed a novel mode for dynamic processivity that occurs by a polymerase exchange mechanism. This work has important implications for processive DNA replication synthesis and also suggests a potential mechanism for polymerase switching to bypass lesions.
Collapse
Affiliation(s)
- Robert J Bauer
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | |
Collapse
|
18
|
Wang L, Xu X, Kumar R, Maiti B, Liu CT, Ivanov I, Lee TH, Benkovic SJ. Probing DNA clamps with single-molecule force spectroscopy. Nucleic Acids Res 2013; 41:7804-14. [PMID: 23783571 PMCID: PMC3763527 DOI: 10.1093/nar/gkt487] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Detailed mechanisms of DNA clamps in prokaryotic and eukaryotic systems were investigated by probing their mechanics with single-molecule force spectroscopy. Specifically, the mechanical forces required for the Escherichia coli and Saccharomyces cerevisiae clamp opening were measured at the single-molecule level by optical tweezers. Steered molecular dynamics simulations further examined the forces involved in DNA clamp opening from the perspective of the interface binding energies associated with the clamp opening processes. In combination with additional molecular dynamics simulations, we identified the contact networks between the clamp subunits that contribute significantly to the interface stability of the S.cerevisiae and E. coli clamps. These studies provide a vivid picture of the mechanics and energy landscape of clamp opening and reveal how the prokaryotic and eukaryotic clamps function through different mechanisms.
Collapse
Affiliation(s)
- Lin Wang
- Department of Chemistry, the Pennsylvania State University, University Park, PA 16802, USA and Department of Chemistry, Georgia State University, Atlanta, GA 30302, USA
| | | | | | | | | | | | | | | |
Collapse
|