1
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. Cell Rep 2024; 43:115005. [PMID: 39671291 PMCID: PMC11815640 DOI: 10.1016/j.celrep.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/27/2024] [Accepted: 11/06/2024] [Indexed: 12/15/2024] Open
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated proteins. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can (1) reduce Hsp70 collaboration without enhancing activity, (2) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s, (3) produce Hsp70-independent potentiated variants, or (4) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting an NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS and TDP-43 proteinopathies in human cells. Thus, we establish design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peter J Carman
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Craig W Gambogi
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathan M Kendsersky
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Chuang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephanie N Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Adam L Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexandrea N Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel R Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California, San Francisco, San Francisco, CA 94158, USA
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Lin J, Carman PJ, Gambogi CW, Kendsersky NM, Chuang E, Gates SN, Yokom AL, Rizo AN, Southworth DR, Shorter J. Design principles to tailor Hsp104 therapeutics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591398. [PMID: 38712168 PMCID: PMC11071516 DOI: 10.1101/2024.04.26.591398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The hexameric AAA+ disaggregase, Hsp104, collaborates with Hsp70 and Hsp40 via its autoregulatory middle domain (MD) to solubilize aggregated protein conformers. However, how ATP- or ADP-specific MD configurations regulate Hsp104 hexamers remains poorly understood. Here, we define an ATP-specific network of interprotomer contacts between nucleotide-binding domain 1 (NBD1) and MD helix L1, which tunes Hsp70 collaboration. Manipulating this network can: (a) reduce Hsp70 collaboration without enhancing activity; (b) generate Hsp104 hypomorphs that collaborate selectively with class B Hsp40s; (c) produce Hsp70-independent potentiated variants; or (d) create species barriers between Hsp104 and Hsp70. Conversely, ADP-specific intraprotomer contacts between MD helix L2 and NBD1 restrict activity, and their perturbation frequently potentiates Hsp104. Importantly, adjusting the NBD1:MD helix L1 rheostat via rational design enables finely tuned collaboration with Hsp70 to safely potentiate Hsp104, minimize off-target toxicity, and counteract FUS proteinopathy in human cells. Thus, we establish important design principles to tailor Hsp104 therapeutics.
Collapse
Affiliation(s)
- JiaBei Lin
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Peter J. Carman
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Craig W. Gambogi
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Nathan M. Kendsersky
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Edward Chuang
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| | - Stephanie N. Gates
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Adam L. Yokom
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
- Current address: Department of Biochemistry, University of Missouri, Columbia, MO 65211. U.S.A
| | - Alexandrea N. Rizo
- Graduate Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109. U.S.A
| | - Daniel R. Southworth
- Department of Biochemistry and Biophysics and the Institute for Neurodegenerative Diseases, University of California San Francisco, San Francisco, CA 94158. U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
- Pharmacology Graduate Group Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104. U.S.A
| |
Collapse
|
3
|
Zhang R, Malinverni D, Cyr DM, Rios PDL, Nillegoda NB. J-domain protein chaperone circuits in proteostasis and disease. Trends Cell Biol 2023; 33:30-47. [PMID: 35729039 PMCID: PMC9759622 DOI: 10.1016/j.tcb.2022.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 12/27/2022]
Abstract
The J-domain proteins (JDP) form the largest protein family among cellular chaperones. In cooperation with the Hsp70 chaperone system, these co-chaperones orchestrate a plethora of distinct functions, including those that help maintain cellular proteostasis and development. JDPs evolved largely through the fusion of a J-domain with other protein subdomains. The highly conserved J-domain facilitates the binding and activation of Hsp70s. How JDPs (re)wire Hsp70 chaperone circuits and promote functional diversity remains insufficiently explained. Here, we discuss recent advances in our understanding of the JDP family with a focus on the regulation built around J-domains to ensure correct pairing and assembly of JDP-Hsp70 machineries that operate on different clientele under various cellular growth conditions.
Collapse
Affiliation(s)
- Ruobing Zhang
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia
| | - Duccio Malinverni
- MRC Laboratory of Molecular Biology, Cambridge, UK; Department of Structural Biology and Center for Data Driven Discovery, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Douglas M Cyr
- Department of Cell Biology and Physiology and the Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Paolo De Los Rios
- Institute of Physics, School of Basic Sciences and Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Nadinath B Nillegoda
- Australian Regenerative Medicine Institute (ARMI), Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Nelson B, Hong SH, Lupoli TJ. Protein Cofactor Mimics Disrupt Essential Chaperone Function in Stressed Mycobacteria. ACS Infect Dis 2022; 8:901-910. [PMID: 35412813 DOI: 10.1021/acsinfecdis.1c00651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bacterial DnaK is an ATP-dependent molecular chaperone important for maintaining cellular proteostasis in concert with cofactor proteins. The cofactor DnaJ delivers non-native client proteins to DnaK and activates its ATPase activity, which is required for protein folding. In the bacterial pathogen Mycobacterium tuberculosis, DnaK is assisted by two DnaJs, DnaJ1 and DnaJ2. Functional protein-protein interactions (PPIs) between DnaK and at least one DnaJ are essential for survival of mycobacteria; hence, these PPIs represent untapped antibacterial targets. Here, we synthesize peptide-based mimetics of DnaJ1 and DnaJ2 N-terminal domains as rational inhibitors of DnaK-cofactor interactions. We find that covalently stabilized DnaJ mimetics are capable of disrupting DnaK-cofactor activity in vitro and prevent mycobacterial recovery from proteotoxic stress in vivo, leading to cell death. Since chaperones and cofactors are highly conserved, we anticipate these results will inform the design of other mimetics to modulate chaperone function across cell types.
Collapse
Affiliation(s)
- Brock Nelson
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Seong Ho Hong
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Tania J. Lupoli
- Department of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
5
|
Guo H, Zhang H, Wang G, Wang C, Wang Y, Liu X, Ji W. Identification and expression analysis of heat-shock proteins in wheat infected with powdery mildew and stripe rust. THE PLANT GENOME 2021; 14:e20092. [PMID: 33719166 DOI: 10.1002/tpg2.20092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/31/2021] [Indexed: 05/24/2023]
Abstract
Heat-shock proteins (HSPs), which are encoded by conserved gene families in plants, are crucial for development and responses to diverse stresses. However, the wheat (Triticum aestivum L.) HSPs have not been systematically classified, especially those involved in protecting plants from disease. Here, we classified 119 DnaJ (Hsp40) proteins (TaDnaJs; encoded by 313 genes) and 41 Hsp70 proteins (TaHsp70s; encoded by 95 genes) into six and four groups, respectively, via a phylogenetic analysis. An examination of protein sequence alignment revealed diversity in the TaDnaJ structural organization, but a highly conserved J-domain, which was usually characterized by an HPD motif followed by DRD or DED motifs. The expression profiles of HSP-encoding homologous genes varied in response to Blumeria graminis f. sp. tritici (Bgt) and Puccinia striiformis f. sp. tritici (Pst) stress. A quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated a lack of similarity in the expression of DnaJ70b, Hsp70-30b, and Hsp90-4b in Bgt-infected resistant and susceptible wheat. Furthermore, a direct interaction between DnaJ70 and TaHsp70-30 was not detected in a yeast two-hybrid (Y2H) assay, but screening cDNA library and Y2H evidence supported that TaHsp70-30 not only interacts directly with heat-shock transcription factor (HSF) A9-like protein but also interacts with TaHsp90-4 by HSP organizing protein. This study revealed the structure and expression profiles of the HSP-encoding genes in wheat, which may be useful for future functional elucidation of wheat HSPs responses to fungal infections.
Collapse
Affiliation(s)
- Huan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- China-Australia Joint Research Center for Abiotic and Biotic Stress Management, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Guanghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Changyou Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, P.R. China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, P.R. China
| | - Xinlun Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, P.R. China
| |
Collapse
|
6
|
Akber U, Jo H, Jeon S, Yang SJ, Bong S, Lim S, Kim YK, Park ZY, Park CS. Cereblon Regulates the Proteotoxicity of Tau by Tuning the Chaperone Activity of DNAJA1. J Neurosci 2021; 41:5138-5156. [PMID: 33972400 PMCID: PMC8211538 DOI: 10.1523/jneurosci.2494-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/24/2021] [Accepted: 04/23/2021] [Indexed: 11/21/2022] Open
Abstract
Protein aggregation can induce explicit neurotoxic events that trigger a number of presently untreatable neurodegenerative disorders. Chaperones, on the other hand, play a neuroprotective role because of their ability to unfold and refold abnormal proteins. The progressive nature of neurotoxic events makes it important to discover endogenous factors that affect pathologic and molecular phenotypes of neurodegeneration in animal models. Here, we identified microtubule-associated protein tau, and chaperones Hsp70 (heat shock protein 70) and DNAJA1 (DJ2) as endogenous substrates of cereblon (CRBN), a substrate-recruiting subunit of cullin4-RING-E3-ligase. This recruitment results in ubiquitin-mediated degradation of tau, Hsp70, and DJ2. Knocking out CRBN enhances the chaperone activity of DJ2, resulting in decreased phosphorylation and aggregation of tau, improved association of tau with microtubules, and reduced accumulation of pathologic tau across brain. Functionally abundant DJ2 could prevent tau aggregation induced by various factors like okadaic acid and heparin. Depletion of CRBN also decreases the activity of tau-kinases including GSK3α/β, ERK, and p38. Intriguingly, we found a high expression of CRBN and low levels of DJ2 in neuronal tissues of 5XFAD and APP knock-in male mouse models of Alzheimer's disease. This implies that CRBN-mediated DJ2/Hsp70 pathway may be compromised in neurodegeneration. Being one of the primary pathogenic events, elevated CRBN can be a contributing factor for tauopathies. Our data provide a functional link between CRBN and DJ2/Hsp70 chaperone machinery in abolishing the cytotoxicity of aggregation-prone tau and suggest that Crbn-/- mice serve as an animal model of resistance against tauopathies for further exploration of the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Uroos Akber
- Laboratory of Molecular Neurobiology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Heeji Jo
- Laboratory of Molecular Neurobiology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seungje Jeon
- Laboratory of Molecular Neurobiology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seung-Joo Yang
- Laboratory of Molecular Neurobiology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sunhwa Bong
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sungsu Lim
- Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Yun Kyung Kim
- Center for Neuromedicine, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Zee-Yong Park
- Laboratory of Functional and Medicinal Proteomics, School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Chul-Seung Park
- Laboratory of Molecular Neurobiology, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Integrated Institute of Biomedical Research, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
7
|
Dalphin MD, Stangl AJ, Liu Y, Cavagnero S. KLR-70: A Novel Cationic Inhibitor of the Bacterial Hsp70 Chaperone. Biochemistry 2020; 59:1946-1960. [PMID: 32326704 DOI: 10.1021/acs.biochem.0c00320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heat-shock factor Hsp70 and other molecular chaperones play a central role in nascent protein folding. Elucidating the task performed by individual chaperones within the complex cellular milieu, however, has been challenging. One strategy for addressing this goal has been to monitor protein biogenesis in the absence and presence of inhibitors of a specific chaperone, followed by analysis of folding outcomes under both conditions. In this way, the role of the chaperone of interest can be discerned. However, development of chaperone inhibitors, including well-known proline-rich antimicrobial peptides, has been fraught with undesirable side effects, including decreased protein expression yields. Here, we introduce KLR-70, a rationally designed cationic inhibitor of the Escherichia coli Hsp70 chaperone (also known as DnaK). KLR-70 is a 14-amino acid peptide bearing naturally occurring residues and engineered to interact with the DnaK substrate-binding domain. The interaction of KLR-70 with DnaK is enantioselective and is characterized by high affinity in a buffered solution. Importantly, KLR-70 does not significantly interact with the DnaJ and GroEL/ES chaperones, and it does not alter nascent protein biosynthesis yields across a wide concentration range. Some attenuation of the anti-DnaK activity of KLR-70, however, has been observed in the complex E. coli cell-free environment. Interestingly, the d enantiomer D-KLR-70, unlike its all-L KLR-70 counterpart, does not bind the DnaK and DnaJ chaperones, yet it strongly inhibits translation. This outcome suggests that the two enantiomers (KLR-70 and D-KLR-70) may serve as orthogonal inhibitors of chaperone binding and translation. In summary, KLR-70 is a novel chaperone inhibitor with high affinity and selectivity for bacterial Hsp70 and with considerable potential to help in parsing out the role of Hsp70 in nascent protein folding.
Collapse
Affiliation(s)
- Matthew D Dalphin
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andrew J Stangl
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Yue Liu
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Silvia Cavagnero
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
The Herpes Simplex Virus 1 Immediate Early Protein ICP22 Is a Functional Mimic of a Cellular J Protein. J Virol 2020; 94:JVI.01564-19. [PMID: 31748398 DOI: 10.1128/jvi.01564-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/14/2019] [Indexed: 12/15/2022] Open
Abstract
Molecular chaperones and cochaperones are the most abundant cellular effectors of protein homeostasis, assisting protein folding and preventing aggregation of misfolded proteins. We have previously shown that herpes simplex virus 1 (HSV-1) infection results in the drastic spatial reorganization of the cellular chaperone Hsc70 into nuclear domains called VICE (Virus Induced Chaperone Enriched) domains and that this recruitment is dependent on the viral immediate early protein ICP22. Here, we present several lines of evidence supporting the notion that ICP22 functions as a virally encoded cochaperone (J-protein/Hsp40) functioning together with its Hsc70 partner to recognize and manage aggregated and misfolded proteins. We show that ICP22 results in (i) nuclear sequestration of nonnative proteins, (ii) reduction of cytoplasmic aggresomes in cells expressing aggregation-prone proteins, and (iii) thermoprotection against heat inactivation of firefly luciferase, and (iv) sequence homology analysis indicated that ICP22 contains an N-terminal J domain and a C-terminal substrate binding domain, similar to type II cellular J proteins. ICP22 may thus be functionally similar to J-protein/Hsp40 cochaperones that function together with their HSP70 partners to prevent aggregation of nonnative proteins. This is not the first example of a virus hijacking a function of a cellular chaperone, since simian immunodeficiency virus T antigen was previously shown to contain a J domain; however, this the first known example of the acquisition of a functional J-like protein by a virus and suggests that HSV has taken advantage of the adaptable nature of J proteins to evolve a multifunctional cochaperone that functions with Hsc70 to promote lytic infection.IMPORTANCE Viruses have evolved a variety of strategies to succeed in a hostile environment. The herpes simplex virus 1 (HSV-1) immediate early protein ICP22 plays several roles in the virus life cycle, including downregulation of cellular gene expression, upregulation of late viral gene expression, inhibition of apoptosis, prevention of aggregation of nonnative proteins, and the recruitment of a cellular heat shock protein, Hsc70, to nuclear domains. We present evidence that ICP22 functionally resembles a cellular J-protein/HSP40 family cochaperone, interacting specifically with Hsc70. We suggest that HSV has taken advantage of the adaptable nature of J proteins to evolve a multifunctional cochaperone that functions with Hsc70 to promote lytic infection.
Collapse
|
9
|
Oikonomou C, Hendershot LM. Disposing of misfolded ER proteins: A troubled substrate's way out of the ER. Mol Cell Endocrinol 2020; 500:110630. [PMID: 31669350 PMCID: PMC6911830 DOI: 10.1016/j.mce.2019.110630] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/19/2019] [Accepted: 10/20/2019] [Indexed: 12/12/2022]
Abstract
Secreted, plasma membrane, and resident proteins of the secretory pathway are synthesized in the endoplasmic reticulum (ER) where they undergo post-translational modifications, oxidative folding, and subunit assembly in tightly monitored processes. An ER quality control (ERQC) system oversees protein maturation and ensures that only those reaching their native state will continue trafficking into the secretory pathway to reach their final destinations. Those that fail must be recognized and eliminated to maintain ER homeostasis. Two cellular mechanisms have been identified to rid the ER of terminally unfolded, misfolded, and aggregated proteins. ER-associated degradation (ERAD) was discovered nearly 30 years ago and entails the identification of improperly matured secretory pathway proteins and their retrotranslocation to the cytosol for degradation by the ubiquitin-proteasome system. ER-phagy has been more recently described and caters to larger, more complex proteins and protein aggregates that are not readily handled by ERAD. This pathway has unique upstream components and relies on the same downstream effectors of autophagy used in other cellular processes to deliver clients to lysosomes for degradation. In this review, we describe the main elements of ERQC, ERAD, and ER-phagy and focus on recent advances in these fields.
Collapse
Affiliation(s)
- Christina Oikonomou
- St. Jude Children's Research Hospital, Memphis, TN, 38104, USA; The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Linda M Hendershot
- St. Jude Children's Research Hospital, Memphis, TN, 38104, USA; The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
10
|
Velasco L, Dublang L, Moro F, Muga A. The Complex Phosphorylation Patterns that Regulate the Activity of Hsp70 and Its Cochaperones. Int J Mol Sci 2019; 20:ijms20174122. [PMID: 31450862 PMCID: PMC6747476 DOI: 10.3390/ijms20174122] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
Proteins must fold into their native structure and maintain it during their lifespan to display the desired activity. To ensure proper folding and stability, and avoid generation of misfolded conformations that can be potentially cytotoxic, cells synthesize a wide variety of molecular chaperones that assist folding of other proteins and avoid their aggregation, which unfortunately is unavoidable under acute stress conditions. A protein machinery in metazoa, composed of representatives of the Hsp70, Hsp40, and Hsp110 chaperone families, can reactivate protein aggregates. We revised herein the phosphorylation sites found so far in members of these chaperone families and the functional consequences associated with some of them. We also discuss how phosphorylation might regulate the chaperone activity and the interaction of human Hsp70 with its accessory and client proteins. Finally, we present the information that would be necessary to decrypt the effect that post-translational modifications, and especially phosphorylation, could have on the biological activity of the Hsp70 system, known as the “chaperone code”.
Collapse
Affiliation(s)
- Lorea Velasco
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Leire Dublang
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - Fernando Moro
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| | - Arturo Muga
- Biofisika Institute (UPV/EHU, CSIC) and Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain.
| |
Collapse
|
11
|
Uchida T, Kanemori M. Two J domains ensure high cochaperone activity of DnaJ, Escherichia coli heat shock protein 40. J Biochem 2018; 164:153-163. [PMID: 29635480 DOI: 10.1093/jb/mvy038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/26/2018] [Indexed: 11/13/2022] Open
Abstract
Heat shock protein 70 (Hsp70) chaperone systems consist of Hsp70, Hsp40 and a nucleotide-exchange factor and function to help unfolded proteins achieve their native conformations. Typical Hsp40s assume a homodimeric structure and have both chaperone and cochaperone activity. The dimeric structure is critical for chaperone function, whereas the relationship between the dimeric structure and cochaperone function is hardly known. Here, we examined whether two intact protomers are required for cochaperone activity of Hsp40 using an Escherichia coli Hsp70 chaperone system consisting of DnaK, DnaJ and GrpE. The expression systems were generated and two heterodimeric DnaJs that included a mutated protomer lacking cochaperone activity were purified. Normal chaperone activity was demonstrated by assessing aggregation prevention activity using urea-denatured luciferase. The heterodimeric DnaJs were investigated for cochaperone activity by measuring DnaK ATPase activity and the heat-denatured glucose-6-phosphate dehydrogenase refolding activity of the DnaK chaperone system, and they showed reduced cochaperone activity. These results indicate that two intact protomers are required for high cochaperone activity of DnaJ, suggesting that one homodimeric DnaJ molecule promotes the simultaneous binding of multiple DnaK molecules to one substrate molecule, and that this binding mode is required for the efficient folding of denatured proteins.
Collapse
Affiliation(s)
- Tomoya Uchida
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Masaaki Kanemori
- School of Natural System, College of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
12
|
Activation of the DnaK-ClpB Complex is Regulated by the Properties of the Bound Substrate. Sci Rep 2018; 8:5796. [PMID: 29643454 PMCID: PMC5895705 DOI: 10.1038/s41598-018-24140-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 03/28/2018] [Indexed: 12/20/2022] Open
Abstract
The chaperone ClpB in bacteria is responsible for the reactivation of aggregated proteins in collaboration with the DnaK system. Association of these chaperones at the aggregate surface stimulates ATP hydrolysis, which mediates substrate remodeling. However, a question that remains unanswered is whether the bichaperone complex can be selectively activated by substrates that require remodeling. We find that large aggregates or bulky, native-like substrates activates the complex, whereas a smaller, permanently unfolded protein or extended, short peptides fail to stimulate it. Our data also indicate that ClpB interacts differently with DnaK in the presence of aggregates or small peptides, displaying a higher affinity for aggregate-bound DnaK, and that DnaK-ClpB collaboration requires the coupled ATPase-dependent remodeling activities of both chaperones. Complex stimulation is mediated by residues at the β subdomain of DnaK substrate binding domain, which become accessible to the disaggregase when the lid is allosterically detached from the β subdomain. Complex activation also requires an active NBD2 and the integrity of the M domain-ring of ClpB. Disruption of the M-domain ring allows the unproductive stimulation of the DnaK-ClpB complex in solution. The ability of the DnaK-ClpB complex to discrimínate different substrate proteins might allow its activation when client proteins require remodeling.
Collapse
|
13
|
Fernández-Fernández MR, Gragera M, Ochoa-Ibarrola L, Quintana-Gallardo L, Valpuesta JM. Hsp70 - a master regulator in protein degradation. FEBS Lett 2017; 591:2648-2660. [PMID: 28696498 DOI: 10.1002/1873-3468.12751] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/04/2017] [Accepted: 07/07/2017] [Indexed: 12/31/2022]
Abstract
Proteostasis, the controlled balance of protein synthesis, folding, assembly, trafficking and degradation, is a paramount necessity for cell homeostasis. Impaired proteostasis is a hallmark of ageing and of many human diseases. Molecular chaperones are essential for proteostasis in eukaryotic cells, and their function has traditionally been linked to protein folding, assembly and disaggregation. More recent findings suggest that chaperones also contribute to key steps in protein degradation. In particular, Hsp70 has an essential role in substrate degradation through the ubiquitin-proteasome system, as well as through different autophagy pathways. Accumulated knowledge suggests that the fate of an Hsp70 substrate is dictated by the combination of partners (cochaperones and other chaperones) that interact with Hsp70 in a given cell context.
Collapse
Affiliation(s)
| | - Marcos Gragera
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Jiang G, Rowarth NM, Panchakshari S, MacRae TH. ArHsp40, a type 1 J-domain protein, is developmentally regulated and stress inducible in post-diapause Artemia franciscana. Cell Stress Chaperones 2016; 21:1077-1088. [PMID: 27581971 PMCID: PMC5083676 DOI: 10.1007/s12192-016-0732-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/12/2016] [Accepted: 08/18/2016] [Indexed: 01/01/2023] Open
Abstract
Upon diapause termination and exposure to favorable environmental conditions, cysts of the crustacean Artemia franciscana reinitiate development, a process dependent on the resumption of metabolic activity and the maintenance of protein homeostasis. The objective of the work described herein was to characterize molecular chaperones during post-diapause growth of A. franciscana. An Hsp40 complementary DNA (cDNA) termed ArHsp40 was cloned and shown to encode a protein with an amino-terminal J-domain containing a conserved histidine, proline, and aspartic acid (HPD) motif. Following the J-domain was a Gly/Phe (G/F) rich domain, a zinc-binding domain which contained a modified CXXCXGXG motif, and the carboxyl-terminal substrate binding region, all characteristics of type I Hsp40. Multiple alignment and protein modeling showed that ArHsp40 is comparable to Hsp40s from other eukaryotes and likely to be functionally similar. qRT-PCR revealed that during post-diapause development, ArHsp40 messenger RNA (mRNA) varied slightly until the E2/E3 stage and decreased significantly upon hatching. The immunoprobing of Western blots demonstrated that ArHsp40 was also relatively constant until E2/E3 and then declined dramatically. The drop in ArHsp40 when metabolism and protein synthesis were increasing was unexpected and demonstrated developmental regulation. The reduction in ArHsp40 at such an active life history stage indicates, as one possibility, that A. franciscana possesses additional Hsp40s, one or more of which replaces ArHsp40 as development progresses. Increased synthesis upon heat shock established that in addition to being developmentally regulated, ArHsp40 is stress inducible and, because it is found in mature cysts, ArHsp40 has the potential to contribute to stress tolerance during diapause.
Collapse
Affiliation(s)
- Guojian Jiang
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
- College of Marine Life Sciences, Ocean University of China, No. 5, Yushan, RD, Qingdao, 266003, China
| | - Nathan M Rowarth
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada
| | | | - Thomas H MacRae
- Department of Biology, Dalhousie University, Halifax, NS, B3H 4R2, Canada.
| |
Collapse
|
15
|
Cheng L, Wang Y, He Q, Li H, Zhang X, Zhang F. Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat (Triticum aestivum L.) cultivars under dehydration and rehydration. BMC PLANT BIOLOGY 2016; 16:188. [PMID: 27576435 PMCID: PMC5006382 DOI: 10.1186/s12870-016-0871-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 08/10/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Drought stress is one of the most adverse environmental constraints to plant growth and productivity. Comparative proteomics of drought-tolerant and sensitive wheat genotypes is a strategy to understand the complexity of molecular mechanism of wheat in response to drought. This study attempted to extend findings regarding the potential proteomic dynamics in wheat under drought stress and to enrich the research content of drought tolerance mechanism. RESULTS A comparative proteomics approach was applied to analyze proteome change of Xihan No. 2 (a drought-tolerant cultivar) and Longchun 23 (a drought-sensitive cultivar) subjected to a range of dehydration treatments (18 h, 24 h and 48 h) and rehydration treatment (R24 h) using 2-DE, respectively. Quantitative image analysis showed a total of 172 protein spots in Xihan No. 2 and 215 spots from Longchun 23 with their abundance significantly altered (p < 0.05) more than 2.5-fold. Out of these spots, a total of 84 and 64 differentially abundant proteins were identified by MALDI-TOF/TOF MS in Xihan No. 2 and Longchun 23, respectively. Most of these identified proteins were involved in metabolism, photosynthesis, defence and protein translation/processing/degradation in both two cultivars. In addition, the proteins involved in redox homeostasis, energy, transcription, cellular structure, signalling and transport were also identified. Furthermore, the comparative analysis of drought-responsive proteome allowed for the general elucidation of the major mechanisms associated with differential responses to drought of both two cultivars. These cellular processes work more cooperatively to re-establish homeostasis in Xihan No. 2 than Longchun 23. The resistance mechanisms of Xihan No. 2 mainly included changes in the metabolism of carbohydrates and amino acids as well as in the activation of more antioxidation and defense systems and in the levels of proteins involved in ATP synthesis and protein degradation/refolding. CONCLUSIONS This study revealed that the levels of a number of proteins involved in various cellular processes were affected by drought stress in two wheat cultivars with different drought tolerance. The results showed that there exist specific responses to drought in Xihan No. 2 and Longchun 23. The proposed hypothetical model would explain the interaction of these identified proteins that are associated with drought-responses in two cultivars, and help in developing strategies to improve drought tolerance in wheat.
Collapse
Affiliation(s)
- Lixiang Cheng
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Yuping Wang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Qiang He
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| | - Huijun Li
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
- Wuwei Agricultural and Animal Husbandry Bureau, Wuwei, China
| | - Xiaojing Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
- Gansu Dingxi Academy of Agricultural Science, Dingxi, China
| | - Feng Zhang
- College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Research & Testing Center, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
16
|
Fernández-Fernández MR, Sot B, Valpuesta JM. Molecular chaperones: functional mechanisms and nanotechnological applications. NANOTECHNOLOGY 2016; 27:324004. [PMID: 27363314 DOI: 10.1088/0957-4484/27/32/324004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular chaperones are a group of proteins that assist in protein homeostasis. They not only prevent protein misfolding and aggregation, but also target misfolded proteins for degradation. Despite differences in structure, all types of chaperones share a common general feature, a surface that recognizes and interacts with the misfolded protein. This and other, more specialized properties can be adapted for various nanotechnological purposes, by modification of the original biomolecules or by de novo design based on artificial structures.
Collapse
Affiliation(s)
- M Rosario Fernández-Fernández
- Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Campus de la Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | | | |
Collapse
|
17
|
Celaya G, Fernández-Higuero JA, Martin I, Rivas G, Moro F, Muga A. Crowding Modulates the Conformation, Affinity, and Activity of the Components of the Bacterial Disaggregase Machinery. J Mol Biol 2016; 428:2474-2487. [DOI: 10.1016/j.jmb.2016.04.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 12/13/2022]
|
18
|
Durech M, Trcka F, Man P, Blackburn EA, Hernychova L, Dvorakova P, Coufalova D, Kavan D, Vojtesek B, Muller P. Novel Entropically Driven Conformation-specific Interactions with Tomm34 Protein Modulate Hsp70 Protein Folding and ATPase Activities. Mol Cell Proteomics 2016; 15:1710-27. [PMID: 26944342 DOI: 10.1074/mcp.m116.058131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Indexed: 12/18/2022] Open
Abstract
Co-chaperones containing tetratricopeptide repeat (TPR) domains enable cooperation between Hsp70 and Hsp90 to maintain cellular proteostasis. Although the details of the molecular interactions between some TPR domains and heat shock proteins are known, we describe a novel mechanism by which Tomm34 interacts with and coordinates Hsp70 activities. In contrast to the previously defined Hsp70/Hsp90-organizing protein (Hop), Tomm34 interaction is dependent on the Hsp70 chaperone cycle. Tomm34 binds Hsp70 in a complex process; anchorage of the Hsp70 C terminus by the TPR1 domain is accompanied by additional contacts formed exclusively in the ATP-bound state of Hsp70 resulting in a high affinity entropically driven interaction. Tomm34 induces structural changes in determinants within the Hsp70-lid subdomain and modulates Hsp70/Hsp40-mediated refolding and Hsp40-stimulated Hsp70 ATPase activity. Because Tomm34 recruits Hsp90 through its TPR2 domain, we propose a model in which Tomm34 enables Hsp70/Hsp90 scaffolding and influences the Hsp70 chaperone cycle, providing an additional role for co-chaperones that contain multiple TPR domains in regulating protein homeostasis.
Collapse
Affiliation(s)
- Michal Durech
- From the ‡Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Filip Trcka
- From the ‡Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Petr Man
- ¶Institute of Microbiology, The Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; ‖Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Elizabeth A Blackburn
- **Centre for Translational and Chemical Biology, Institute of Structural and Molecular Biology, University of Edinburgh, Max Born Crescent, The King's Buildings, Edinburgh EH9 3JR, United Kingdom
| | - Lenka Hernychova
- From the ‡Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Petra Dvorakova
- From the ‡Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Dominika Coufalova
- From the ‡Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
| | - Daniel Kavan
- ¶Institute of Microbiology, The Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; ‖Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague, Czech Republic
| | - Borivoj Vojtesek
- From the ‡Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic;
| | - Petr Muller
- From the ‡Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic;
| |
Collapse
|
19
|
Hsp70 forms antiparallel dimers stabilized by post-translational modifications to position clients for transfer to Hsp90. Cell Rep 2015; 11:759-69. [PMID: 25921532 PMCID: PMC4431665 DOI: 10.1016/j.celrep.2015.03.063] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/02/2015] [Accepted: 03/24/2015] [Indexed: 01/04/2023] Open
Abstract
Protein folding in cells is regulated by networks of chaperones, including the heat shock protein 70 (Hsp70) system, which consists of the Hsp40 cochaperone and a nucleotide exchange factor. Hsp40 mediates complex formation between Hsp70 and client proteins prior to interaction with Hsp90. We used mass spectrometry (MS) to monitor assemblies formed between eukaryotic Hsp90/Hsp70/Hsp40, Hop, p23, and a client protein, a fragment of the glucocorticoid receptor (GR). We found that Hsp40 promotes interactions between the client and Hsp70, and facilitates dimerization of monomeric Hsp70. This dimerization is antiparallel, stabilized by post-translational modifications (PTMs), and maintained in the stable heterohexameric client-loading complex Hsp902Hsp702HopGR identified here. Addition of p23 to this client-loading complex induces transfer of GR onto Hsp90 and leads to expulsion of Hop and Hsp70. Based on these results, we propose that Hsp70 antiparallel dimerization, stabilized by PTMs, positions the client for transfer from Hsp70 to Hsp90. Antiparallel dimerization of Hsp70 is stabilized by PTMs Hsp40 catalyzes Hsp70 dimerization and client transfer to Hsp70 Hsp70 antiparallel dimerization is maintained in the client-loading complex Addition of p23 induces transfer of GR onto Hsp90 and loss of Hop and Hsp70
Collapse
|
20
|
Otero JH, Lizák B, Feige MJ, Hendershot LM. Dissection of structural and functional requirements that underlie the interaction of ERdj3 protein with substrates in the endoplasmic reticulum. J Biol Chem 2014; 289:27504-12. [PMID: 25143379 DOI: 10.1074/jbc.m114.587147] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
ERdj3, a mammalian endoplasmic reticulum (ER) Hsp40/DnaJ family member, binds unfolded proteins, transfers them to BiP, and concomitantly stimulates BiP ATPase activity. However, the requirements for ERdj3 binding to and release from substrates in cells are not well understood. We found that ERdj3 homodimers that cannot stimulate the ATPase activity of BiP (QPD mutants) bound to unfolded ER proteins under steady state conditions in much greater amounts than wild-type ERdj3. This was due to reduced release from these substrates as opposed to enhanced binding, although in both cases dimerization was strictly required for substrate binding. Conversely, heterodimers consisting of one wild-type and one mutant ERdj3 subunit bound substrates at levels comparable with wild-type ERdj3 homodimers, demonstrating that release requires only one protomer to be functional in stimulating BiP ATPase activity. Co-expressing wild-type ERdj3 and a QPD mutant, which each exclusively formed homodimers, revealed that the release rate of wild-type ERdj3 varied according to the relative half-lives of substrates, suggesting that ERdj3 release is an important step in degradation of unfolded client proteins in the ER. Furthermore, pulse-chase experiments revealed that the binding of QPD mutant homodimers remained constant as opposed to increasing, suggesting that ERdj3 does not normally undergo reiterative binding cycles with substrates.
Collapse
Affiliation(s)
- Joel H Otero
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Beata Lizák
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Matthias J Feige
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Linda M Hendershot
- From the Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| |
Collapse
|