1
|
Wei Y, Palazzolo L, Ben Mariem O, Bianchi D, Laurenzi T, Guerrini U, Eberini I. Investigation of in silico studies for cytochrome P450 isoforms specificity. Comput Struct Biotechnol J 2024; 23:3090-3103. [PMID: 39188968 PMCID: PMC11347072 DOI: 10.1016/j.csbj.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024] Open
Abstract
Cytochrome P450 (CYP450) enzymes comprise a highly diverse superfamily of heme-thiolate proteins that responsible for catalyzing over 90 % of enzymatic reactions associated with xenobiotic metabolism in humans. Accurately predicting whether chemicals are substrates or inhibitors of different CYP450 isoforms can aid in pre-selecting hit compounds for the drug discovery process, chemical toxicology studies, and patients treatment planning. In this work, we investigated in silico studies on CYP450s specificity over past twenty years, categorizing these studies into structure-based and ligand-based approaches. Subsequently, we utilized 100 of the most frequently prescribed drugs to test eleven machine learning-based prediction models which were published between 2015 and 2024. We analyzed various aspects of the evaluated models, such as their datasets, algorithms, and performance. This will give readers with a comprehensive overview of these prediction models and help them choose the most suitable one to do prediction. We also provide our insights for future research trend in both structure-based and ligand-based approaches in this field.
Collapse
Affiliation(s)
- Yao Wei
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy
| | - Luca Palazzolo
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy
| | - Omar Ben Mariem
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy
| | - Davide Bianchi
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy
| | - Tommaso Laurenzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy
| | - Uliano Guerrini
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy
| | - Ivano Eberini
- Dipartimento di Scienze Farmacologiche e Biomolecolari “Rodolfo Paoletti”, Università degli Studi di Milano, Via Giuseppe Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
2
|
Pedroni L, Perugino F, Dall'Asta C, Galaverna G, Buratti FM, Testai E, Dellafiora L. Computational journey to unveil organophosphorothioate pesticides' metabolism: A focus on chlorpyrifos and CYP2C19 mutational landscape. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117354. [PMID: 39571261 DOI: 10.1016/j.ecoenv.2024.117354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/25/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
Organophosphorothioates (OPT) are pesticides impacting human, animal and environmental health. They enter the environment worldwide, primarily due to their application as insecticides. OPTs are mainly neurotoxic upon bioactivation and inhibition of brain and serum acetylcholinesterase (AChE). Although OPTs are meant to target insects, they are potentially toxic to many other species (including humans), posing risks to non-target organisms and ecosystems. Certain cytochromes P450 (CYP) promote OPTs bioactivation, forming the corresponding oxon metabolites, while others catalyse their detoxification. Understanding the molecular basis of such a bivalent fate may help to clarify the toxicity of OPTs in living organisms, with far-reaching consequences to understand their impact on living organisms and improve risk assessment, to cite but a few. However, although crucial, the underpinning mechanisms still lay unclear. Here, a validated computational pipeline revealed the molecular reasons underlying the differential metabolism of chlorpyrifos in humans by CYP2C19, a primal route of detoxification, and its bioactivation by CYP2B6. The analysis drew the diverse occupancy of the CYP pocket and orientation to the heme group as a convincing evidence-based explanation for the opposite transformation. Moreover, this study explored the impact of CYP2C19 mutational landscape giving a blueprint to unveil the molecular basis of OPTs metabolism and toxicological implications from an inter-individual perspective. Taken together, the outcome described for the first time to the best of our knowledge a structural rationale for the bioactivation/detoxification of OPTs improving the current understanding of their toxicity from a molecular standpoint.
Collapse
Affiliation(s)
- Lorenzo Pedroni
- Department of Food and Drug, University of Parma, Parma, Italy
| | - Florinda Perugino
- Department of Food and Drug, University of Parma, Parma, Italy; Department of Biology, University of Naples Federico II, Naples, Italy
| | | | | | | | - Emanuela Testai
- Istituto Superiore di Sanità, Environment & Health Dept., Roma, Italy
| | - Luca Dellafiora
- Department of Food and Drug, University of Parma, Parma, Italy.
| |
Collapse
|
3
|
Zhang L, Jiang P, Jin H, Zhang C. Achieving Regioselectivity for Remote C-H Activation by Substructure Conformations: an Approach of Paralogous Cytochrome P450 Enzymes. Chemistry 2024; 30:e202402635. [PMID: 39194284 DOI: 10.1002/chem.202402635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
For advanced synthetic intermediates or natural products with multiple unactivated and energetically similar C(sp3)-H bonds, controlling regioselectivity for the C-H activation is particularly challenging. The use of cytochrome P450 enzymes (CYPs) is a promising solution to the 'regioelectivity' challenge in remote C-H activation. Notably, CYPs and organic catalysts share a fundamental principle: they strive to control the distance and geometry between the metal reaction center and the target C-H site. Most structural analyses of the regioselectivity of CYPs are limited to the active pocket, particularly when explaining why regioselectivity could be altered by enzyme engineering through mutagenesis. However, the substructures responsible for forming the active pocket in CYPs are well known to display complex dynamic changes and substrate-induced plasticity. In this context, we highlight a comparative study of the recently reported paralogous CYPs, IkaD and CftA, which achieve different regioselectivity towards the same substrate ikarugamycin by distinct substructure conformations. We propose that substructural conformation-controlled regioselectivity might also be present in CYPs of other natural product biosynthesis pathways, which should be considered when engineering CYPs for regioselective modifications.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Science, College of Marine Sciences, 19 Yuquan Road, Beijing, 100049, China
- Sanya Institute of Oceanology Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya, 572000, China
| | - Peng Jiang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Science, College of Marine Sciences, 19 Yuquan Road, Beijing, 100049, China
| | - Hongbo Jin
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bioresources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou, 510301, China
- University of Chinese Academy of Science, College of Marine Sciences, 19 Yuquan Road, Beijing, 100049, China
- Sanya Institute of Oceanology Eco-Environmental Engineering, Yazhou Scientific Bay, Sanya, 572000, China
| |
Collapse
|
4
|
Boyle GE, Sitko KA, Galloway JG, Haddox HK, Bianchi AH, Dixon A, Wheelock MK, Vandi AJ, Wang ZR, Thomson RES, Garge RK, Rettie AE, Rubin AF, Geck RC, Gillam EMJ, DeWitt WS, Matsen FA, Fowler DM. Deep mutational scanning of CYP2C19 in human cells reveals a substrate specificity-abundance tradeoff. Genetics 2024; 228:iyae156. [PMID: 39319420 PMCID: PMC11538415 DOI: 10.1093/genetics/iyae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/31/2024] [Indexed: 09/26/2024] Open
Abstract
The cytochrome P450s enzyme family metabolizes ∼80% of small molecule drugs. Variants in cytochrome P450s can substantially alter drug metabolism, leading to improper dosing and severe adverse drug reactions. Due to low sequence conservation, predicting variant effects across cytochrome P450s is challenging. Even closely related cytochrome P450s like CYP2C9 and CYP2C19, which share 92% amino acid sequence identity, display distinct phenotypic properties. Using variant abundance by massively parallel sequencing, we measured the steady-state protein abundance of 7,660 single amino acid variants in CYP2C19 expressed in cultured human cells. Our findings confirmed critical positions and structural features essential for cytochrome P450 function, and revealed how variants at conserved positions influence abundance. We jointly analyzed 4,670 variants whose abundance was measured in both CYP2C19 and CYP2C9, finding that the homologs have different variant abundances in substrate recognition sites within the hydrophobic core. We also measured the abundance of all single and some multiple wild type amino acid exchanges between CYP2C19 and CYP2C9. While most exchanges had no effect, substitutions in substrate recognition site 4 reduced abundance in CYP2C19. Double and triple mutants showed distinct interactions, highlighting a region that points to differing thermodynamic properties between the 2 homologs. These positions are known contributors to substrate specificity, suggesting an evolutionary tradeoff between stability and enzymatic function. Finally, we analyzed 368 previously unannotated human variants, finding that 43% had decreased abundance. By comparing variant effects between these homologs, we uncovered regions underlying their functional differences, advancing our understanding of this versatile family of enzymes.
Collapse
Affiliation(s)
- Gabriel E Boyle
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katherine A Sitko
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jared G Galloway
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Hugh K Haddox
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Aisha Haley Bianchi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ajeya Dixon
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Melinda K Wheelock
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Allyssa J Vandi
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Ziyu R Wang
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Raine E S Thomson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4067, Australia
| | - Riddhiman K Garge
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA 98195, USA
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Alan F Rubin
- Bioinformatics Division, Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia
| | - Renee C Geck
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4067, Australia
| | - William S DeWitt
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Frederick A Matsen
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Seattle, WA 98109, USA
- Department of Statistics, University of Washington, Seattle, WA 98195, USA
| | - Douglas M Fowler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Mokhosoev IM, Astakhov DV, Terentiev AA, Moldogazieva NT. Cytochrome P450 monooxygenase systems: Diversity and plasticity for adaptive stress response. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 193:19-34. [PMID: 39245215 DOI: 10.1016/j.pbiomolbio.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Superfamily of cytochromes P450 (CYPs) is composed of heme-thiolate-containing monooxygenase enzymes, which play crucial roles in the biosynthesis, bioactivation, and detoxification of a variety of organic compounds, both endogenic and exogenic. Majority of CYP monooxygenase systems are multi-component and contain various redox partners, cofactors and auxiliary proteins, which contribute to their diversity in both prokaryotes and eukaryotes. Recent progress in bioinformatics and computational biology approaches make it possible to undertake whole-genome and phylogenetic analyses of CYPomes of a variety of organisms. Considerable variations in sequences within and between CYP families and high similarity in secondary and tertiary structures between all CYPs along with dramatic conformational changes in secondary structure elements of a substrate binding site during catalysis have been reported. This provides structural plasticity and substrate promiscuity, which underlie functional diversity of CYPs. Gene duplication and mutation events underlie CYP evolutionary diversity and emergence of novel selectable functions, which provide the involvement of CYPs in high adaptability to changing environmental conditions and dietary restrictions. In our review, we discuss the recent advancements and challenges in the elucidating the evolutionary origin and mechanisms underlying the CYP monooxygenase system diversity and plasticity. Our review is in the view of hypothesis that diversity of CYP monooxygenase systems is translated into the broad metabolic profiles, and this has been acquired during the long evolutionary time to provide structural plasticity leading to high adaptative capabilities to environmental stress conditions.
Collapse
Affiliation(s)
| | - Dmitry V Astakhov
- Department of Biochemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Alexander A Terentiev
- Department of Biochemistry and Molecular Biology, N.I. Pirogov Russian National Research Medical University, 117997, Moscow, Russia
| | | |
Collapse
|
6
|
Guvench O. Effect of Lipid Bilayer Anchoring on the Conformational Properties of the Cytochrome P450 2D6 Binding Site. J Phys Chem B 2024; 128:7188-7198. [PMID: 39016537 DOI: 10.1021/acs.jpcb.4c03097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Human cytochrome P450 (CYP) proteins metabolize 75% of small-molecule pharmaceuticals, which makes structure-based modeling of CYP metabolism and inhibition, bolstered by the current availability of X-ray crystal structures of CYP globular catalytic domains, an attractive prospect. Accounting for this broad metabolic capacity is a combination of the existence of multiple different CYP proteins and the capacity of a single CYP protein to metabolize multiple different small molecules. It is thought that structural plasticity and flexibility contribute to this latter property; therefore, incorporating diverse conformational states of a particular CYP is likely an important consideration in structure-based CYP metabolism and inhibition modeling. While all-atom explicit-solvent molecular dynamics simulations can be used to generate conformational ensembles under biologically relevant conditions, existing CYP crystal structures are of the globular domain only, whereas human CYPs contain N-terminal transmembrane and linker peptides that anchor the globular catalytic domain to the endoplasmic reticulum. To determine whether this can cause significant differences in the sampled binding site conformations, microsecond scale all-atom explicit-solvent molecular dynamics simulations of the CYP2D6 globular domain in an aqueous environment were compared with those of the full-length protein anchored in a POPC lipid bilayer. While bilayer-anchoring damped some structural fluctuations in the globular domain relative to the aqueous simulations, none of the affected residues included binding site pocket residues. Furthermore, clustering of molecular dynamics snapshots based on either pairwise binding site pocket RMSD or volume differences demonstrated a lack of separation of snapshots from the two simulation conditions into different clusters. These results suggest the substantially simpler and computationally cheaper aqueous simulation approach can be used to generate a relevant conformational ensemble of the CYP2D6 binding site for structure-based metabolism and inhibition modeling.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences and Administration, School of Pharmacy, Westbrook College of Health Professions, University of New England, 716 Stevens Ave, Portland, Maine 04103, United States
| |
Collapse
|
7
|
Alshehri KM, Abdella EM. Galloyl-oligochitosan nano-vehicles for effective and controlled propolis delivery targeting upgrading its antioxidant and antiproliferative potential. Int J Biol Macromol 2024; 270:132283. [PMID: 38735605 DOI: 10.1016/j.ijbiomac.2024.132283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/04/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
A new conjugate, galloyl-oligochitosan nanoparticles (GOCNPs), was fabricated and used as nano-vehicle for effective and controlled delivery of propolis extract (PE) in the form of PE#GOCNPs, targeting improving its pharmaceutical potential. H-bonding interactions between the carboxyl, amino, and hydroxyl groups of the GOCNPs and PE resulted in successful encapsulation, with an entrapment efficacy of 97.3 %. The PE#GOCNPs formulation also exhibited excellent physicochemical stability and time-triggered drug release characteristics under physiological conditions. Furthermore, PE#GOCNPs showed significant activity against MCF-7 and HEPG2 carcinoma cells by scavenging free oxygen radicals and upregulating antioxidant enzymes. Additionally, PE#GOCNPs displayed anti-inflammatory properties by increasing IL10 and reducing pro-inflammatory cytokines more effectively than celecoxib. Furthermore, PE#GOCNPs reduced the expression of epidermal growth factor receptor (EGFR) and survivin genes. Furthermore, the encapsulated PE demonstrated significant activity in suppressing sonic hedgehog protein (SHH). The use of GOCNPs in combination with propolis presents a promising new strategy for chemotherapy with reduced toxicity and enhanced biocompatibility. This novel approach has the potential to revolutionize the field of chemotherapy. Future studies should focus on the application of the encapsulated PE in various cancer cell lines, distinct gene expression factors, and cell cycles.
Collapse
Affiliation(s)
| | - Ehab M Abdella
- Department of Biology, Al-Baha University, Saudi Arabia; Zoology department faculty of science Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
8
|
Yamoune S, Müller JP, Langmia IM, Scholl C, Stingl JC. Uncoupling of Cytochrome P450 2B6 and stimulation of reactive oxygen species production in pharmacogenomic alleles affected by interethnic variability. Biochim Biophys Acta Gen Subj 2024; 1868:130595. [PMID: 38467309 DOI: 10.1016/j.bbagen.2024.130595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Cytochrome P450 mediated substrate metabolism is generally characterized by the formation of reactive intermediates. In vitro and in vivo reaction uncoupling, results in the accumulation and dissociation of reactive intermediates, leading to increased ROS formation. The susceptibility towards uncoupling and altered metabolic activity is partly modulated by pharmacogenomic alleles resulting in amino acid substitutions. A large variability in the prevalence of these alleles has been demonstrated in CYP2B6, with some being predominantly unique to African populations. The aim of this study is to characterize the uncoupling potential of recombinant CYP2B6*1, CYP2B6*6 and CYP2B6*34 metabolism of specific substrates. Therefore, functional effects of these alterations on enzyme activity were determined by quantification of bupropion, efavirenz and ketamine biotransformation using HPLC-MS/MS. Determination of H2O2 levels was performed by the AmplexRed/horseradish peroxidase assay. Our studies of the amino acid substitutions Q172H, K262R and R487S revealed an exclusive use of the peroxide shunt for the metabolism of bupropion and ketamine by CYP2B6*K262R. Ketamine was also identified as a trigger for the peroxide shunt in CYP2B6*1 and all variants. Concurrently, ketamine acted as an uncoupler for all enzymes. We further showed that the expressed CYP2B6*34 allele results in the highest H2O2 formation. We therefore conclude that the reaction uncoupling and peroxide shunt are directly linked and can be substrate specifically induced with K262R carriers being most likely to use the peroxide shunt and R487S carrier being most prone to reaction uncoupling. This elucidates the functional diversity of pharmacogenomics in drug metabolism and safety.
Collapse
Affiliation(s)
- Sabrina Yamoune
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Germany; Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany.
| | - Julian Peter Müller
- Institute of Clinical Pharmacology, University Hospital of RWTH Aachen, Germany
| | | | - Catharina Scholl
- Research Division, Federal Institute for Drugs and Medical Devices (BfArM), Bonn, Germany
| | | |
Collapse
|
9
|
Ramírez RE, Buendia-Corona RE, Pérez-Xochipa I, Scior T. Computational Binding Study Hints at Ecdysone 20-Mono-Oxygenase as the Hitherto Unknown Target for Ring C-Seco Limonoid-Type Insecticides. Molecules 2024; 29:1628. [PMID: 38611907 PMCID: PMC11013123 DOI: 10.3390/molecules29071628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
The insecticidal property of ring C-seco limonoids has been discovered empirically and the target protein identified, but, to date, the molecular mechanism of action has not been described at the atomic scale. We elucidate on computational grounds whether nine C-seco limonoids present sufficiently high affinity to bind specifically with the putative target enzyme of the insects (ecdysone 20-monooxygenase). To this end, 3D models of ligands and the receptor target were generated and their interaction energies estimated by docking simulations. As a proof of concept, the tetrahydro-isoquinolinyl propenamide derivative QHC is the reference ligand bound to aldosterone synthase in the complex with PDB entry 4ZGX. It served as the 3D template for target modeling via homology. QHC was successfully docked back to its crystal pose in a one-digit nanomolar range. The reported experimental binding affinities span over the nanomolar to lower micromolar range. All nine limonoids were found with strong affinities in the range of -9 < ΔG < -13 kcal/mol. The molt hormone ecdysone showed a comparable ΔG energy of -12 kcal/mol, whereas -11 kcal/mol was the back docking result for the liganded crystal 4ZGX. In conclusion, the nine C-seco limonoids were strong binders on theoretical grounds in an activity range between a ten-fold lower to a ten-fold higher concentration level than insecticide ecdysone with its known target receptor. The comparable or even stronger binding hints at ecdysone 20-monooxygenase as their target biomolecule. Our assumption, however, is in need of future experimental confirmation before conclusions with certainty can be drawn about the true molecular mechanism of action for the C-seco limonoids under scrutiny.
Collapse
Affiliation(s)
- Ramsés E. Ramírez
- Departamento de Fisicomatemáticas, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico; (R.E.R.); (R.E.B.-C.)
| | - Ricardo E. Buendia-Corona
- Departamento de Fisicomatemáticas, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico; (R.E.R.); (R.E.B.-C.)
| | - Ivonne Pérez-Xochipa
- Departamento de Bioquímica Alimentos, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico;
| | - Thomas Scior
- Laboratorio de Simulaciones Moleculares Computacionales, Facultad de Ciencias Químicas Benemérita, Universidad Autónoma de Puebla, Prol. 24 Sur, Puebla 72570, Mexico
| |
Collapse
|
10
|
Lu X, van der Meer TP, Kamali Z, van Faassen M, Kema IP, van Beek AP, Xu X, Huo X, Ani A, Nolte IM, Wolffenbuttel BHR, van Vliet-Ostaptchouk JV, Snieder H. A genome-wide association study of 24-hour urinary excretion of endocrine disrupting chemicals. ENVIRONMENT INTERNATIONAL 2024; 183:108396. [PMID: 38150807 DOI: 10.1016/j.envint.2023.108396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/29/2023]
Abstract
Ubiquitous exposure to environmental endocrine disrupting chemicals (EDCs) instigates a major public health problem, but much remains unknown on the inter-individual differences in metabolism and excretion of EDCs. To examine this we performed a two-stage genome-wide association study (GWAS) for 24-hour urinary excretions of four parabens, two bisphenols, and nine phthalate metabolites. Results showed five genome-wide significant (p-value < 5x10-8) and replicated single nucleotide polymorphisms (SNPs) representing four independent signals that associated with mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP) and mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP). Three of the four signals were located on chromosome 10 in a locus harboring the cytochrome P450 (CYP) genes CYP2C9, CYP2C58P, and CYP2C19 (rs117529685, pMECPP = 5.38x10-25; rs117033379, pMECPP = 1.96x10-19; rs4918798, pMECPP = 4.01x10-71; rs7895726, pMEHHP = 1.37x10-15, r2 with rs4918798 = 0.93). The other signal was on chromosome 6 close to the solute carrier (SLC) genes SLC17A1, SLC17A3, SLC17A4, and SCGN (rs1359232, pMECPP = 7.6x10-16). These four SNPs explained a substantial part (8.3 % - 9.2 %) of the variance in MECPP in the replication cohort. Bioinformatics analyses supported a likely causal role of CYP2C9 and SLC17A1 in metabolism and excretion of MECPP and MEHHP. Our results provide biological insights into mechanisms of phthalate metabolism and excretion with a likely causal role for CYP2C9 and SLC17A1.
Collapse
Affiliation(s)
- Xueling Lu
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Guangdong, China
| | - Thomas P van der Meer
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Zoha Kamali
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| | - Martijn van Faassen
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - André P van Beek
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 510632, Guangdong, China
| | - Alireza Ani
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands; Department of Bioinformatics, Isfahan University of Medical Sciences, Isfahan 81746-7346, Iran
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Bruce H R Wolffenbuttel
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Jana V van Vliet-Ostaptchouk
- Department of Genetics, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, 9713 GZ, Groningen, the Netherlands.
| |
Collapse
|
11
|
Takeji S, Okada M, Hayashi S, Kanamaru K, Uno Y, Imaishi H, Uno T. Metabolism of testosterone and progesterone by cytochrome P450 2C19 allelic variants. Biopharm Drug Dispos 2023; 44:420-430. [PMID: 37815926 DOI: 10.1002/bdd.2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 08/29/2023] [Accepted: 09/19/2023] [Indexed: 10/12/2023]
Abstract
CYP2C19 is a member of the human microsomal cytochrome P450 (CYP). Significant variation in CYP2C19 levels and activity can be attributed to polymorphisms in this gene. Wildtype CYP2C19 and 13 mutants (CYP2C19.1B, CYP2C19.5A, CYP2C19.5B, CYP2C19.6, CYP2C19.8, CYP2C19.9, CYP2C19.10, CYP2C19.11, CYP2C19.13, CYP2C19.16, CYP2C19.19, CYP2C19.23, CYP2C19.30, and CYP2C19.33) were coexpressed with NADPH-cytochrome P450 reductase in Escherichia coli. Hydroxylase activity toward testosterone and progesterone was also examined. Ten CYP2C19 variants showed Soret peaks (450 nm) typical of P450 in the reduced CO-difference spectra. CYP2C19.11 and CYP2C19.23 showed higher testosterone 11α, 16α-/17- and progesterone 6β-,21-,16α-/17α-hydroxylase activities than CYP2C19.1B. CYP2C19.6, CYP2C19.16, CYP2C19.19, and CYP2C19.30 showed lower activity than CYP2C19.1B. CYP2C19.9, CYP2C19.10. CYP2C19.13, and CYP2C19.33 showed different hydroxylation activities than CYP2C19.1B. These results indicated that CYP2C19 variants have very different substrate specificities for testosterone and progesterone.
Collapse
Affiliation(s)
- Shiori Takeji
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Mai Okada
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Shu Hayashi
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Kengo Kanamaru
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yuichi Uno
- Department of Plant Resource Science, Faculty of Agriculture, Kobe University, Kobe, Japan
| | - Hiromasa Imaishi
- Functional Analysis of Environmental Genes, Research Center for Environmental, Genomics, Kobe University, Kobe, Japan
| | - Tomohide Uno
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
12
|
Xie J, Pan T, Luo W, Zhang S, Fang Y, Xu Z. CYP2C19 *2/*2 Genotype is a Risk Factor for Multi-Site Arteriosclerosis: A Hospital-Based Cohort Study. Int J Gen Med 2023; 16:5139-5146. [PMID: 37954650 PMCID: PMC10637229 DOI: 10.2147/ijgm.s437251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Background Vascular diseases such as atherosclerosis usually affect multiple organs. Genetic factors have a certain proportion in the risk factors of atherosclerosis. The purpose was to investigate the relationship of cytochrome P450 2C19 (CYP2C19) polymorphisms with multi-site atherosclerosis. Methods The study included 410 patients with single-site atherosclerosis and 529 patients with multi-site atherosclerosis. The relationship between CYP2C19 rs4244285 and rs4986893 polymorphisms and single-site atherosclerosis and multi-site atherosclerosis was analyzed. Results The proportion of CYP2C19 rs4244285 A allele (35.9% vs 29.9%, P=0.007) and rs4986893 G allele (97.7% vs 94.8%, P=0.001) in multi-site atherosclerosis group was significantly higher than that in single-site atherosclerosis group. The distribution of CYP2C19 genotypes was significantly different between the two groups (P=0.002). The results of univariate logistic regression indicated that CYP2C19 *1/*3 genotype (*1/*3 vs *1/*1: odds ratio (OR) 0.456, 95% confidence interval (CI): 0.231-0.902, P=0.024) may decrease risk of multi-site atherosclerosis, while *2/*2 genotype (*2/*2 vs *1/*1: OR 1.780, 95% CI: 1.100-2.880, P=0.019) may increase risk of multi-site atherosclerosis. Multivariate logistic regression (adjusted for gender, age, smoking, drinking, hypertension, and diabetes) indicated that CYP2C19 *1/*3 genotype (*1/*3 vs *1/*1: OR 0.459, 95% CI: 0.231-0.909, P=0.026) may be an independent protective factor for multi-site atherosclerosis, while *2/*2 genotype (*2/*2 vs *1/*1: OR 1.767, 95% CI: 1.091-2.864, P=0.021) may be an independent risk factor for multi-site atherosclerosis. Conclusion CYP2C19 *1/*3 genotype may be an independent protective factor for multi-site atherosclerosis, while *2/*2 genotype may be an independent risk factor for multi-site atherosclerosis.
Collapse
Affiliation(s)
- Jieyao Xie
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Tingjun Pan
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Weiwen Luo
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Songsheng Zhang
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Yuquan Fang
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| | - Zhou Xu
- Intensive Care Unit, Meizhou People’s Hospital, Meizhou Academy of Medical Sciences, Meizhou, People’s Republic of China
| |
Collapse
|
13
|
Mokkawes T, De Visser T, Cao Y, De Visser SP. Melatonin Activation by Human Cytochrome P450 Enzymes: A Comparison between Different Isozymes. Molecules 2023; 28:6961. [PMID: 37836804 PMCID: PMC10574541 DOI: 10.3390/molecules28196961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Cytochrome P450 enzymes in the human body play a pivotal role in both the biosynthesis and the degradation of the hormone melatonin. Melatonin plays a key role in circadian rhythms in the body, but its concentration is also linked to mood fluctuations as well as emotional well-being. In the present study, we present a computational analysis of the binding and activation of melatonin by various P450 isozymes that are known to yield different products and product distributions. In particular, the P450 isozymes 1A1, 1A2, and 1B1 generally react with melatonin to provide dominant aromatic hydroxylation at the C6-position, whereas the P450 2C19 isozyme mostly provides O-demethylation products. To gain insight into the origin of these product distributions of the P450 isozymes, we performed a comprehensive computational study of P450 2C19 isozymes and compared our work with previous studies on alternative isozymes. The work covers molecular mechanics, molecular dynamics and quantum mechanics approaches. Our work highlights major differences in the size and shape of the substrate binding pocket amongst the different P450 isozymes. Consequently, substrate binding and positioning in the active site varies substantially within the P450 isozymes. Thus, in P450 2C19, the substrate is oriented with its methoxy group pointing towards the heme, and therefore reacts favorably through hydrogen atom abstraction, leading to the production of O-demethylation products. On the other hand, the substrate-binding pockets in P450 1A1, 1A2, and 1B1 are tighter, direct the methoxy group away from the heme, and consequently activate an alternative site and lead to aromatic hydroxylation instead.
Collapse
Affiliation(s)
| | | | | | - Sam P. De Visser
- Department of Chemical Engineering, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| |
Collapse
|
14
|
Huang H, Zhao Y, Huang C, Lv N, Zhao J, Sun S, Guo C, Zhao D, Chen X, Zhang Y. Unraveling a Combined Inactivation Mechanism of Cytochrome P450s by Genipin, the Major Reactive Aglycone Derived from Gardeniae Fructus. Chem Res Toxicol 2023; 36:1483-1494. [PMID: 37622730 DOI: 10.1021/acs.chemrestox.3c00102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Genipin (GP) is the reactive aglycone of geniposide, the main component of traditional Chinese medicine Gardeniae Fructus (GF). The covalent binding of GP to cellular proteins is suspected to be responsible for GF-induced hepatotoxicity and inhibits drug-metabolizing enzyme activity, although the mechanisms remain to be clarified. In this study, the mechanisms of GP-induced human hepatic P450 inactivation were systemically investigated. Results showed that GP inhibited all tested P450 isoforms via distinct mechanisms. CYP2C19 was directly and irreversibly inactivated without time dependency. CYP1A2, CYP2C9, CYP2D6, and CYP3A4 T (testosterone as substrate) showed time-dependent and mixed-type inactivation, while CYP2B6, CYP2C8, and CYP3A4 M (midazolam as substrate) showed time-dependent and irreversible inactivation. For CYP3A4 inactivation, the kinact/KI values in the presence or absence of NADPH were 0.26 or 0.16 min-1 mM-1 for the M site and 0.62 or 0.27 min-1 mM-1 for the T site. Ketoconazole and glutathione (GSH) both attenuated CYP3A4 inactivation, suggesting an active site occupation- and reactive metabolite-mediated inactivation mechanism. Moreover, the in vitro and in vivo formation of a P450-dependent GP-S-GSH conjugate indicated the involvement of metabolic activation and thiol residues binding in GP-induced enzyme inactivation. Lastly, molecular docking analysis simulated potential binding sites and modes of GP association with CYP2C19 and CYP3A4. We propose that direct covalent binding and metabolic activation mediate GP-induced P450 inactivation and alert readers to potential risk factors for GP-related clinical drug-drug interactions.
Collapse
Affiliation(s)
- Haoyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yulin Zhao
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chunyan Huang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ning Lv
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jie Zhao
- Pharmaceutical Animal Experimental Center, China Pharmaceutical University, Nanjing 210009, China
| | - Shanliang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu 210023, China
| | - Chaorui Guo
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Di Zhao
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xijing Chen
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Yongjie Zhang
- Clinical Pharmacology Research Center, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
15
|
Yuan LJ, Li XY, Ni JH, Wang J, Xu XY, Luo JC, Zhou Q, Hu GX, Cai JP, Qian JC. Functional evaluation of CYP2C19 and CYP3A4 gene polymorphism on ibuprofen metabolism. Toxicol Appl Pharmacol 2023; 475:116653. [PMID: 37574146 DOI: 10.1016/j.taap.2023.116653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
AIM Ibuprofen is the most commonly used analgesic. CYP polymorphisms are mainly responsible for the differences in drug metabolism among individuals. Variations in the ability of populations to metabolize ibuprofen can lead to drug exposure events. The aim of this study was to evaluate the effects of CYP2C19 and CYP3A4 polymorphisms on ibuprofen metabolism in a Chinese population. METHODS First, 31 CYP2C19 and 12 CYP3A4 microsomal enzymes were identified using an insect expression system. Then, variants were evaluated using a mature incubation system. Moreover, ibuprofen metabolite content was determined via ultra-performance liquid chromatography-tandem mass spectrometry analysis. Finally, kinetic parameters of CYP2C19 and CYP3A4 genotypes were determined via Michaelis-Menten curve fitting. RESULTS Most variants exhibited significantly altered intrinsic clearance compared to the wild type. In the CYP2C19 metabolic pathway, seven variants exhibited no significant alterations in intrinsic clearance (CLint), six variants exhibited significantly high CLint (121-291%), and the remaining 15 variants exhibited substantially reduced CLint (1-71%). In the CYP3A4 metabolic pathway, CYP3A4*30 was not detected in the metabolite content due to the absence of activity, and 10 variants exhibited significantly reduced CLint. CONCLUSION To the best of our knowledge, this is the first study to assess the kinetic characteristics of 31 CYP2C19 and 12 CYP3A4 genotypes on ibuprofen metabolism. However, further studies are needed on poor metabolizers as they are more susceptible to drug exposure. Our findings suggest that the kinetic characteristics in combination with artificial intelligence to predict the toxicity of ibuprofen and reduce any adverse drug reactions.
Collapse
Affiliation(s)
- Ling-Jing Yuan
- Department of Pharmacy, Shaoxing Second Hospital, Shaoxing, Zhejiang, China
| | - Xiang-Yu Li
- Department of Pharmacy, Shaoxing Keqiao Women & Children΄s Hospital, Shaoxing, Zhejiang, China
| | - Jin-Huan Ni
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Wang
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Yu Xu
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Chao Luo
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qi Zhou
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guo-Xin Hu
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Ping Cai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, PR China.
| | - Jian-Chang Qian
- School of Pharmaceutical Sciences, School of Pharmacy of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
16
|
Rosellini M, Schulze A, Omer EA, Ali NT, Marini F, Küpper JH, Efferth T. The Effect of Plastic-Related Compounds on Transcriptome-Wide Gene Expression on CYP2C19-Overexpressing HepG2 Cells. Molecules 2023; 28:5952. [PMID: 37630204 PMCID: PMC10459118 DOI: 10.3390/molecules28165952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
In recent years, plastic and especially microplastic in the oceans have caused huge problems to marine flora and fauna. Recently, such particles have also been detected in blood, breast milk, and placenta, underlining their ability to enter the human body, presumably via the food chain and other yet-unknown mechanisms. In addition, plastic contains plasticizers, antioxidants, or lubricants, whose impact on human health is also under investigation. At the cellular level, the most important enzymes involved in the metabolism of xenobiotic compounds are the cytochrome P450 monooxygenases (CYPs). Despite their extensive characterization in the maintenance of cellular balance, their interactions with plastic and related products are unexplored. In this study, the possible interactions between several plastic-related compounds and one of the most important cytochromes, CYP2C19, were analyzed. By applying virtual compound screening and molecular docking to more than 1000 commercially available plastic-related compounds, we identified candidates that are likely to interact with this protein. A growth inhibition assay confirmed their cytotoxic activity on a CYP2C19-transfected hepatic cell line. Subsequently, we studied the effect of the selected compounds on the transcriptome-wide gene expression level by conducting RNA sequencing. Three candidate molecules were identified, i.e., 2,2'-methylene bis(6-tert-butyl-4-methylphenol), 1,1-bis(3,5-di-tert-butyl-2-hydroxyphenyl) ethane, and 2,2'-methylene bis(6-cyclohexyl-4-methylphenol)), which bound with a high affinity to CYP2C19 in silico. They exerted a profound cytotoxicity in vitro and interacted with several metabolic pathways, of which the 'cholesterol biosynthesis process' was the most affected. In addition, other affected pathways involved mitosis, DNA replication, and inflammation, suggesting an increase in hepatotoxicity. These results indicate that plastic-related compounds could damage the liver by affecting several molecular pathways.
Collapse
Affiliation(s)
- Matteo Rosellini
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (M.R.); (E.A.O.); (N.T.A.)
| | - Alicia Schulze
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes, Gutenberg University, 55122 Mainz, Germany; (A.S.); (F.M.)
| | - Ejlal A. Omer
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (M.R.); (E.A.O.); (N.T.A.)
| | - Nadeen T. Ali
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (M.R.); (E.A.O.); (N.T.A.)
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes, Gutenberg University, 55122 Mainz, Germany; (A.S.); (F.M.)
- Research Center for Immunotherapy (FZI), Langenbeckstraße 1, 55131 Mainz, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 03046 Senftenberg, Germany;
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz, Germany; (M.R.); (E.A.O.); (N.T.A.)
| |
Collapse
|
17
|
Ouzounis S, Panagiotopoulos V, Bafiti V, Zoumpoulakis P, Cavouras D, Kalatzis I, Matsoukas MT, Katsila T. A Robust Machine Learning Framework Built Upon Molecular Representations Predicts CYP450 Inhibition: Toward Precision in Drug Repurposing. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023. [PMID: 37406257 PMCID: PMC10357106 DOI: 10.1089/omi.2023.0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Human cytochrome P450 (CYP450) enzymes play a crucial role in drug metabolism and pharmacokinetics. CYP450 inhibition can lead to toxicity, in particular when drugs are co-administered with other drugs and xenobiotics or in the case of polypharmacy. Predicting CYP450 inhibition is also important for rational drug discovery and development, and precision in drug repurposing. In this overarching context, digital transformation of drug discovery and development, for example, using machine and deep learning approaches, offers prospects for prediction of CYP450 inhibition through computational models. We report here the development of a majority-voting machine learning framework to classify inhibitors and noninhibitors for seven major human liver CYP450 isoforms (CYP1A2, CYP2A6, CYP2B6, CYP2C9, CYP2C19, CYP2D6, and CYP3A4). For the machine learning models reported herein, we employed interaction fingerprints that were derived from molecular docking simulations, thus adding an additional layer of information for protein-ligand interactions. The proposed machine learning framework is based on the structure of the binding site of isoforms to produce predictions beyond previously reported approaches. Also, we carried out a comparative analysis so as to identify which representation of test compounds (molecular descriptors, molecular fingerprints, or protein-ligand interaction fingerprints) affects the predictive performance of the models. This work underlines the ways in which the structure of the enzyme catalytic site influences machine learning predictions and the need for robust frameworks toward better-informed predictions.
Collapse
Affiliation(s)
- Sotiris Ouzounis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Biomedical Engineering, University of West Attica, Egaleo, Greece
- Cloudpharm PC, Athens, Greece
| | - Vasilis Panagiotopoulos
- Department of Biomedical Engineering, University of West Attica, Egaleo, Greece
- Cloudpharm PC, Athens, Greece
| | - Vivi Bafiti
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Panagiotis Zoumpoulakis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
- Department of Food Science and Technology, University of West Attica, Egaleo, Greece
| | - Dionisis Cavouras
- Department of Biomedical Engineering, University of West Attica, Egaleo, Greece
| | - Ioannis Kalatzis
- Department of Biomedical Engineering, University of West Attica, Egaleo, Greece
| | - Minos-Timotheos Matsoukas
- Department of Biomedical Engineering, University of West Attica, Egaleo, Greece
- Cloudpharm PC, Athens, Greece
| | - Theodora Katsila
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| |
Collapse
|
18
|
Yamamura Y, Yoshinari K, Yamazoe Y. Construction of a fused grid-based CYP2C19-Template system and the application. Drug Metab Pharmacokinet 2023; 48:100481. [PMID: 36813636 DOI: 10.1016/j.dmpk.2022.100481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 10/05/2022] [Accepted: 10/22/2022] [Indexed: 11/11/2022]
Abstract
A ligand-accessible space in the CYP2C19 active site was reconstituted as a fused grid-based Template with the use of structural data of the ligands. An evaluation system of CYP2C19-mediated metabolism has been developed on Template with the introduction of the idea of Trigger-residue initiated ligand-movement and fastening. Reciprocal comparison of the data of simulation on Template with experimental results suggested a unified way of the interaction of CYP2C19 and its ligands through the simultaneous plural-contact with Rear-wall of Template. CYP2C19 was expected to have a room for ligands between vertically standing parallel walls termed Facial-wall and Rear-wall, which were separated by a distance corresponding to 1.5-Ring (grid) diameter size. The ligand sittings were stabilized through contacts with Facial-wall and the left-side borders of Template including specific Position 29 or Left-end after Trigger-residue initiated ligand-movement. Trigger-residue movement is suggested to force ligands to stay firmly in the active site and then to initiate CYP2C19 reactions. Simulation experiments for over 450 reactions of CYP2C19 ligands supported the system established.
Collapse
Affiliation(s)
- Yoshiya Yamamura
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan; Non-Clinical Regulatory Science, Applied Research & Operations, Astellas Pharma Inc., 21, Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Kouichi Yoshinari
- Laboratory of Molecular Toxicology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yasushi Yamazoe
- Division of Drug Metabolism and Molecular Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-ku, Sendai, 980-8578, Japan; Division of Risk Assessment, National Institute of Health Sciences, Tonomachi 3-25-26, Kawasaki-ku, Kawasaki, 210-9501, Japan.
| |
Collapse
|
19
|
Seo ME, Min BJ, Heo N, Lee KH, Kim JH. Comprehensive in vitro and in silico assessments of metabolic capabilities of 24 genomic variants of CYP2C19 using two different substrates. Front Pharmacol 2023; 14:1055991. [PMID: 36713839 PMCID: PMC9877350 DOI: 10.3389/fphar.2023.1055991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023] Open
Abstract
Introduction: Most hepatically cleared drugs are metabolized by cytochromes P450 (CYPs), and Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines provide curated clinical references for CYPs to apply individual genome data for optimized drug therapy. However, incorporating novel pharmacogenetic variants into guidelines takes considerable time. Methods: We comprehensively assessed the drug metabolizing capabilities of CYP2C19 variants discovered through population sequencing of two substrates, S-mephenytoin and omeprazole. Results: Based on established functional assays, 75% (18/24) of the variants not yet described in Pharmacogene Variation (PharmVar) had significantly altered drug metabolizing capabilities. Of them, seven variants with inappreciable protein expression were evaluated as protein damaging by all three in silico prediction algorithms, Sorting intolerant from tolerant (SIFT), Polymorphism Phenotyping v2 (PolyPhen-2), and Combined annotation dependent depletion (CADD). The five variants with decreased metabolic capability (<50%) of wild type for either substrates were evaluated as protein damaging by all three in silico prediction algorithms, except CADD exact score of NM_000769.4:c.593T>C that was 19.68 (<20.0). In the crystal structure of the five polymorphic proteins, each altered residue of all those proteins was observed to affect the key structures of drug binding specificity. We also identified polymorphic proteins indicating different tendencies of metabolic capability between the two substrates (5/24). Discussion: Therefore, we propose a methodology that combines in silico prediction algorithms and functional assays on polymorphic CYPs with multiple substrates to evaluate the changes in the metabolism of all possible genomic variants in CYP genes. The approach would reinforce existing guidelines and provide information for prescribing appropriate medicines for individual patients.
Collapse
Affiliation(s)
- Myung-Eui Seo
- Seoul National University Biomedical Informatics (SNUBI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung-Joo Min
- National Forensic Service Seoul Institute, Seoul, South Korea
| | - Nayoon Heo
- Department of Mathematics, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kye Hwa Lee
- Department of Information Medicine, Asan Medical Center and University of Ulsan College of Medicine, Seoul, South Korea,*Correspondence: Kye Hwa Lee, ; Ju Han Kim,
| | - Ju Han Kim
- Seoul National University Biomedical Informatics (SNUBI), Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea,Seoul National University Biomedical Informatics (SNUBI), Division of Biomedical Informatics, Seoul National University College of Medicine, Seoul, South Korea,*Correspondence: Kye Hwa Lee, ; Ju Han Kim,
| |
Collapse
|
20
|
Cytochromes P450 in biosensing and biosynthesis applications: Recent progress and future perspectives. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2022.116791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Ponting DJ, Dobo KL, Kenyon MO, Kalgutkar AS. Strategies for Assessing Acceptable Intakes for Novel N-Nitrosamines Derived from Active Pharmaceutical Ingredients. J Med Chem 2022; 65:15584-15607. [PMID: 36441966 DOI: 10.1021/acs.jmedchem.2c01498] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The detection of N-nitrosamines, derived from solvents and reagents and, on occasion, the active pharmaceutical ingredient (API) at higher than acceptable levels in drug products, has led regulators to request a detailed review for their presence in all medicinal products. In the absence of rodent carcinogenicity data for novel N-nitrosamines derived from amine-containing APIs, a conservative class limit of 18 ng/day (based on the most carcinogenic N-nitrosamines) or the derivation of acceptable intakes (AIs) using structurally related surrogates with robust rodent carcinogenicity data is recommended. The guidance has implications for the pharmaceutical industry given the vast number of marketed amine-containing drugs. In this perspective, the rate-limiting step in N-nitrosamine carcinogenicity, involving cytochrome P450-mediated α-carbon hydroxylation to yield DNA-reactive diazonium or carbonium ion intermediates, is discussed with reference to the selection of read-across analogs to derive AIs. Risk-mitigation strategies for managing putative N-nitrosamines in the preclinical discovery setting are also presented.
Collapse
Affiliation(s)
- David J Ponting
- Lhasa Limited, Granary Wharf House, 2 Canal Wharf, Leeds LS11 5PS, United Kingdom
| | - Krista L Dobo
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Michelle O Kenyon
- Drug Safety Research and Development, Global Portfolio and Regulatory Strategy, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, 1 Portland Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
22
|
Guedes JS, Carneiro TR, Pinheiro PDSM, Fraga CA, Sant′Anna CM, Barreiro EJ, Lima LM. Methyl Effect on the Metabolism, Chemical Stability, and Permeability Profile of Bioactive N-Sulfonylhydrazones. ACS OMEGA 2022; 7:38752-38765. [PMID: 36340078 PMCID: PMC9631887 DOI: 10.1021/acsomega.2c04368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Sulfonylhydrazones are privileged structures with multifaceted pharmacological activity. Exploring the hypoglycemic properties of these organic compounds, we previously revealed a new series of N-sulfonylhydrazones (NSH) as antidiabetic drug candidates. Here, we evaluated the microsomal metabolism, chemical stability, and permeability profile of these NSH prototypes, focusing on the pharmacokinetic differences in N-methylated and non-N-methylated analogs. Our results demonstrated that the N-methylated analogs (LASSBio-1772 and LASSBio-1774) were metabolized by CYP, forming three and one metabolites, respectively. These prototypes exhibited chemical stability at pH 2.0 and 7.4 and brain penetration ability. On the other hand, non-N-methylated analogs (LASSBio-1771 and LASSBio-1773) were hydrolyzed in acid pH and could not cross the artificial blood-brain barrier. The cyano group in LASSBio-1771 was postulated as a possible site of interaction with the heme group, potentially inhibiting CYP enzymes. Moreover, prototypes with the methyl ester group were metabolized by carboxylesterase, and non-N-methylated analogs did not show oxidative metabolism. The prototypes (except LASSBio-1774) showed excellent gastrointestinal absorption. Altogether, our data support the idea that the methyl effect on NSH strongly alters their pharmacokinetic profile, enhances the recognition by CYP enzymes, promotes brain penetration, and plays a protective effect upon acid hydrolysis.
Collapse
Affiliation(s)
- Jéssica
de Siqueira Guedes
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Pós-graduação
em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-909, Brazil
| | - Teiliane Rodrigues Carneiro
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
| | - Pedro de Sena Murteira Pinheiro
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
| | - Carlos Alberto
Manssour Fraga
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Pós-graduação
em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-909, Brazil
| | - Carlos Mauricio
R. Sant′Anna
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Departamento
de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica 23970-000, Brazil
| | - Eliezer J. Barreiro
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Pós-graduação
em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-909, Brazil
| | - Lídia Moreira Lima
- Instituto
Nacional de Ciência e Tecnologia de Fármacos e Medicamentos
(INCT-INOFAR), Laboratório de Avaliação e Síntese
de Substâncias Bioativas (LASSBio), Universidade Federal do Rio de Janeiro (UFRJ), CCS, Cidade Universitária, Rio de Janeiro-RJ 21941-902, Brazil
- Pós-graduação
em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ 21941-909, Brazil
| |
Collapse
|
23
|
Assessment of the Effects of Triticonazole on Soil and Human Health. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196554. [PMID: 36235091 PMCID: PMC9572687 DOI: 10.3390/molecules27196554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
Triticonazole is a fungicide used to control diseases in numerous plants. The commercial product is a racemate containing (R)- and (S)-triticonazole and its residues have been found in vegetables, fruits, and drinking water. This study considered the effects of triticonazole on soil microorganisms and enzymes and human health by taking into account the enantiomeric structure when applicable. An experimental method was applied for assessing the effects of triticonazole on soil microorganisms and enzymes, and the effects of the stereoisomers on soil enzymes and human health were assessed using a computational approach. There were decreases in dehydrogenase and phosphatase activities and an increase in urease activity when barley and wheat seeds treated with various doses of triticonazole were sown in chernozem soil. At least 21 days were necessary for the enzymes to recover the activities. This was consistent with the diminution of the total number of soil microorganisms in the 14 days after sowing. Both stereoisomers were able to bind to human plasma proteins and were potentially inhibitors of human cytochromes, revealing cardiotoxicity and low endocrine disruption potential. As distinct effects, (R)-TTZ caused skin sensitization, carcinogenicity, and respiratory toxicity. There were no significant differences in the interaction energies of the stereoisomers and soil enzymes, but (S)-TTZ exposed higher interaction energies with plasma proteins and human cytochromes.
Collapse
|
24
|
Clarke N, Irvine W. In Silico Design and SAR Study of Dibenzyl Trisulfide Analogues for Improved CYP1A1 Inhibition. Chemistry 2022; 11:e202200016. [PMID: 35610057 PMCID: PMC9130049 DOI: 10.1002/open.202200016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/17/2022] [Indexed: 11/23/2022]
Abstract
Dibenzyl trisulfide (DTS) is a natural compound with potential cancer‐preventive properties occurring in Petiveria alliacea L., an ethnomedicinal plant native to the Americas. Previous studies revealed its inhibitory activity toward cytochrome P450 (CYP)1 enzymes, key in the activation of environmental pollutants. Accordingly, the aim of this study was to design novel DTS analogues, aimed at improving not only inhibitory activity, but also specificity toward CYP1A1. This was achieved by targeting interactions with CYP1A1 residues of identified importance. Three‐dimensional structures for the novel analogues were subjected to molecular docking with several CYP isoforms, before being ranked in terms of binding affinity to CYP1A1. With three hydrogen bond donors, two hydrogen bond acceptors, a molecular mass of 361 Da, and a log P of 3.72, the most promising DTS analogue obeys Lipinski's rule of five. Following synthesis and in vitro validation of its CYP1A1‐inhibitory properties, this compound may be useful in future cancer‐preventive approaches.
Collapse
Affiliation(s)
- Nishani Clarke
- Phillips Academy, 180 Main Street, Andover, MA-01810, USA
| | - William Irvine
- Natural Products Institute, University of the West Indies Mona, Kingston 7, Jamaica
| |
Collapse
|
25
|
The impact of legacy and novel perfluoroalkyl substances on human cytochrome P450: An in vitro study on the inhibitory potential and underlying mechanisms. Toxicology 2022; 468:153116. [PMID: 35121066 DOI: 10.1016/j.tox.2022.153116] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a group of synthetic compounds with a wide range of industrial applications. PFOA and PFOS have been the most extensively studied and have been associated with hepatotoxicity. Recently, the interaction with cytochrome P450 (CYP) has been proposed as a potential key molecular event leading to PFAS-induced hepatotoxicity. In the present study, we aimed to determine a structure-activity relationship between thirteen PFASs and their inhibitory potential on the activities of four CYPs (CYP2E1, CYP2D6, CYP3A4 and CYP2C19). The influence of PFASs (5- 3200 µM) on CYP enzyme activities was measured using the Vivid® P450 metabolism assays. Using the same assays, Michaelis-Menten saturation curves were determined to explore the type of PFAS-induced CYP inhibition. Most PFASs were capable of inhibiting activity of the tested CYPs, as shown by their IC50 values. CYP2E1 is particularly inhibited by 3:1 FTOH, PFOA, and PFOS, whereas CYP2D6 is inhibited by PFHxS, PFHpA, PFOA, PFOS, PFNA, and PFDA. Additionally, CYP3A4 is most strongly inhibited by PFHxS, PFOA, PFOS, PFNA, and PFDA. Finally, CYP2C19 is inhibited by PFBS, PFHxS, PFHpA, PFOA, PFOS, PFNA, and PFDA. Interestingly, PFHxA and PFHxS induced an increase in CYP2E1 activity, whereas 4:2 FTOH strongly induced CYP2D6 activity. The mechanism of inhibition of CYPs by PFASs differed per CYP isoenzyme. CYP3A4 was competitively inhibited by PFBS, PFHxS, PFOS, PFNA and PFDA and non-competitively by PFOA. Additionally, CYP2C19 was competitively inhibited by PFHxA, PFOS and PFNA, whereas PFBS and PFHxS induced a mixed inhibition. Inhibition of CYP2C19 by PFHpA was atypical with an increased Vmax and a decreased Km. Finally, PFHxS competitively inhibited CYP2D6, whereas PFBS, PFOA, PFOS, PFDA and PFNA induced an atypical inhibition. Our results show that CYP inhibition by PFASs appears to be structure-dependent as well as CYP dependent. Inhibition of CYP2D6, CYP2C19 and CYP3A4 increased with increasing chain-lengths between six and nine carbons. The PFTOHs were only able to inhibit CYP2E1 and did not affect any of the other CYPS. Some PFASs remarkably induced the enzyme activity of CYPs. These results indicate that in addition to PFOA and PFOS, multiple novel PFASs may alter drug metabolism by the interference with CYPs.
Collapse
|
26
|
Wang J, Buchman CD, Seetharaman J, Miller DJ, Huber AD, Wu J, Chai SC, Garcia-Maldonado E, Wright WC, Chenge J, Chen T. Unraveling the Structural Basis of Selective Inhibition of Human Cytochrome P450 3A5. J Am Chem Soc 2021; 143:18467-18480. [PMID: 34648292 DOI: 10.1021/jacs.1c07066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human cytochrome P450 (CYP) CYP3A4 and CYP3A5 enzymes metabolize more than one-half of marketed drugs. They share high structural and substrate similarity and are often studied together as CYP3A4/5. However, CYP3A5 preferentially metabolizes several clinically prescribed drugs, such as tacrolimus. Genetic polymorphism in CYP3A5 makes race-based dosing adjustment of tacrolimus necessary to minimize acute rejection after organ transplantation. Moreover, the differential tissue distribution and expression levels of CYP3A4 and CYP3A5 can aggravate toxicity during treatment. Therefore, selective inhibitors of CYP3A5 are needed to distinguish the role of CYP3A5 from that of CYP3A4 and serve as starting points for potential therapeutic development. To this end, we report the crystal structure of CYP3A5 in complex with a previously reported selective inhibitor, clobetasol propionate (CBZ). This is the first CYP3A5 structure with a type I inhibitor, which along with the previously reported substrate-free and type II inhibitor-bound structures, constitute the main CYP3A5 structural modalities. Supported by structure-guided mutagenesis analyses, the CYP3A5-CBZ structure showed that a unique conformation of the F-F' loop in CYP3A5 enables selective binding of CBZ to CYP3A5. Several polar interactions, including hydrogen bonds, stabilize the position of CBZ to interact with this unique F-F' loop conformation. In addition, functional and biophysical assays using CBZ analogs highlight the importance of heme-adjacent moieties for selective CYP3A5 inhibition. Our findings can be used to guide further development of more potent and selective CYP3A5 inhibitors.
Collapse
Affiliation(s)
- Jingheng Wang
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Cameron D Buchman
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jayaraman Seetharaman
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Andrew D Huber
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jing Wu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Sergio C Chai
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Efren Garcia-Maldonado
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - William C Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jude Chenge
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
27
|
Schleiff MA, Crosby S, Blue M, Schleiff BM, Boysen G, Miller GP. CYP2C9 and 3A4 play opposing roles in bioactivation and detoxification of diphenylamine NSAIDs. Biochem Pharmacol 2021; 194:114824. [PMID: 34748821 DOI: 10.1016/j.bcp.2021.114824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
Diphenylamine NSAIDs are taken frequently for chronic pain conditions, yet their use may potentiate hepatotoxicity risks through poorly characterized metabolic mechanisms. Our previous work revealed that seven marketed or withdrawn diphenylamine NSAIDs undergo bioactivation into quinone-species metabolites, whose reaction specificities depended on halogenation and the type of acidic group on the diphenylamine. Herein, we identified cytochromes P450 responsible for those bioactivations, determined reaction specificities, and estimated relative contributions of enzymes to overall hepatic bioactivations and detoxifications. A qualitative activity screen revealed CYP2C8, 2C9, 2C19, and 3A4 played roles in drug bioactivation. Subsequent steady-state studies with recombinant CYPs recapitulated the importance of halogenation and acidic group type on bioactivations but importantly, showed patterns unique to each CYP. CYP2C9, 2C19 and 3A4 bioactivated all NSAIDs with CYP2C9 dominating all possible bioactivation pathways. For each CYP, specificities for overall oxidative metabolism were not impacted significantly by differences in NSAID structures but the values themselves differed among the enzymes such that CYP2C9 and 3A4 were more efficient than others. When considering hepatic CYP abundance, CYP2C9 almost exclusively accounted for diphenylamine NSAID bioactivations, whereas CYP3A4 provided a critical counterbalance favoring their overall detoxification. Preference for either outcome would depend on molecular structures favoring metabolism by the CYPs as well as the influence of clinical factors altering their expression and/or activity. While focused on NSAIDs, these findings have broader implications on bioactivation risks given the expansion of the diphenylamine scaffold to other drug classes such as targeted cancer therapeutics.
Collapse
Affiliation(s)
- Mary Alexandra Schleiff
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Samantha Crosby
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Madison Blue
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Benjamin Mark Schleiff
- Independent Researcher, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Gunnar Boysen
- Department of Environmental and Occupational Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Grover Paul Miller
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
28
|
Lee R, Kim V, Chun Y, Kim D. Structure-Functional Analysis of Human Cytochrome P450 2C8 Using Directed Evolution. Pharmaceutics 2021; 13:pharmaceutics13091429. [PMID: 34575505 PMCID: PMC8469462 DOI: 10.3390/pharmaceutics13091429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The human genome includes four cytochrome P450 2C subfamily enzymes, and CYP2C8 has generated research interest because it is subject to drug-drug interactions and various polymorphic outcomes. To address the structure-functional complexity of CYP2C8, its catalytic activity was studied using a directed evolution analysis. Consecutive rounds of random mutagenesis and screening using 6-methoxy-luciferin produced two mutants, which displayed highly increased luciferase activity. Wild-type and selected mutants were expressed on a large scale and purified. The expression levels of the D349Y and D349Y/V237A mutants were ~310 and 460 nmol per liter of culture, respectively. The steady-state kinetic analysis of paclitaxel 6α-hydroxylation showed that the mutants exhibited a 5-7-fold increase in kcat values and a 3-5-fold increase in catalytic efficiencies (kcat/KM). In arachidonic acid epoxidation, two mutants exhibited a 30-150-fold increase in kcat values and a 40-110-fold increase in catalytic efficiencies. The binding titration analyses of paclitaxel and arachidonic acid showed that the V237A mutation had a lower Kd value, indicating a tighter substrate-binding affinity. The structural analysis of CYP2C8 indicated that the D349Y mutation was close enough to the putative binding domain of the redox partner; the increase in catalytic activity could be partially attributed to the enhancement of the P450 coupling efficiency or electron transfer.
Collapse
Affiliation(s)
- Rowoon Lee
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (R.L.); (V.K.)
| | - Vitchan Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (R.L.); (V.K.)
| | - Youngjin Chun
- College of Pharmacy, Chung-Ang University, Seoul 06974, Korea;
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea; (R.L.); (V.K.)
- Correspondence: ; Tel.: +82-2-450-3366; Fax: +82-2-3436-5432
| |
Collapse
|
29
|
Massively parallel characterization of CYP2C9 variant enzyme activity and abundance. Am J Hum Genet 2021; 108:1735-1751. [PMID: 34314704 DOI: 10.1016/j.ajhg.2021.07.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022] Open
Abstract
CYP2C9 encodes a cytochrome P450 enzyme responsible for metabolizing up to 15% of small molecule drugs, and CYP2C9 variants can alter the safety and efficacy of these therapeutics. In particular, the anti-coagulant warfarin is prescribed to over 15 million people annually and polymorphisms in CYP2C9 can affect individual drug response and lead to an increased risk of hemorrhage. We developed click-seq, a pooled yeast-based activity assay, to test thousands of variants. Using click-seq, we measured the activity of 6,142 missense variants in yeast. We also measured the steady-state cellular abundance of 6,370 missense variants in a human cell line by using variant abundance by massively parallel sequencing (VAMP-seq). These data revealed that almost two-thirds of CYP2C9 variants showed decreased activity and that protein abundance accounted for half of the variation in CYP2C9 function. We also measured activity scores for 319 previously unannotated human variants, many of which may have clinical relevance.
Collapse
|
30
|
Feng L, Ning J, Tian X, Wang C, Yu Z, Huo X, Xie T, Zhang B, James TD, Ma X. Fluorescent probes for the detection and imaging of Cytochrome P450. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213740] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
31
|
Joshi K, Kaur S, Kumar R. Cytochrome P450 2C19 gene polymorphisms (CYP2C19*2 and CYP2C19*3) in chronic myeloid leukemia patients: in vitro and in silico studies. J Biomol Struct Dyn 2021; 40:9389-9402. [PMID: 34060427 DOI: 10.1080/07391102.2021.1929491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polymorphisms in the CYP2C19 have a huge impact on drug processing, out of which CYP2C19*2 and CYP2C19*3 are the most common variants associated with reduced metabolism of drugs. Mechanism by which two variants contribute in poor metabolization of drugs and cancer is not well understood. Here, we hypothesized that the mutations in CYP2C19 gene might affect the risk of chronic myeloid leukemia patients (CML). Present study has two main objectives: first to investigate the allele frequencies of CYP2C19*2 and CYP2C19*3 associated gene polymorphisms in CML patients and to elucidate the structural stability, conformation and functions of protein encoded by such variants. Genotyping of CYP2C19 was performed in 103 CML patients and 103 matched healthy controls. Heterozygous genotype of CYP2C19*2 was higher in CML patients (13.59%) than the controls (4.85%). Whereas, CYP2C19*3 allele frequency was not observed in cases as well as in controls. Furthermore, molecular dynamics (MD) simulation was applied to monitor the structural and conformational effect of above mutants. MD simulation results demonstrated that these mutants formed unstable proteins with distorted conformations, altered residues network and affected drug binding site which led to malfunction of mutant proteins. Hence, the study provides the role of CYP2C19 gene polymorphisms in susceptibility to CML population and explored the molecular basis of malignancies caused which may aid in the development of precise medicine or adjusting the drug dosages so as to reduce the chemotherapeutic side effects.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kaishiv Joshi
- Department of Human Genetics, Punjabi University, Patiala, India
| | - Satbir Kaur
- Department of Human Genetics, Punjabi University, Patiala, India
| | - Rakesh Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
32
|
Molecular probes for human cytochrome P450 enzymes: Recent progress and future perspectives. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213600] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
33
|
Estrada DF, Kumar A, Campomizzi CS, Jay N. Crystal Structures of Drug-Metabolizing CYPs. Methods Mol Biol 2021; 2342:171-192. [PMID: 34272695 PMCID: PMC10813703 DOI: 10.1007/978-1-0716-1554-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complex enzyme kinetics displayed by drug-metabolizing cytochrome P450 enzymes (CYPs) (see Chapter 9 ) can, in part, be explained by an examination of their crystallographic protein structures. Fortunately, despite low sequence similarity between different families of drug-metabolizing CYPs, there exists a high degree of structural homology within the superfamily. This similarity in the protein fold allows for a direct comparison of the structural features of CYPs that contribute toward differences in substrate binding, heterotropic and homotropic cooperativity, and genetic variability in drug metabolism. In this chapter, we first provide an overview of the nomenclature and the role of structural features that are common in all CYPs. We then apply these definitions to understand the different substrate specificities and functions in the CYP3A, CYP2C, and CYP2D families of enzymes.
Collapse
Affiliation(s)
| | - Amit Kumar
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
| | | | - Natalie Jay
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
34
|
Špičáková A, Kraus P, Gucký T, Kryštof V, Strnad M, Bazgier V, Otyepka M, Kubíčková V, Poruba M, Rácová Z, Zapletalová I, Anzenbacher P. In vitro and in silico studies of interaction of synthetic 2,6,9-trisubstituted purine kinase inhibitors BPA-302, BP-21 and BP-117 with liver drug-metabolizing cytochromes P450. Physiol Res 2020; 69:S627-S636. [PMID: 33646005 PMCID: PMC8603697 DOI: 10.33549/physiolres.934611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/26/2019] [Indexed: 12/19/2022] Open
Abstract
An evaluation of possible interactions with enzymes of drug metabolism (cytochromes P450, CYP) is an important part of studies on safety and, in general, on the properties of any drug or biologically active compound. The article is focused on the preliminary metabolic study of selected 2,6,9-trisubstituted purine kinase inhibitors with significant anticancer activities which we have developed. The compounds BP-21 and BP-117 represent strong CDK inhibitors and the compound BPA-302 was developed as selective FLT3-ITD kinase inhibitor. Here, emphasis is placed on interactions of these compounds with the nine most important forms of CYP to evaluate the possibility of inhibition of these enzymes. The possibility of their inhibitory effect was studied in vitro on selected human liver microsomal CYP enzymes. The most affected enzyme was CYP2C19. Its activity dropped to 22 % of its original value by BPA 302, to 13 % by BP-21 and to 6 % by BP-117 at the highest concentration tested (250 µmol·l(-1)). The results suggest that the metabolism of concomitantly administered drugs should not be significantly affected at lower doses. Molecular docking of BPA-302 indicated that it can bind to active site of both CYP2C19 and CYP2D6 enzymes above the heme cofactor corroborating the experimental data.
Collapse
Affiliation(s)
- A Špičáková
- Department of Pharmacology, Faculty of Medicine, Palacký University Olomouc, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Elfaki I, Mir R, Abu-Duhier FM, Jha CK, Ahmad Al-Alawy AI, Babakr AT, Habib SAEH. Analysis of the Potential Association of Drug-Metabolizing Enzymes CYP2C9*3 and CYP2C19*3 Gene Variations With Type 2 Diabetes: A Case-Control Study. Curr Drug Metab 2020; 21:1152-1160. [PMID: 33115391 DOI: 10.2174/1389200221999201027200931] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cytochrome P450s (CYPs) are drug-metabolizing enzymes catalyzing the metabolism of about 75% of drug in clinical use. CYP2C9 represents 20% CYP proteins in liver cells and is a crucial member of CYPs superfamily. CYP2C19 metabolizes very important drugs such as antiulcer drug omeprazole, the antiplatelet drug clopidogrel and anticonvulsant mephenytoin. Single nucleotide polymorphisms (SNPs) of CYP genes have been associated with unexpected drug reactions and diseases in different populations. OBJECTIVE We examined the associations of CYP2C9*3 (rs1057910) and CYP2C19*3 (rs4986893) with T2D in Saudi population. METHODS We used the allele-specific PCR (AS-PCR) and DNA sequencing in 111 cases and 104 controls for rs1057910, and in 119 cases and 110 controls for rs4986893. RESULTS It is indicated that the genotype distribution of rs1057910 in cases and controls were not significantly different (P=0.0001). The genotypes of rs1057910 were not associated with type 2 diabetes (T2D) (P>0.05). Whereas the genotype distribution of rs4986893 in cases and controls was significantly different (P=0.049). The AA genotype of rs4986893 may be associated in increased risk to T2D with OR=17.25 (2.06-143.8), RR=6.14(0.96-39.20), P=0.008. CONCLUSION The CYP2C9*3 (rs1057910) may not be associated with T2D, while CYP2C19*3 (rs4986893) is probably associated with T2D. These findings need to be validated in follow-up studies with larger sample sizes and different populations.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Rashid Mir
- Prince Fahd Ben Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Faisel Mohammed Abu-Duhier
- Prince Fahd Ben Sultan Research Chair, Department of Medical Lab Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | | | | | - Abdullatif Taha Babakr
- Department of Medical Biochemistry, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | | |
Collapse
|
36
|
Yang Y, Zhang Y, Ren M, Wang Y, Cairang Z, Lin R, Sun H, Liu J. Association of cytochrome P450 2C19 polymorphisms with coronary heart disease risk: A protocol for systematic review and meta analysis. Medicine (Baltimore) 2020; 99:e23652. [PMID: 33327349 PMCID: PMC7738024 DOI: 10.1097/md.0000000000023652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Polymorphisms in the cytochrome P450 2C19 (CYP2C19) gene have been reported to be associated with coronary heart disease (CHD), but the results were not consistently analyzed among different patient groups. To derive a more precise estimation of these associations, we will conduct a meta-analysis to investigate the polymorphisms of CYP2C19 in all published studies. METHODS Electronic databases (Google Scholar, ISI Web of Science, Pubmed, Embase, China National Knowledge Infrastructure, Wanfang, and China Biological Medicine) will be used to search clinical case-control or cohort studies about CYP2C19 polymorphism and CHD published until November 2020. Two reviewers will independently select the study, extract the data, and evaluate the quality of the study. Odds ratios with 95% confidence interval will be used to evaluate the strength of the association between the CYP2C19 polymorphism and CHD susceptibility under 4 genetic models. Subgroup analysis will be conducted by different ethnicity and genotyping method. Sensitivity analysis will be performed via sequentially omitting each of the included studies 1 at a time. Begg funnel plots and Egger test will be used to examine the potential publication bias. All the statistical analyses will be performed using Review Manager 5.3 and Stata 12.0. RESULTS This study will provide a better understanding of the association between CYP2C19 polymorphisms and coronary heart disease risk. CONCLUSION The publication of this protocol will minimize the possibility of bias due to post hoc changes to the analysis protocol, thus helping to obtain reliable evidence. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/R7U93.
Collapse
Affiliation(s)
- Yongxin Yang
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Yaping Zhang
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Ming Ren
- Department of Cardiology, Qinghai University Affiliated Hospital
| | - Yonglan Wang
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Zhuoma Cairang
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Rongxiang Lin
- Department of Cardiology, The People's Hospital of Qinghai Province
| | - Haixia Sun
- Echocardiography Room, The People's Hospital of Qinghai Province, Xining, China
| | - Jianju Liu
- Department of Cardiology, The People's Hospital of Qinghai Province
| |
Collapse
|
37
|
Das A, Weigle AT, Arnold WR, Kim JS, Carnevale LN, Huff HC. CYP2J2 Molecular Recognition: A New Axis for Therapeutic Design. Pharmacol Ther 2020; 215:107601. [PMID: 32534953 PMCID: PMC7773148 DOI: 10.1016/j.pharmthera.2020.107601] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Abstract
Cytochrome P450 (CYP) epoxygenases are a special subset of heme-containing CYP enzymes capable of performing the epoxidation of polyunsaturated fatty acids (PUFA) and the metabolism of xenobiotics. This dual functionality positions epoxygenases along a metabolic crossroad. Therefore, structure-function studies are critical for understanding their role in bioactive oxy-lipid synthesis, drug-PUFA interactions, and for designing therapeutics that directly target the epoxygenases. To better exploit CYP epoxygenases as therapeutic targets, there is a need for improved understanding of epoxygenase structure-function. Of the characterized epoxygenases, human CYP2J2 stands out as a potential target because of its role in cardiovascular physiology. In this review, the early research on the discovery and activity of epoxygenases is contextualized to more recent advances in CYP epoxygenase enzymology with respect to PUFA and drug metabolism. Additionally, this review employs CYP2J2 epoxygenase as a model system to highlight both the seminal works and recent advances in epoxygenase enzymology. Herein we cover CYP2J2's interactions with PUFAs and xenobiotics, its tissue-specific physiological roles in diseased states, and its structural features that enable epoxygenase function. Additionally, the enumeration of research on CYP2J2 identifies the future needs for the molecular characterization of CYP2J2 to enable a new axis of therapeutic design.
Collapse
Affiliation(s)
- Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Center for Biophysics and Computational Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; Department of Bioengineering, Neuroscience Program, Beckman Institute for Advanced Science and Technology, Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Lauren N Carnevale
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Hannah C Huff
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
38
|
Inhibitory Effect of AB-PINACA, Indazole Carboxamide Synthetic Cannabinoid, on Human Major Drug-Metabolizing Enzymes and Transporters. Pharmaceutics 2020; 12:pharmaceutics12111036. [PMID: 33138123 PMCID: PMC7692329 DOI: 10.3390/pharmaceutics12111036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/19/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
Indazole carboxamide synthetic cannabinoid, AB-PINACA, has been placed into Schedule I of the Controlled Substances Act by the US Drug Enforcement Administration since 2015. Despite the possibility of AB-PINACA exposure in drug abusers, the interactions between AB-PINACA and drug-metabolizing enzymes and transporters that play crucial roles in the pharmacokinetics and efficacy of various substrate drugs have not been investigated. This study was performed to investigate the inhibitory effects of AB-PINACA on eight clinically important human major cytochrome P450s (CYPs) and six uridine 5′-diphospho-glucuronosyltransferases (UGT) in human liver microsomes and the activities of six solute carrier transporters and two efflux transporters in transporter-overexpressing cells. AB-PINACA reversibly inhibited the metabolic activities of CYP2C8 (Ki, 16.9 µM), CYP2C9 (Ki, 6.7 µM), and CYP2C19 (Ki, 16.1 µM) and the transport activity of OAT3 (Ki, 8.3 µM). It exhibited time-dependent inhibition on CYP3A4 (Ki, 17.6 µM; kinact, 0.04047 min−1). Other metabolizing enzymes and transporters such as CYP1A2, CYP2A6, CYP2B6, CYP2D6, UGT1A1, UGT1A3, UGT1A4, UGT1A6, UGT1A9, UGT2B7, OAT1, OATP1B1, OATP1B3, OCT1, OCT2, P-glycoprotein, and BCRP, exhibited only weak interactions with AB-PINACA. These data suggest that AB-PINACA can cause drug-drug interactions with CYP3A4 substrates but that the significance of drug interactions between AB-PINACA and CYP2C8, CYP2C9, CYP2C19, or OAT3 substrates should be interpreted carefully.
Collapse
|
39
|
Luo Y, Liu JY. Pleiotropic Functions of Cytochrome P450 Monooxygenase-Derived Eicosanoids in Cancer. Front Pharmacol 2020; 11:580897. [PMID: 33192522 PMCID: PMC7658919 DOI: 10.3389/fphar.2020.580897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/30/2020] [Indexed: 12/19/2022] Open
Abstract
Eicosanoids are a class of functionally bioactive lipid mediators derived from the metabolism of long-chain polyunsaturated fatty acids (PUFAs) mediated by multiple enzymes of three main branches, including cyclooxygenases (COXs), lipoxygenases (LOXs), and cytochrome P450s (CYPs). Recently, the role of eicosanoids derived by COXs and LOXs pathways in the control of physiological and pathological processes associated with cancer has been well documented. However, the role of CYPs-mediated eicosanoids, such as epoxyeicosatrienoic acids (EETs), epoxyoctadecenoic acids (EpOMEs), epoxyeicosatetraenoic acids (EpETEs), and epoxydocosapentaenoic acids (EDPs), as well as hydroxyeicosatetraenoic acids (HETEs), in tumorigenesis and cancer progression have not been fully elucidated yet. Here we summarized the association of polymorphisms of CYP monooxygenases with cancers and the pleiotropic functions of CYP monooxygenase-mediated eicosanoids (EETs, EpOMEs, EpETE, EDPs, and 20-HETE) in the tumorigenesis and metastasis of multiple cancers, including but not limited to colon, liver, kidney, breast and prostate cancers, which hopefully provides valuable insights into cancer therapeutics. We believe that manipulation of CYPs with or without supplement of ω-3 PUFAs to regulate eicosanoid profile is a promising strategy to prevent and/or treat cancers.
Collapse
Affiliation(s)
- Ying Luo
- Department of Clinical Laboratory, Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai, China
| | - Jun-Yan Liu
- Center for Novel Target & Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
40
|
Kampschulte N, Alasmer A, Empl MT, Krohn M, Steinberg P, Schebb NH. Dietary Polyphenols Inhibit the Cytochrome P450 Monooxygenase Branch of the Arachidonic Acid Cascade with Remarkable Structure-Dependent Selectivity and Potency. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:9235-9244. [PMID: 32786866 DOI: 10.1021/acs.jafc.0c04690] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The products of the cytochrome P450 monooxygenase (CYP)-catalyzed oxidation of arachidonic acid (AA), that is, epoxy- and hydroxy-fatty acids, play a crucial role in the homeostasis of several physiological processes. In a liver microsome-based multienzyme assay using AA as natural substrate, we investigated how polyphenols inhibit different oxylipin-forming CYP in parallel but independently from each other. The ω-hydroxylating CYP4F2 and CYP4A11 were investigated, as well as the epoxidizing CYP2C-subfamily and CYP3A4 along with the (ω-n)-hydroxylating CYP1A1 and CYP2E1. The oxylipin formation was inhibited by several polyphenols with a remarkable selectivity and a potency comparable to known CYP inhibitors. The flavone apigenin inhibited the epoxidation, ω-hydroxylation, and (ω-n)-hydroxylation of AA with IC50 values of 4.4-9.8, 2.9-10, and 10-25 μM, respectively. Other flavones such as wogonin selectively inhibited CYP1A1-catalyzed (ω-n)-hydroxylation with an IC50 value of 0.10-0.22 μM, while the isoflavone genistein was a selective ω-hydroxylase inhibitor (IC50: 5.5-46 μM). Of note, the flavanone naringenin and the anthocyanidin perlargonidin did not inhibit CYPs of the AA cascade. Moderate permeability of apigenin as tested in the Caco-2 model of intestinal absorption (Papp: 4.5 ± 1 × 10-6 cm/s) and confirmation of the inhibition of 20-HETE formation by apigenin in the colorectal cancer-derived cell line HCT 116 (IC50: 1.5-8.8 μM) underline the possible in vivo relevance of these effects. Further research is needed to better understand how polyphenols impact human health by this newly described molecular mode of action.
Collapse
Affiliation(s)
- Nadja Kampschulte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Ayah Alasmer
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Michael T Empl
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Michael Krohn
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaussstr. 20, 42119 Wuppertal, Germany
- Institute for Food Toxicology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| |
Collapse
|
41
|
Zhang L, Sarangi V, Moon I, Yu J, Liu D, Devarajan S, Reid JM, Kalari KR, Wang L, Weinshilboum R. CYP2C9 and CYP2C19: Deep Mutational Scanning and Functional Characterization of Genomic Missense Variants. Clin Transl Sci 2020; 13:727-742. [PMID: 32004414 PMCID: PMC7359949 DOI: 10.1111/cts.12758] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/10/2019] [Indexed: 02/04/2023] Open
Abstract
Single nucleotide variants in the open reading frames (ORFs) of pharmacogenes are important causes of interindividual variability in drug response. The functional characterization of variants of unknown significance within ORFs remains a major challenge for pharmacogenomics. Deep mutational scanning (DMS) is a high-throughput technique that makes it possible to analyze the functional effect of hundreds of variants in a parallel and scalable fashion. We adapted a "landing pad" DMS system to study the function of missense variants in the ORFs of cytochrome P450 family 2 subfamily C member 9 (CYP2C9) and cytochrome P450 family 2 subfamily C member 19 (CYP2C19). We studied 230 observed missense variants in the CYP2C9 and CYP2C19 ORFs and found that 19 of 109 CYP2C9 and 36 of 121 CYP2C19 variants displayed less than ~ 25% of the wild-type protein expression, a level that may have clinical relevance. Our results support DMS as an efficient method for the identification of damaging ORF variants that might have potential clinical pharmacogenomic application.
Collapse
Affiliation(s)
- Lingxin Zhang
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Vivekananda Sarangi
- Division of Biomedical Statistics and InformaticsDepartment of Health Sciences ResearchMayo ClinicRochesterMinnesotaUSA
| | - Irene Moon
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Jia Yu
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Duan Liu
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Sandhya Devarajan
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Joel M. Reid
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Krishna R. Kalari
- Division of Biomedical Statistics and InformaticsDepartment of Health Sciences ResearchMayo ClinicRochesterMinnesotaUSA
| | - Liewei Wang
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Richard Weinshilboum
- Division of Clinical PharmacologyDepartment of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
42
|
Mustafa G, Nandekar PP, Bruce NJ, Wade RC. Differing Membrane Interactions of Two Highly Similar Drug-Metabolizing Cytochrome P450 Isoforms: CYP 2C9 and CYP 2C19. Int J Mol Sci 2019; 20:ijms20184328. [PMID: 31487853 PMCID: PMC6770661 DOI: 10.3390/ijms20184328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 08/31/2019] [Accepted: 09/01/2019] [Indexed: 12/22/2022] Open
Abstract
The human cytochrome P450 (CYP) 2C9 and 2C19 enzymes are two highly similar isoforms with key roles in drug metabolism. They are anchored to the endoplasmic reticulum membrane by their N-terminal transmembrane helix and interactions of their cytoplasmic globular domain with the membrane. However, their crystal structures were determined after N-terminal truncation and mutating residues in the globular domain that contact the membrane. Therefore, the CYP-membrane interactions are not structurally well-characterized and their dynamics and the influence of membrane interactions on CYP function are not well understood. We describe herein the modeling and simulation of CYP 2C9 and CYP 2C19 in a phospholipid bilayer. The simulations revealed that, despite high sequence conservation, the small sequence and structural differences between the two isoforms altered the interactions and orientations of the CYPs in the membrane bilayer. We identified residues (including K72, P73, and I99 in CYP 2C9 and E72, R73, and H99 in CYP 2C19) at the protein-membrane interface that contribute not only to the differing orientations adopted by the two isoforms in the membrane, but also to their differing substrate specificities by affecting the substrate access tunnels. Our findings provide a mechanistic interpretation of experimentally observed effects of mutagenesis on substrate selectivity.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Prajwal P Nandekar
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany
| | - Neil J Bruce
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), 69118 Heidelberg, Germany.
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, 69120 Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, 69120 Heidelberg, Germany.
| |
Collapse
|
43
|
Sánchez-Aparicio JE, Sciortino G, Herrmannsdoerfer DV, Chueca PO, Pedregal JRG, Maréchal JD. GPathFinder: Identification of Ligand-Binding Pathways by a Multi-Objective Genetic Algorithm. Int J Mol Sci 2019; 20:E3155. [PMID: 31261636 PMCID: PMC6651367 DOI: 10.3390/ijms20133155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/21/2022] Open
Abstract
Protein-ligand docking is a widely used method to generate solutions for the binding of a small molecule with its target in a short amount of time. However, these methods provide identification of physically sound protein-ligand complexes without a complete view of the binding process dynamics, which has been recognized to be a major discriminant in binding affinity and ligand selectivity. In this paper, a novel piece of open-source software to approach this problem is presented, called GPathFinder. It is built as an extension of the modular GaudiMM platform and is able to simulate ligand diffusion pathways at atomistic level. The method has been benchmarked on a set of 20 systems whose ligand-binding routes were studied by other computational tools or suggested from experimental "snapshots". In all of this set, GPathFinder identifies those channels that were already reported in the literature. Interestingly, the low-energy pathways in some cases indicate novel possible binding routes. To show the usefulness of GPathFinder, the analysis of three case systems is reported. We believe that GPathFinder is a software solution with a good balance between accuracy and computational cost, and represents a step forward in extending protein-ligand docking capacities, with implications in several fields such as drug or enzyme design.
Collapse
Affiliation(s)
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | - Pablo Orenes Chueca
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | | | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain.
| |
Collapse
|
44
|
Derayea SM, Tsujino H, Oyama Y, Ishikawa Y, Yamashita T, Uno T. Investigation on drug-binding in heme pocket of CYP2C19 with UV-visible and resonance Raman spectroscopies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 209:209-216. [PMID: 30399481 DOI: 10.1016/j.saa.2018.10.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Cytochrome P450 (CYP) is a class of heme-containing enzymes which mainly catalyze a monooxygenation reaction of various chemicals, and hence CYP plays a key role in the drug metabolism. Although CYP2C19 isoform is a minor hepatic CYP, it metabolizes clinically important drugs such as omeprazole and S‑mephenytoin. In this work, the interaction of purified CYP2C19 WT (CYP2C19) with seven drugs (phenytoin, S‑mephenytoin, omeprazole, lansoprazole, cimetidine, propranolol, and warfarin) was investigated using spectroscopic methods. The binding of each drug and the induced structural change in the heme distal environment were evaluated. Ferric form of CYP2C19 was revealed to contain a six-coordinate low-spin heme with a water molecule as a sixth ligand in a distal site, and the addition of each drug caused varied minor fraction of five-coordinate heme. It was suggested that the ligated water molecule was partly moved away from the heme distal environment and that the degree of water removal was dependent on the type of drugs. The effect on the coordination was varied with the studied drugs with wide variation in the dissociation constants from 2.6 μM for lansoprazole to 5400 μM for warfarin. Phenytoin and S‑mephenytoin showed that binding to CYP2C19 occurred in a stepwise manner and that the coordination of a water molecule was facilitated in the second binding step. In the ferrous CO-bound state, ν(FeCO) stretching mode was clearly observed at 471 cm-1 in the absence of drugs. The Raman line was greatly up-shifted by omeprazole (487 cm-1) and lansoprazole (477 cm-1) but was minimally affected by propranolol, phenytoin, and S‑mephenytoin. These results indicate that slight chemical modification of a drug greatly affects the heme distal environments upon binding.
Collapse
Affiliation(s)
- Sayed M Derayea
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan; Analytical Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Hirofumi Tsujino
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan
| | - Yukiko Oyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oehonmachi, Kumamoto 862-0973, Japan
| | - Yoshinobu Ishikawa
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Taku Yamashita
- School of Pharmacy and Pharmaceutical Sciences, Mukogawa Women's University, 11-68 Koshien-Kyubancho, Nishinomiya 663-8179, Japan
| | - Tadayuki Uno
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
45
|
Juvonen RO, Ahinko M, Huuskonen J, Raunio H, Pentikäinen OT. Development of new Coumarin-based profluorescent substrates for human cytochrome P450 enzymes. Xenobiotica 2018; 49:1015-1024. [DOI: 10.1080/00498254.2018.1530399] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Risto O. Juvonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mira Ahinko
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Juhani Huuskonen
- Department of Chemistry, University of Jyvaskyla, Jyvaskyla, Finland
| | - Hannu Raunio
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Olli T. Pentikäinen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
- Institute of Biomedicine, Faculty of Medicine Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| |
Collapse
|
46
|
Sun H, Piotrowski DW, Orr STM, Warmus JS, Wolford AC, Coffey SB, Futatsugi K, Zhang Y, Vaz ADN. Deuterium isotope effects in drug pharmacokinetics II: Substrate-dependence of the reaction mechanism influences outcome for cytochrome P450 cleared drugs. PLoS One 2018; 13:e0206279. [PMID: 30427871 PMCID: PMC6235261 DOI: 10.1371/journal.pone.0206279] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/10/2018] [Indexed: 12/13/2022] Open
Abstract
Two chemotypes were examined in vitro with CYPs 3A4 and 2C19 by molecular docking, metabolic profiles, and intrinsic clearance deuterium isotope effects with specifically deuterated form to assess the potential for enhancement of pharmacokinetic parameters. The results show the complexity of deuteration as an approach for pharmacokinetic enhancement when CYP enzymes are involved in metabolic clearance. With CYP3A4 the rate limiting step was chemotype-dependent. With one chemotype no intrinsic clearance deuterium isotope effect was observed with any deuterated form, whereas with the other chemotype the rate limiting step was isotopically sensitive, and the magnitude of the intrinsic clearance isotope effect was dependent on the position(s) and extent of deuteration. Molecular docking and metabolic profiles aided in identifying sites for deuteration and predicted the possibility for metabolic switching. However, the potential for an isotope effect on the intrinsic clearance cannot be predicted and must be established by examining select deuterated versions of the chemotypes. The results show how in a deuteration strategy molecular docking, in-vitro metabolic profiles, and intrinsic clearance assessments with select deuterated versions of new chemical entities can be applied to determine the potential for pharmacokinetic enhancement in a discovery setting. They also help explain the substantial failures reported in the literature of deuterated versions of drugs to elicit a systemic enhancement on pharmacokinetic parameters.
Collapse
Affiliation(s)
- Hao Sun
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- * E-mail: (DWP); (HS); (ADNV)
| | - David W. Piotrowski
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- * E-mail: (DWP); (HS); (ADNV)
| | - Suvi T. M. Orr
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | - Joseph S. Warmus
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | - Angela C. Wolford
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | - Steven B. Coffey
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | - Kentaro Futatsugi
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | - Yinsheng Zhang
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
| | - Alfin D. N. Vaz
- Medicine Design, Pfizer Global Research and Development, Groton, Connecticut, United States of America
- * E-mail: (DWP); (HS); (ADNV)
| |
Collapse
|
47
|
Liu Q, Beyraghdar Kashkooli A, Manzano D, Pateraki I, Richard L, Kolkman P, Lucas MF, Guallar V, de Vos RCH, Franssen MCR, van der Krol A, Bouwmeester H. Kauniolide synthase is a P450 with unusual hydroxylation and cyclization-elimination activity. Nat Commun 2018; 9:4657. [PMID: 30405138 PMCID: PMC6220293 DOI: 10.1038/s41467-018-06565-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 07/31/2018] [Indexed: 01/06/2023] Open
Abstract
Guaianolides are an important class of sesquiterpene lactones with unique biological and pharmaceutical properties. They have been postulated to be derived from germacranolides, but for years no progress has been made in the elucidation of their biosynthesis that requires an unknown cyclization mechanism. Here we demonstrate the isolation and characterization of a cytochrome P450 from feverfew (Tanacetum parthenium), kauniolide synthase. Kauniolide synthase catalyses the formation of the guaianolide kauniolide from the germacranolide substrate costunolide. Unlike most cytochrome P450s, kauniolide synthase combines stereoselective hydroxylation of costunolide at the C3 position, with water elimination, cyclization and regioselective deprotonation. This unique mechanism of action is supported by in silico modelling and docking experiments. The full kauniolide biosynthesis pathway is reconstructed in the heterologous hosts Nicotiana benthamiana and yeast, paving the way for biotechnological production of guaianolide-type sesquiterpene lactones.
Collapse
Affiliation(s)
- Qing Liu
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Arman Beyraghdar Kashkooli
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - David Manzano
- Plant Metabolism and Metabolic Engineering Program, Centre for Research in Agricultural Genomics (CRAG) (CSIC-IRTA-UAB-UB), 08193, Barcelona, Spain
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Campus Diagonal, Av. de Joan XXIII, 27-31, 08028, Barcelona, Spain
| | - Irini Pateraki
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, 1871, Denmark
| | - Lea Richard
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Pim Kolkman
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maria Fátima Lucas
- Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034, Barcelona, Spain
| | - Victor Guallar
- Barcelona Supercomputing Center (BSC), C/ Jordi Girona 29, 08034, Barcelona, Spain
- ICREA, Pg Lluís Companys 23, 08010, Barcelona, Spain
| | - Ric C H de Vos
- Wageningen Plant Research, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Maurice C R Franssen
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| | - Alexander van der Krol
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
- Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Xu RA, Gu EM, Liu TH, Ou-Yang QG, Hu GX, Cai JP. The effects of cytochrome P450 2C19 polymorphism on the metabolism of voriconazole in vitro. Infect Drug Resist 2018; 11:2129-2135. [PMID: 30464555 PMCID: PMC6219421 DOI: 10.2147/idr.s179078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background CYP/CYP450 2C19 (CYP2C19) is a highly polymorphic enzyme and exhibits individual differences in metabolic activity. The purpose of this research was mainly to explore the catalytic activities of 30 CYP2C19 variants on the substrate voriconazole in vitro, including 24 novel CYP2C19 variants (2C19.2E-.2H, .2J, .3C, .29-.33, L16F, 35FS, R124Q, R125G, T130M, N231T, M255T, R261W, N277K, S303N, I327T, N403I, and A430V) found in Chinese Han population for the first time. Methods These CYP2C19 variants were expressed in Spodoptera frugiperda (Sf) 21 insect cells using the baculovirus-mediated expression system. The substrate voriconazole was incubated with the abovementioned proteins at 37°C for 30 minutes in an appropriate designed system. Then through detecting its major metabolite voriconazole N-oxide by ultra-performance liquid chromatography tandem mass spectrometry, available data were obtained to explain the influence of CYP2C19 polymorphisms on voriconazole. Results From the results, when compared to CYP2C19.1, most variants exhibited either reduced Vmax and/or increased Km value, indicating that the intrinsic clearance (Vmax/Km) values of most variants were significantly altered. The catalytic activities of 20 novel variants exhibited decreases in different degrees compared to CYP2C19.1, with relative clearance values ranging from 1.11% to 83.78%. However, L16F exhibited the increased catalytic activity for 135.68%. In addition, the kinetic parameters of four variants (2C19.2H, .3, 35FS, and R124Q) could not be detected, due to the defective gene. Conclusion This is the first study to report the effects of CYP2C19 polymorphisms on vori-conazole metabolism in vitro, and we hope these data could lay the foundation for the early clinical research and individualized treatment.
Collapse
Affiliation(s)
- Ren-Ai Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Er-Min Gu
- Department of Pharmacy, The First People's Hospital of Jiashan, Jiaxing, Zhejiang, China
| | - Teng-Hui Liu
- Department of Pharmacology, School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| | - Qiu-Geng Ou-Yang
- Department of Pharmacology, School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| | - Guo-Xin Hu
- Department of Pharmacology, School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| | - Jian-Ping Cai
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.,Department of Pharmacology, School of Pharmaceutical Sciences of Wenzhou Medical University, Wenzhou, Zhejiang, China,
| |
Collapse
|
49
|
Elfaki I, Mir R, Almutairi FM, Duhier FMA. Cytochrome P450: Polymorphisms and Roles in Cancer, Diabetes and Atherosclerosis. Asian Pac J Cancer Prev 2018; 19:2057-2070. [PMID: 30139042 PMCID: PMC6171375 DOI: 10.22034/apjcp.2018.19.8.2057] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cytochromes P450s (CYPs) constitute a superfamily of enzymes that catalyze the metabolism of drugs and other substances. Endogenous substrates of CYPs include eicosanoids, estradiol, arachidonic acids, cholesterol, vitamin D and neurotransmitters. Exogenous substrates of CYPs include the polycyclic aromatic hydrocarbons and about 80% of currently used drugs. Some isoforms can activate procarcinogens to ultimate carcinogens. Genetic polymorphisms of CYPs may affect the enzyme catalytic activity and have been reported among different populations to be associated with various diseases and adverse drug reactions. With regard of drug metabolism, phenotypes for CYP polymorphism range from ultrarapid to poor metabolizers. In this review, we discuss some of the most clinically important CYPs isoforms (CYP2D6, CYP2A6, CYP2C19, CYP2C9, CYP1B1 and CYP1A2) with respect to gene polymorphisms and drug metabolism. Moreover, we review the role of CYPs in renal, lung, breast and prostate cancers and also discuss their significance for atherosclerosis and type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Kingdom of Saudi Arabia.
| | | | | | | |
Collapse
|
50
|
Jana K, Bandyopadhyay T, Ganguly B. Stereoselective Metabolism of Omeprazole by Cytochrome P450 2C19 and 3A4: Mechanistic Insights from DFT Study. J Phys Chem B 2018; 122:5765-5775. [PMID: 29741901 DOI: 10.1021/acs.jpcb.8b01179] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The efficacy of S-omeprazole as a proton pump inhibitor compared with that of its enantiomer R-omeprazole is studied using density functional theoretical calculations. The pharmacokinetic studies suggest that the efficacy of S-omeprazole presumably depends on metabolic pathway and excretion from the human body. The density functional theory calculations at SMDwater-B3LYP-D3/6-311+G(d,p)/LANL2DZ//B3LYP/6-31G(d)/LANL2DZ with triradicaloid model active species, [Por•+FeIV(SH)O], of CYP2C19 enzyme with high-spin quartet and low-spin doublet states demonstrate C-H bond activation mechanism through a two-state rebound process for the hydroxylation of R-omeprazole and S-omeprazole. The calculated activation free energy barriers for the hydrogen abstraction are 15.7 and 17.5 kcal/mol for R-omeprazole and S-omeprazole, respectively. The hydroxylation of R-omeprazole and S-omeprazole is thermodynamically favored; however, the hydroxylated intermediate of S-omeprazole further disintegrates to metabolite 5- O-desmethylomeprazole with a higher kinetic barrier. We have examined the sulfoxidation of S-omeprazole to omeprazole sulfone metabolite by CYP3A4, and the observed activation free energy barrier is 9.9 kcal/mol. The computational results reveal that CYP2C19 exclusively metabolizes R-omeprazole to hydroxyomeprazole, which is hydrophilic and can easily excrete, whereas CYP3A4 metabolizes S-omeprazole to lipophilic sulfone; hence, the excretion of this metabolite would be relatively slower from the body. The spin density analysis and molecular orbital analysis performed using biorthogonalization calculations indicate that R-omeprazole favors high-spin pathway for metabolism process whereas S-omeprazole prefers the low-spin pathway.
Collapse
Affiliation(s)
| | - Tusar Bandyopadhyay
- Theoretical Chemistry Section, Chemistry Group MOD LAB , Bhabha Atomic Research Centre , Trombay , Mumbai 400085 , India
| | | |
Collapse
|