1
|
Black EM, Ramírez Parrado CA, Trier I, Li W, Joo YK, Pichurin J, Liu Y, Kabeche L. Chk2 sustains PLK1 activity in mitosis to ensure proper chromosome segregation. Nat Commun 2024; 15:10782. [PMID: 39737931 DOI: 10.1038/s41467-024-54922-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division, and its activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate mitotic PLK1 remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis. Chk2 directly phosphorylates PLK1 T210, a residue on its T-loop whose phosphorylation is essential for full PLK1 kinase activity. Loss of Chk2-dependent PLK1 activity causes increased mitotic errors, including chromosome misalignment, chromosome missegregation, and cytokinetic defects. Moreover, Chk2 deficiency increases sensitivity to PLK1 inhibitors, suggesting that Chk2 status may be an informative biomarker for PLK1 inhibitor efficacy. This work demonstrates that Chk2 sustains mitotic PLK1 activity and protects genome stability through discrete functions in interphase DNA damage repair and mitotic chromosome segregation.
Collapse
Affiliation(s)
- Elizabeth M Black
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Carlos Andrés Ramírez Parrado
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Isabelle Trier
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Wenxue Li
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
- Department of Pharmacology, Yale University, New Haven, CT, 06511, USA
| | - Yoon Ki Joo
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Jennifer Pichurin
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
| | - Yansheng Liu
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA
- Department of Pharmacology, Yale University, New Haven, CT, 06511, USA
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
- Yale Cancer Biology Institute, Yale University, West Haven, CT, 06516, USA.
| |
Collapse
|
2
|
Black EM, Ramírez Parrado CA, Trier I, Li W, Joo YK, Pichurin J, Liu Y, Kabeche L. Chk2 sustains PLK1 activity in mitosis to ensure proper chromosome segregation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584115. [PMID: 38559033 PMCID: PMC10979866 DOI: 10.1101/2024.03.08.584115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polo-like kinase 1 (PLK1) protects against genome instability by ensuring timely and accurate mitotic cell division. PLK1 activity is tightly regulated throughout the cell cycle. Although the pathways that initially activate PLK1 in G2 are well-characterized, the factors that directly regulate PLK1 in mitosis remain poorly understood. Here, we identify that human PLK1 activity is sustained by the DNA damage response kinase Checkpoint kinase 2 (Chk2) in mitosis. Chk2 directly phosphorylates PLK1 T210, a residue on its T-loop whose phosphorylation is essential for full PLK1 kinase activity. Loss of Chk2-dependent PLK1 activity causes increased mitotic errors, including chromosome misalignment, chromosome missegregation, and cytokinetic defects. Moreover, Chk2 deficiency increases sensitivity to PLK1 inhibitors, suggesting that Chk2 status may be an informative biomarker for PLK1 inhibitor efficacy. This work demonstrates that Chk2 sustains mitotic PLK1 activity and protects genome stability through discrete functions in interphase DNA damage repair and mitotic chromosome segregation.
Collapse
|
3
|
Martin HL, Turner AL, Higgins J, Tang AA, Tiede C, Taylor T, Siripanthong S, Adams TL, Manfield IW, Bell SM, Morrison EE, Bond J, Trinh CH, Hurst CD, Knowles MA, Bayliss RW, Tomlinson DC. Affimer-mediated locking of p21-activated kinase 5 in an intermediate activation state results in kinase inhibition. Cell Rep 2023; 42:113184. [PMID: 37776520 DOI: 10.1016/j.celrep.2023.113184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/17/2023] [Accepted: 09/13/2023] [Indexed: 10/02/2023] Open
Abstract
Kinases are important therapeutic targets, and their inhibitors are classified according to their mechanism of action, which range from blocking ATP binding to covalent inhibition. Here, a mechanism of inhibition is highlighted by capturing p21-activated kinase 5 (PAK5) in an intermediate state of activation using an Affimer reagent that binds in the P+1 pocket. PAK5 was identified from a non-hypothesis-driven high-content imaging RNAi screen in urothelial cancer cells. Silencing of PAK5 resulted in reduced cell number, G1/S arrest, and enlargement of cells, suggesting it to be important in urothelial cancer cell line survival and proliferation. Affimer reagents were isolated to identify mechanisms of inhibition. The Affimer PAK5-Af17 recapitulated the phenotype seen with siRNA. Co-crystallization revealed that PAK5-Af17 bound in the P+1 pocket of PAK5, locking the kinase into a partial activation state. This mechanism of inhibition indicates that another class of kinase inhibitors is possible.
Collapse
Affiliation(s)
- Heather L Martin
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Amy L Turner
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Julie Higgins
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Anna A Tang
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Christian Tiede
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas Taylor
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sitthinon Siripanthong
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas L Adams
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Iain W Manfield
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sandra M Bell
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Ewan E Morrison
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Jacquelyn Bond
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Chi H Trinh
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Carolyn D Hurst
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Margaret A Knowles
- Division of Molecular Medicine, Leeds Institute of Medical Research at St James's University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Richard W Bayliss
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Darren C Tomlinson
- BioScreening Technology Group, Leeds Institutes of Molecular Medicine, University of Leeds, Leeds LS9 7TF, UK; School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
4
|
Normandin K, Coulombe-Huntington J, St-Denis C, Bernard A, Bourouh M, Bertomeu T, Tyers M, Archambault V. Genetic enhancers of partial PLK1 inhibition reveal hypersensitivity to kinetochore perturbations. PLoS Genet 2023; 19:e1010903. [PMID: 37639469 PMCID: PMC10491399 DOI: 10.1371/journal.pgen.1010903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/08/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023] Open
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase required for mitosis and cytokinesis. As cancer cells are often hypersensitive to partial PLK1 inactivation, chemical inhibitors of PLK1 have been developed and tested in clinical trials. However, these small molecule inhibitors alone are not completely effective. PLK1 promotes numerous molecular and cellular events in the cell division cycle and it is unclear which of these events most crucially depend on PLK1 activity. We used a CRISPR-based genome-wide screening strategy to identify genes whose inactivation enhances cell proliferation defects upon partial chemical inhibition of PLK1. Genes identified encode proteins that are functionally linked to PLK1 in multiple ways, most notably factors that promote centromere and kinetochore function. Loss of the kinesin KIF18A or the outer kinetochore protein SKA1 in PLK1-compromised cells resulted in mitotic defects, activation of the spindle assembly checkpoint and nuclear reassembly defects. We also show that PLK1-dependent CENP-A loading at centromeres is extremely sensitive to partial PLK1 inhibition. Our results suggest that partial inhibition of PLK1 compromises the integrity and function of the centromere/kinetochore complex, rendering cells hypersensitive to different kinetochore perturbations. We propose that KIF18A is a promising target for combinatorial therapies with PLK1 inhibitors.
Collapse
Affiliation(s)
- Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | | | - Corinne St-Denis
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Alexandre Bernard
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mohammed Bourouh
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Thierry Bertomeu
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de médecine, Université de Montréal, Montréal, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
5
|
Guerraoui A, Goudjil M, Direm A, Guerraoui A, Şengün İY, Parlak C, Djedouani A, Chelazzi L, Monti F, Lunedei E, Boumaza A. A rhodanine derivative as a potential antibacterial and anticancer agent: crystal structure, spectral characterization, DFT calculations, Hirshfeld surface analysis, in silico molecular docking and ADMET studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Barbosa J, Sunkel CE, Conde C. The Role of Mitotic Kinases and the RZZ Complex in Kinetochore-Microtubule Attachments: Doing the Right Link. Front Cell Dev Biol 2022; 10:787294. [PMID: 35155423 PMCID: PMC8832123 DOI: 10.3389/fcell.2022.787294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/13/2022] [Indexed: 12/31/2022] Open
Abstract
During mitosis, the interaction of kinetochores (KTs) with microtubules (MTs) drives chromosome congression to the spindle equator and supports the segregation of sister chromatids. Faithful genome partition critically relies on the ability of chromosomes to establish and maintain proper amphitelic end-on attachments, a configuration in which sister KTs are connected to robust MT fibers emanating from opposite spindle poles. Because the capture of spindle MTs by KTs is error prone, cells use mechanisms that sense and correct inaccurate KT-MT interactions before committing to segregate sister chromatids in anaphase. If left unresolved, these errors can result in the unequal distribution of chromosomes and lead to aneuploidy, a hallmark of cancer. In this review, we provide an overview of the molecular strategies that monitor the formation and fine-tuning of KT-MT attachments. We describe the complex network of proteins that operates at the KT-MT interface and discuss how AURORA B and PLK1 coordinate several concurrent events so that the stability of KT-MT attachments is precisely modulated throughout mitotic progression. We also outline updated knowledge on how the RZZ complex is regulated to ensure the formation of end-on attachments and the fidelity of mitosis.
Collapse
Affiliation(s)
- João Barbosa
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Claudio E. Sunkel
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Carlos Conde
- i3S, Instituto de Investigação e Inovação em Saúde da Universidade do Porto, Porto, Portugal
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
7
|
Ota M, Funakoshi T, Aki T, Unuma K, Uemura K. Oxcarbazepine induces mitotic catastrophe and apoptosis in NRK-52E proximal tubular cells. Toxicol Lett 2021; 350:240-248. [PMID: 34333065 DOI: 10.1016/j.toxlet.2021.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Certain medicines including anticancer drugs, NSAIDs and antiepileptic drugs are known to cause drug-induced nephropathy. For example, antiepileptic drugs such as carbamazepine (CBZ) and valproic acid have been reported to cause damage to the proximal tubular cells. Although there has been a great deal of research concerning the nephrotoxicity of CBZ, little is known about that of oxcarbazepine (OXC), a derivative of CBZ. To investigate the molecular mechanism underlying renal proximal tubular cell death caused by OXC, we examined alterations in the gene expression profile of NRK-52E proximal tubular cells during OXC exposure. DNA microarray analysis revealed that the levels of genes related to mitotic processes including chromosomal and cytoplasmic segregation, progression to G2/M phase, and formation of the mitotic spindle are increased after exposure to 50 μM OXC for 6 h. Cell cycle analysis by flow cytometry showed that OXC at concentrations between 25 and 100 μM induces G2/M arrest. We also found that OXC significantly increases histone H3 phosphorylation, indicative of mitotic cells. These results imply that OXC induces cell cycle arrest at the mitotic phase. Immunofluorescence analysis showed monopolar spindles, which are formed in response to centrosome separation defects, in OXC-treated cells. We also show that OXC suppresses the phosphorylation of PLK1, which is involved not only in the activation of the kinesin family of motor proteins for centrosome separation and bipolar spindle assembly, but also in the cleavage of centrosomal proteins. Thus, our results indicate that OXC inhibits centrosome separation by reducing the activation of PLK1, which leads to the formation of an abnormal spindle and induces mitotic catastrophe and apoptosis in NRK-52E cells.
Collapse
Affiliation(s)
- Momoka Ota
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takeshi Funakoshi
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Toshihiko Aki
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kana Unuma
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Koichi Uemura
- Department of Forensic Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
8
|
Nguyen AL, Fadel MD, Cheeseman IM. Differential requirements for the CENP-O complex reveal parallel PLK1 kinetochore recruitment pathways. Mol Biol Cell 2021; 32:712-721. [PMID: 33596090 PMCID: PMC8108507 DOI: 10.1091/mbc.e20-11-0751] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 01/09/2023] Open
Abstract
Similar to other core biological processes, the vast majority of cell division components are essential for viability across human cell lines. However, recent genome-wide screens have identified a number of proteins that exhibit cell line-specific essentiality. Defining the behaviors of these proteins is critical to our understanding of complex biological processes. Here, we harness differential essentiality to reveal the contributions of the four-subunit centromere-localized CENP-O complex, whose precise function has been difficult to define. Our results support a model in which the CENP-O complex and BUB1 act in parallel pathways to recruit a threshold level of PLK1 to mitotic kinetochores, ensuring accurate chromosome segregation. We demonstrate that targeted changes to either pathway sensitizes cells to the loss of the other component, resulting in cell-state dependent requirements. This approach also highlights the advantage of comparing phenotypes across diverse cell lines to define critical functional contributions and behaviors that could be exploited for the targeted treatment of disease.
Collapse
Affiliation(s)
| | - Marie Diane Fadel
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Iain M. Cheeseman
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
9
|
Mitra S, Srinivasan B, Jansen LE. Stable inheritance of CENP-A chromatin: Inner strength versus dynamic control. J Cell Biol 2020; 219:e202005099. [PMID: 32931551 PMCID: PMC7659725 DOI: 10.1083/jcb.202005099] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/08/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Chromosome segregation during cell division is driven by mitotic spindle attachment to the centromere region on each chromosome. Centromeres form a protein scaffold defined by chromatin featuring CENP-A, a conserved histone H3 variant, in a manner largely independent of local DNA cis elements. CENP-A nucleosomes fulfill two essential criteria to epigenetically identify the centromere. They undergo self-templated duplication to reestablish centromeric chromatin following DNA replication. More importantly, CENP-A incorporated into centromeric chromatin is stably transmitted through consecutive cell division cycles. CENP-A nucleosomes have unique structural properties and binding partners that potentially explain their long lifetime in vivo. However, rather than a static building block, centromeric chromatin is dynamically regulated throughout the cell cycle, indicating that CENP-A stability is also controlled by external factors. We discuss recent insights and identify the outstanding questions on how dynamic control of the long-term stability of CENP-A ensures epigenetic centromere inheritance.
Collapse
Affiliation(s)
- Sreyoshi Mitra
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Bharath Srinivasan
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | | |
Collapse
|
10
|
Castellano-Pozo M, Pacheco S, Sioutas G, Jaso-Tamame AL, Dore MH, Karimi MM, Martinez-Perez E. Surveillance of cohesin-supported chromosome structure controls meiotic progression. Nat Commun 2020; 11:4345. [PMID: 32859945 PMCID: PMC7455720 DOI: 10.1038/s41467-020-18219-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Chromosome movements and programmed DNA double-strand breaks (DSBs) promote homologue pairing and initiate recombination at meiosis onset. Meiotic progression involves checkpoint-controlled termination of these events when all homologue pairs achieve synapsis and form crossover precursors. Exploiting the temporo-spatial organisation of the C. elegans germline and time-resolved methods of protein removal, we show that surveillance of the synaptonemal complex (SC) controls meiotic progression. In nuclei with fully synapsed homologues and crossover precursors, removing different meiosis-specific cohesin complexes, which are individually required for SC stability, or a SC central region component causes functional redeployment of the chromosome movement and DSB machinery, triggering whole-nucleus reorganisation. This apparent reversal of the meiotic programme requires CHK-2 kinase reactivation via signalling from chromosome axes containing HORMA proteins, but occurs in the absence of transcriptional changes. Our results uncover an unexpected plasticity of the meiotic programme and show how chromosome signalling orchestrates nuclear organisation and meiotic progression.
Collapse
Affiliation(s)
| | - Sarai Pacheco
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | | | | | - Marian H Dore
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
| | | | - Enrique Martinez-Perez
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Imperial College Faculty of Medicine, London, W12 0NN, UK.
| |
Collapse
|
11
|
Movsisyan N, Pardo LA. Kv10.1 Regulates Microtubule Dynamics during Mitosis. Cancers (Basel) 2020; 12:cancers12092409. [PMID: 32854244 PMCID: PMC7564071 DOI: 10.3390/cancers12092409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
Kv10.1 (potassium voltage-gated channel subfamily H member 1, known as EAG1 or Ether-à-go-go 1), is a voltage-gated potassium channel, prevailingly expressed in the central nervous system. The aberrant expression of Kv10.1 is detected in over 70% of all human tumor tissues and correlates with poorer prognosis. In peripheral tissues, Kv10.1 is expressed almost exclusively during the G2/M phase of the cell cycle and regulates its progression-downregulation of Kv10.1 extends the duration of the G2/M phase both in cancer and healthy cells. Here, using biochemical and imaging techniques, such as live-cell measurements of microtubule growth and of cytosolic calcium, we elucidate the mechanisms of Kv10.1-mediated regulation at the G2/M phase. We show that Kv10.1 has a dual effect on mitotic microtubule dynamics. Through the functional interaction with ORAI1 (calcium release-activated calcium channel protein 1), it modulates cytosolic calcium oscillations, thereby changing microtubule behavior. The inhibition of either Kv10.1 or ORAI1 stabilizes the microtubules. In contrast, the knockdown of Kv10.1 increases the dynamicity of mitotic microtubules, resulting in a stronger spindle assembly checkpoint, greater mitotic spindle angle, and a decrease in lagging chromosomes. Understanding of Kv10.1-mediated modulation of the microtubule architecture will help to comprehend how cancer tissue benefits from the presence of Kv10.1, and thereby increase the efficacy and safety of Kv10.1-directed therapeutic strategies.
Collapse
|
12
|
Johnson JM, Hebert AS, Drane QH, Lera RF, Wan J, Weaver BA, Coon JJ, Burkard ME. A Genetic Toggle for Chemical Control of Individual Plk1 Substrates. Cell Chem Biol 2020; 27:350-362.e8. [PMID: 32017920 PMCID: PMC7239509 DOI: 10.1016/j.chembiol.2020.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 07/15/2019] [Accepted: 01/07/2020] [Indexed: 11/17/2022]
Abstract
Polo-like kinase 1 has hundreds of substrates and multiple functions that operate within the ∼60 min of mitosis. Herein, we describe a chemical-genetic system that allows particular substrates to be "toggled" into or out of chemical control using engineered phosphoacceptor selectivity. Biochemical assays and phosphoproteomic analysis of mitotic cell extracts showed that Plk1S (L197F) and Plk1T (L197S/L211A) selectively phosphorylate Ser and Thr, respectively. Plk1S but not Plk1T sustains mitotic progression to anaphase, affording the opportunity to toggle substrate residues between Ser and Thr to place them under chemical control. Using this system, we evaluated Kif2b, a known substrate of Plk1 that regulates chromosome alignment. Toggling Ser to Thr on Kif2b places these phosphorylation sites under reversible chemical control, as indicated by a sharp increase in the frequency of misaligned chromosomes and prometaphase arrest. Thus, we demonstrate the ability to chemically control a single substrate by a genetic Ser/Thr toggle.
Collapse
Affiliation(s)
- James M Johnson
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin, 1111 Highland Avenue, WIMR 6059, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Alexander S Hebert
- Genome Center, University of Wisconsin, Madison, WI 53705, USA; Morgridge Institute for Research, Madison, WI 53705, USA
| | - Quentin H Drane
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin, 1111 Highland Avenue, WIMR 6059, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Robert F Lera
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin, 1111 Highland Avenue, WIMR 6059, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Jun Wan
- Physiology Training Program, University of Wisconsin, Madison, WI 53705, USA
| | - Beth A Weaver
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, USA; Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53705, USA
| | - Joshua J Coon
- Genome Center, University of Wisconsin, Madison, WI 53705, USA; Department of Chemistry, University of Wisconsin, Madison, WI 53705, USA; Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53705, USA; Morgridge Institute for Research, Madison, WI 53705, USA
| | - Mark E Burkard
- Department of Medicine, Division of Hematology/Oncology, University of Wisconsin, 1111 Highland Avenue, WIMR 6059, Madison, WI 53705, USA; University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA; Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
13
|
Rashid A, Naaz A, Rai A, Chatterji BP, Panda D. Inhibition of polo-like kinase 1 suppresses microtubule dynamics in MCF-7 cells. Mol Cell Biochem 2020; 465:27-36. [PMID: 31782084 DOI: 10.1007/s11010-019-03664-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/22/2019] [Indexed: 10/25/2022]
Abstract
Polo-like kinase 1 (Plk1) is a mitotic serine/threonine kinase implicated in spindle formation and cytokinesis in mammalian cells. Here, purified Plk1 was found to bind to reconstituted microtubules in vitro. Further, Plk1 was found to co-localize with interphase microtubules in MCF-7 cells and to co-immunoprecipitate with polymerized tubulin. The binding of Plk1 to interphase microtubules appeared to increase with an increase in the level of tubulin acetylation in MCF-7 cells. Interestingly, Plk1 inhibitor III, an inhibitor of Plk1 kinase activity, treatment increased the association of Plk1 with the interphase microtubules in MCF-7 cells. Therefore, the effect of inhibition of Plk1 kinase activity on the dynamic instability of microtubules was determined by time-lapse imaging in MCF-7 cells. Plk1 inhibitor III dampened the dynamic instability of microtubules. For example, Plk1 inhibitor III (3 μM) reduced the rate and extent of the growing phase by 28 and 48%, respectively, and inhibited the dynamicity of microtubules by 53% as compared to the microtubules in control MCF-7 cells. Plk1 inhibitor III treatment also increased the level of acetylated microtubules, indicating that it stabilizes microtubules. The findings indicated that Plk1 interacts with microtubules and Plk1 may have a role in the regulation of microtubule dynamics.
Collapse
Affiliation(s)
- Aijaz Rashid
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Afsana Naaz
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Ankit Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Biswa Prasun Chatterji
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
14
|
Lera RF, Norman RX, Dumont M, Dennee A, Martin‐Koob J, Fachinetti D, Burkard ME. Plk1 protects kinetochore-centromere architecture against microtubule pulling forces. EMBO Rep 2019; 20:e48711. [PMID: 31468671 PMCID: PMC6776907 DOI: 10.15252/embr.201948711] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/03/2019] [Accepted: 08/09/2019] [Indexed: 12/26/2022] Open
Abstract
During mitosis, sister chromatids attach to microtubules which generate ~ 700 pN pulling force focused on the centromere. We report that chromatin-localized signals generated by Polo-like kinase 1 (Plk1) maintain the integrity of the kinetochore and centromere against this force. Without sufficient Plk1 activity, chromosomes become misaligned after normal condensation and congression. These chromosomes are silent to the mitotic checkpoint, and many lag and mis-segregate in anaphase. Their centromeres and kinetochores lack CENP-A, CENP-C, CENP-T, Hec1, Nuf2, and Knl1; however, CENP-B is retained. CENP-A loss occurs coincident with secondary misalignment and anaphase onset. This disruption occurs asymmetrically prior to anaphase and requires tension generated by microtubules. Mechanistically, centromeres highly recruit PICH DNA helicase and PICH depletion restores kinetochore disruption in pre-anaphase cells. Furthermore, anaphase defects are significantly reduced by tethering Plk1 to chromatin, including H2B, and INCENP, but not to CENP-A. Taken as a whole, this demonstrates that Plk1 signals are crucial for stabilizing centromeric architecture against tension.
Collapse
Affiliation(s)
- Robert F Lera
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| | - Roshan X Norman
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| | - Marie Dumont
- Institut CurieCNRS, UMR 144PSL Research UniversityParisFrance
| | - Alexandra Dennee
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| | - Joanne Martin‐Koob
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| | | | - Mark E Burkard
- Division of Hematology/OncologyDepartment of MedicineSchool of Medicine and Public HealthUniversity of WisconsinMadisonWIUSA
- UW Carbone Cancer CenterUniversity of WisconsinMadisonWIUSA
| |
Collapse
|
15
|
Denu RA, Sass MM, Johnson JM, Potts GK, Choudhary A, Coon JJ, Burkard ME. Polo-like kinase 4 maintains centriolar satellite integrity by phosphorylation of centrosomal protein 131 (CEP131). J Biol Chem 2019; 294:6531-6549. [PMID: 30804208 PMCID: PMC6484138 DOI: 10.1074/jbc.ra118.004867] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 02/07/2019] [Indexed: 11/06/2022] Open
Abstract
The centrosome, consisting of two centrioles surrounded by a dense network of proteins, is the microtubule-organizing center of animal cells. Polo-like kinase 4 (PLK4) is a Ser/Thr protein kinase and the master regulator of centriole duplication, but it may play additional roles in centrosome function. To identify additional proteins regulated by PLK4, we generated an RPE-1 human cell line with a genetically engineered "analog-sensitive" PLK4AS, which genetically encodes chemical sensitivity to competitive inhibition via a bulky ATP analog. We used this transgenic line in an unbiased multiplex phosphoproteomic screen. Several hits were identified and validated as direct PLK4 substrates by in vitro kinase assays. Among them, we confirmed Ser-78 in centrosomal protein 131 (CEP131, also known as AZI1) as a direct substrate of PLK4. Using immunofluorescence microscopy, we observed that although PLK4-mediated phosphorylation of Ser-78 is dispensable for CEP131 localization, ciliogenesis, and centriole duplication, it is essential for maintaining the integrity of centriolar satellites. We also found that PLK4 inhibition or use of a nonphosphorylatable CEP131 variant results in dispersed centriolar satellites. Moreover, replacement of endogenous WT CEP131 with an S78D phosphomimetic variant promoted aggregation of centriolar satellites. We conclude that PLK4 phosphorylates CEP131 at Ser-78 to maintain centriolar satellite integrity.
Collapse
Affiliation(s)
- Ryan A Denu
- From the Medical Scientist Training Program
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Madilyn M Sass
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - James M Johnson
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Gregory K Potts
- the Department of Chemistry
- the Department of Biomolecular Chemistry
- the Genome Center, and
| | - Alka Choudhary
- the Division of Hematology/Oncology, Department of Medicine
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| | - Joshua J Coon
- the Department of Chemistry
- the Department of Biomolecular Chemistry
- the Genome Center, and
| | - Mark E Burkard
- the Division of Hematology/Oncology, Department of Medicine,
- the University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin 53705
| |
Collapse
|
16
|
Cullati SN, Gould KL. Spatiotemporal regulation of the Dma1-mediated mitotic checkpoint coordinates mitosis with cytokinesis. Curr Genet 2019; 65:663-668. [PMID: 30600396 DOI: 10.1007/s00294-018-0921-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/14/2018] [Accepted: 12/15/2018] [Indexed: 11/26/2022]
Abstract
During cell division, the timing of mitosis and cytokinesis must be ordered to ensure that each daughter cell receives a complete, undamaged copy of the genome. In fission yeast, the septation initiation network (SIN) is responsible for this coordination, and a mitotic checkpoint dependent on the E3 ubiquitin ligase Dma1 and the protein kinase CK1 controls SIN signaling to delay cytokinesis when there are errors in mitosis. The participation of kinases and ubiquitin ligases in cell cycle checkpoints that maintain genome integrity is conserved from yeast to human, making fission yeast an excellent model system in which to study checkpoint mechanisms. In this review, we highlight recent advances and remaining questions related to checkpoint regulation, which requires the synchronized modulation of protein ubiquitination, phosphorylation, and subcellular localization.
Collapse
|
17
|
Colicino EG, Hehnly H. Regulating a key mitotic regulator, polo-like kinase 1 (PLK1). Cytoskeleton (Hoboken) 2018; 75:481-494. [PMID: 30414309 PMCID: PMC7113694 DOI: 10.1002/cm.21504] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/08/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022]
Abstract
During cell division, duplicated genetic material is separated into two distinct daughter cells. This process is essential for initial tissue formation during development and to maintain tissue integrity throughout an organism's lifetime. To ensure the efficacy and efficiency of this process, the cell employs a variety of regulatory and signaling proteins that function as mitotic regulators and checkpoint proteins. One vital mitotic regulator is polo-like kinase 1 (PLK1), a highly conserved member of the polo-like kinase family. Unique from its paralogues, it functions specifically during mitosis as a regulator of cell division. PLK1 is spatially and temporally enriched at three distinct subcellular locales; the mitotic centrosomes, kinetochores, and the cytokinetic midbody. These localization patterns allow PLK1 to phosphorylate specific downstream targets to regulate mitosis. In this review, we will explore how polo-like kinases were originally discovered and diverged into the five paralogues (PLK1-5) in mammals. We will then focus specifically on the most conserved, PLK1, where we will discuss what is known about how its activity is modulated, its role during the cell cycle, and new, innovative tools that have been developed to examine its function and interactions in cells.
Collapse
Affiliation(s)
- Erica G. Colicino
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
| | - Heidi Hehnly
- Department of Cell and Developmental BiologyUpstate Medical UniversitySyracuseNew York
- Department of BiologySyracuse UniversitySyracuseNew York
| |
Collapse
|
18
|
Pintard L, Archambault V. A unified view of spatio-temporal control of mitotic entry: Polo kinase as the key. Open Biol 2018; 8:180114. [PMID: 30135239 PMCID: PMC6119860 DOI: 10.1098/rsob.180114] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022] Open
Abstract
The Polo kinase is an essential regulator of cell division. Its ability to regulate multiple events at distinct subcellular locations and times during mitosis is remarkable. In the last few years, a much clearer mechanistic understanding of the functions and regulation of Polo in cell division has emerged. In this regard, the importance of coupling changes in activity with changes in localization is striking, both for Polo itself and for its upstream regulators. This review brings together several new pieces of the puzzle that are gradually revealing how Polo is regulated, in space and time, to enable its functions in the early stages of mitosis in animal cells. As a result, a unified view of how mitotic entry is spatio-temporally regulated is emerging.
Collapse
Affiliation(s)
- Lionel Pintard
- Cell Cycle and Development Team, Institut Jacques Monod, UMR7592 CNRS-Université Paris Diderot, Sorbonne Paris Cité, Ligue contre le Cancer, Paris, France
- Equipe labellisée, Ligue contre le Cancer, Paris, France
| | - Vincent Archambault
- Institut de recherche en immunologie et en cancérologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
19
|
Colicino EG, Garrastegui AM, Freshour J, Santra P, Post DE, Kotula L, Hehnly H. Gravin regulates centrosome function through PLK1. Mol Biol Cell 2018; 29:532-541. [PMID: 29282278 PMCID: PMC6004580 DOI: 10.1091/mbc.e17-08-0524] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/19/2017] [Accepted: 12/23/2017] [Indexed: 11/11/2022] Open
Abstract
We propose to understand how the mitotic kinase PLK1 drives chromosome segregation errors, with a specific focus on Gravin, a PLK1 scaffold. In both three-dimensional primary prostate cancer cell cultures that are prone to Gravin depletion and Gravin short hairpin RNA (shRNA)-treated cells, an increase in cells containing micronuclei was noted in comparison with controls. To examine whether the loss of Gravin affected PLK1 distribution and activity, we utilized photokinetics and a PLK1 activity biosensor. Gravin depletion resulted in an increased PLK1 mobile fraction, causing the redistribution of active PLK1, which leads to increased defocusing and phosphorylation of the mitotic centrosome protein CEP215 at serine-613. Gravin depletion further led to defects in microtubule renucleation from mitotic centrosomes, decreased kinetochore-fiber integrity, increased incidence of chromosome misalignment, and subsequent formation of micronuclei following mitosis completion. Murine Gravin rescued chromosome misalignment and micronuclei formation, but a mutant Gravin that cannot bind PLK1 did not. These findings suggest that disruption of a Gravin-PLK1 interface leads to inappropriate PLK1 activity contributing to chromosome segregation errors, formation of micronuclei, and subsequent DNA damage.
Collapse
Affiliation(s)
- Erica G Colicino
- Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13202
| | - Alice M Garrastegui
- Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13202
- Department of Biology, Syracuse University, Syracuse, NY 13244
| | - Judy Freshour
- Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13202
| | - Peu Santra
- Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13202
| | - Dawn E Post
- Department of Urology, Upstate Medical University, Syracuse, NY 13202
| | - Leszek Kotula
- Department of Biochemistry, Upstate Medical University, Syracuse, NY 13202
- Department of Urology, Upstate Medical University, Syracuse, NY 13202
| | - Heidi Hehnly
- Department of Cell and Developmental Biology, Upstate Medical University, Syracuse, NY 13202
- Department of Urology, Upstate Medical University, Syracuse, NY 13202
| |
Collapse
|
20
|
Denu RA, Shabbir M, Nihal M, Singh CK, Longley BJ, Burkard ME, Ahmad N. Centriole Overduplication is the Predominant Mechanism Leading to Centrosome Amplification in Melanoma. Mol Cancer Res 2018; 16:517-527. [PMID: 29330283 DOI: 10.1158/1541-7786.mcr-17-0197] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 10/04/2017] [Accepted: 11/29/2017] [Indexed: 11/16/2022]
Abstract
Centrosome amplification (CA) is common in cancer and can arise by centriole overduplication or by cell doubling events, including the failure of cell division and cell-cell fusion. To assess the relative contributions of these two mechanisms, the number of centrosomes with mature/mother centrioles was examined by immunofluorescence in a tissue microarray of human melanomas and benign nevi (n = 79 and 17, respectively). The centrosomal protein 170 (CEP170) was used to identify centrosomes with mature centrioles; this is expected to be present in most centrosomes with cell doubling, but on fewer centrosomes with overduplication. Using this method, it was determined that the majority of CA in melanoma can be attributed to centriole overduplication rather than cell doubling events. As Polo-like kinase 4 (PLK4) is the master regulator of centriole duplication, the hypothesis that PLK4 overexpression contributes to centriole overduplication was evaluated. PLK4 is significantly overexpressed in melanoma compared with benign nevi and in a panel of human melanoma cell lines (A375, Hs294T, G361, WM35, WM115, 451Lu, and SK-MEL-28) compared with normal human melanocytes. Interestingly, although PLK4 expression did not correlate with CA in most cases, treatment of melanoma cells with a selective small-molecule PLK4 inhibitor (centrinone B) significantly decreased cell proliferation. The antiproliferative effects of centrinone B were also accompanied by induction of apoptosis.Implications: This study demonstrates that centriole overduplication is the predominant mechanism leading to centrosome amplification in melanoma and that PLK4 should be further evaluated as a potential therapeutic target for melanoma treatment. Mol Cancer Res; 16(3); 517-27. ©2018 AACR.
Collapse
Affiliation(s)
- Ryan A Denu
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.,Department of Medicine, Division of Hematology/Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Maria Shabbir
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Minakshi Nihal
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Chandra K Singh
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - B Jack Longley
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin.,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.,William S. Middleton VA Medical Center, Madison, Wisconsin
| | - Mark E Burkard
- Department of Medicine, Division of Hematology/Oncology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin
| | - Nihal Ahmad
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin. .,Carbone Cancer Center, University of Wisconsin, Madison, Wisconsin.,William S. Middleton VA Medical Center, Madison, Wisconsin
| |
Collapse
|
21
|
Guo X, Ni J, Dai X, Zhou T, Yang G, Xue J, Wang X. Biphasic regulation of spindle assembly checkpoint by low and high concentrations of resveratrol leads to the opposite effect on chromosomal instability. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 825:19-30. [PMID: 29307372 DOI: 10.1016/j.mrgentox.2017.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/02/2017] [Accepted: 11/07/2017] [Indexed: 01/14/2023]
Abstract
Resveratrol (RSV) is a naturally occurring polyphenolic phytoalexin possessing numerous health-promoting effects. Chromosomal instability (CIN), usually results from defective spindle assembly checkpoint (SAC), is a major contributor to many diseases. While it's recently recognized that RSV exhibits a nonlinear dose response for disease prevention, whether it's the case for its role in CIN remains unknown. Here, we investigated the potential of a broad range of RSV concentrations (0.01-100μM) on CIN and the underlying mechanisms in human normal colon epithelial NCM460 cells. CIN was measured by cytokinesis-block micronucleus assay; mitotic fidelity was determined by aberrant mitosis analysis; SAC activity was assessed by nocodazole-challenge assay, and the expression of SAC genes was examined by RT-qPCR. We found that 0.1μM RSV significantly reduced CIN (P<0.01), while 100μM RSV significantly induced it (P<0.05). Mitotic infidelity was significantly prevented by 0.1μM RSV but promoted by 100μM RSV (P<0.05 for both). Moreover, the function of SAC was sustained and impaired by 0.1μM and 100μM RSV, respectively. Several SAC genes, including Aurora-B, Aurora-C, Plk-1 and CENP-E, were significantly up-regulated and down-regulated by 0.1μM and 100μM RSV, respectively (P<0.05). In conclusion, RSV exhibited a biphasic dose-dependent effect on CIN that was exerted via the regulation of mitotic fidelity through the SAC network. The health implications of these findings were summarized.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China; School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Xueqin Dai
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Tao Zhou
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Guofang Yang
- China Gene Health Management Group, Ltd., Shanghai, 200433, China
| | - Jinglun Xue
- China Gene Health Management Group, Ltd., Shanghai, 200433, China
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China; School of Life Sciences, Yunnan University, Kunming, Yunnan, 650091, China.
| |
Collapse
|
22
|
CDK1 and PLK1 coordinate the disassembly and reassembly of the nuclear envelope in vertebrate mitosis. Oncotarget 2017; 9:7763-7773. [PMID: 29487689 PMCID: PMC5814256 DOI: 10.18632/oncotarget.23666] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
Micronuclei (MN) arise from chromosomes or fragments that fail to be incorporated into the primary nucleus after cell division. These structures are a major source of genetic instability caused by DNA repair and replication defects coupled to aberrant Nuclear Envelope (NE). These problems ultimately lead to a spectrum of chromosome rearrangements called chromothripsis, a phenomenon that is a hallmark of several cancers. Despite its importance, the molecular mechanism at the origin of this instability is still not understood. Here we show that lagging chromatin, although it can efficiently assemble Lamin A/C, always fails to recruit Nuclear Pore Complexes (NPCs) proteins and that Polo-Like Kinase (PLK1) negatively regulates NPC assembly. We also provide evidence for the requirement of PLK1 activity for the disassembly of NPCs, but not Lamina A/C, at mitotic entry. Altogether this study reveals the existence of independent regulatory pathways for Lamin A/C and NPC reorganization during mitosis where Lamin A/C targeting to the chromatin is controlled by CDK1 activity (a clock-based model) while the NPC loading is also spatially monitored by PLK1.
Collapse
|
23
|
Delacour Q, Gavet O. Re-investigating PLK1 inhibitors as antimitotic agents. Mol Cell Oncol 2017; 4:e1356430. [PMID: 29209646 PMCID: PMC5706940 DOI: 10.1080/23723556.2017.1356430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/11/2017] [Accepted: 07/11/2017] [Indexed: 11/06/2022]
Abstract
Polo-like kinase 1 (PLK1) plays key roles during mitosis, prompting the development of PLK1 inhibitors for anticancer therapy. We recently determined that PLK1 is crucially required for entry into mitosis. Hence, we discuss the potential and limitations of PLK1 inhibition strategies to promote mitotic arrest and death of cancer cells.
Collapse
Affiliation(s)
- Quentin Delacour
- Centre National de la Recherche Scientifique, UMR8200, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| | - Olivier Gavet
- Sorbonne Universités, UPMC University Paris 06, UFR927, Paris, France.,Centre National de la Recherche Scientifique, UMR8200, Villejuif, France.,Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
24
|
Archambault V, Normandin K. Several inhibitors of the Plk1 Polo-Box Domain turn out to be non-specific protein alkylators. Cell Cycle 2017; 16:1220-1224. [PMID: 28521657 PMCID: PMC5499904 DOI: 10.1080/15384101.2017.1325043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 12/16/2022] Open
Abstract
For almost a decade, there has been much interest in the development of chemical inhibitors of Polo-like kinase 1 (Plk1) protein interactions. Plk1 is a master regulator of the cell division cycle that controls numerous substrates. It is a promising target for cancer drug development. Inhibitors of the kinase domain of Plk1 had some success in clinical trials. However, they are not perfectly selective. In principle, Plk1 can also be inhibited by interfering with its protein interaction domain, the Polo-Box Domain (PBD). Selective chemical inhibitors of the PBD would constitute tools to probe for PBD-dependent functions of Plk1 and could be advantageous in cancer therapy. The discovery of Poloxin and thymoquinone as PBD inhibitors indicated that small, cell-permeable chemical inhibitors could be identified. Other efforts followed, including ours, reporting additional molecules capable of blocking the PBD. It is now clear that, unfortunately, most of these compounds are non-specific protein alkylators (defined here as groups covalently added via a carbon) that have little or no potential for the development of real Plk1 PBD-specific drugs. This situation should be minded by biologists potentially interested in using these compounds to study Plk1. Further efforts are needed to develop selective, cell-permeable PBD inhibitors.
Collapse
Affiliation(s)
- Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, Canada
| | - Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montreal, Canada
| |
Collapse
|
25
|
Theoretical studies on benzimidazole and imidazo[1,2-a]pyridine derivatives as Polo-like kinase 1 (Plk1) inhibitors: Pharmacophore modeling, atom-based 3D-QSAR and molecular docking approach. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2014.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Ritter A, Friemel A, Kreis NN, Louwen F, Yuan J. Impact of Polo-like kinase 1 inhibitors on human adipose tissue-derived mesenchymal stem cells. Oncotarget 2016; 7:84271-84285. [PMID: 27713178 PMCID: PMC5356661 DOI: 10.18632/oncotarget.12482] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
Polo-like kinase 1 (Plk1) has been established as one of the most promising targets for molecular anticancer intervention. In fact, various Plk1 inhibitors have been identified and characterized. While the data derived from the bench are prospective, the clinical outcomes are less encouraging by showing modest efficacy. One of the explanations for this discrepancy could be unintendedly targeting of non-malignant cells by Plk1 inhibitors. In this work, we have addressed the effect of Plk1 inhibition in adipose tissue-derived mesenchymal stem cells (ASCs). We show that both visceral and subcutaneous ASCs display monopolar spindles, reduced viability and strong apoptosis induction upon treatment with BI 2536 and BI 6727, the Plk1 kinase domain inhibitors, and with Poloxin, the regulatory Polo-box domain inhibitor. While Poloxin triggers quickly apoptosis, BI 2536 and BI 6727 result in mitotic arrest in ASCs. Importantly, survived ASCs exhibit DNA damage and a pronounced senescent phenotype. In addition, Plk1 inhibition impairs ASCs' motility and homing ability. These results show that Plk1 inhibitors target slowly proliferating ASCs, an important population of anti-inflammation and immune modulation. The toxic effects on primary cells like ASCs could be partially responsible for the reported moderate antitumor activity in patients treated with Plk1 inhibitors.
Collapse
Affiliation(s)
- Andreas Ritter
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Alexandra Friemel
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt, Germany
| |
Collapse
|
27
|
Caron D, Byrne DP, Thebault P, Soulet D, Landry CR, Eyers PA, Elowe S. Mitotic phosphotyrosine network analysis reveals that tyrosine phosphorylation regulates Polo-like kinase 1 (PLK1). Sci Signal 2016; 9:rs14. [PMID: 27965426 DOI: 10.1126/scisignal.aah3525] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tyrosine phosphorylation is closely associated with cell proliferation. During the cell cycle, serine and threonine phosphorylation plays the leading role, and such phosphorylation events are most dynamic during the mitotic phase of the cell cycle. However, mitotic phosphotyrosine is not well characterized. Although a few functionally-relevant mitotic phosphotyrosine sites have been characterized, evidence suggests that this modification may be more prevalent than previously appreciated. Here, we examined tyrosine phosphorylation in mitotic human cells including those on spindle-associated proteins.? Database mining confirmed ~2000 mitotic phosphotyrosine sites, and network analysis revealed a number of subnetworks that were enriched in tyrosine-phosphorylated proteins, including components of the kinetochore or spindle and SRC family kinases. We identified Polo-like kinase 1 (PLK1), a major signaling hub in the spindle subnetwork, as phosphorylated at the conserved Tyr217 in the kinase domain. Substitution of Tyr217 with a phosphomimetic residue eliminated PLK1 activity in vitro and in cells. Further analysis showed that Tyr217 phosphorylation reduced the phosphorylation of Thr210 in the activation loop, a phosphorylation event necessary for PLK1 activity. Our data indicate that mitotic tyrosine phosphorylation regulated a key serine/threonine kinase hub in mitotic cells and suggested that spatially separating tyrosine phosphorylation events can reveal previously unrecognized regulatory events and complexes associated with specific structures of the cell cycle.
Collapse
Affiliation(s)
- Danielle Caron
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Dominic P Byrne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Philippe Thebault
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Denis Soulet
- Department of Psychiatry et Neurosciences, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada
| | - Christian R Landry
- Institut de Biologie Intégrative et des Systèmes, Department of Biology, PROTEO, Université Laval, Pavillon Charles-Eugène-Marchand, 1030 Avenue de la Médecine, Quebec City, Quebec G1V 0A6, Canada
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K
| | - Sabine Elowe
- Department of Pediatrics, Faculty of Medicine, Université Laval, Centre Hospitalier Universitaire de Québec Research Center, Quebec City, Quebec G1V 4G2, Canada.
| |
Collapse
|
28
|
Normandin K, Lavallée JF, Futter M, Beautrait A, Duchaine J, Guiral S, Marinier A, Archambault V. Identification of Polo-like kinase 1 interaction inhibitors using a novel cell-based assay. Sci Rep 2016; 5:37581. [PMID: 27874094 PMCID: PMC5118709 DOI: 10.1038/srep37581] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 10/31/2016] [Indexed: 02/08/2023] Open
Abstract
Polo-like kinase 1 (Plk1) plays several roles in cell division and it is a recognized cancer drug target. Plk1 levels are elevated in cancer and several types of cancer cells are hypersensitive to Plk1 inhibition. Small molecule inhibitors of the kinase domain (KD) of Plk1 have been developed. Their selectivity is limited, which likely contributes to their toxicity. Polo-like kinases are characterized by a Polo-Box Domain (PBD), which mediates interactions with phosphorylation substrates or regulators. Inhibition of the PBD could allow better selectivity or result in different effects than inhibition of the KD. In vitro screens have been used to identify PBD inhibitors with mixed results. We developed the first cell-based assay to screen for PBD inhibitors, using Bioluminescence Resonance Energy Transfer (BRET). We screened through 112 983 compounds and characterized hits in secondary biochemical and biological assays. Subsequent Structure-Activity Relationship (SAR) analysis on our most promising hit revealed that it requires an alkylating function for its activity. In addition, we show that the previously reported PBD inhibitors thymoquinone and Poloxin are also alkylating agents. Our cell-based assay is a promising tool for the identification of new PBD inhibitors with more drug-like profiles using larger and more diverse chemical libraries.
Collapse
Affiliation(s)
- Karine Normandin
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Jean-François Lavallée
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Marie Futter
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Alexandre Beautrait
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Jean Duchaine
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Sébastien Guiral
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Anne Marinier
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de chimie, Université de Montréal, Montréal, Canada
| | - Vincent Archambault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Canada
| |
Collapse
|
29
|
Wachowicz P, Fernández-Miranda G, Marugán C, Escobar B, de Cárcer G. Genetic depletion of Polo-like kinase 1 leads to embryonic lethality due to mitotic aberrancies. Bioessays 2016; 38 Suppl 1:S96-S106. [PMID: 27417127 DOI: 10.1002/bies.201670908] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 07/17/2015] [Accepted: 07/21/2015] [Indexed: 12/18/2022]
Abstract
Polo-like kinase 1 (PLK1) is a serine/threonine kinase that plays multiple and essential roles during the cell division cycle. Its inhibition in cultured cells leads to severe mitotic aberrancies and cell death. Whereas previous reports suggested that Plk1 depletion in mice leads to a non-mitotic arrest in early embryos, we show here that the bi-allelic Plk1 depletion in mice certainly results in embryonic lethality due to extensive mitotic aberrations at the morula stage, including multi- and mono-polar spindles, impaired chromosome segregation and cytokinesis failure. In addition, the conditional depletion of Plk1 during mid-gestation leads also to severe mitotic aberrancies. Our data also confirms that Plk1 is completely dispensable for mitotic entry in vivo. On the other hand, Plk1 haploinsufficient mice are viable, and Plk1-heterozygous fibroblasts do not harbor any cell cycle alterations. Plk1 is overexpressed in many human tumors, suggesting a therapeutic benefit of inhibiting Plk1, and specific small-molecule inhibitors for this kinase are now being evaluated in clinical trials. Therefore, the different Plk1 mouse models here presented are a valuable tool to reexamine the relevance of the mitotic kinase Plk1 during mammalian development and animal physiology.
Collapse
Affiliation(s)
- Paulina Wachowicz
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Ecole polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Gonzalo Fernández-Miranda
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Carlos Marugán
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Beatriz Escobar
- Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Spanish National Cardiovascular Research Centre (CNIC), Madrid, Spain
| | | |
Collapse
|
30
|
Lera RF, Potts GK, Suzuki A, Johnson JM, Salmon ED, Coon JJ, Burkard ME. Decoding Polo-like kinase 1 signaling along the kinetochore-centromere axis. Nat Chem Biol 2016; 12:411-8. [PMID: 27043190 PMCID: PMC4871769 DOI: 10.1038/nchembio.2060] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 02/29/2016] [Indexed: 12/14/2022]
Abstract
Protein kinase signaling along the kinetochore-centromere axis is crucial to assure mitotic fidelity, yet the details of its spatial coordination are obscure. Here, we examined how pools of human Polo-like kinase 1 (Plk1) within this axis control signaling events to elicit mitotic functions. To do this, we restricted active Plk1 to discrete subcompartments within the kinetochore-centromere axis using chemical genetics and decoded functional and phosphoproteomic signatures of each. We observe distinct phosphoproteomic and functional roles, suggesting that Plk1 exists and functions in discrete pools along this axis. Deep within the centromere, Plk1 operates to assure proper chromosome alignment and segregation. Thus, Plk1 at the kinetochore is a conglomerate of an observable bulk pool coupled with additional functional pools below the threshold of microscopic detection or resolution. Although complex, this multiplicity of locales provides an opportunity to decouple functional and phosphoproteomic signatures for a comprehensive understanding of Plk1's kinetochore functions.
Collapse
Affiliation(s)
- Robert F. Lera
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- University of Wisconsin Carbone Cancer Center
| | - Gregory K. Potts
- Department of Chemistry, University of Wisconsin, Madison WI 53706
- Department of Biomolecular Chemistry, University of Wisconsin, Madison WI 53706
| | - Aussie Suzuki
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - James M. Johnson
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- University of Wisconsin Carbone Cancer Center
| | - Edward D. Salmon
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Joshua J. Coon
- Department of Chemistry, University of Wisconsin, Madison WI 53706
- Genome Center, University of Wisconsin, Madison WI 53706
| | - Mark E. Burkard
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
- University of Wisconsin Carbone Cancer Center
| |
Collapse
|
31
|
Lasek AL, McPherson BM, Trueman NG, Burkard ME. The Functional Significance of Posttranslational Modifications on Polo-Like Kinase 1 Revealed by Chemical Genetic Complementation. PLoS One 2016; 11:e0150225. [PMID: 26919439 PMCID: PMC4769148 DOI: 10.1371/journal.pone.0150225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 02/10/2016] [Indexed: 01/19/2023] Open
Abstract
Mitosis is coordinated by carefully controlled phosphorylation and ubiquitin-mediated proteolysis. Polo-like kinase 1 (Plk1) plays a central role in regulating mitosis and cytokinesis by phosphorylating target proteins. Yet, Plk1 is itself a target for posttranslational modification by phosphorylation and ubiquitination. We developed a chemical-genetic complementation assay to evaluate the functional significance of 34 posttranslational modifications (PTMs) on human Plk1. To do this, we used human cells that solely express a modified analog-sensitive Plk1 (Plk1AS) and complemented with wildtype Plk1. The wildtype Plk1 provides cells with a functional Plk1 allele in the presence of 3-MB-PP1, a bulky ATP-analog inhibitor that specifically inhibits Plk1AS. Using this approach, we evaluated the ability of 34 singly non-modifiable Plk1 mutants to complement Plk1AS in the presence of 3-MB-PP1. Mutation of the T-loop activating residue T210 and adjacent T214 are lethal, but surprisingly individual mutation of the remaining 32 posttranslational modification sites did not disrupt the essential functions of Plk1. To evaluate redundancy, we simultaneously mutated all phosphorylation sites in the kinase domain except for T210 and T214 or all sites in the C-terminal polo-box domain (PBD). We discovered that redundant phosphorylation events within the kinase domain are required for accurate chromosome segregation in anaphase but those in the PBD are dispensable. We conclude that PTMs within the T-loop of Plk1 are essential and nonredundant, additional modifications in the kinase domain provide redundant control of Plk1 function, and those in the PBD are dispensable for essential mitotic functions of Plk1. This comprehensive evaluation of Plk1 modifications demonstrates that although phosphorylation and ubiquitination are important for mitotic progression, many individual PTMs detected in human tissue may have redundant, subtle, or dispensable roles in gene function.
Collapse
Affiliation(s)
- Amber L. Lasek
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
| | - Brittany M. McPherson
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
| | - Natalie G. Trueman
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
| | - Mark E. Burkard
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
- Department of Medicine, Hematology/Oncology Division, University of Wisconsin-Madison, Madison, Wisconsin, 53705, United States of America
| |
Collapse
|
32
|
Archambault V, Lépine G, Kachaner D. Understanding the Polo Kinase machine. Oncogene 2015; 34:4799-807. [PMID: 25619835 DOI: 10.1038/onc.2014.451] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/27/2014] [Accepted: 11/28/2014] [Indexed: 12/26/2022]
Abstract
The Polo Kinase is a central regulator of cell division required for several events of mitosis and cytokinesis. In addition to a kinase domain (KD), Polo-like kinases (Plks) comprise a Polo-Box domain (PBD), which mediates protein interactions with targets and regulators of Plks. In all organisms that contain Plks, one Plk family member fulfills several essential functions in the regulation of cell division, and here we refer to this conserved protein as Polo Kinase (Plk1 in humans). The PBD and the KD are capable of both cooperation and mutual inhibition in their functions. Crystal structures of the PBD, the KD and, recently, a PBD-KD complex have helped understanding the inner workings of the Polo Kinase. In parallel, an impressive array of molecular mechanisms has been found to mediate the regulation of the protein. Moreover, the targeting of Polo Kinase in the development of anti-cancer drugs has yielded several molecules with which to chemically modulate Polo Kinase to study its biological functions. Here we review our current understanding of the protein function and regulation of Polo Kinase as a fascinating molecular device in control of cell division.
Collapse
Affiliation(s)
- V Archambault
- Institut de recherche en immunologie et en cancérologie, Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - G Lépine
- Institut de recherche en immunologie et en cancérologie, Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| | - D Kachaner
- Institut de recherche en immunologie et en cancérologie, Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
33
|
Sumitha KV, Thoppil JE. Genotoxicity assessment of two common curing weeds: Hyptis suaveolens (L.) Poir. and Leucas indica (L.) R. Br. Cytotechnology 2015; 68:1513-27. [PMID: 26286182 DOI: 10.1007/s10616-015-9911-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 08/10/2015] [Indexed: 11/24/2022] Open
Abstract
Hyptis suaveolens and Leucas indica, two common weeds were selected for the present study, to reveal their probable cytotoxic potential. The meristematic root tips of Allium cepa were used for testing the cytotoxic property of the aqueous leaf extracts containing both polar and non-polar compounds, and that containing polar compounds alone, at different concentrations (0.125, 0.25, 0.5, 1 and 2 %) and at different time durations, using distilled water as negative control. Mitotic squash preparations were made using a standard protocol. The mitotic index of the treated root tip cells was found to be decreasing and the abnormality percentage was found to be increasing with increase in extract concentration when compared with the control. Maximum cytotoxicity was observed in the extract containing both polar and non-polar compounds. Both the tested plants were found to be cytotoxic. The abnormalities noticed were of both clastogenic (nuclear lesions, nuclear fragmentation, etc.) and non-clastogenic (aberrant cell wall formation at cytokinesis, ball metaphase, etc.) types. Both plant extracts were found to significantly (P < 0.05) inhibit root growth of Allium cepa with an EC50 value of 1.92 % (R(2) = 0.594) for Hyptis and 1.58 % (R(2) = 0.757) for Leucas. The results were also analysed statistically by using analysis of variance followed by appropriate post hoc tests. These two weeds are aromatic plants comprising of essential oils that are volatile, natural complex compounds characterized by a strong odour and formed as secondary metabolites. In nature, essential oils play an important role in the protection of the plants as insecticides by reducing their appetite for such plants. When specifically targeted the concept of effectively exploiting these weeds for the formulation of herbal insecticides/pesticides may be possible in the near future.
Collapse
Affiliation(s)
- K V Sumitha
- Cell and Molecular Biology Division, Department of Botany, University of Calicut, Malappuram, Kerala, 673635, India.
| | - J E Thoppil
- Cell and Molecular Biology Division, Department of Botany, University of Calicut, Malappuram, Kerala, 673635, India
| |
Collapse
|
34
|
Kreis NN, Louwen F, Zimmer B, Yuan J. Loss of p21Cip1/CDKN1A renders cancer cells susceptible to Polo-like kinase 1 inhibition. Oncotarget 2015; 6:6611-26. [PMID: 25483104 PMCID: PMC4466638 DOI: 10.18632/oncotarget.2844] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/01/2014] [Indexed: 12/11/2022] Open
Abstract
The deregulation of Polo-like kinase 1 is inversely linked to the prognosis of patients with diverse human tumors. Targeting Polo-like kinase 1 has been widely considered as one of the most promising strategies for molecular anticancer therapy. While the preclinical results are encouraging, the clinical outcomes are rather less inspiring by showing limited anticancer activity. It is thus of importance to identify molecules and mechanisms responsible for the sensitivity of Polo-like kinase 1 inhibition. We have recently shown that p21Cip1/CDKN1A is involved in the regulation of mitosis and its loss prolongs the mitotic duration accompanied by defects in chromosome segregation and cytokinesis in various tumor cells. In the present study, we demonstrate that p21 affects the efficacy of Polo-like kinase 1 inhibitors, especially Poloxin, a specific inhibitor of the unique Polo-box domain. Intriguingly, upon treatment with Polo-like kinase 1 inhibitors, p21 is increased in the cytoplasm, associated with anti-apoptosis, DNA repair and cell survival. By contrast, deficiency of p21 renders tumor cells more susceptible to Polo-like kinase 1 inhibition by showing a pronounced mitotic arrest, DNA damage and apoptosis. Furthermore, long-term treatment with Plk1 inhibitors induced fiercely the senescent state of tumor cells with functional p21. We suggest that the p21 status may be a useful biomarker for predicting the efficacy of Plk1 inhibition.
Collapse
Affiliation(s)
- Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - Frank Louwen
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - Brigitte Zimmer
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, J. W. Goethe-University, Frankfurt, Germany
| |
Collapse
|
35
|
Walters AD, May CK, Dauster ES, Cinquin BP, Smith EA, Robellet X, D'Amours D, Larabell CA, Cohen-Fix O. The yeast polo kinase Cdc5 regulates the shape of the mitotic nucleus. Curr Biol 2014; 24:2861-7. [PMID: 25454593 PMCID: PMC4255140 DOI: 10.1016/j.cub.2014.10.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 09/23/2014] [Accepted: 10/09/2014] [Indexed: 12/11/2022]
Abstract
Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompasses the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.
Collapse
Affiliation(s)
- Alison D Walters
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Christopher K May
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Emma S Dauster
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Bertrand P Cinquin
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Elizabeth A Smith
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xavier Robellet
- Institute for Research in Immunology and Cancer and Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Damien D'Amours
- Institute for Research in Immunology and Cancer and Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Carolyn A Larabell
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94158, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Orna Cohen-Fix
- Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
36
|
Zasadil LM, Andersen KA, Yeum D, Rocque GB, Wilke LG, Tevaarwerk AJ, Raines RT, Burkard ME, Weaver BA. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci Transl Med 2014; 6:229ra43. [PMID: 24670687 DOI: 10.1126/scitranslmed.3007965] [Citation(s) in RCA: 280] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The blockbuster chemotherapy drug paclitaxel is widely presumed to cause cell death in tumors as a consequence of mitotic arrest, as it does at concentrations routinely used in cell culture. However, we determine here that paclitaxel levels in primary breast tumors are well below those required to elicit sustained mitotic arrest. Instead, cells in these lower concentrations of drug proceed through mitosis without substantial delay and divide their chromosomes on multipolar spindles, resulting in chromosome missegregation and cell death. Consistent with these cell culture data, most mitotic cells in primary human breast cancers contain multipolar spindles after paclitaxel treatment. Contrary to the previous hypothesis, we find that mitotic arrest is dispensable for tumor regression in patients. These results demonstrate that mitotic arrest is not responsible for the efficacy of paclitaxel, which occurs because of chromosome missegregation on highly abnormal, multipolar spindles. This mechanistic insight may be used to improve selection of future antimitotic drugs and to identify a biomarker with which to select patients likely to benefit from paclitaxel.
Collapse
Affiliation(s)
- Lauren M Zasadil
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Zitouni S, Nabais C, Jana SC, Guerrero A, Bettencourt-Dias M. Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 2014; 15:433-52. [PMID: 24954208 DOI: 10.1038/nrm3819] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Members of the polo-like kinase (PLK) family are crucial regulators of cell cycle progression, centriole duplication, mitosis, cytokinesis and the DNA damage response. PLKs undergo major changes in abundance, activity, localization and structure at different stages of the cell cycle. They interact with other proteins in a tightly controlled spatiotemporal manner as part of a network that coordinates key cell cycle events. Their essential roles are highlighted by the fact that alterations in PLK function are associated with cancers and other diseases. Recent knowledge gained from PLK crystal structures, evolution and interacting molecules offers important insights into the mechanisms that underlie their regulation and activity, and suggests novel functions unrelated to cell cycle control for this family of kinases.
Collapse
Affiliation(s)
- Sihem Zitouni
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Catarina Nabais
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Adán Guerrero
- 1] Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal. [2] Laboratorio Nacional de Microscopía Avanzada, Instituto de Biotecnología, Universidad Nacional Autónoma de Mexico (UNAM), Avenida Universidad 2001, Col. Chamilpa, C.P. 62210 Cuernavaca Mor., Mexico
| | | |
Collapse
|
38
|
Kim H, Guo F, Brahma S, Xing Y, Burkard ME. Centralspindlin assembly and 2 phosphorylations on MgcRacGAP by Polo-like kinase 1 initiate Ect2 binding in early cytokinesis. Cell Cycle 2014; 13:2952-61. [PMID: 25486482 PMCID: PMC4614826 DOI: 10.4161/15384101.2014.947201] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 01/08/2023] Open
Abstract
Cytokinesis is the final step of cell division which partitions genetic and cytosolic content into daughter cells. Failed cytokinesis causes polyploidy, genetic instability, and cancer. Kinases use phosphorylation to regulate the timing and location of the cytokinetic furrow. Polo-like kinase 1 (Plk1) is an essential mitotic kinase that triggers cytokinesis by phosphorylating MgcRacGAP to create a docking site for Ect2 at the central spindle. Ect2 binds to MgcRacGAP via its N-terminal BRCT domain (BRCA1 C-terminal), which docks at specific phosphorylated residues. Here we investigate the minimal Plk1-dependent phosphorylation sites required for cytokinesis onset. We demonstrate that phosphorylation of the major MgcRacGAP site, S157, is necessary but not sufficient to bind the Ect2 BRCT domain. Phosphorylation of an additional residue on MgcRacGAP at S164 is also required to elicit efficient binding. Surprisingly, BRCT binding additionally requires MKLP1 and its cognate interacting N-terminal domain of MgcRacGAP. Our findings indicate that central spindle assembly and 2 Plk1-dependent phosphorylations are required to establish efficient binding of the Ect2 BRCT in early cytokinesis. We propose that these requirements establish a high threshold to restrain premature or ectopic cytokinesis.
Collapse
Affiliation(s)
- Hyunjung Kim
- Hematology/Oncology Division; Department of Medicine; University of Wisconsin Carbone Cancer Center; Madison, WI USA
| | - Feng Guo
- McArdle Laboratory; Department of Oncology; School of Medicine and Public Health; University of Wisconsin; Madison, WI USA
- Current Affiliation: School of Medicine; Stanford University; Stanford, CA USA
| | - Sarang Brahma
- Hematology/Oncology Division; Department of Medicine; University of Wisconsin Carbone Cancer Center; Madison, WI USA
| | - Yongna Xing
- McArdle Laboratory; Department of Oncology; School of Medicine and Public Health; University of Wisconsin; Madison, WI USA
| | - Mark E Burkard
- Hematology/Oncology Division; Department of Medicine; University of Wisconsin Carbone Cancer Center; Madison, WI USA
| |
Collapse
|
39
|
Bhatia P, Hachet O, Hersch M, Rincon SA, Berthelot-Grosjean M, Dalessi S, Basterra L, Bergmann S, Paoletti A, Martin SG. Distinct levels in Pom1 gradients limit Cdr2 activity and localization to time and position division. Cell Cycle 2013; 13:538-52. [PMID: 24316795 DOI: 10.4161/cc.27411] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Where and when cells divide are fundamental questions. In rod-shaped fission yeast cells, the DYRK-family kinase Pom1 is organized in concentration gradients from cell poles and controls cell division timing and positioning. Pom1 gradients restrict to mid-cell the SAD-like kinase Cdr2, which recruits Mid1/Anillin for medial division. Pom1 also delays mitotic commitment through Cdr2, which inhibits Wee1. Here, we describe quantitatively the distributions of cortical Pom1 and Cdr2. These reveal low profile overlap contrasting with previous whole-cell measurements and Cdr2 levels increase with cell elongation, raising the possibility that Pom1 regulates mitotic commitment by controlling Cdr2 medial levels. However, we show that distinct thresholds of Pom1 activity define the timing and positioning of division. Three conditions-a separation-of-function Pom1 allele, partial downregulation of Pom1 activity, and haploinsufficiency in diploid cells-yield cells that divide early, similar to pom1 deletion, but medially, like wild-type cells. In these cells, Cdr2 is localized correctly at mid-cell. Further, Cdr2 overexpression promotes precocious mitosis only in absence of Pom1. Thus, Pom1 inhibits Cdr2 for mitotic commitment independently of regulating its localization or cortical levels. Indeed, we show Pom1 restricts Cdr2 activity through phosphorylation of a C-terminal self-inhibitory tail. In summary, our results demonstrate that distinct levels in Pom1 gradients delineate a medial Cdr2 domain, for cell division placement, and control its activity, for mitotic commitment.
Collapse
Affiliation(s)
- Payal Bhatia
- Department of Fundamental Microbiology; University of Lausanne; Lausanne, Switzerland
| | - Olivier Hachet
- Department of Fundamental Microbiology; University of Lausanne; Lausanne, Switzerland
| | - Micha Hersch
- Department of Medical Genetics; University of Lausanne; Lausanne, Switzerland; Swiss Institute of Bioinformatics; University of Lausanne; Lausanne, Switzerland
| | - Sergio A Rincon
- Institut Curie; CNRS UMR144; Paris, France; CNRS UMR144; Paris, France
| | | | - Sascha Dalessi
- Department of Medical Genetics; University of Lausanne; Lausanne, Switzerland; Swiss Institute of Bioinformatics; University of Lausanne; Lausanne, Switzerland
| | - Laetitia Basterra
- Department of Fundamental Microbiology; University of Lausanne; Lausanne, Switzerland
| | - Sven Bergmann
- Department of Medical Genetics; University of Lausanne; Lausanne, Switzerland; Swiss Institute of Bioinformatics; University of Lausanne; Lausanne, Switzerland
| | - Anne Paoletti
- Institut Curie; CNRS UMR144; Paris, France; CNRS UMR144; Paris, France
| | - Sophie G Martin
- Department of Fundamental Microbiology; University of Lausanne; Lausanne, Switzerland
| |
Collapse
|
40
|
Kim JS, Kim EJ, Oh JS, Park IC, Hwang SG. CIP2A modulates cell-cycle progression in human cancer cells by regulating the stability and activity of Plk1. Cancer Res 2013; 73:6667-78. [PMID: 23983103 DOI: 10.1158/0008-5472.can-13-0888] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abnormal cell-cycle control can lead to aberrant cell proliferation and cancer. The oncoprotein cancerous inhibitor of protein phosphatase 2A (CIP2A) is an inhibitor of protein phosphatase 2A (PP2A) that stabilizes c-Myc. However, the precise role of CIP2A in cell division is not understood. Herein, we show that CIP2A is required for mitotic progression by regulating the polo-like kinase (Plk1). With mitotic entry, CIP2A translocated from the cytoplasm to the nucleus, where it was enriched at spindle poles. CIP2A depletion delayed mitotic progression, resulting in mitotic abnormalities independent of PP2A activity. Unexpectedly, CIP2A interacted directly with the polo-box domain of Plk1 during mitosis. This interaction was required to maintain Plk1 stability by blocking APC/C-Cdh1-dependent proteolysis, thereby enhancing the kinase activity of Plk1 during mitosis. We observed strong correlation and in vivo interactions between these two proteins in multiple human cancer specimens. Overall, our results established a novel function for CIP2A in facilitating the stability and activity of the pivotal mitotic kinase Plk1 in cell-cycle progression and tumor development.
Collapse
Affiliation(s)
- Jae-Sung Kim
- Authors' Affiliations: Divisions of Radiation Cancer Research and Radiation Effect, Korea Institute of Radiological and Medical Sciences, Seoul; and Department of Genetic Engineering, Sungkyunkwan University, Suwon, South Korea
| | | | | | | | | |
Collapse
|
41
|
Zhang G, Zhang Z, Liu Z. Scytonemin inhibits cell proliferation and arrests cell cycle through downregulating Plk1 activity in multiple myeloma cells. Tumour Biol 2013; 34:2241-7. [PMID: 23584897 DOI: 10.1007/s13277-013-0764-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 03/22/2013] [Indexed: 10/27/2022] Open
Abstract
Multiple myeloma is the second most common hematologic malignancy. During the pursuit for novel and more selective anticancer drugs, different approaches have pointed to polo-like kinase 1 (Plk1) as a promising target. So we used a novel agent, scytonemin, to inhibit the activity of Plk1 to investigate the effect of Plk1 in multiple myeloma cells. MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was used to examine the effect of scytonemin on the cell proliferation of three multiple myeloma cell lines with different concentration and different time. Flow cytometry was used to examine the effect of scytonemin on the cell cycle of multiple myeloma U266 cells with different concentration and different time. Moreover, the expression of Plk1 was analyzed by Western blot and real-time PCR in myeloma U266 cells with the treatment of scytonemin. Statistical analysis was used to analyze the effect of scytonemin on the cell proliferation and cell cycle with different concentration and different time and the association between Plk1 expression and activity with the treatment of scytonemin. Scytonemin was able to inhibit the proliferation of three myeloma cells in a dose-dependent manner, while U266 was the most sensitive one to scytonemin. Treatment with 3 and 4 μM scytonemin gradually increased the percentage of cells in the G2-M phase in U266 cells upon 48- and 72-h treatment. Scytonemin (at 3 and 4 μM concentration) inhibited multiple myeloma cell growth associated with downregulation of the activity of Plk1 but no effect on the expression of Plk1. Scytonemin, representing a novel Plk1 inhibitor, induced the inhibition of cell growth and cell cycle arrest in multiple myeloma cells by specifically decreasing Plk1 activity. Taken together, scytonemin is a promising novel agent for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Guojun Zhang
- Department of Hematology, Shengjing Hospital of China Medical University, Shenyang City, 110022, Liaoning Province, China
| | | | | |
Collapse
|
42
|
Theobald B, Bonness K, Musiyenko A, Andrews JF, Urban G, Huang X, Dean NM, Honkanen RE. Suppression of Ser/Thr phosphatase 4 (PP4C/PPP4C) mimics a novel post-mitotic action of fostriecin, producing mitotic slippage followed by tetraploid cell death. Mol Cancer Res 2013; 11:845-55. [PMID: 23671329 DOI: 10.1158/1541-7786.mcr-13-0032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Fostriecin is a natural product purified from Sterptomyces extracts with antitumor activity sufficient to warrant human clinical trials. Unfortunately, difficulties associated with supply and stable drug formulation stalled further development. At a molecular level, fostriecin is known to act as a catalytic inhibitor of four PPP-family phosphatases, and reports describing the design of molecules in this class suggest derivatives targeting enzymes within the fostriecin-sensitive subfamily can be successful. However, it is not clear if the tumor-selective cytotoxicity of fostriecin results from the inhibition of a specific phosphatase, multiple phosphatases, or a limited subset of fostriecin sensitive phosphatases. How the inhibition of sensitive phosphatases contributes to tumor-selective cytotoxicity is also not clear. Here, high-content time-lapse imaging of live cells revealed novel insight into the cellular actions of fostriecin, showing that fostriecin-induced apoptosis is not simply induced following a sustained mitotic arrest. Rather, apoptosis occurred in an apparent second interphase produced when tetraploid cells undergo mitotic slippage. Comparison of the actions of fostriecin and antisense-oligonucleotides specifically targeting human fostriecin-sensitive phosphatases revealed that the suppression PP4C alone is sufficient to mimic many actions of fostriecin. Importantly, targeted suppression of PP4C induced apoptosis, with death occurring in tetraploid cells following mitotic slippage. This effect was not observed following the suppression of PP1C, PP2AC, or PP5C. These data clarify PP4C as a fostriecin-sensitive phosphatase and demonstrate that the suppression of PP4C triggers mitotic slippage/apoptosis. IMPLICATIONS Future development of fostriecin class inhibitors should consider PP4C as a potentially important target. Mol Cancer Res; 11(8); 845-55. ©2013 AACR.
Collapse
Affiliation(s)
- Benjamin Theobald
- Department of Biochemistry and Molecular Biology, MSB 2362, University of South Alabama, Mobile, AL 36688, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yeh TY, Kowalska AK, Scipioni BR, Cheong FKY, Zheng M, Derewenda U, Derewenda ZS, Schroer TA. Dynactin helps target Polo-like kinase 1 to kinetochores via its left-handed beta-helical p27 subunit. EMBO J 2013; 32:1023-35. [PMID: 23455152 PMCID: PMC3616283 DOI: 10.1038/emboj.2013.30] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 01/27/2013] [Indexed: 01/08/2023] Open
Abstract
Dynactin is a protein complex required for the in vivo function of cytoplasmic dynein, a microtubule (MT)-based motor. Dynactin binds both dynein and MTs via its p150(Glued) subunit, but little is known about the 'pointed-end complex' that includes the protein subunits Arp11, p62 and the p27/p25 heterodimer. Here, we show that the p27/p25 heterodimer undergoes mitotic phosphorylation by cyclin-dependent kinase 1 (Cdk1) at a single site, p27 Thr186, to generate an anchoring site for polo-like kinase 1 (Plk1) at kinetochores. Removal of p27/p25 from dynactin results in reduced levels of Plk1 and its phosphorylated substrates at kinetochores in prometaphase, which correlates with aberrant kinetochore-MT interactions, improper chromosome alignment and abbreviated mitosis. To investigate the structural implications of p27 phosphorylation, we determined the structure of human p27. This revealed an unusual left-handed β-helix domain, with the phosphorylation site located within a disordered, C-terminal segment. We conclude that dynactin plays a previously undescribed regulatory role in the spindle assembly checkpoint by recruiting Plk1 to kinetochores and facilitating phosphorylation of important downstream targets.
Collapse
Affiliation(s)
- Ting-Yu Yeh
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Anna K Kowalska
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Brett R Scipioni
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Meiying Zheng
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Urszula Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Zygmunt S Derewenda
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Trina A Schroer
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
44
|
Kawashima SA, Takemoto A, Nurse P, Kapoor TM. A chemical biology strategy to analyze rheostat-like protein kinase-dependent regulation. CHEMISTRY & BIOLOGY 2013; 20:262-71. [PMID: 23438755 PMCID: PMC3626098 DOI: 10.1016/j.chembiol.2013.01.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 12/04/2012] [Accepted: 01/02/2013] [Indexed: 01/05/2023]
Abstract
Protein kinases may function more like variable rheostats rather than two-state switches. However, we lack approaches to properly analyze this aspect of kinase-dependent regulation. To address this, we develop a strategy in which a kinase inhibitor is identified using genetics-based screens, kinase mutations that confer resistance are characterized, and dose-dependent responses of isogenic drug-sensitive and resistant cells to inhibitor treatments are compared. This approach has the advantage that function of wild-type kinase, rather than mutants, is examined. To develop this approach, we focus on Ark1, the fission yeast member of the conserved Aurora kinase family. Applying this approach reveals that proper chromosome compaction in fission yeast needs high Ark1 activity, while other processes depend on significantly lower activity levels. Our strategy is general and can be used to examine the functions of other molecular rheostats.
Collapse
Affiliation(s)
| | - Ai Takemoto
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY10065
| | - Paul Nurse
- Laboratory of Yeast Genetics and Cell Biology, Rockefeller University, New York, NY10065
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, Rockefeller University, New York, NY10065
| |
Collapse
|
45
|
Ford JH. Protraction of anaphase B in lymphocyte mitosis with ageing: possible contribution to age-related cancer risk. Mutagenesis 2013; 28:307-14. [PMID: 23435012 DOI: 10.1093/mutage/get004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Ageing is associated with a reduction in the fidelity of cell division as shown by increases in trisomic and polyploid cells; however, to date, the underlying age-specific changes in cell division have not been identified. Understanding these specific changes in cell division could give insight into the aetiology some age-related illnesses, especially cancer. Using blood collected from 72 women aged 18-53 years, this study recorded the frequencies of cells in each of the stages of mitosis in synchronised lymphocyte cultures harvested at controlled temperature without microtubule inhibitors. Factor analysis identified four components that accounted for >67.5% of the variance in the data. The component we named 'Spindle elongation efficiency', which was primarily influenced by the time taken to complete anaphase B, showed a major change with age: women aged ≥36 showed a highly statistically significant protraction of anaphase B compared with those aged ≤35 (t = -2.74, df = 70, P = 0.006) and linear regression showed a logarithmic change in this component with age (R = 0.297, P = 0.011). This phosphorylation-dependent phase of the cycle is responsible for increasing the distance between the two sets of daughter chromosomes and in older subjects the daughter nuclei at telophase were often poorly separated. Inefficient spindle elongation with ageing probably results from decreased cellular energy. Insufficient force at anaphase B might fail to resolve merotelic kinetochore attachments such that lagging at anaphase would be uncorrected and lead to trisomy and polyploidy in daughter cells.
Collapse
Affiliation(s)
- Judith H Ford
- Centre for Rural Health and Community Development, University of South Australia, 101 Currie Street Adelaide, South Australia 5000, Australia.
| |
Collapse
|