1
|
Arcuschin CD, Kahrizi K, Sayaman RW, DiBenedetto C, Shen Y, Salaberry PJ, Zakroui O, Schwarzer C, Scapozza A, Betancur P, Saba JD, Coppé JP, Barcellos-Hoff MH, Kappes D, van 't Veer L, Schor IE, Muñoz DP. Super-enhancer profiling reveals ThPOK/ZBTB7B, a CD4 + cell lineage commitment factor, as a master regulator that restricts breast cancer cells to a luminal non-migratory phenotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.614267. [PMID: 39386673 PMCID: PMC11463473 DOI: 10.1101/2024.09.21.614267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Despite efforts to understand breast cancer biology, metastatic disease remains a clinical challenge. Identifying suppressors of breast cancer progression and mechanisms of transition to more invasive phenotypes could provide game changing therapeutic opportunities. Transcriptional deregulation is central to all malignancies, highlighted by the extensive reprogramming of regulatory elements that underlie oncogenic programs. Among these, super-enhancers (SEs) stand out due to their enrichment in genes controlling cancer hallmarks. To reveal novel breast cancer dependencies, we integrated the analysis of the SE landscape with master regulator activity inference for a series of breast cancer cell lines. As a result, we identified T - h elper-inducing Poxviruses and Zinc-finger ( PO Z)/ K rüppel-like factor (ThPOK, ZBTB7B ), a CD4 + cell lineage commitment factor, as a breast cancer master regulator that is recurrently associated with a SE. ThPOK expression is highest in luminal breast cancer but is significantly reduced in the basal subtype. Manipulation of ThPOK levels in cell lines shows that its repressive function restricts breast cancer cells to an epithelial phenotype by suppressing the expression of genes involved in the epithelial-mesenchymal transition (EMT), WNT/β-catenin target genes, and the pro-metastatic TGFβ pathway. Our study reveals ThPOK as a master transcription factor that restricts the acquisition of metastatic features in breast cancer cells.
Collapse
|
2
|
Zhu Y, Wang Q, Xie X, Ma C, Qiao Y, Zhang Y, Wu Y, Gao Y, Jiang J, Liu X, Chen J, Li C, Ge G. ZBTB7B is a permissive regulator of hepatocellular carcinoma initiation by repressing c-Jun expression and function. Cell Death Dis 2024; 15:55. [PMID: 38225233 PMCID: PMC10789742 DOI: 10.1038/s41419-024-06441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/17/2024]
Abstract
Hepatocarcinogenesis is a multi-step process. However, the regulators of hepatocellular carcinoma (HCC) initiation are understudied. Adult liver-specific gene expression was globally downregulated in HCC. We hypothesize that adult liver-specific genes, especially adult liver-enriched transcription factors may exert tumor-suppressive functions in HCC. In this study, we identify ZBTB7B, an adult liver-enriched transcription factor as a permissive regulator of HCC initiation. ZBTB7B is highly expressed in hepatocytes in adult livers, compared to fetal livers. To evaluate the functions of ZBTB7B in hepatocarcinogenesis, we performed hepatocyte-specific ZBTB7B knockout in hydrodynamic oncogene transfer-induced mouse liver cancer models. Hepatocyte-specific knockout of ZBTB7B promotes activated Akt and N-Ras-induced HCC development. Moreover, ZBTB7B deficiency sensitizes hepatocytes to a single oncogene Akt-induced oncogenic transformation and HCC initiation, which is otherwise incompetent in inducing HCC. ZBTB7B deficiency accelerates HCC initiation by down-regulating adult liver-specific gene expression and priming livers to a fetal-like state. The molecular mechanism underlying ZBTB7B functions in hepatocytes was investigated by integrated transcriptomic, phosphoproteomic, and chromatin immunoprecipitation-sequencing analyses. Integrative multi-omics analyses identify c-Jun as the core signaling node in ZBTB7B-deficient liver cancer initiation. c-Jun is a direct target of ZBTB7B essential to accelerated liver cancer initiation in ZBTB7B-deficient livers. Knockdown of c-Jun expression or dominant negative c-Jun expression delays HCC development in ZBTB7B-deficient livers. In addition, ZBTB7B competes with c-Jun for chromatin binding. Ectopic ZBTB7B expression attenuates the tumor-promoting functions of c-Jun. Expression of ZBTB7B signature, composed of 140 genes co-regulated by ZBTB7B and c-Jun, is significantly downregulated in early-stage HCCs compared to adjacent normal tissues, correlates to liver-specific gene expression, and is associated with good prognosis in human HCC. Thus, ZBTB7B functions as a permissive regulator of HCC initiation by directly regulating c-Jun expression and function.
Collapse
Affiliation(s)
- Yue Zhu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qinqin Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinyu Xie
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Cuihong Ma
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuemei Qiao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Zhang
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanjun Wu
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuan Gao
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Jiang
- Genome Tagging Project (GTP) Center, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xin Liu
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China
| | - Chen Li
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Gaoxiang Ge
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
3
|
Wang B, Hu S, Fu X, Li L. CD4
+
Cytotoxic T Lymphocytes in Cancer Immunity and Immunotherapy. Adv Biol (Weinh) 2022; 7:e2200169. [PMID: 36193961 DOI: 10.1002/adbi.202200169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/24/2022] [Indexed: 11/05/2022]
Abstract
CD4+ T cells have the ability to differentiate into relatively specialized effector subsets after exposure to innate immune signals. The remarkable plasticity of CD4+ T cells is required to achieve immune responses in different tissues and against various pathogens. Numerous studies have shown that CD4+ T cells can play direct and indispensable roles in protective immunity by killing infected or transformed cells. Although the lineage decision of commitment to the CD4+ or CD8+ cell lineage is once thought to be inflexible, the identification of antigen-experienced CD4+ T cells with cytotoxic activity suggests the existence of unexpected plasticity for these cells. The recognition of CD4+ cytotoxic T lymphocytes (CTLs) and the mechanisms driving the differentiation of this particular cell subset create opportunities to explore the roles of these effector cells in protective immunity and immune-related pathology. CD4+ CTLs are proven to play a protective role in antiviral immunity. Here, the latest investigations on the phenotypic and functional features of CD4+ CTLs and their roles in antitumor immunity and immunotherapy are briefly reviewed.
Collapse
Affiliation(s)
- Boyu Wang
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Shaojie Hu
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Xiangning Fu
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| | - Lequn Li
- Thoracic Surgery Laboratory Department of Thoracic Surgery Tongji Hospital Tongji Medical College Huazhong University of Science and Technology Hubei 430030 P. R. China
| |
Collapse
|
4
|
Preglej T, Ellmeier W. CD4 + Cytotoxic T cells - Phenotype, Function and Transcriptional Networks Controlling Their Differentiation Pathways. Immunol Lett 2022; 247:27-42. [PMID: 35568324 DOI: 10.1016/j.imlet.2022.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/05/2022]
Abstract
The two major subsets of peripheral T cells are classically divided into the CD4+ T helper cells and the cytotoxic CD8+ T cell lineage. However, the appearance of some effector CD4+ T cell populations displaying cytotoxic activity, in particular during viral infections, has been observed, thus breaking the functional dichotomy of CD4+ and CD8+ T lymphocytes. The strong association of the appearance of CD4+ cytotoxic T lymphocytes (CD4 CTLs) with viral infections suggests an important role of this subset in antiviral immunity by controlling viral replication and infection. Moreover, CD4 CTLs have been linked with anti-tumor activity and might also cause immunopathology in autoimmune diseases. This raises interest into the molecular mechanisms regulating CD4 CTL differentiation, which are poorly understood in comparison to differentiation pathways of other Th subsets. In this review, we provide a brief overview about key features of CD4 CTLs, including their role in viral infections and cancer immunity, and about the link between CD4 CTLs and immune-mediated diseases. Subsequently, we will discuss the current knowledge about transcriptional and epigenetic networks controlling CD4 CTL differentiation and highlight recent data suggesting a role for histone deacetylases in the generation of CD4 CTLs.
Collapse
Affiliation(s)
- Teresa Preglej
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna
| | - Wilfried Ellmeier
- Division of Immunobiology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna.
| |
Collapse
|
5
|
Srivastava A, Mishra RK. Interactome of vertebrate GAF/ThPOK reveals its diverse functions in gene regulation and DNA repair. J Biosci 2020. [DOI: 10.1007/s12038-020-0014-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
6
|
Srivastava A, Mishra RK. Interactome of vertebrate GAF/ThPOK reveals its diverse functions in gene regulation and DNA repair. J Biosci 2020; 45:38. [PMID: 32098917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
GAGA associated factor (GAF) is a sequence-specific DNA binding transcription factor that is evolutionarily conserved from flies to humans. Emerging evidence shows a context-dependent function of vertebrate GAF (vGAF, a.k.a. ThPOK) in multiple processes like gene activation, repression, and enhancer-blocking. We hypothesize that context-dependent interaction of vGAF with a diverse set of proteins forms the basis for the multifunctional nature of vGAF. To this end, we deciphered the protein-protein interactome of vGAF and show that vGAF interacts with chromatin remodelers, RNA metabolic machinery, transcriptional activators/ repressors, and components of DNA repair machinery. We further validated the biological significance of our protein-protein interaction data with functional studies and established a novel role of vGAF in DNA repair and cell-survival after UV-induced DNA damage. One of the major risk factors for skin cutaneous melanoma is prolonged exposure of UV and subsequent DNA damage. vGAF is highly expressed in normal skin tissue. Interestingly, our analysis of high-throughput RNA-sequencing data shows that vGAF is heavily downregulated across all major stages of skin cutaneous melanoma suggesting its potential as a diagnostic biomarker. Taken together, our study provides a plausible explanation for the diverse gene regulatory functions of vGAF and unravels its novel role in DNA repair.
Collapse
Affiliation(s)
- Avinash Srivastava
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad 500 007, India
| | | |
Collapse
|
7
|
Srivastava A, Kumar AS, Mishra RK. Vertebrate GAF/ThPOK: emerging functions in chromatin architecture and transcriptional regulation. Cell Mol Life Sci 2018; 75:623-633. [PMID: 28856379 PMCID: PMC11105447 DOI: 10.1007/s00018-017-2633-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022]
Abstract
GAGA factor of Drosophila melanogaster (DmGAF) is a multifaceted transcription factor with diverse roles in chromatin regulation. Recently, ThPOK/c-Krox was identified as its vertebrate homologue (vGAF), which has a basic domain structure similar to DmGAF and is decorated with a number of post-translationally modified residues. In vertebrate genomes, vGAF associates with purine-rich GAGA sequences and performs diverse chromatin-mediated functions, viz., gene activation, repression and enhancer blocking. Expansion of regulatory chromatin proteins with the acquisition of PTMs appears to be the general trend that facilitated the evolution of complexity in vertebrates. Here, we compare the structural and functional features of vGAF with those of DmGAF and also assess the possible functional redundancy among paralogues of vGAF. We also discuss the underlying mechanisms which aid in the diverse and context-dependent functions of this protein.
Collapse
Affiliation(s)
- Avinash Srivastava
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Amitha Sampath Kumar
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
8
|
Mittal P, Abblett R, Ryan JM, Hagymasi AT, Agyekum-Yamoah A, Svedova J, Reiner SL, St Rose MC, Hanley MP, Vella AT, Adler AJ. An Immunotherapeutic CD137 Agonist Releases Eomesodermin from ThPOK Repression in CD4 T Cells. THE JOURNAL OF IMMUNOLOGY 2018; 200:1513-1526. [PMID: 29305435 DOI: 10.4049/jimmunol.1701039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/06/2017] [Indexed: 12/24/2022]
Abstract
Agonists to the TNF/TNFR costimulatory receptors CD134 (OX40) and CD137 (4-1BB) elicit antitumor immunity. Dual costimulation with anti-CD134 plus anti-CD137 is particularly potent because it programs cytotoxic potential in CD8+ and CD4+ T cells. Cytotoxicity in dual-costimulated CD4 T cells depends on the T-box transcription factor eomesodermin (Eomes), which we report is induced via a mechanism that does not rely on IL-2, in contrast to CD8+ CTL, but rather depends on the CD8 T cell lineage commitment transcription factor Runx3, which supports Eomes expression in mature CD8+ CTLs. Further, Eomes and Runx3 were indispensable for dual-costimulated CD4 T cells to mediate antitumor activity in an aggressive melanoma model. Runx3 is also known to be expressed in standard CD4 Th1 cells where it fosters IFN-γ expression; however, the CD4 T cell lineage commitment factor ThPOK represses transcription of Eomes and other CD8 lineage genes, such as Cd8a Hence, CD4 T cells can differentiate into Eomes+ cytotoxic CD4+CD8+ double-positive T cells by terminating ThPOK expression. In contrast, dual-costimulated CD4 T cells express Eomes, despite the continued expression of ThPOK and the absence of CD8α, indicating that Eomes is selectively released from ThPOK repression. Finally, although Eomes was induced by CD137 agonist, but not CD134 agonist, administered individually, CD137 agonist failed to induce CD134-/- CD4 T cells to express Eomes or Runx3, indicating that both costimulatory pathways are required for cytotoxic Th1 programming, even when only CD137 is intentionally engaged with a therapeutic agonist.
Collapse
Affiliation(s)
- Payal Mittal
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Rebecca Abblett
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Joseph M Ryan
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Adam T Hagymasi
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | | | - Julia Svedova
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Steven L Reiner
- Department of Microbiology and Immunology, College of Physicians and Surgeons, Columbia University, New York, NY 10032; and.,Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Marie-Clare St Rose
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Matthew P Hanley
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Anthony T Vella
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Adam J Adler
- Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030;
| |
Collapse
|
9
|
Kovilakath A, Mohamad S, Hermes F, Wang SZ, Ginder GD, Lloyd JA. In Vitro Erythroid Differentiation and Lentiviral Knockdown in Human CD34+ Cells from Umbilical Cord Blood. Methods Mol Biol 2018; 1698:259-274. [PMID: 29076096 DOI: 10.1007/978-1-4939-7428-3_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Human umbilical cord blood is a rich source of hematopoietic stem and progenitor cells. CD34+ cells in umbilical cord blood are more primitive than those in peripheral blood or bone marrow, and can proliferate at a high rate and differentiate into multiple cell types. In this protocol, a dependable method is described for the isolation of fetal CD34+ cells from umbilical cord blood and expanding these cells in culture. The cells can then be in vitro differentiated along an erythroid pathway, while simultaneously performing knockdown of a gene of choice. The use of lentiviral vectors that express small hairpin RNA (shRNA) is an efficient method to downregulate genes. Flow cytometric analyses are used to enrich for erythroid cells. Using these methods, one can generate in vitro differentiated cells to use for quantitative reverse transcriptase PCR and other purposes.
Collapse
Affiliation(s)
- Anna Kovilakath
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Safa Mohamad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Farrah Hermes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Shou Zhen Wang
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| | - Gordon D Ginder
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Joyce A Lloyd
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
10
|
Vacchio MS, Bosselut R. What Happens in the Thymus Does Not Stay in the Thymus: How T Cells Recycle the CD4+-CD8+ Lineage Commitment Transcriptional Circuitry To Control Their Function. THE JOURNAL OF IMMUNOLOGY 2017; 196:4848-56. [PMID: 27260768 DOI: 10.4049/jimmunol.1600415] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/06/2016] [Indexed: 12/24/2022]
Abstract
MHC-restricted CD4(+) and CD8(+) T cells are at the core of most adaptive immune responses. Although these cells carry distinct functions, they arise from a common precursor during thymic differentiation, in a developmental sequence that matches CD4 and CD8 expression and functional potential with MHC restriction. Although the transcriptional control of CD4(+)-CD8(+) lineage choice in the thymus is now better understood, less was known about what maintains the CD4(+) and CD8(+) lineage integrity of mature T cells. In this review, we discuss the mechanisms that establish in the thymus, and maintain in postthymic cells, the separation of these lineages. We focus on recent studies that address the mechanisms of epigenetic control of Cd4 expression and emphasize how maintaining a transcriptional circuitry nucleated around Thpok and Runx proteins, the key architects of CD4(+)-CD8(+) lineage commitment in the thymus, is critical for CD4(+) T cell helper functions.
Collapse
Affiliation(s)
- Melanie S Vacchio
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rémy Bosselut
- Laboratory of Immune Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
11
|
Igarashi M, Sakamoto K, Nagaoka I. Effect of glucosamine on expression of type II collagen, matrix metalloproteinase and sirtuin genes in a human chondrocyte cell line. Int J Mol Med 2016; 39:472-478. [PMID: 28035358 DOI: 10.3892/ijmm.2016.2842] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 12/15/2016] [Indexed: 11/06/2022] Open
Abstract
Glucosamine (GlcN) has been widely used to treat osteoarthritis (OA) in humans. However, the effects of GlcN on genes related to cartilage metabolism are still unknown. In the present study, to elucidate the chondroprotective action of GlcN on OA, we examined the effects of GlcN (0.1-10 mM) on the expression of the sirtuin (SIRT) genes as well as type II collagen and matrix metalloproteinases (MMPs) using a human chondrocyte cell line SW 1353. SW 1353 cells were incubated in the absence or presence of GlcN. RT-PCR analyses revealed that GlcN markedly increased the mRNA expression of type II collagen (COL2A1). By contrast, the levels of MMP-1 and MMP-9 mRNA were only slightly increased by GlcN. Furthermore, western blot analyses revealed that GlcN significantly increased the protein level of COL2A1. Importantly, GlcN enhanced the mRNA expression and protein level of SIRT1, an upstream-regulating gene of COL2A1. Moreover, a SIRT1 inhibitor suppressed GlcN-induced COL2A1 gene expression. Together these observations suggest that GlcN enhances the mRNA expression and protein level of SIRT1 and its downstream gene COL2A1 in chondrocytes, thereby possibly exhibiting chondroprotective action on OA.
Collapse
Affiliation(s)
- Mamoru Igarashi
- Department of Host Defense and Biochemical Research, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Koji Sakamoto
- Department of Host Defense and Biochemical Research, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Graduate School of Medicine, Juntendo University, Tokyo 113-8421, Japan
| |
Collapse
|
12
|
Maini J, Ghasemi M, Yandhuri D, Thakur SS, Brahmachari V. Human PRE-PIK3C2B, an intronic cis-element with dual function of activation and repression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:196-204. [PMID: 27932267 DOI: 10.1016/j.bbagrm.2016.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/28/2016] [Accepted: 12/02/2016] [Indexed: 02/01/2023]
Abstract
The Polycomb/Trithorax Responsive Elements (PRE/TREs) are the cis-regulatory sequences that interact with both repressive (PcG) as well as activating (TrxG) complexes. However, most of the mammalian PREs are demonstrated to interact with the repressive polycomb (PcG) complexes only. We have carried out an unbiased search for proteins interacting with human PRE-PIK3C2B (hPRE-PIK3C2B) based on DNA affinity purification followed by mass spectrometry and identified MLL, MLL4 and WDR87 among other proteins in three biological replicates in HEK, U87 and HeLa cell lines. The hPRE-PIK3C2B interacts with the members of multiple activating complexes (COMPASS-like). The increase in the interaction of MLL and MLL4 on depletion of YY1 and the increase in the enrichment of YY1 and EZH2 upon MLL knockdown at the hPRE-PIK3C2B indicate the dual occupancy and suggest a concentration dependent enrichment of the activator or the repressor complex at hPRE-PIK3C2B. Further, we show that the hPRE-PIK3C2B interacts with the Drosophila homologues of PcG and TrxG proteins in transgenic flies. Here, we found that there is an increased enrichment of Pc (Polycomb) in comparison to Trx (TrxG protein) at hPRE-PIK3C2B in the Drosophila transgenic flies and this seems to be the default state while the balance is tipped towards the trithorax complex in PcG mutants. To the best of our knowledge, this is one of the early demonstrations of human PRE acting as a TRE without any sequence alteration.
Collapse
Affiliation(s)
- Jayant Maini
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Mohsen Ghasemi
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India
| | - Deepti Yandhuri
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500007, India
| | - Suman S Thakur
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Habsiguda, Hyderabad 500007, India
| | - Vani Brahmachari
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi 110007, India.
| |
Collapse
|
13
|
Stienne C, Michieletto MF, Benamar M, Carrié N, Bernard I, Nguyen XH, Lippi Y, Duguet F, Liblau RS, Hedrick SM, Saoudi A, Dejean AS. Foxo3 Transcription Factor Drives Pathogenic T Helper 1 Differentiation by Inducing the Expression of Eomes. Immunity 2016; 45:774-787. [PMID: 27742544 DOI: 10.1016/j.immuni.2016.09.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/21/2016] [Accepted: 09/12/2016] [Indexed: 02/06/2023]
Abstract
The transcription factor Foxo3 plays a crucial role in myeloid cell function but its role in lymphoid cells remains poorly defined. Here, we have shown that Foxo3 expression was increased after T cell receptor engagement and played a specific role in the polarization of CD4+ T cells toward pathogenic T helper 1 (Th1) cells producing interferon-γ (IFN-γ) and granulocyte monocyte colony stimulating factor (GM-CSF). Consequently, Foxo3-deficient mice exhibited reduced susceptibility to experimental autoimmune encephalomyelitis. At the molecular level, we identified Eomes as a direct target gene for Foxo3 in CD4+ T cells and we have shown that lentiviral-based overexpression of Eomes in Foxo3-deficient CD4+ T cells restored both IFN-γ and GM-CSF production. Thus, the Foxo3-Eomes pathway is central to achieve the complete specialized gene program required for pathogenic Th1 cell differentiation and development of neuroinflammation.
Collapse
Affiliation(s)
- Caroline Stienne
- UMR Inserm, U1043, Toulouse 31300, France; UMR CNRS, U5282, Toulouse 31300, France; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse 31300, France
| | - Michaël F Michieletto
- UMR Inserm, U1043, Toulouse 31300, France; UMR CNRS, U5282, Toulouse 31300, France; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse 31300, France
| | - Mehdi Benamar
- UMR Inserm, U1043, Toulouse 31300, France; UMR CNRS, U5282, Toulouse 31300, France; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse 31300, France
| | | | - Isabelle Bernard
- UMR Inserm, U1043, Toulouse 31300, France; UMR CNRS, U5282, Toulouse 31300, France; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse 31300, France
| | - Xuan-Hung Nguyen
- UMR Inserm, U1043, Toulouse 31300, France; UMR CNRS, U5282, Toulouse 31300, France; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse 31300, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31024, France
| | - Fanny Duguet
- UMR Inserm, U1043, Toulouse 31300, France; UMR CNRS, U5282, Toulouse 31300, France; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse 31300, France
| | - Roland S Liblau
- UMR Inserm, U1043, Toulouse 31300, France; UMR CNRS, U5282, Toulouse 31300, France; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse 31300, France
| | - Stephen M Hedrick
- Molecular Biology Section, Division of Biological Sciences and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093-0377, USA
| | - Abdelhadi Saoudi
- UMR Inserm, U1043, Toulouse 31300, France; UMR CNRS, U5282, Toulouse 31300, France; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse 31300, France
| | - Anne S Dejean
- UMR Inserm, U1043, Toulouse 31300, France; UMR CNRS, U5282, Toulouse 31300, France; Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse 31300, France.
| |
Collapse
|
14
|
Reciprocal regulation of RORγt acetylation and function by p300 and HDAC1. Sci Rep 2015; 5:16355. [PMID: 26549310 PMCID: PMC4817527 DOI: 10.1038/srep16355] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
T helper 17 (Th17) cells not only play critical roles in protecting against bacterial and fungal infections but are also involved in the pathogenesis of autoimmune diseases. The retinoic acid-related orphan receptor (RORγt) is a key transcription factor involved in Th17 cell differentiation through direct transcriptional activation of interleukin 17(A) (IL-17). How RORγt itself is regulated remains unclear. Here, we report that p300, which has histone acetyltransferase (HAT) activity, interacts with and acetylates RORγt at its K81 residue. Knockdown of p300 downregulates RORγt protein and RORγt-mediated gene expression in Th17 cells. In addition, p300 can promote RORγt-mediated transcriptional activation. Interestingly, the histone deacetylase (HDAC) HDAC1 can also interact with RORγt and reduce its acetylation level. In summary, our data reveal previously unappreciated posttranslational regulation of RORγt, uncovering the underlying mechanism by which the histone acetyltransferase p300 and the histone deacetylase HDAC1 reciprocally regulate the RORγt-mediated transcriptional activation of IL-17.
Collapse
|
15
|
Sperlazza J, Rahmani M, Beckta J, Aust M, Hawkins E, Wang SZ, Zu Zhu S, Podder S, Dumur C, Archer K, Grant S, Ginder GD. Depletion of the chromatin remodeler CHD4 sensitizes AML blasts to genotoxic agents and reduces tumor formation. Blood 2015; 126:1462-72. [PMID: 26265695 PMCID: PMC4573869 DOI: 10.1182/blood-2015-03-631606] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022] Open
Abstract
Chromodomain helicase DNA-binding protein 4 (CHD4) is an ATPase that alters the phasing of nucleosomes on DNA and has recently been implicated in DNA double-stranded break (DSB) repair. Here, we show that depletion of CHD4 in acute myeloid leukemia (AML) blasts induces a global relaxation of chromatin that renders cells more susceptible to DSB formation, while concurrently impeding their repair. Furthermore, CHD4 depletion renders AML blasts more sensitive both in vitro and in vivo to genotoxic agents used in clinical therapy: daunorubicin (DNR) and cytarabine (ara-C). Sensitization to DNR and ara-C is mediated in part by activation of the ataxia-telangiectasia mutated pathway, which is preliminarily activated by a Tip60-dependent mechanism in response to chromatin relaxation and further activated by genotoxic agent-induced DSBs. This sensitization preferentially affects AML cells, as CHD4 depletion in normal CD34(+) hematopoietic progenitors does not increase their susceptibility to DNR or ara-C. Unexpectedly, we found that CHD4 is necessary for maintaining the tumor-forming behavior of AML cells, as CHD4 depletion severely restricted the ability of AML cells to form xenografts in mice and colonies in soft agar. Taken together, these results provide evidence for CHD4 as a novel therapeutic target whose inhibition has the potential to enhance the effectiveness of genotoxic agents used in AML therapy.
Collapse
MESH Headings
- Animals
- Antibiotics, Antineoplastic/therapeutic use
- Antimetabolites, Antineoplastic/therapeutic use
- Autoantigens/genetics
- Cell Line, Tumor
- Cytarabine/therapeutic use
- DNA Breaks, Double-Stranded/drug effects
- Daunorubicin/therapeutic use
- Female
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Mi-2 Nucleosome Remodeling and Deacetylase Complex/genetics
- Mice, Inbred NOD
- Mice, SCID
- RNA Interference
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Justin Sperlazza
- Cancer and Molecular Medicine PhD Program, Massey Cancer Center, and
| | | | - Jason Beckta
- Massey Cancer Center, and Department of Biochemistry and Molecular Biology
| | | | | | | | | | | | | | - Kellie Archer
- Massey Cancer Center, and Department of Biostatistics, and
| | - Steven Grant
- Massey Cancer Center, and Department of Internal Medicine, Department of Biochemistry and Molecular Biology
| | - Gordon D Ginder
- Massey Cancer Center, and Department of Internal Medicine, Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA
| |
Collapse
|
16
|
Abstract
During thymic development, thymocytes expressing a T cell receptor consisting of an alpha and beta chain (TCRαβ), commit to either the cytotoxic- or T helper-lineage fate. This lineage dichotomy is controlled by key transcription factors, including the T helper (Th) lineage master regulator, the Th-inducing BTB/POZ domain-containing Kruppel-like zinc-finger transcription factor, ThPOK, (formally cKrox or Zfp67; encoded by Zbtb7b), which suppresses the cytolytic program in major histocompatibility complex (MHC) class II-restricted CD4(+) thymocytes and the Runt related transcription factor 3 (Runx3), which counteracts ThPOK in MHC class I restricted precursor cells and promotes the lineage commitment of CD8αβ(+) cytolytic T lymphocytes (CTL). ThPOK continues to repress the CTL gene program in mature CD4(+) T cells, even as they differentiate into effector Th cell subsets. The Th cell fate however is not fixed and two recent studies showed that mature, antigen-stimulated CD4(+) T cells have the flexibility to terminate the expression of ThPOK and functionally reprogram to cytotoxic effector cells. This unexpected plasticity of CD4(+) T cells results in the post-thymic termination of the Th lineage fate and the functional differentiation of distinct MHC class II-restricted CD4(+) CTL. The recognition of CD4 CTL as a defined separate subset of effector cells and the identification of the mechanisms and factors that drive their reprogramming finally create new opportunities to explore the physiological relevance of these effector cells in vivo and to determine their pivotal roles in both, protective immunity as well as in immune-related pathology.
Collapse
Affiliation(s)
- Hilde Cheroutre
- Division of Developmental Immunology, La Jolla Institute for Allergy & Immunology, La Jolla, CA 92037, USA.
| | | |
Collapse
|