1
|
Alizada A, Hannon GJ, Nicholson BC. Transcriptional regulation of the piRNA pathway by Ovo in animal ovarian germ cells. Genes Dev 2025; 39:221-241. [PMID: 39797761 PMCID: PMC11789646 DOI: 10.1101/gad.352120.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/11/2024] [Indexed: 01/13/2025]
Abstract
The gene-regulatory mechanisms controlling the expression of the germline PIWI-interacting RNA (piRNA) pathway components within the gonads of metazoan species remain largely unexplored. In contrast to the male germline piRNA pathway, which in mice is known to be activated by the testis-specific transcription factor A-MYB, the nature of the ovary-specific gene-regulatory network driving the female germline piRNA pathway remains a mystery. Here, using Drosophila as a model, we combined multiple genomics approaches to reveal the transcription factor Ovo as regulator of the germline piRNA pathway in ovarian germ cells. Ectopic expression of Ovo in ovarian somatic cells activates germline piRNA pathway components, including the ping-pong factors Aubergine, Argonaute-3, and Vasa, leading to assembly of perinuclear cellular structures resembling nuage bodies of germ cells. We found that in ovarian somatic cells, transcription of ovo is repressed by l(3)mbt, thus preventing expression of germline piRNA pathway genes in the soma. Cross-species ChIP-seq and motif analyses demonstrate that Ovo is binding to genomic CCGTTA motifs within the promoters of germline piRNA pathway genes, suggesting a regulation by Ovo in ovaries analogous to that of A-MYB in testes. Our results also show consistent engagement of the Ovo transcription factor family at ovarian piRNA clusters across metazoan species, reflecting a deep evolutionary conservation of this regulatory paradigm from insects to humans.
Collapse
Affiliation(s)
- Azad Alizada
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Gregory J Hannon
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| | - Benjamin Czech Nicholson
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, United Kingdom
| |
Collapse
|
2
|
Wen Y, Zhao J, Zhang R, Liu F, Chen X, Wu D, Wang M, Liu C, Su P, Meng P, Zhang Y, Gao X, Wang L, Wang H, Zhou J. Identification and characterization of human hematopoietic mesoderm. SCIENCE CHINA. LIFE SCIENCES 2024; 67:320-331. [PMID: 37870675 DOI: 10.1007/s11427-022-2374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/17/2023] [Indexed: 10/24/2023]
Abstract
The embryonic mesoderm comprises heterogeneous cell subpopulations with distinct lineage biases. It is unclear whether a bias for the human hematopoietic lineage emerges at this early developmental stage. In this study, we integrated single-cell transcriptomic analyses of human mesoderm cells from embryonic stem cells and embryos, enabling us to identify and define the molecular features of human hematopoietic mesoderm (HM) cells biased towards hematopoietic lineages. We discovered that BMP4 plays an essential role in HM specification and can serve as a marker for HM cells. Mechanistically, BMP4 acts as a downstream target of HDAC1, which modulates the expression of BMP4 by deacetylating its enhancer. Inhibition of HDAC significantly enhances HM specification and promotes subsequent hematopoietic cell differentiation. In conclusion, our study identifies human HM cells and describes new mechanisms for human hematopoietic development.
Collapse
Affiliation(s)
- Yuqi Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Jingjing Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Runqing Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Fan Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Xiaoyuan Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Dan Wu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Mengge Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Cuicui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Panpan Meng
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yiyue Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Xin Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China.
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
- CAMS Center for Stem Cell Medicine, PUMC Department of Stem Cell and Regenerative Medicine, Tianjin, 300020, China.
| |
Collapse
|
3
|
Jiang Y, Zhang Z. OVOL2: an epithelial lineage determiner with emerging roles in energy homeostasis. Trends Cell Biol 2023; 33:824-833. [PMID: 37336658 PMCID: PMC10524639 DOI: 10.1016/j.tcb.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/21/2023]
Abstract
Ovo like zinc finger 2 (OVOL2) is an evolutionarily conserved regulator of epithelial lineage determination and differentiation during embryogenesis. OVOL2 binds to DNA using zinc-finger domains to suppress epithelial-mesenchymal transition (EMT), which is critical for tumor metastasis. However, recent studies have suggested some noncanonical roles of OVOL2 that do not rely on the DNA binding of zinc-finger domains or regulation of EMT. OVOL2 and EMT regulators have emerging roles in adipogenesis, thermogenesis, and lipid metabolism. Here, we review different roles of OVOL2 from embryo development to adult tissue homeostasis, and discuss how OVOL2 and other EMT regulators orchestrate a regulatory network to control energy homeostasis. Last, we propose potential applications of targeting OVOL2 to reduce human obesity.
Collapse
Affiliation(s)
- Yiao Jiang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhao Zhang
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Division of Endocrinology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Wang Y, Su L, Wang W, Zhao J, Wang Y, Li S, Liu Y, Chai R, Li X, Teng Z, Liu C, Hu B, Ji F, Jiao J. Endothelial Arid1a deletion disrupts the balance among angiogenesis, neurogenesis and gliogenesis in the developing brain. Cell Prolif 2023; 56:e13447. [PMID: 36916004 DOI: 10.1111/cpr.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
The vascular system and the neural system processes occur simultaneously, the interaction among them is fundamental to the normal development of the central nervous system. Arid1a (AT-rich interaction domain 1A), which encodes an epigenetic subunit of the SWI/SNF chromatin-remodelling complex, is associated with promoter-mediated gene regulation and histone modification. However, the molecular mechanism of the interaction between cerebrovascular and neural progenitor cells (NPCs) remains unclear. To generate Arid1acKO-Tie2 mice, Arid1afl/fl mice were hybridized with Tie2-Cre mice. The Angiogenesis, neurogenesis and gliogenesis were studied by immunofluorescence staining and Western blotting. RNA-seq, RT-PCR, Western blotting, CO-IP and rescue experiments were performed to dissect the molecular mechanisms of Arid1a regulates fate determination of NPCs. We found that the absence of Arid1a results in increased the density of blood vessels, delayed neurogenesis and decreased gliogenesis, even after birth. Mechanistically, the deletion of Arid1a in endothelial cells causes a significant increase in H3k27ac and the secretion of maternal protein 2 (MATN2). In addition, matn2 alters the AKT/SMAD4 signalling pathway through its interaction with the NPCs receptor EGFR, leading to the decrease of SMAD4. SMAD complex further mediates the expression of downstream targets, thereby promoting neurogenesis and inhibiting gliogenesis. This study suggests that endothelial Arid1a tightly controls fate determination of NPCs by regulating the AKT-SMAD signalling pathway.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Libo Su
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jinyue Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sihan Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Renjie Chai
- Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xin Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhaoqian Teng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Changmei Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Fen Ji
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Gugnoni M, Manzotti G, Vitale E, Sauta E, Torricelli F, Reggiani F, Pistoni M, Piana S, Ciarrocchi A. OVOL2 impairs RHO GTPase signaling to restrain mitosis and aggressiveness of Anaplastic Thyroid Cancer. J Exp Clin Cancer Res 2022; 41:108. [PMID: 35337349 PMCID: PMC8957195 DOI: 10.1186/s13046-022-02316-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Background Anaplastic Thyroid Cancer (ATC) is an undifferentiated and aggressive tumor that often originates from well-Differentiated Thyroid Carcinoma (DTC) through a trans-differentiation process. Epithelial-to-Mesenchymal Transition (EMT) is recognized as one of the major players of this process. OVOL2 is a transcription factor (TF) that promotes epithelial differentiation and restrains EMT during embryonic development. OVOL2 loss in some types of cancers is linked to aggressiveness and poor prognosis. Here, we aim to clarify the unexplored role of OVOL2 in ATC. Methods Gene expression analysis in thyroid cancer patients and cell lines showed that OVOL2 is mainly associated with epithelial features and its expression is deeply impaired in ATC. To assess OVOL2 function, we established an OVOL2-overexpression model in ATC cell lines and evaluated its effects by analyzing gene expression, proliferation, invasion and migration abilities, cell cycle, specific protein localization through immunofluorescence staining. RNA-seq profiling showed that OVOL2 controls a complex network of genes converging on cell cycle and mitosis regulation and Chromatin Immunoprecipitation identified new OVOL2 target genes. Results Coherently with its reported function, OVOL2 re-expression restrained EMT and aggressiveness in ATC cells. Unexpectedly, we observed that it caused G2/M block, a consequent reduction in cell proliferation and an increase in cell death. This phenotype was associated to generalized abnormalities in the mitotic spindle structure and cytoskeletal organization. By RNA-seq experiments, we showed that many pathways related to cytoskeleton and migration, cell cycle and mitosis are profoundly affected by OVOL2 expression, in particular the RHO-GTPase pathway resulted as the most interesting. We demonstrated that RHO GTPase pathway is the central hub of OVOL2-mediated program in ATC and that OVOL2 transcriptionally inhibits RhoU and RhoJ. Silencing of RhoU recapitulated the OVOL2-driven phenotype pointing to this protein as a crucial target of OVOL2 in ATC. Conclusions Collectively, these data describe the role of OVOL2 in ATC and uncover a novel function of this TF in inhibiting the RHO GTPase pathway interlacing its effects on EMT, cytoskeleton dynamics and mitosis. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02316-2.
Collapse
|
6
|
Wijayanti D, Zhang S, Yang Y, Bai Y, Akhatayeva Z, Pan C, Zhu H, Qu L, Lan X. Goat SMAD family member 1 (SMAD1): mRNA expression, genetic variants, and their associations with litter size. Theriogenology 2022; 193:11-19. [PMID: 36116245 DOI: 10.1016/j.theriogenology.2022.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 12/20/2022]
Abstract
SMAD family member 1 (SMAD1) is phosphorylated and activated by the BMP receptors, which help regulate ovulation rate, cell growth, apoptosis, and development. Previously, the genome-wide association study revealed that it has been associated with fecundity in sheep. However, its effect on litter size has not been investigated in goats. Therefore, this study aimed to determine the level of SMAD1 mRNA expression in various tissues and to identify its polymorphisms and their association with litter size in Shaanbei white cashmere goat (SBWC). As a result, RT-qPCR analysis showed that SMAD1 was expressed in various tissues in female SBWC goats, including the ovary (P < 0.05). Importantly, the mRNA expression level in the ovaries of mothers of multi-lambs had a higher level than the mothers of single lambs (P < 0.05). Moreover, two InDels (18-bp and 7-bp) in intron 1 of SMAD1 were polymorphic among ten potential loci. Both 18-bp and 7-bp InDels were significantly correlated with litter size (P = 0.014) and (P = 0.0001), respectively. As shown by the chi-squared test, genotypic distributions of 18-bp and 7-bp were significantly distinct between single-lamb (P = 0.02) and multi-lamb mothers (P = 0.002). Our findings confirm that two InDels in SMAD1 were significantly associated with litter size and suggest that they could be used to improve fertility traits in goat breeding strategies.
Collapse
Affiliation(s)
- Dwi Wijayanti
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China; Department of Animal Science, Perjuangan University of Tasikmalaya, Tasikmalaya, West Java, 46115, Indonesia.
| | - Sihuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yuta Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Yangyang Bai
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Zhanerke Akhatayeva
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, 719000, PR China; Life Science Research Center, Yulin University, Yulin, Shaanxi, 719000, PR China.
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, Shaanxi, 719000, PR China; Life Science Research Center, Yulin University, Yulin, Shaanxi, 719000, PR China.
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Leon A, Subirana L, Magre K, Cases I, Tena JJ, Irimia M, Gomez-Skarmeta JL, Escriva H, Bertrand S. Gene regulatory networks of epidermal and neural fate choice in a chordate. Mol Biol Evol 2022; 39:6547258. [PMID: 35276009 PMCID: PMC9004418 DOI: 10.1093/molbev/msac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Neurons are a highly specialized cell type only found in metazoans. They can be scattered throughout the body or grouped together, forming ganglia or nerve cords. During embryogenesis, centralized nervous systems develop from the ectoderm, which also forms the epidermis. How pluripotent ectodermal cells are directed toward neural or epidermal fates, and to which extent this process is shared among different animal lineages, are still open questions. Here, by using micromere explants, we were able to define in silico the putative gene regulatory networks (GRNs) underlying the first steps of the epidermis and the central nervous system formation in the cephalochordate amphioxus. We propose that although the signal triggering neural induction in amphioxus (i.e., Nodal) is different from vertebrates, the main transcription factors implicated in this process are conserved. Moreover, our data reveal that transcription factors of the neural program seem to not only activate neural genes but also to potentially have direct inputs into the epidermal GRN, suggesting that the Nodal signal might also contribute to neural fate commitment by repressing the epidermal program. Our functional data on whole embryos support this result and highlight the complex interactions among the transcription factors activated by the signaling pathways that drive ectodermal cell fate choice in chordates.
Collapse
Affiliation(s)
- Anthony Leon
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Lucie Subirana
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Kevin Magre
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Ildefonso Cases
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Jose Luis Gomez-Skarmeta
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Sevilla, Spain
| | - Hector Escriva
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| | - Stéphanie Bertrand
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, F-66650, Banyuls-sur-Mer, France
| |
Collapse
|
8
|
Wu RS, Lin J, Xing YM, Gao WL, Jiang YX, Chen LX, Zhang XP, Dai ZL. OVOL2 inhibits macrophage M2 polarization by regulating IL-10 transcription, and thus inhibits the tumor metastasis by modulating the tumor microenvironment. Immunol Lett 2021; 242:17-26. [PMID: 34033850 DOI: 10.1016/j.imlet.2021.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/18/2021] [Accepted: 05/16/2021] [Indexed: 01/09/2023]
Abstract
Invasion and metastasis of breast cancer cells is an important cause of death in breast cancer patients. In the tumor microenvironment, M2 polarization of macrophages can promote the invasion and metastasis of tumor cells. OVOL2 is an evolutionarily conserved transcription regulator, but its effect in macrophages has not been described previously. The aim of this study was to investigate the effects of OVOL2 on macrophage polarity and the role of these effects in the tumor metastasis. We found that overexpression of OVOL2 in macrophages significantly inhibited M2 polarization and thus inhibits breast cancer metastasis. We propose a novel mechanism in which OVOL2 inhibits M2 polarization of macrophages and thus reduces their ability to induce invasion and metastasis of breast cancer. By shedding new light on the regulation of metastasis in cancers, our study provides a new strategy for the targeted therapy of cancer.
Collapse
Affiliation(s)
- Rong-Si Wu
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Juan Lin
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Yan-Mei Xing
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Wen-Li Gao
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Yuan-Xu Jiang
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China
| | - Li-Xin Chen
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China.
| | - Xue-Ping Zhang
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China.
| | - Zhong-Liang Dai
- Department of Anesthesiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China; Shenzhen Engineering Research Center of Anesthesiology, Shenzhen, 518020, Guangdong, China.
| |
Collapse
|
9
|
Saxena K, Srikrishnan S, Celia-Terrassa T, Jolly MK. OVOL1/2: Drivers of Epithelial Differentiation in Development, Disease, and Reprogramming. Cells Tissues Organs 2020; 211:183-192. [PMID: 32932250 DOI: 10.1159/000511383] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/26/2020] [Indexed: 11/19/2022] Open
Abstract
OVOL proteins (OVOL1 and OVOL2), vertebrate homologs of Drosophila OVO, are critical regulators of epithelial lineage determination and differentiation during embryonic development in tissues such as kidney, skin, mammary epithelia, and testis. OVOL can inhibit epithelial-mesenchymal transition and/or can promote mesenchymal-epithelial transition. Moreover, they can regulate the stemness of cancer cells, thus playing an important role during cancer cell metastasis. Due to their central role in differentiation and maintenance of epithelial lineage, OVOL overexpression has been shown to be capable of reprogramming fibroblasts to epithelial cells. Here, we review the roles of OVOL-mediated epithelial differentiation across multiple contexts, including embryonic development, cancer progression, and cellular reprogramming.
Collapse
Affiliation(s)
- Kritika Saxena
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | | | - Toni Celia-Terrassa
- Cancer Research Program, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Mohit Kumar Jolly
- Centre for Biosystems Science and Engineering, Indian Institute of Science, Bangalore, India,
| |
Collapse
|
10
|
Zhang J, Dong J, Qin W, Cao C, Wen Y, Tang Y, Yuan S. Ovol2, a zinc finger transcription factor, is dispensable for spermatogenesis in mice. Reprod Biol Endocrinol 2019; 17:98. [PMID: 31759386 PMCID: PMC6875160 DOI: 10.1186/s12958-019-0542-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/12/2019] [Indexed: 11/23/2022] Open
Abstract
Ovol2, a mouse homolog of Drosophila ovo, was identified as a zinc finger transcription factor predominantly expressed in testis. However, the function of Ovol2 in postnatal male germ cell development remains enigmatic. Here, we firstly examined the mRNA and protein levels of Ovol2 in developing mouse testes by RT-qPCR and western blot and found that both mRNA and protein of Ovol2 are continually expressed in postnatal developing testes from postnatal day 0 (P0) testes to adult testes (P56) and exhibits its higher level at adult testis. Further testicular immuno-staining revealed that OVOL2 is highly expressed in the spermatogonia, spermatocytes and round spermatids. Interestingly, our conditional ovol2 knockout mouse model show that loss of ovol2 in embryonic germ cells does not affect fecundity in mice. Our data also show that Ovol1 may have compensated for the loss of Ovol2 functions in germ cells. Overall, our data indicate that ovol2 is dispensable for germ cell development and spermatogenesis.
Collapse
Affiliation(s)
- Jin Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- College of Animal Science and Technology, Northwest A&F University, Yangling, People's Republic of China
| | - Juan Dong
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China
| | - Congcong Cao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yujiao Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China.
| | - Shuiqiao Yuan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
11
|
Min HY, Sung YK, Kim EJ, Jang WG. OVO homologue-like 1 promotes osteoblast differentiation through BMP2 expression. J Cell Physiol 2018; 234:11842-11849. [PMID: 30523637 DOI: 10.1002/jcp.27821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 11/09/2018] [Indexed: 11/06/2022]
Abstract
OVO homologue-like 1 (OVOL1) encodes a C2H2 zinc finger protein and is an evolutionarily conserved gene in mammals. The OVOL1 expression is required for development. However, the function of OVOL1 in bone metabolism remains unreported. Here, we show for the first time the role of OVOL1 in osteoblast differentiation. To determine the role of OVOL1 in osteogenic differentiation, we analyzed OVOL1 expression in the preosteoblastic cell line. OVOL1 messenger RNA expression was induced during osteoblast differentiation. In addition, OVOL1 overexpression enhanced the expression of osteogenic genes including bone morphogenetic protein 2 (BMP2), the inhibitor of DNA binding 1 (Id1), distal-less homeobox 5 (Dlx5), runt-related transcription factor 2 (Runx2), osteocalcin (OC), and alkaline phosphatase (ALP). Moreover, mineralization of the extracellular matrix was increased by OVOL1 overexpression in MC3T3-E1 cells. Furthermore, knockdown of the OVOL1 experiment demonstrated that OVOL1 is required for osteoblast differentiation. Collectively, these results suggest that OVOL1 function as an important regulator of osteoblast differentiation by inducing BMP2 expression in MC3T3-E1 cells.
Collapse
Affiliation(s)
- Hyeon-Young Min
- Department of Biotechnology, College of Engineering, Daegu University, Daegu, Korea.,Research Institute of Antiaging, Daegu University, Daegu, Korea
| | - Young Kwan Sung
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Eun-Jung Kim
- Research Institute of Antiaging, Daegu University, Daegu, Korea.,Department of Immunology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Won-Gu Jang
- Department of Biotechnology, College of Engineering, Daegu University, Daegu, Korea.,Research Institute of Antiaging, Daegu University, Daegu, Korea
| |
Collapse
|
12
|
Chung DD, Frausto RF, Lin BR, Hanser EM, Cohen Z, Aldave AJ. Transcriptomic Profiling of Posterior Polymorphous Corneal Dystrophy. Invest Ophthalmol Vis Sci 2017; 58:3202-3214. [PMID: 28654985 PMCID: PMC5488878 DOI: 10.1167/iovs.17-21423] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose To investigate the molecular basis of posterior polymorphous corneal dystrophy (PPCD) by examining the PPCD transcriptome and the effect of decreased ZEB1 expression on corneal endothelial cell (CEnC) gene expression. Methods Next-generation RNA sequencing (RNA-seq) analyses of corneal endothelium from two PPCD-affected individuals (one with PPCD3 and one of unknown genetic cause) compared with two age-matched controls, and primary human CEnC (pHCEnC) transfected with siRNA-mediated ZEB1 knockdown. The expression of selected differentially expressed genes was validated by quantitative polymerase chain reaction (qPCR) and/or assessed by in situ hybridization in the corneal endothelium of four independent cases of PPCD (one with PPCD3 and three of unknown genetic cause). Results Expression of 16% and 46% of the 104 protein-coding genes specific to ex vivo corneal endothelium was lost in the endothelium of two individuals with PPCD. Thirty-two genes associated with ZEB1 and 3 genes (BMP4, CCND1, ZEB1) associated with OVOL2 were differentially expressed in the same direction in both individuals with PPCD. Immunohistochemistry staining and RNA-seq analyses demonstrated variable expression of type IV collagens in PPCD corneas. Decreasing ZEB1 expression in pHCEnC altered expression of 711 protein-coding genes, many of which are associated with canonical pathways regulating various cellular processes. Conclusions Identification of the altered transcriptome in PPCD and in a cell-based model of PPCD provided insight into the molecular alterations characterizing PPCD. Further study of the differentially expressed genes associated with ZEB1 and OVOL2 is expected to identify candidate genes for individuals with PPCD and without a ZEB1 or OVOL2 mutation.
Collapse
Affiliation(s)
- Doug D Chung
- Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Ricardo F Frausto
- Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Benjamin R Lin
- Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Evelyn M Hanser
- Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Zack Cohen
- Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| | - Anthony J Aldave
- Stein Eye Institute, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, California, United States
| |
Collapse
|
13
|
Conserved role of Ovo in germline development in mouse and Drosophila. Sci Rep 2017; 7:40056. [PMID: 28059165 PMCID: PMC5216385 DOI: 10.1038/srep40056] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 11/30/2016] [Indexed: 12/31/2022] Open
Abstract
Ovo, which encodes a transcription factor with Zn-finger domains, is evolutionarily conserved among animals. In Drosophila, in addition to its zygotic function for egg production, maternal ovo activity is required in primordial germ cells (PGCs) for expression of germline genes such as vasa and nanos. In this study, we found that maternal Ovo accumulates in PGC nuclei during embryogenesis. In these cells, ovo serves a dual function: activation of genes expressed predominantly in PGCs, and conversely suppression of somatic genes. Reduction of ovo activity in PGCs makes them unable to develop normally into germ cells of both sexes. In mice, knockout of the ovo ortholog, Ovol2, which is expressed in PGCs, decreases the number of PGCs during early embryogenesis. These data strongly suggest that ovo acts as part of an evolutionarily conserved mechanism that regulates germline development in animals.
Collapse
|
14
|
Jolly MK, Jia D, Boareto M, Mani SA, Pienta KJ, Ben-Jacob E, Levine H. Coupling the modules of EMT and stemness: A tunable 'stemness window' model. Oncotarget 2016; 6:25161-74. [PMID: 26317796 PMCID: PMC4694822 DOI: 10.18632/oncotarget.4629] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 07/10/2015] [Indexed: 12/19/2022] Open
Abstract
Metastasis of carcinoma involves migration of tumor cells to distant organs and initiate secondary tumors. Migration requires a complete or partial Epithelial-to-Mesenchymal Transition (EMT), and tumor-initiation requires cells possessing stemness. Epithelial cells (E) undergoing a complete EMT to become mesenchymal (M) have been suggested to be more likely to possess stemness. However, recent studies suggest that stemness can also be associated with cells undergoing a partial EMT (hybrid E/M phenotype). Therefore, the correlation between EMT and stemness remains elusive. Here, using a theoretical framework that couples the core EMT and stemness modules (miR-200/ZEB and LIN28/let-7), we demonstrate that the positioning of ‘stemness window’ on the ‘EMT axis’ need not be universal; rather it can be fine-tuned. Particularly, we present OVOL as an example of a modulating factor that, due to its coupling with miR-200/ZEB/LIN28/let-7 circuit, fine-tunes the EMT-stemness interplay. Coupling OVOL can inhibit the stemness likelihood of M and elevate that of the hybrid E/M (partial EMT) phenotype, thereby pulling the ‘stemness window’ away from the M end of ‘EMT axis’. Our results unify various apparently contradictory experimental findings regarding the interconnection between EMT and stemness, corroborate the emerging notion that partial EMT associates with stemness, and offer new testable predictions.
Collapse
Affiliation(s)
- Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.,Department of Bioengineering, Rice University, Houston, TX 77005-1827, USA
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.,Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005-1827, USA
| | - Marcelo Boareto
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.,Institute of Physics, University of Sao Paulo, Sao Paulo 05508, Brazil
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, and Metastasis Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kenneth J Pienta
- The James Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.,Department of Urology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.,Department of Biosciences, Rice University, Houston, TX 77005-1827, USA.,School of Physics and Astronomy and The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005-1827, USA.,Department of Bioengineering, Rice University, Houston, TX 77005-1827, USA.,Department of Physics and Astronomy, Rice University, Houston, TX 77005-1827, USA.,Department of Biosciences, Rice University, Houston, TX 77005-1827, USA
| |
Collapse
|
15
|
Jia D, Jolly MK, Boareto M, Parsana P, Mooney SM, Pienta KJ, Levine H, Ben-Jacob E. OVOL guides the epithelial-hybrid-mesenchymal transition. Oncotarget 2016; 6:15436-48. [PMID: 25944618 PMCID: PMC4558162 DOI: 10.18632/oncotarget.3623] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/10/2015] [Indexed: 01/25/2023] Open
Abstract
Metastasis involves multiple cycles of Epithelial-to-Mesenchymal Transition (EMT) and its reverse-MET. Cells can also undergo partial transitions to attain a hybrid epithelial/mesenchymal (E/M) phenotype that has maximum cellular plasticity and allows migration of Circulating Tumor Cells (CTCs) as a cluster. Hence, deciphering the molecular players helping to maintain the hybrid E/M phenotype may inform anti-metastasis strategies. Here, we devised a mechanism-based mathematical model to couple the transcription factor OVOL with the core EMT regulatory network miR-200/ZEB that acts as a three-way switch between the E, E/M and M phenotypes. We show that OVOL can modulate cellular plasticity in multiple ways - restricting EMT, driving MET, expanding the existence of the hybrid E/M phenotype and turning both EMT and MET into two-step processes. Our theoretical framework explains the differences between the observed effects of OVOL in breast and prostate cancer, and provides a platform for investigating additional signals during metastasis.
Collapse
Affiliation(s)
- Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX 77005, USA
| | - Mohit Kumar Jolly
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Bioengineering, Rice University, Houston, TX 77005, USA
| | - Marcelo Boareto
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Institute of Physics, University of Sao Paulo, Sao Paulo 05508, Brazil
| | - Princy Parsana
- Department of Computer Science, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Steven M Mooney
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.,Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Bioengineering, Rice University, Houston, TX 77005, USA.,Department of Physics and Astronomy, Rice University, Houston, TX 77005, USA
| | - Eshel Ben-Jacob
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA.,Department of Biosciences, Rice University, Houston, TX 77005, USA.,School of Physics and Astronomy and The Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| |
Collapse
|
16
|
Kitazawa K, Hikichi T, Nakamura T, Mitsunaga K, Tanaka A, Nakamura M, Yamakawa T, Furukawa S, Takasaka M, Goshima N, Watanabe A, Okita K, Kawasaki S, Ueno M, Kinoshita S, Masui S. OVOL2 Maintains the Transcriptional Program of Human Corneal Epithelium by Suppressing Epithelial-to-Mesenchymal Transition. Cell Rep 2016; 15:1359-68. [PMID: 27134177 DOI: 10.1016/j.celrep.2016.04.020] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 01/12/2016] [Accepted: 03/31/2016] [Indexed: 11/29/2022] Open
Abstract
In development, embryonic ectoderm differentiates into neuroectoderm and surface ectoderm using poorly understood mechanisms. Here, we show that the transcription factor OVOL2 maintains the transcriptional program of human corneal epithelium cells (CECs), a derivative of the surface ectoderm, and that OVOL2 may regulate the differential transcriptional programs of the two lineages. A functional screen identified OVOL2 as a repressor of mesenchymal genes to maintain CECs. Transduction of OVOL2 with several other transcription factors induced the transcriptional program of CECs in fibroblasts. Moreover, neuroectoderm derivatives were found to express mesenchymal genes, and OVOL2 alone could induce the transcriptional program of CECs in neural progenitors by repressing these genes while activating epithelial genes. Our data suggest that the difference between the transcriptional programs of some neuroectoderm- and surface ectoderm-derivative cells may be regulated in part by a reciprocally repressive mechanism between epithelial and mesenchymal genes, as seen in epithelial-to-mesenchymal transition.
Collapse
Affiliation(s)
- Koji Kitazawa
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan; Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan; Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan; CREST (Core Research for Evolutional Science and Technology), JST (Japan Science and Technology Agency), Honcho 4-1-8 Kawaguchi, Saitama 332-0012, Japan
| | - Takafusa Hikichi
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Takahiro Nakamura
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan; Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan
| | - Kanae Mitsunaga
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Azusa Tanaka
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Masahiro Nakamura
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Tatsuya Yamakawa
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Shiori Furukawa
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Mieko Takasaka
- JBIC Research Institute, Japan Biological Informatics Consortium, TIME24 Building 10F 2-4-32 Aomi Koto-ku, Tokyo 135-8073, Japan
| | - Naoki Goshima
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, Waterfront Bio-IT Research Building, 2-4-7 Aomi Koto-ku, Tokyo 135-0064, Japan
| | - Akira Watanabe
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Keisuke Okita
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan
| | - Satoshi Kawasaki
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan; Department of Ophthalmology, Osaka University, 2-2 Yamadaoka Suita, Osaka 565-0871, Japan
| | - Morio Ueno
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan
| | - Shigeru Kinoshita
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan; Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, 465 Kajii-cho Hirokoji-agaru Kawaramachi-dori Kamigyo-ku, Kyoto 602-0841, Japan.
| | - Shinji Masui
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho Shogoin Sakyo-ku, Kyoto 606-8507, Japan; CREST (Core Research for Evolutional Science and Technology), JST (Japan Science and Technology Agency), Honcho 4-1-8 Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
17
|
Qiao Y, Yang X, Jing N. Epigenetic regulation of early neural fate commitment. Cell Mol Life Sci 2016; 73:1399-411. [PMID: 26801220 PMCID: PMC11108527 DOI: 10.1007/s00018-015-2125-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
Early neural fate commitment is a key process in neural development and establishment of the central nervous system, and this process is tightly controlled by extrinsic signals, intrinsic factors, and epigenetic regulation. Here, we summarize the main findings regarding the regulatory network of epigenetic mechanisms that play important roles during early neural fate determination and embryonic development, including histone modifications, chromatin remodeling, DNA modifications, and RNA-level regulation. These regulatory mechanisms coordinate to play essential roles in silencing of pluripotency genes and activating key neurodevelopmental genes during cell fate commitment at DNA, histone, chromatin, and RNA levels. Moreover, we discuss the relationship between epigenetic regulation, signaling pathways, and intrinsic factors during early neural fate specification.
Collapse
Affiliation(s)
- Yunbo Qiao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Xianfa Yang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 200031, China.
| |
Collapse
|
18
|
Hong T, Watanabe K, Ta CH, Villarreal-Ponce A, Nie Q, Dai X. An Ovol2-Zeb1 Mutual Inhibitory Circuit Governs Bidirectional and Multi-step Transition between Epithelial and Mesenchymal States. PLoS Comput Biol 2015; 11:e1004569. [PMID: 26554584 PMCID: PMC4640575 DOI: 10.1371/journal.pcbi.1004569] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/24/2015] [Indexed: 12/31/2022] Open
Abstract
Reversible epithelial-to-mesenchymal transition (EMT) is central to tissue development, epithelial stemness, and cancer metastasis. While many regulatory elements have been identified to induce EMT, the complex process underlying such cellular plasticity remains poorly understood. Utilizing a systems biology approach integrating modeling and experiments, we found multiple intermediate states contributing to EMT and that the robustness of the transitions is modulated by transcriptional factor Ovol2. In particular, we obtained evidence for a mutual inhibition relationship between Ovol2 and EMT inducer Zeb1, and observed that adding this regulation generates a novel four-state system consisting of two distinct intermediate phenotypes that differ in differentiation propensities and are favored in different environmental conditions. We identified epithelial cells that naturally exist in an intermediate state with bidirectional differentiation potential, and found the balance between EMT-promoting and -inhibiting factors to be critical in achieving and selecting between intermediate states. Our analysis suggests a new design principle in controlling cellular plasticity through multiple intermediate cell fates and underscores the critical involvement of Ovol2 and its associated molecular regulations. Cumulative evidence reveals remarkable lineage plasticity of somatic cells. Epithelial-to-mesenchymal transition (EMT) represents a prime example of such plasticity where an epithelial cell is converted into a mesenchymal cell. This process is used in normal development to generate crucial cell types, and is hijacked by cancer cells for invasion and metastasis. Recent studies also suggest the importance of EMT in generating stem cell properties. The reversibility of EMT and its sensitivity to varying environmental stimuli pose interesting challenges to understand the intricate regulatory networks that direct cellular state transitions and their dynamics. Here we use a systems biology approach to probe into the complexity of the EMT process. We report a new molecular regulation that expands the known regulatory network, and show that this new network is capable of generating multiple intermediate states, which we provide experimental evidence for. We present modeling and experimental results to highlight the significance of a delicate balance between EMT-promoting and -inhibiting factors for achieving and/or selecting an intermediate state, and to suggest the biological significance of the multiple intermediate states. This work further elucidates the complex strategies that control epithelial cell behavior and cancer/stem cell plasticity.
Collapse
Affiliation(s)
- Tian Hong
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Kazuhide Watanabe
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, United States of America
| | - Catherine Ha Ta
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Alvaro Villarreal-Ponce
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, United States of America
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- * E-mail: (QN); (XD)
| | - Xing Dai
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, California, United States of America
- * E-mail: (QN); (XD)
| |
Collapse
|
19
|
Khan MI, Hamid A, Adhami VM, Lall RK, Mukhtar H. Role of epithelial mesenchymal transition in prostate tumorigenesis. Curr Pharm Des 2015; 21:1240-8. [PMID: 25506896 DOI: 10.2174/1381612821666141211120326] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023]
Abstract
Globally, the cancer associated deaths are generally attributed to the spread of cancerous cells or their features to the nearby or distant secondary organs by a process known as metastasis. Among other factors, the metastatic dissemination of cancer cells is attributed to the reactivation of an evolutionary conserved developmental program known as epithelial to mesenchymal transition (EMT). During EMT, fully differentiated epithelial cells undergo a series of dramatic changes in their morphology, along with loss of cell to cell contact and matrix remodeling into less differentiated and invasive mesenchymal cells. Many studies provide evidence for the existence of EMT like states in prostate cancer (PCa) and suggest its possible involvement in PCa progression and metastasis. At the same time, the lack of conclusive evidence regarding the presence of full EMT in human PCa samples has somewhat dampened the interest in the field. However, ongoing EMT research provides new perspectives and unveils the enormous potential of this field in tailoring new therapeutic regimens for PCa management. This review summarizes the role of many transcription factors and other molecules that drive EMT during prostate tumorigenesis.
Collapse
Affiliation(s)
| | | | | | | | - Hasan Mukhtar
- Department of Dermatology, University of Wisconsin, Medical Science Center, Rm B-25, 1300 University Avenue, Madison, WI 53706.
| |
Collapse
|
20
|
Song L, Sun N, Peng G, Chen J, Han JDJ, Jing N. Genome-wide ChIP-seq and RNA-seq analyses of Pou3f1 during mouse pluripotent stem cell neural fate commitment. GENOMICS DATA 2015; 5:375-7. [PMID: 26484290 PMCID: PMC4583692 DOI: 10.1016/j.gdata.2015.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/29/2022]
Abstract
Appropriate neural initiation of the pluripotent stem cells in the early embryos is critical for the development of the central nervous system. This process is regulated by the coordination of extrinsic signals and intrinsic programs. However, how the coordination is achieved to ensure proper neural fate commitment is largely unknown. Here, taking advantage of genome-wide ChIP-sequencing (ChIP-seq) and RNA-sequencing (RNA-seq) analyses, we demonstrate that the transcriptional factor Pou3f1 is an upstream activator of neural-promoting genes, and it is able to repress neural-inhibitory signals as well. Further studies revealed that Pou3f1 could directly bind neural lineage genes like Sox2 and downstream targets of neural inhibition signaling such as BMP and Wnt. Our results thus identify Pou3f1 as a critical dual-regulator of the intrinsic transcription factors and the extrinsic cellular signals during neural fate commitment. Data were deposited in Gene Expression Omnibus (GEO) datasets under reference number GSE69865.
Collapse
Affiliation(s)
- Lu Song
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Na Sun
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jun Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jing-Dong Jackie Han
- Key Laboratory of Computational Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
21
|
Aue A, Hinze C, Walentin K, Ruffert J, Yurtdas Y, Werth M, Chen W, Rabien A, Kilic E, Schulzke JD, Schumann M, Schmidt-Ott KM. A Grainyhead-Like 2/Ovo-Like 2 Pathway Regulates Renal Epithelial Barrier Function and Lumen Expansion. J Am Soc Nephrol 2015; 26:2704-15. [PMID: 25788534 DOI: 10.1681/asn.2014080759] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/30/2014] [Indexed: 12/20/2022] Open
Abstract
Grainyhead transcription factors control epithelial barriers, tissue morphogenesis, and differentiation, but their role in the kidney is poorly understood. Here, we report that nephric duct, ureteric bud, and collecting duct epithelia express high levels of grainyhead-like homolog 2 (Grhl2) and that nephric duct lumen expansion is defective in Grhl2-deficient mice. In collecting duct epithelial cells, Grhl2 inactivation impaired epithelial barrier formation and inhibited lumen expansion. Molecular analyses showed that GRHL2 acts as a transcriptional activator and strongly associates with histone H3 lysine 4 trimethylation. Integrating genome-wide GRHL2 binding as well as H3 lysine 4 trimethylation chromatin immunoprecipitation sequencing and gene expression data allowed us to derive a high-confidence GRHL2 target set. GRHL2 transactivated a group of genes including Ovol2, encoding the ovo-like 2 zinc finger transcription factor, as well as E-cadherin, claudin 4 (Cldn4), and the small GTPase Rab25. Ovol2 induction alone was sufficient to bypass the requirement of Grhl2 for E-cadherin, Cldn4, and Rab25 expression. Re-expression of either Ovol2 or a combination of Cldn4 and Rab25 was sufficient to rescue lumen expansion and barrier formation in Grhl2-deficient collecting duct cells. Hence, we identified a Grhl2/Ovol2 network controlling Cldn4 and Rab25 expression that facilitates lumen expansion and barrier formation in subtypes of renal epithelia.
Collapse
Affiliation(s)
- Annekatrin Aue
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; Experimental and Clinical Research Center, and
| | - Christian Hinze
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; Departments of Nephrology
| | | | - Janett Ruffert
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Yesim Yurtdas
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; Urology, Berlin Institute of Urologic Research, Berlin, Germany
| | - Max Werth
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Wei Chen
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Anja Rabien
- Urology, Berlin Institute of Urologic Research, Berlin, Germany
| | | | | | - Michael Schumann
- Gastroenterology, Charité Medical University, Berlin, Germany; and
| | - Kai M Schmidt-Ott
- Max Delbrueck Center for Molecular Medicine, Berlin, Germany; Experimental and Clinical Research Center, and Departments of Nephrology,
| |
Collapse
|
22
|
Tan F, Qian C, Tang K, Abd-Allah SM, Jing N. Inhibition of transforming growth factor β (TGF-β) signaling can substitute for Oct4 protein in reprogramming and maintain pluripotency. J Biol Chem 2014; 290:4500-11. [PMID: 25548277 DOI: 10.1074/jbc.m114.609016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mouse pluripotent stem cells (PSCs), such as ES cells and induced PSCs (iPSCs), are an excellent system to investigate the molecular and cellular mechanisms involved in early embryonic development. The signaling pathways orchestrated by leukemia inhibitor factor/STAT3, Wnt/β-catenin, and FGF/MEK/ERK play key roles in the generation of pluripotency. However, the function of TGF-β signaling in this process remains elusive. Here we show that inhibiting TGF-β signaling with its inhibitor SB431542 can substitute for Oct4 during reprogramming. Moreover, inhibiting TGF-β signaling can sustain the pluripotency of iPSCs and ES cells through modulating FGF/MEK/ERK signaling. Therefore, this study reveals a novel function of TGF-β signaling inhibition in the generation and maintenance of PSCs.
Collapse
Affiliation(s)
- Fangzhi Tan
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng Qian
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ke Tang
- the Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, China, and
| | - Saber Mohamed Abd-Allah
- the Theriogenology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Naihe Jing
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China,
| |
Collapse
|
23
|
OVOL2 is a critical regulator of ER71/ETV2 in generating FLK1+, hematopoietic, and endothelial cells from embryonic stem cells. Blood 2014; 124:2948-52. [PMID: 25267199 DOI: 10.1182/blood-2014-03-556332] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In this study, we report that OVOL2, a C2H2 zinc finger protein, is a novel binding protein of ER71, which is a critical transcription factor for blood and vessel development. OVOL2 directly interacted with ER71, but not with ETS1 or ETS2, in the nucleus. ER71-mediated activation of the Flk1 promoter was further enhanced by OVOL2, although OVOL2 alone failed to activate it. Consistently, coexpression of ER71 and OVOL2 in differentiating embryonic stem cells led to a significant augmentation of FLK1(+), endothelial, and hematopoietic cells. Such cooperative effects were impaired by the short hairpin RNA-mediated inhibition of Ovol2. Collectively, we show that ER71 directly interacts with OVOL2 and that such interaction is critical for FLK1(+) cell generation and their differentiation into downstream cell lineages.
Collapse
|
24
|
Mason EA, Mar JC, Laslett AL, Pera MF, Quackenbush J, Wolvetang E, Wells CA. Gene expression variability as a unifying element of the pluripotency network. Stem Cell Reports 2014; 3:365-77. [PMID: 25254348 PMCID: PMC4175554 DOI: 10.1016/j.stemcr.2014.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 12/16/2022] Open
Abstract
Heterogeneity is a hallmark of stem cell populations, in part due to the molecular differences between cells undergoing self-renewal and those poised to differentiate. We examined phenotypic and molecular heterogeneity in pluripotent stem cell populations, using public gene expression data sets. A high degree of concordance was observed between global gene expression variability and the reported heterogeneity of different human pluripotent lines. Network analysis demonstrated that low-variability genes were the most highly connected, suggesting that these are the most stable elements of the gene regulatory network and are under the highest regulatory constraints. Known drivers of pluripotency were among these, with lowest expression variability of POU5F1 in cells with the highest capacity for self-renewal. Variability of gene expression provides a reliable measure of phenotypic and molecular heterogeneity and predicts those genes with the highest degree of regulatory constraint within the pluripotency network. Gene expression variability is highly concordant with population heterogeneity Genes within the pluripotency network have distinct variability profiles Expression variability is a network property important for pluripotency
Collapse
Affiliation(s)
- Elizabeth A Mason
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane QSLD 4072, Australia
| | - Jessica C Mar
- The Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrew L Laslett
- Materials Science and Engineering, CSIRO, Clayton VIC 3168, Australia
| | - Martin F Pera
- The University of Melbourne, Florey Neuroscience and Mental Health Institute, and Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3010, Australia
| | - John Quackenbush
- Dana-Farber Cancer Institute, Harvard University, Boston, MA 02215 USA
| | - Ernst Wolvetang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane QSLD 4072, Australia
| | - Christine A Wells
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane QSLD 4072, Australia; Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK.
| |
Collapse
|
25
|
Watanabe K, Villarreal-Ponce A, Sun P, Salmans ML, Fallahi M, Andersen B, Dai X. Mammary morphogenesis and regeneration require the inhibition of EMT at terminal end buds by Ovol2 transcriptional repressor. Dev Cell 2014; 29:59-74. [PMID: 24735879 DOI: 10.1016/j.devcel.2014.03.006] [Citation(s) in RCA: 154] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/17/2014] [Accepted: 03/12/2014] [Indexed: 01/19/2023]
Abstract
Epithelial cells possess remarkable plasticity, having the ability to become mesenchymal cells through alterations in adhesion and motility (epithelial-to-mesenchymal transition [EMT]). However, how epithelial plasticity is kept in check in epithelial cells during tissue development and regeneration remains to be fully understood. Here we show that restricting the EMT of mammary epithelial cells by transcription factor Ovol2 is required for proper morphogenesis and regeneration. Deletion of Ovol2 blocks mammary ductal morphogenesis, depletes stem and progenitor cell reservoirs, and leads epithelial cells to undergo EMT in vivo to become nonepithelial cell types. Ovol2 directly represses myriad EMT inducers, and its absence switches response to TGF-β from growth arrest to EMT. Furthermore, forced expression of the repressor isoform of Ovol2 is able to reprogram metastatic breast cancer cells from a mesenchymal to an epithelial state. Our findings underscore the critical importance of exquisitely regulating epithelial plasticity in development and cancer.
Collapse
Affiliation(s)
- Kazuhide Watanabe
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Alvaro Villarreal-Ponce
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Michael L Salmans
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Magid Fallahi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
26
|
Lee B, Villarreal-Ponce A, Fallahi M, Ovadia J, Sun P, Yu QC, Ito S, Sinha S, Nie Q, Dai X. Transcriptional mechanisms link epithelial plasticity to adhesion and differentiation of epidermal progenitor cells. Dev Cell 2014; 29:47-58. [PMID: 24735878 DOI: 10.1016/j.devcel.2014.03.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 01/17/2014] [Accepted: 03/12/2014] [Indexed: 01/05/2023]
Abstract
During epithelial tissue morphogenesis, developmental progenitor cells undergo dynamic adhesive and cytoskeletal remodeling to trigger proliferation and migration. Transcriptional mechanisms that restrict such a mild form of epithelial plasticity to maintain lineage-restricted differentiation in committed epithelial tissues are poorly understood. Here, we report that simultaneous ablation of transcriptional repressor-encoding Ovol1 and Ovol2 results in expansion and blocked terminal differentiation of embryonic epidermal progenitor cells. Conversely, mice overexpressing Ovol2 in their skin epithelia exhibit precocious differentiation accompanied by smaller progenitor cell compartments. We show that Ovol1/Ovol2-deficient epidermal cells fail to undertake α-catenin-driven actin cytoskeletal reorganization and adhesive maturation and exhibit changes that resemble epithelial-to-mesenchymal transition (EMT). Remarkably, these alterations and defective terminal differentiation are reversed upon depletion of EMT-promoting transcriptional factor Zeb1. Collectively, our findings reveal Ovol-Zeb1-α-catenin sequential repression and highlight Ovol1 and Ovol2 as gatekeepers of epithelial adhesion and differentiation by inhibiting progenitor-like traits and epithelial plasticity.
Collapse
Affiliation(s)
- Briana Lee
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA
| | - Alvaro Villarreal-Ponce
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA
| | - Magid Fallahi
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA
| | - Jeremy Ovadia
- Department of Mathematics, University of California, Irvine, Irvine CA 92697, USA
| | - Peng Sun
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA
| | - Qian-Chun Yu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seiji Ito
- Department of Medical Chemistry, Kansai Medical University, Moriguchi 570-8506, Japan
| | - Satrajit Sinha
- Department of Biochemistry, State University of New York, Buffalo, NY 14260, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine CA 92697, USA
| | - Xing Dai
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine CA 92697, USA.
| |
Collapse
|
27
|
Zhu Q, Song L, Peng G, Sun N, Chen J, Zhang T, Sheng N, Tang W, Qian C, Qiao Y, Tang K, Han JDJ, Li J, Jing N. The transcription factor Pou3f1 promotes neural fate commitment via activation of neural lineage genes and inhibition of external signaling pathways. eLife 2014; 3. [PMID: 24929964 PMCID: PMC4095939 DOI: 10.7554/elife.02224] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 06/12/2014] [Indexed: 12/18/2022] Open
Abstract
The neural fate commitment of pluripotent stem cells requires the repression of extrinsic inhibitory signals and the activation of intrinsic positive transcription factors. However, how these two events are integrated to ensure appropriate neural conversion remains unclear. In this study, we showed that Pou3f1 is essential for the neural differentiation of mouse embryonic stem cells (ESCs), specifically during the transition from epiblast stem cells (EpiSCs) to neural progenitor cells (NPCs). Chimeric analysis showed that Pou3f1 knockdown leads to a markedly decreased incorporation of ESCs in the neuroectoderm. By contrast, Pou3f1-overexpressing ESC derivatives preferentially contribute to the neuroectoderm. Genome-wide ChIP-seq and RNA-seq analyses indicated that Pou3f1 is an upstream activator of neural lineage genes, and also is a repressor of BMP and Wnt signaling. Our results established that Pou3f1 promotes the neural fate commitment of pluripotent stem cells through a dual role, activating internal neural induction programs and antagonizing extrinsic neural inhibitory signals.
Collapse
Affiliation(s)
- Qingqing Zhu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lu Song
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Na Sun
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Chen
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting Zhang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Nengyin Sheng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Tang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Cheng Qian
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunbo Qiao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ke Tang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi, China
| | - Jing-Dong Jackie Han
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
28
|
Li N, Pan S, Zhu H, Mu H, Liu W, Hua J. BMP4 promotes SSEA-1(+) hUC-MSC differentiation into male germ-like cells in vitro. Cell Prolif 2014; 47:299-309. [PMID: 24923741 DOI: 10.1111/cpr.12115] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Recent studies have demonstrated that primordial germ cells (PGC) can be differentiated from human umbilical cord mesenchymal stem cells (hUC-MSCs), and embryonic stem cells (ESCs) in vitro. Nevertheless, efficiencies were low and unstable. Here, whether hUC-MSCs can be induced to differentiate into germ-like cells with the aid of bone morphogenetic protein (BMP4) was investigated. MATERIALS AND METHODS Human umbilical cord mesenchymal stem cells were freshly isolated and cultured with BMP4. SSEA-1(+/-) cells were purified using magnetic-activated cell sorting (MACS) from the hUC-MSCs, and further induced with BMP4. Quantitative real-time PCR (qRT-PCR) and immunofluorescence analysis were used to determine PGC and germ-like cell-specific markers. RESULTS Human umbilical cord mesenchymal stem cells differentiated into SSEA-1(+) spherical PGC-like cells efficiently with 12.5 ng/ml BMP4. qRT-PCR and immunofluorescence analysis demonstrated that SSEA-1(+) cells expressed higher levels of PGC-specific markers than SSEA-1(-) cells. Furthermore, SSEA-1(+) cells were induced with BMP4 to differentiate into STRA8, SCP3, DMRT1 and PLZF-positive male germ-like cells, and some sperm-like cells were obtained by 7-14 days after induction. CONCLUSION These results suggest that SSEA-1(+) hUC-MSCs can differentiate into male germ-like cells in the presence of BMP4. This study provides an efficient protocol to study germ-cell development using hUC-MSCs.
Collapse
Affiliation(s)
- N Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Key Lab for Animal Biotechnology of Agriculture Ministry of China, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | | | | | | |
Collapse
|