1
|
Templin AT, Mellati M, Soininen R, Hogan MF, Esser N, Castillo JJ, Zraika S, Kahn SE, Hull RL. Loss of perlecan heparan sulfate glycosaminoglycans lowers body weight and decreases islet amyloid deposition in human islet amyloid polypeptide transgenic mice. Protein Eng Des Sel 2020; 32:95-102. [PMID: 31769491 DOI: 10.1093/protein/gzz041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 11/14/2022] Open
Abstract
Islet amyloid is a pathologic feature of type 2 diabetes (T2D) that is associated with β-cell loss and dysfunction. These amyloid deposits form via aggregation of the β-cell secretory product islet amyloid polypeptide (IAPP) and contain other molecules including the heparan sulfate proteoglycan perlecan. Perlecan has been shown to bind amyloidogenic human IAPP (hIAPP) via its heparan sulfate glycosaminoglycan (HS GAG) chains and to enhance hIAPP aggregation in vitro. We postulated that reducing the HS GAG content of perlecan would also decrease islet amyloid deposition in vivo. hIAPP transgenic mice were crossed with Hspg2Δ3/Δ3 mice harboring a perlecan mutation that prevents HS GAG attachment (hIAPP;Hspg2Δ3/Δ3), and male offspring from this cross were fed a high fat diet for 12 months to induce islet amyloid deposition. At the end of the study body weight, islet amyloid area, β-cell area, glucose tolerance and insulin secretion were analyzed. hIAPP;Hspg2Δ3/Δ3 mice exhibited significantly less islet amyloid deposition and greater β-cell area compared to hIAPP mice expressing wild type perlecan. hIAPP;Hspg2Δ3/Δ3 mice also gained significantly less weight than other genotypes. When adjusted for differences in body weight using multiple linear regression modeling, we found no differences in islet amyloid deposition or β-cell area between hIAPP transgenic and hIAPP;Hspg2Δ3/Δ3 mice. We conclude that loss of perlecan exon 3 reduces islet amyloid deposition in vivo through indirect effects on body weight and possibly also through direct effects on hIAPP aggregation. Both of these mechanisms may promote maintenance of glucose homeostasis in the setting of T2D.
Collapse
Affiliation(s)
- Andrew T Templin
- Division of Metabolism, Endocrinology and Nutrition, Veterans Affairs Puget Sound Health Care System and University of Washington, 1660 South Columbian Way, Seattle, 98108, Washington, USA
| | - Mahnaz Mellati
- Division of Metabolism, Endocrinology and Nutrition, Veterans Affairs Puget Sound Health Care System and University of Washington, 1660 South Columbian Way, Seattle, 98108, Washington, USA
| | - Raija Soininen
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Pentti Kaiteran Katu 1, Linnanmaa, Oulu, Finland
| | - Meghan F Hogan
- Division of Metabolism, Endocrinology and Nutrition, Veterans Affairs Puget Sound Health Care System and University of Washington, 1660 South Columbian Way, Seattle, 98108, Washington, USA
| | - Nathalie Esser
- Division of Metabolism, Endocrinology and Nutrition, Veterans Affairs Puget Sound Health Care System and University of Washington, 1660 South Columbian Way, Seattle, 98108, Washington, USA
| | - J Josh Castillo
- Division of Metabolism, Endocrinology and Nutrition, Veterans Affairs Puget Sound Health Care System and University of Washington, 1660 South Columbian Way, Seattle, 98108, Washington, USA
| | - Sakeneh Zraika
- Division of Metabolism, Endocrinology and Nutrition, Veterans Affairs Puget Sound Health Care System and University of Washington, 1660 South Columbian Way, Seattle, 98108, Washington, USA
| | - Steven E Kahn
- Division of Metabolism, Endocrinology and Nutrition, Veterans Affairs Puget Sound Health Care System and University of Washington, 1660 South Columbian Way, Seattle, 98108, Washington, USA
| | - Rebecca L Hull
- Division of Metabolism, Endocrinology and Nutrition, Veterans Affairs Puget Sound Health Care System and University of Washington, 1660 South Columbian Way, Seattle, 98108, Washington, USA
| |
Collapse
|
2
|
Xin Y, Wang X, Luo L, Meng F. Conformation-Dependent Manipulation of Human Islet Amyloid Polypeptide Fibrillation by Shiitake-Derived Lentinan. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31069-31079. [PMID: 30148596 DOI: 10.1021/acsami.8b11078] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Misfolding and aggregation of human islet amyloid polypeptide (hIAPP) into fibrils are important contributions to the pathology of type 2 diabetes. Developing effective inhibitors of protein aggregation and fibrillation has been considered a promising therapeutic approach to preventing and treating type 2 diabetes. Herein, we report that Shiitake-derived polysaccharide lentinan manipulates in vitro hIAPP fibrillation and modulates IAPP-induced cytotoxicity in a conformation-dependent manner. In its triple-helical conformation, lentinan effectively inhibits hIAPP fibrillation, either in bulk solution or in the presence of lipid membrane, suppresses reactive oxygen species (ROS) generation, and attenuates hIAPP-induced cell toxicity. In contrast, lentinan accelerates hIAPP aggregation when it exists in a random-coil conformation and shows no suppression on hIAPP-mediated ROS production. Further investigation shows that the interaction between triple-helical lentinan and monomeric hIAPP is more favorable than the intermolecular binding of hIAPP, which redirects hIAPP aggregates to discrete nontoxic nanocomposites. To the best of our knowledge, this is the first time to report a conformation-dependent inhibition of hIAPP aggregation, which will provide new insights for our understanding of the manipulation mechanisms on hIAPP by natural polysaccharides and open a new avenue for designing and screening potential amyloid inhibitors against type 2 diabetes.
Collapse
Affiliation(s)
- Yanru Xin
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Xiuxia Wang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- Wuhan Institute of Biotechnology , Wuhan 430075 , China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology , Huazhong University of Science and Technology , Wuhan 430074 , China
- Wuhan Institute of Biotechnology , Wuhan 430075 , China
| |
Collapse
|
3
|
Miller RL, Dykstra AB, Wei W, Holsclaw C, Turnbull JE, Leary JA. Enrichment of Two Isomeric Heparin Oligosaccharides Exhibiting Different Affinities toward Monocyte Chemoattractant Protein-1. Anal Chem 2016; 88:11551-11558. [PMID: 27801570 DOI: 10.1021/acs.analchem.6b02803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chemokine-GAG interactions are crucial to facilitate chemokine immobilization, resulting in the formation of chemokine gradients that guide cell migration. Here we demonstrate chromatographic isolation and purification of two heparin hexasaccharide isomers that interact with the oligomeric chemokine Monocyte Chemoattractant Protein-1 (MCP-1)/CCL2 with different binding affinities. The sequences of these two hexasaccharides were deduced from unique MS/MS product ions and HPLC compositional analysis. Ion mobility mass spectrometry (IM-MS) showed that the two isolated oligosaccharides have different conformations and both displayed preferential binding for one of the two distinct conformations known for MCP-1 dimers. A significant shift in arrival time distribution of close to 70 Å2 was observed, indicating a more compact protein:hexasaccharide conformation. Clear differences in the MS spectra between bound and unbound protein allowed calculation of Kd values from the resulting data. The structural difference between the two hexasaccharides was defined as the differential location of a single sulfate at either C-6 of glucosamine or C-2 of uronic acid in the reducing disaccharide, resulting in a 200-fold difference in binding affinity for MCP-1. These data indicate sequence specificity for high affinity binding, supporting the view that sulfate position, and not simply the number of sulfates, is important for heparan sulfate protein binding.
Collapse
Affiliation(s)
- Rebecca L Miller
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| | - Andrew B Dykstra
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| | - Wei Wei
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| | - Cynthia Holsclaw
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| | - Jeremy E Turnbull
- Centre for Glycobiology, Department of Biochemistry, Institute of Integrative Biology, University of Liverpool , Crown Street, Liverpool, L69 7ZB, England
| | - Julie A Leary
- Departments of Molecular and Cellular Biology and Chemistry, University of California , 1 Shields Drive, Davis, California 95616, United States
| |
Collapse
|
4
|
Nagy N, Kaber G, Johnson PY, Gebe JA, Preisinger A, Falk BA, Sunkari VG, Gooden MD, Vernon RB, Bogdani M, Kuipers HF, Day AJ, Campbell DJ, Wight TN, Bollyky PL. Inhibition of hyaluronan synthesis restores immune tolerance during autoimmune insulitis. J Clin Invest 2015; 125. [PMID: 26368307 PMCID: PMC4607113 DOI: 10.1172/jci79271–0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
We recently reported that abundant deposits of the extracellular matrix polysaccharide hyaluronan (HA) are characteristic of autoimmune insulitis in patients with type 1 diabetes (T1D), but the relevance of these deposits to disease was unclear. Here, we have demonstrated that HA is critical for the pathogenesis of autoimmune diabetes. Using the DO11.10xRIPmOVA mouse model of T1D, we determined that HA deposits are temporally and anatomically associated with the development of insulitis. Moreover, treatment with an inhibitor of HA synthesis, 4-methylumbelliferone (4-MU), halted progression to diabetes even after the onset of insulitis. Similar effects were seen in the NOD mouse model, and in these mice, 1 week of treatment was sufficient to prevent subsequent diabetes. 4-MU reduced HA accumulation, constrained effector T cells to nondestructive insulitis, and increased numbers of intraislet FOXP3+ Tregs. Consistent with the observed effects of 4-MU treatment, Treg differentiation was inhibited by HA and anti-CD44 antibodies and rescued by 4-MU in an ERK1/2-dependent manner. These data may explain how peripheral immune tolerance is impaired in tissues under autoimmune attack, including islets in T1D. We propose that 4-MU, already an approved drug used to treat biliary spasm, could be repurposed to prevent, and possibly treat, T1D in at-risk individuals.
Collapse
Affiliation(s)
- Nadine Nagy
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Gernot Kaber
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Pamela Y. Johnson
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - John A. Gebe
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Anton Preisinger
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Ben A. Falk
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Vivekananda G. Sunkari
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Michel D. Gooden
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Robert B. Vernon
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Marika Bogdani
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Hedwich F. Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Anthony J. Day
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Daniel J. Campbell
- Immunology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Thomas N. Wight
- Matrix Biology Program, Benaroya Research Institute, Seattle, Washington, USA
| | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
5
|
Nagy N, Kaber G, Johnson PY, Gebe JA, Preisinger A, Falk BA, Sunkari VG, Gooden MD, Vernon RB, Bogdani M, Kuipers HF, Day AJ, Campbell DJ, Wight TN, Bollyky PL. Inhibition of hyaluronan synthesis restores immune tolerance during autoimmune insulitis. J Clin Invest 2015; 125:3928-40. [PMID: 26368307 DOI: 10.1172/jci79271] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 08/06/2015] [Indexed: 12/31/2022] Open
Abstract
We recently reported that abundant deposits of the extracellular matrix polysaccharide hyaluronan (HA) are characteristic of autoimmune insulitis in patients with type 1 diabetes (T1D), but the relevance of these deposits to disease was unclear. Here, we have demonstrated that HA is critical for the pathogenesis of autoimmune diabetes. Using the DO11.10xRIPmOVA mouse model of T1D, we determined that HA deposits are temporally and anatomically associated with the development of insulitis. Moreover, treatment with an inhibitor of HA synthesis, 4-methylumbelliferone (4-MU), halted progression to diabetes even after the onset of insulitis. Similar effects were seen in the NOD mouse model, and in these mice, 1 week of treatment was sufficient to prevent subsequent diabetes. 4-MU reduced HA accumulation, constrained effector T cells to nondestructive insulitis, and increased numbers of intraislet FOXP3+ Tregs. Consistent with the observed effects of 4-MU treatment, Treg differentiation was inhibited by HA and anti-CD44 antibodies and rescued by 4-MU in an ERK1/2-dependent manner. These data may explain how peripheral immune tolerance is impaired in tissues under autoimmune attack, including islets in T1D. We propose that 4-MU, already an approved drug used to treat biliary spasm, could be repurposed to prevent, and possibly treat, T1D in at-risk individuals.
Collapse
|
6
|
Nguyen PT, Andraka N, De Carufel CA, Bourgault S. Mechanistic Contributions of Biological Cofactors in Islet Amyloid Polypeptide Amyloidogenesis. J Diabetes Res 2015; 2015:515307. [PMID: 26576436 PMCID: PMC4630397 DOI: 10.1155/2015/515307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/26/2015] [Accepted: 02/09/2015] [Indexed: 01/24/2023] Open
Abstract
Type II diabetes mellitus is associated with the deposition of fibrillar aggregates in pancreatic islets. The major protein component of islet amyloids is the glucomodulatory hormone islet amyloid polypeptide (IAPP). Islet amyloid fibrils are virtually always associated with several biomolecules, including apolipoprotein E, metals, glycosaminoglycans, and various lipids. IAPP amyloidogenesis has been originally perceived as a self-assembly homogeneous process in which the inherent aggregation propensity of the peptide and its local concentration constitute the major driving forces to fibrillization. However, over the last two decades, numerous studies have shown a prominent role of amyloid cofactors in IAPP fibrillogenesis associated with the etiology of type II diabetes. It is increasingly evident that the biochemical microenvironment in which IAPP amyloid formation occurs and the interactions of the polypeptide with various biomolecules not only modulate the rate and extent of aggregation, but could also remodel the amyloidogenesis process as well as the structure, toxicity, and stability of the resulting fibrils.
Collapse
Affiliation(s)
- Phuong Trang Nguyen
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
| | - Nagore Andraka
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
- Biophysics Unit (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country, 48080 Bilbao, Spain
| | - Carole Anne De Carufel
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
| | - Steve Bourgault
- Department of Chemistry, Pharmaqam, University of Quebec in Montreal, Montreal, QC, Canada H3C 3P8
- Quebec Network for Research on Protein Function, Structure, and Engineering (PROTEO), Canada
- *Steve Bourgault:
| |
Collapse
|
7
|
Relini A, Marano N, Gliozzi A. Misfolding of amyloidogenic proteins and their interactions with membranes. Biomolecules 2013; 4:20-55. [PMID: 24970204 PMCID: PMC4030986 DOI: 10.3390/biom4010020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/13/2013] [Accepted: 12/17/2013] [Indexed: 01/07/2023] Open
Abstract
In this paper, we discuss amyloidogenic proteins, their misfolding, resulting structures, and interactions with membranes, which lead to membrane damage and subsequent cell death. Many of these proteins are implicated in serious illnesses such as Alzheimer’s disease and Parkinson’s disease. Misfolding of amyloidogenic proteins leads to the formation of polymorphic oligomers and fibrils. Oligomeric aggregates are widely thought to be the toxic species, however, fibrils also play a role in membrane damage. We focus on the structure of these aggregates and their interactions with model membranes. Study of interactions of amlyoidogenic proteins with model and natural membranes has shown the importance of the lipid bilayer in protein misfolding and aggregation and has led to the development of several models for membrane permeabilization by the resulting amyloid aggregates. We discuss several of these models: formation of structured pores by misfolded amyloidogenic proteins, extraction of lipids, interactions with receptors in biological membranes, and membrane destabilization by amyloid aggregates perhaps analogous to that caused by antimicrobial peptides.
Collapse
Affiliation(s)
- Annalisa Relini
- Department of Physics, University of Genoa, Genoa 16146, Italy.
| | - Nadia Marano
- Department of Physics, University of Genoa, Genoa 16146, Italy.
| | | |
Collapse
|