1
|
Subrahmanian S, Varshney R, Subramani K, Murphy B, Woolington S, Ahamed J. N-Acetylcysteine Inhibits Aortic Stenosis Progression in a Murine Model by Blocking Shear-Induced Activation of Platelet Latent Transforming Growth Factor Beta 1. Antioxid Redox Signal 2024; 41:e1187-e1196. [PMID: 34619980 PMCID: PMC11693965 DOI: 10.1089/ars.2021.0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 01/08/2023]
Abstract
Objective: Aortic stenosis (AS) is characterized by narrowing of the aortic valve opening, resulting in peak blood flow velocity that induces high wall shear stress (WSS) across the valve. Severe AS leads to heart failure and death. There is no treatment available for AS other than valve replacement. Platelet-derived transforming growth factor beta 1 (TGF-β1) partially contributes to AS progression in mice, and WSS is a potent activator of latent TGF-β1. N-acetylcysteine (NAC) inhibits WSS-induced TGF-β1 activation in vitro. We hypothesize that NAC will inhibit AS progression by inhibiting WSS-induced TGF-β1 activation. Approach: We treated a cohort of Ldlr(-/-)Apob(100/100) low density lipoprotein receptor (LDLR) mice fed a high-fat diet with NAC (2% in drinking water) at different stages of disease progression and measured its effect on AS progression and TGF-β1 activation. Results: Short-term NAC treatment inhibited AS progression in mice with moderate and severe AS relative to controls, but not in LDLR mice lacking platelet-derived TGF-β1 (TGF-β1platlet-KO-LDLR). NAC treatment reduced TGF-β signaling, p-Smad2 and collagen levels, and mesenchymal transition from isolectin B4 and CD45-positive cells in LDLR mice. Mechanistically, NAC treatment resulted in plasma NAC concentrations ranging from 75.5 to 449.2 ng/mL, which were sufficient to block free thiol labeling of plasma proteins and reduce active TGF-β1 levels without substantially affecting reactive oxygen species-modified products in valvular cells. Conclusions: Short-term treatment with NAC inhibits AS progression by inhibiting WSS-induced TGF-β1 activation in the LDLR mouse model of AS, motivating a clinical trial of NAC and/or other thiol-reactive agent(s) as a potential therapy for AS.
Collapse
Affiliation(s)
- Sandeep Subrahmanian
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Rohan Varshney
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Kumar Subramani
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Brennah Murphy
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Sean Woolington
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
| | - Jasimuddin Ahamed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation (OMRF), Oklahoma City, Oklahoma, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
2
|
Subramani K, Bander J, Chen S, Suárez-Fariñas M, Venkatesan T, Subrahmanian S, Varshney R, Kini A, Sharma S, Rifkin DB, Cho J, Coller BS, Ahamed J. Evidence That Anemia Accelerates AS Progression Via Shear-Induced TGF-β1 Activation: Heyde's Syndrome Comes Full Circle. JACC Basic Transl Sci 2024; 9:185-199. [PMID: 38510715 PMCID: PMC10950403 DOI: 10.1016/j.jacbts.2023.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 03/22/2024]
Abstract
The severity of aortic stenosis (AS) is associated with acquired von Willebrand syndrome (AVWS) and gastrointestinal bleeding, leading to anemia (Heyde's syndrome). We investigated how anemia is linked with AS and AVWS using the LA100 mouse model and patients with AS. Induction of anemia in LA100 mice increased transforming growth factor (TGF)-β1 activation, AVWS, and AS progression. Patients age >75 years with severe AS had higher plasma TGF-β1 levels and more severe anemia than AS patients age <75 years, and there was a correlation between TGF-β1 and anemia. These data are compatible with the hypothesis that the blood loss anemia of Heyde's syndrome contributes to AS progression via WSS-induced activation of platelet TGF-β1 and additional gastrointestinal bleeding via WSS-induced AVWS.
Collapse
Affiliation(s)
- Kumar Subramani
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Jeffrey Bander
- Icahn School of Medicine at Mount Sinai New York, New York, USA
| | - Sixia Chen
- University of Oklahoma Health Sciences Centers, Oklahoma City, Oklahoma, USA
| | | | - Thamizhiniyan Venkatesan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Sandeep Subrahmanian
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Rohan Varshney
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Annapoorna Kini
- Icahn School of Medicine at Mount Sinai New York, New York, USA
| | - Samin Sharma
- Icahn School of Medicine at Mount Sinai New York, New York, USA
| | - Daniel B. Rifkin
- Departments of Cell Biology and Medicine, New York University, New York, New York, USA
| | - Jaehyung Cho
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Barry S. Coller
- Laboratory of Blood and Vascular Biology, Rockefeller University, New York, New York, USA
| | - Jasimuddin Ahamed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
- University of Oklahoma Health Sciences Centers, Oklahoma City, Oklahoma, USA
| |
Collapse
|
3
|
Garlapati V, Molitor M, Michna T, Harms GS, Finger S, Jung R, Lagrange J, Efentakis P, Wild J, Knorr M, Karbach S, Wild S, Vujacic-Mirski K, Münzel T, Daiber A, Brandt M, Gori T, Milting H, Tenzer S, Ruf W, Wenzel P. Targeting myeloid cell coagulation signaling blocks MAP kinase/TGF-β1-driven fibrotic remodeling in ischemic heart failure. J Clin Invest 2023; 133:156436. [PMID: 36548062 PMCID: PMC9927945 DOI: 10.1172/jci156436] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Despite major advances in acute interventions for myocardial infarction (MI), adverse cardiac remodeling and excess fibrosis after MI causing ischemic heart failure (IHF) remain a leading cause of death worldwide. Here we identify a profibrotic coagulation signaling pathway that can be targeted for improved cardiac function following MI with persistent ischemia. Quantitative phosphoproteomics of cardiac tissue revealed an upregulated mitogen-activated protein kinase (MAPK) pathway in human IHF. Intervention in this pathway with trametinib improves myocardial function and prevents fibrotic remodeling in a murine model of non-reperfused MI. MAPK activation in MI requires myeloid cell signaling of protease-activated receptor 2 linked to the cytoplasmic domain of the coagulation initiator tissue factor (TF). They act upstream of pro-oxidant NOX2 NADPH oxidase, ERK1/2 phosphorylation, and activation of profibrotic TGF-β1. Specific targeting with the TF inhibitor nematode anticoagulant protein c2 (NAPc2) starting 1 day after established experimental MI averts IHF. Increased TF cytoplasmic domain phosphorylation in circulating monocytes from patients with subacute MI identifies a potential thromboinflammatory biomarker reflective of increased risk for IHF and suitable for patient selection to receive targeted TF inhibition therapy.
Collapse
Affiliation(s)
- Venkata Garlapati
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Michael Molitor
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Thomas Michna
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
| | - Gregory S Harms
- Cell Biology Unit, University Medical Center Mainz, Mainz, Germany and.,Departments of Biology and Physics, Wilkes University, Wilkes-Barre, Pennsylvania, USA
| | - Stefanie Finger
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Rebecca Jung
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,Institute for Molecular Medicine, University Medical Center Mainz, Mainz, Germany
| | | | | | - Johannes Wild
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Maike Knorr
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Susanne Karbach
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Sabine Wild
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | | | - Thomas Münzel
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Moritz Brandt
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Tommaso Gori
- Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Hendrik Milting
- Erich und Hanna Klessmann-Institut für Kardiovaskuläre Forschung und Entwicklung, Herz- und Diabeteszentrum NRW, Bad Oeynhausen, Germany
| | - Stefan Tenzer
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany.,Helmholtz Institute for Translational Oncology (HI-TRON) Mainz, Germany and.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis and.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.,Department of Immunology and Microbiology, Scripps Research, La Jolla, California, USA
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis and.,Department of Cardiology, University Medical Center Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
4
|
Wang L, Wang X, Lv X, Jin Q, Shang H, Wang CC, Wang L. The extracellular Ero1α/PDI electron transport system regulates platelet function by increasing glutathione reduction potential. Redox Biol 2022; 50:102244. [PMID: 35077997 PMCID: PMC8792282 DOI: 10.1016/j.redox.2022.102244] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 01/18/2023] Open
Abstract
Protein disulfide isomerase (PDI), an oxidoreductase, possesses two vicinal cysteines in the -Cys-Gly-His-Cys-motif that either form a disulfide bridge (S–S) or exist in a sulfhydryl form (-SH), forming oxidized or reduced PDI, respectively. PDI has been proven to be critical for platelet aggregation, thrombosis, and hemostasis, and PDI inhibition is being evaluated as a novel antithrombotic strategy. The redox states of functional PDI during the regulation of platelet aggregation, however, remain to be elucidated. Endoplasmic reticulum (ER) oxidoreductin-1α (Ero1α) and PDI constitute the pivotal oxidative folding pathway in the ER and play an important role in ER redox homeostasis. Whether Ero1α and PDI constitute an extracellular electron transport pathway to mediate platelet aggregation is an open question. Here, we found that oxidized but not reduced PDI promotes platelet aggregation. On the platelet surface, Ero1α constitutively oxidizes PDI and further regulates platelet aggregation in a glutathione-dependent manner. The Ero1α/PDI system oxidizes reduced glutathione (GSH) and establishes a reduction potential optimal for platelet aggregation. Therefore, platelet aggregation is mediated by the Ero1α-PDI-GSH electron transport system on the platelet surface. We further showed that targeting the functional interplay between PDI and Ero1α by small molecule inhibitors may be a novel strategy for antithrombotic therapy. Oxidized but not reduced PDI promotes platelet aggregation. Ero1α and PDI constitute an electron transport pathway on platelet surface. Ero1α and PDI provide a redox environment optimal for platelet aggregation. The functional interplay between Ero1α and PDI can be a new target for antiplatelet therapy.
Collapse
Affiliation(s)
- Lu Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xi Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiying Lv
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qiushuo Jin
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Chih-Chen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
5
|
Xu X, Chiu J, Chen S, Fang C. Pathophysiological roles of cell surface and extracellular protein disulfide isomerase and their molecular mechanisms. Br J Pharmacol 2021; 178:2911-2930. [PMID: 33837960 DOI: 10.1111/bph.15493] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/23/2021] [Accepted: 04/04/2021] [Indexed: 12/21/2022] Open
Abstract
Protein disulfide isomerase (PDI) is the prototypic member of the thiol isomerase family that catalyses disulfide bond rearrangement. Initially identified in the endoplasmic reticulum as folding catalysts, PDI and other members in its family have also been widely reported to reside on the cell surface and in the extracellular matrix. Although how PDI is exported and retained on the cell surface remains a subject of debate, this unique pool of PDI is developing into an important mechanism underlying the redox regulation of protein sulfhydryls that are critical for the cellular activities under various disease conditions. This review aims to provide an overview of the pathophysiological roles of surface and extracellular PDI and their underlying molecular mechanisms. Understanding the involvement of extracellular PDI in these diseases will advance our knowledge in the molecular aetiology to facilitate the development of novel pharmacological strategies by specifically targeting PDI in extracellular compartments.
Collapse
Affiliation(s)
- Xulin Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Joyce Chiu
- The Centenary Institute, National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Shuai Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| |
Collapse
|
6
|
Tanaka LY, Oliveira PVS, Laurindo FRM. Peri/Epicellular Thiol Oxidoreductases as Mediators of Extracellular Redox Signaling. Antioxid Redox Signal 2020; 33:280-307. [PMID: 31910038 DOI: 10.1089/ars.2019.8012] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Significance: Supracellular redox networks regulating cell-extracellular matrix (ECM) and organ system architecture merge with structural and functional (catalytic or allosteric) properties of disulfide bonds. This review addresses emerging evidence that exported thiol oxidoreductases (TORs), such as thioredoxin, protein disulfide isomerases (PDIs), quiescin sulfhydryl oxidases (QSOX)1, and peroxiredoxins, composing a peri/epicellular (pec)TOR pool, mediate relevant signaling. pecTOR functions depend mainly on kinetic and spatial regulation of thiol-disulfide exchange reactions governed by redox potentials, which are modulated by exported intracellular low-molecular-weight thiols, together conferring signal specificity. Recent Advances: pecTOR redox-modulates several targets including integrins, ECM proteins, surface molecules, and plasma components, although clear-cut documentation of direct effects is lacking in many cases. TOR catalytic pathways, displaying common patterns, culminate in substrate thiol reduction, oxidation, or isomerization. Peroxiredoxins act as redox/peroxide sensors, contrary to PDIs, which are likely substrate-targeted redox modulators. Emerging evidence suggests important pecTOR roles in patho(physio)logical processes, including blood coagulation, vascular remodeling, mechanosensing, endothelial function, immune responses, and inflammation. Critical Issues: Effects of pecPDIs supporting thrombosis/platelet activation have been well documented and reached the clinical arena. Roles of pecPDIA1 in vascular remodeling/mechanosensing are also emerging. Extracellular thioredoxin and pecPDIs redox-regulate immunoinflammation. Routes of TOR externalization remain elusive and appear to involve Golgi-independent routes. pecTORs are particularly accessible drug targets. Future Directions: Further understanding mechanisms of thiol redox reactions and developing assays for assessing pecTOR redox activities remain important research avenues. Also, addressing pecTORs as disease markers and achieving more efficient/specific drugs for pecTOR modulation are major perspectives for diagnostic/therapeutic improvements.
Collapse
Affiliation(s)
- Leonardo Y Tanaka
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Percillia V S Oliveira
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Francisco R M Laurindo
- Vascular Biology Laboratory, LIM-64 (Translational Cardiovascular Biology), Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
7
|
Oscillatory shear potentiates latent TGF-β1 activation more than steady shear as demonstrated by a novel force generator. Sci Rep 2019; 9:6065. [PMID: 30988341 PMCID: PMC6465594 DOI: 10.1038/s41598-019-42302-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 11/20/2022] Open
Abstract
Cardiovascular mechanical stresses trigger physiological and pathological cellular reactions including secretion of Transforming Growth Factor β1 ubiquitously in a latent form (LTGF-β1). While complex shear stresses can activate LTGF-β1, the mechanisms underlying LTGF-β1 activation remain unclear. We hypothesized that different types of shear stress differentially activate LTGF-β1. We designed a custom-built cone-and-plate device to generate steady shear (SS) forces, which are physiologic, or oscillatory shear (OSS) forces characteristic of pathologic states, by abruptly changing rotation directions. We then measured LTGF-β1 activation in platelet releasates. We modeled and measured flow profile changes between SS and OSS by computational fluid dynamics (CFD) simulations. We found a spike in shear rate during abrupt changes in rotation direction. OSS activated TGF-β1 levels significantly more than SS at all shear rates. OSS altered oxidation of free thiols to form more high molecular weight protein complex(es) than SS, a potential mechanism of shear-dependent LTGF-β1 activation. Increasing viscosity in platelet releasates produced higher shear stress and higher LTGF-β1 activation. OSS-generated active TGF-β1 stimulated higher pSmad2 signaling and endothelial to mesenchymal transition (EndoMT)-related genes PAI-1, collagen, and periostin expression in endothelial cells. Overall, our data suggest variable TGF-β1 activation and signaling occurs with competing blood flow patterns in the vasculature to generate complex shear stress, which activates higher levels of TGF-β1 to drive vascular remodeling.
Collapse
|
8
|
Platelet TGF-β1 deficiency decreases liver fibrosis in a mouse model of liver injury. Blood Adv 2019; 2:470-480. [PMID: 29490978 DOI: 10.1182/bloodadvances.2017010868] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/31/2018] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor-β1 (TGF-β1) signaling in hepatic stellate cells (HSCs) plays a primary role in liver fibrosis, but the source of TGF-β1 is unclear. Because platelets are rich in TGF-β1, we examined the role of platelet TGF-β1 in liver fibrosis by challenging wild-type (WT) mice and mice deficient in platelet TGF-β1 (PF4CreTgfb1f/f) with carbon tetrachloride (CCl4), an inducer of acute hepatic injury and chronic fibrosis. CCl4 elicited equivalent hepatic injury in WT and PF4CreTgfb1f/f mice based on loss of cytochrome P450 (Cyp2e1) expression, observed at 6 hours and peaking at 3 days after CCl4 challenge; PF4CreTgfb1f/f mice exhibited less liver fibrosis than control mice. Activated platelets were observed during acute liver injury (6 hours), and WT mice with transient platelet depletion (thrombocytopenia) were partially protected from developing fibrosis compared with control mice (P = .01), suggesting an association between platelet activation and fibrosis. Transient increases in TGF-β1 levels and Smad2 phosphorylation signaling were observed 6 hours and 3 days, respectively, after CCl4 challenge in WT, but not PF4CreTgfb1f/f , mice, suggesting that increased TGF-β1 levels originated from platelet-released TGF-β1 during the initial injury. Numbers of collagen-producing HSCs and myofibroblasts were higher at 3 days and 36 days, respectively, in WT vs PF4CreTgfb1f/f mice, suggesting that platelet TGF-β1 may have stimulated HSC transdifferentiation into myofibroblasts. Thus, platelet TGF-β1 partially contributes to liver fibrosis, most likely by initiating profibrotic signaling in HSCs and collagen synthesis. Further studies are required to evaluate whether blocking platelet and TGF-β1 activation during acute liver injury prevents liver fibrosis.
Collapse
|
9
|
Grosche J, Meißner J, Eble JA. More than a syllable in fib-ROS-is: The role of ROS on the fibrotic extracellular matrix and on cellular contacts. Mol Aspects Med 2018; 63:30-46. [PMID: 29596842 DOI: 10.1016/j.mam.2018.03.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
Fibrosis is characterized by excess deposition of extracellular matrix (ECM). However, the ECM changes during fibrosis not only quantitatively but also qualitatively. Thus, the composition is altered as the expression of various ECM proteins changes. Moreover, also posttranslational modifications, secretion, deposition and crosslinkage as well as the proteolytic degradation of ECM components run differently during fibrosis. As several of these processes involve redox reactions and some of them are even redox-regulated, reactive oxygen species (ROS) influence fibrotic diseases. Redox regulation of the ECM has not been studied intensively, although evidences exist that the alteration of the ECM, including the redox-relevant processes of its formation and degradation, may be of key importance not only as a cause but also as a consequence of fibrotic diseases. Myofibroblasts, which have differentiated from fibroblasts during fibrosis, produce most of the ECM components and in return obtain important environmental cues of the ECM, including their redox-dependent fibrotic alterations. Thus, myofibroblast differentiation and fibrotic changes of the ECM are interdependent processes and linked with each other via cell-matrix contacts, which are mediated by integrins and other cell adhesion molecules. These cell-matrix contacts are also regulated by redox processes and by ROS. However, most of the redox-catalyzing enzymes are localized within cells. Little is known about redox-regulating enzymes, especially the ones that control the formation and cleavage of redox-sensitive disulfide bridges within the extracellular space. They are also important players in the redox-regulative crosstalk between ECM and cells during fibrosis.
Collapse
Affiliation(s)
- Julius Grosche
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
10
|
Lu N, Lu J, Zhou C, Zhong F. Association between transforming growth factor-beta 1 gene single nucleotide polymorphisms and knee osteoarthritis susceptibility in a Chinese Han population. J Int Med Res 2017. [PMID: 28627979 PMCID: PMC5718715 DOI: 10.1177/0300060517705719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To investigate associations between single polymorphisms (SNPs) rs1800469 and rs1982073 in the transforming growth factor-β1 gene (TGF-β1) and knee osteoarthritis (OA) susceptibility in a Chinese Han population. Methods TGF-β1 rs1800469 and rs1982073 were genotyped in patients with knee OA and age- and sex-matched OA-free controls from a Chinese Han population. The association was further analyzed according to gender and age. Results A total of 765 patients with knee OA and 780 controls were included. CT and CT + CC genotypes of rs1982073, and variant C, were associated with a significantly increased risk of knee OA. Stratification analysis showed that the association between the OA risk and rs1982073 CT heterozygotes compared with TT homozygotes was stronger in females and those aged >65 years. In contrast, CT, TT, and CT + TT genotypes of rs1800469 were not significantly associated with the risk of knee OA, even after further stratification analysis for gender and age. Conclusions The TGF-β1 rs1982073 T to C change and the variant C genotype may contribute to knee OA risk in the Chinese Han population.
Collapse
Affiliation(s)
- Ning Lu
- 1 Tongde Hospital of Zhejiang Province, Department of Orthopaedics, Zhejiang, CN, P.R. China
| | - Jianwei Lu
- 1 Tongde Hospital of Zhejiang Province, Department of Orthopaedics, Zhejiang, CN, P.R. China
| | - Chenhe Zhou
- 2 Second Affiliated Hospital's Campus in Binjiang District, School of Medicine, Zhejiang University, Department of Orthopedic Surgery, Hangzhou, Zhejiang, P.R. China
| | - FuHua Zhong
- 1 Tongde Hospital of Zhejiang Province, Department of Orthopaedics, Zhejiang, CN, P.R. China
| |
Collapse
|
11
|
Sousa HR, Gaspar RS, Sena EML, da Silva SA, Fontelles JL, AraUjo TLS, Mastrogiovanni M, Fries DM, Azevedo-Santos APS, Laurindo FRM, Trostchansky A, Paes AM. Novel antiplatelet role for a protein disulfide isomerase-targeted peptide: evidence of covalent binding to the C-terminal CGHC redox motif. J Thromb Haemost 2017; 15:774-784. [PMID: 28109047 DOI: 10.1111/jth.13633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Indexed: 11/30/2022]
Abstract
Essentials Inhibitors of protein disulfide isomerase (PDI) have been considered a new antithrombotic class. CxxC is a PDI-targeted peptide that has been previously shown to inhibit its reductase activity. CxxC binds to surface PDI and inhibits ADP- and thrombin-evoked platelet activation and aggregation. CxxC binds to Cys400 on CGHC redox motif of PDI a' domain, a site for PDI prothrombotic activity. SUMMARY Background Protein disulfide isomerase (PDI) plays a major role in platelet aggregation, and its inhibitors have emerged as novel antithrombotic drugs. In previous work, we designed a peptide based on a PDI redox motif (CGHC) that inhibited both PDI reductase activity and PDI-modulated superoxide generation by neutrophil Nox2. Thus, we hypothesized that this peptide would also inhibit platelet aggregation by association with surface PDI. Methods Three peptides were used: CxxC, containing the PDI redox motif; Scr, presenting a scrambled sequence of the same residues and AxxA, with cysteines replaced by alanine. These peptides were tested under platelet aggregation and flow cytometry protocols to identify their possible antiplatelet activity. We labeled membrane free thiol and electrospray ionization liquid chromatography tandem mass spectrometry to test for an interaction. Results CxxC decreased platelet aggregation in a dose-dependent manner, being more potent at lower agonist concentrations, whereas neither AxxA nor Scr peptides exerted any effect. CxxC decreased aIIbb3 activation, but had no effect on the other markers. CxxC also decreased cell surface PDI pulldown without interfering with the total thiol protein content. Finally, we detected the addition of one CxxC molecule to reduced PDI through binding to Cys400 through mass spectrometry. Interestingly, CxxC did not react with oxidized PDI. Discussion CxxC has consistently shown its antiplatelet effects, both in PRP and washed platelets, corroborated by decreased aIIbb3 activation. The probable mechanism of action is through a mixed dissulphide bond with Cys400 of PDI, which has been shown to be essential for PDI's actions. Conclusion In summary, our data support antiplatelet activity for CxxC through binding to Cys400 in the PDI a0 domain, which can be further exploited as a model for sitedriven antithrombotic agent development.
Collapse
Affiliation(s)
- H R Sousa
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - R S Gaspar
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - E M L Sena
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - S A da Silva
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - J L Fontelles
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| | - T L S AraUjo
- Laboratory of Vascular Biology, Heart Institute, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - M Mastrogiovanni
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - D M Fries
- Laboratory of Vascular Biology, Heart Institute, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - A P S Azevedo-Santos
- Laboratory of Immunophysiology, Department of Pathology, Federal University of Maranhão, São Luís, MA, Brazil
| | - F R M Laurindo
- Laboratory of Vascular Biology, Heart Institute, School of Medicine of the University of São Paulo, São Paulo, SP, Brazil
| | - A Trostchansky
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - A M Paes
- Laboratory of Experimental Physiology, Department of Physiological Sciences, Federal University of Maranhão, São Luís, MA, Brazil
| |
Collapse
|
12
|
Soares Moretti AI, Martins Laurindo FR. Protein disulfide isomerases: Redox connections in and out of the endoplasmic reticulum. Arch Biochem Biophys 2016; 617:106-119. [PMID: 27889386 DOI: 10.1016/j.abb.2016.11.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/08/2016] [Accepted: 11/21/2016] [Indexed: 12/13/2022]
Abstract
Protein disulfide isomerases are thiol oxidoreductase chaperones from thioredoxin superfamily. As redox folding catalysts from the endoplasmic reticulum (ER), their roles in ER-related redox homeostasis and signaling are well-studied. PDIA1 exerts thiol oxidation/reduction and isomerization, plus chaperone effects. Also, substantial evidence indicates that PDIs regulate thiol-disulfide switches in other cell locations such as cell surface and possibly cytosol. Subcellular PDI translocation routes remain unclear and seem Golgi-independent. The list of signaling and structural proteins reportedly regulated by PDIs keeps growing, via thiol switches involving oxidation, reduction and isomerization, S-(de)nytrosylation, (de)glutathyonylation and protein oligomerization. PDIA1 is required for agonist-triggered Nox NADPH oxidase activation and cell migration in vascular cells and macrophages, while PDIA1-dependent cytoskeletal regulation appears a converging pathway. Extracellularly, PDIs crucially regulate thiol redox signaling of thrombosis/platelet activation, e.g., integrins, and PDIA1 supports expansive caliber remodeling during injury repair via matrix/cytoskeletal organization. Some proteins display regulatory PDI-like motifs. PDI effects are orchestrated by expression levels or post-translational modifications. PDI is redox-sensitive, although probably not a mass-effect redox sensor due to kinetic constraints. Rather, the "all-in-one" organization of its peculiar redox/chaperone properties likely provide PDIs with precision and versatility in redox signaling, making them promising therapeutic targets.
Collapse
Affiliation(s)
- Ana Iochabel Soares Moretti
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | | |
Collapse
|
13
|
Bekendam RH, Bendapudi PK, Lin L, Nag PP, Pu J, Kennedy DR, Feldenzer A, Chiu J, Cook KM, Furie B, Huang M, Hogg PJ, Flaumenhaft R. A substrate-driven allosteric switch that enhances PDI catalytic activity. Nat Commun 2016; 7:12579. [PMID: 27573496 PMCID: PMC5013553 DOI: 10.1038/ncomms12579] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023] Open
Abstract
Protein disulfide isomerase (PDI) is an oxidoreductase essential for folding proteins in the endoplasmic reticulum. The domain structure of PDI is a–b–b′–x–a′, wherein the thioredoxin-like a and a′ domains mediate disulfide bond shuffling and b and b′ domains are substrate binding. The b′ and a′ domains are connected via the x-linker, a 19-amino-acid flexible peptide. Here we identify a class of compounds, termed bepristats, that target the substrate-binding pocket of b′. Bepristats reversibly block substrate binding and inhibit platelet aggregation and thrombus formation in vivo. Ligation of the substrate-binding pocket by bepristats paradoxically enhances catalytic activity of a and a′ by displacing the x-linker, which acts as an allosteric switch to augment reductase activity in the catalytic domains. This substrate-driven allosteric switch is also activated by peptides and proteins and is present in other thiol isomerases. Our results demonstrate a mechanism whereby binding of a substrate to thiol isomerases enhances catalytic activity of remote domains. Protein Disulfide Isomerase (PDI) is a prothrombotic, multidomain enzyme with separate substrate binding and catalytic domains. Here, the authors identify a new class of compounds that target the PDI substrate binding site, inducing a conformational change in the catalytic domains and inhibiting thrombosis.
Collapse
Affiliation(s)
- Roelof H Bekendam
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pavan K Bendapudi
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Lin Lin
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Partha P Nag
- Department of Pharmaceutical and Administrative Sciences, The Broad Institute Probe Development Center, Cambridge, Massachusetts 02142, USA.,Center for the Science of Therapeutics, Broad Institute, Cambridge, Massachusetts 02142, USA
| | - Jun Pu
- Department of Pharmaceutical and Administrative Sciences, The Broad Institute Probe Development Center, Cambridge, Massachusetts 02142, USA
| | - Daniel R Kennedy
- College of Pharmacy, Western New England University, Springfield, Massachusetts 01119, USA
| | - Alexandra Feldenzer
- College of Pharmacy, Western New England University, Springfield, Massachusetts 01119, USA
| | - Joyce Chiu
- The Centenary Institute, Newtown, Sydney, New South Wales 2050, Australia.,National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Kristina M Cook
- The Centenary Institute, Newtown, Sydney, New South Wales 2050, Australia
| | - Bruce Furie
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mingdong Huang
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Philip J Hogg
- The Centenary Institute, Newtown, Sydney, New South Wales 2050, Australia.,National Health and Medical Research Council Clinical Trials Centre, University of Sydney, Sydney, New South Wales 2050, Australia
| | - Robert Flaumenhaft
- Division of Hemostasis and Thrombosis, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Abstract
Thiol isomerases are multifunctional enzymes that influence protein structure via their oxidoreductase, isomerase, and chaperone activities. These enzymes localize at high concentrations in the endoplasmic reticulum of all eukaryotic cells where they serve an essential function in folding nascent proteins. However, thiol isomerases can escape endoplasmic retention and be secreted and localized on plasma membranes. Several thiol isomerases including protein disulfide isomerase, ERp57, and ERp5 are secreted by and localize to the membranes of platelets and endothelial cells. These vascular thiol isomerases are released following vessel injury and participate in thrombus formation. Although most of the activities of vascular thiol isomerases that contribute to thrombus formation are yet to be defined at the molecular level, allosteric disulfide bonds that are modified by thiol isomerases have been described in substrates such as αIIbβ3, αvβ3, GPIbα, tissue factor, and thrombospondin. Vascular thiol isomerases also act as redox sensors. They respond to the local redox environment and influence S-nitrosylation of surface proteins on platelets and endothelial cells. Despite our rudimentary understanding of the mechanisms by which thiol isomerases control vascular function, the clinical utility of targeting them in thrombotic disorders is already being explored in clinical trials.
Collapse
|
15
|
Robertson IB, Rifkin DB. Regulation of the Bioavailability of TGF-β and TGF-β-Related Proteins. Cold Spring Harb Perspect Biol 2016; 8:8/6/a021907. [PMID: 27252363 DOI: 10.1101/cshperspect.a021907] [Citation(s) in RCA: 280] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The bioavailability of members of the transforming growth factor β (TGF-β) family is controlled by a number of mechanisms. Bona fide TGF-β is sequestered into the matrix in a latent state and must be activated before it can bind to its receptors. Here, we review the molecules and mechanisms that regulate the bioavailability of TGF-β and compare these mechanisms with those used to regulate other TGF-β family members. We also assess the physiological significance of various latent TGF-β activators, as well as other extracellular modulators of TGF-β family signaling, by examining the available in vivo data from knockout mouse models and other biological systems.
Collapse
Affiliation(s)
- Ian B Robertson
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Daniel B Rifkin
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016 Departments of Medicine, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
16
|
Abstract
The bioavailability of members of the transforming growth factor β (TGF-β) family is controlled by a number of mechanisms. Bona fide TGF-β is sequestered into the matrix in a latent state and must be activated before it can bind to its receptors. Here, we review the molecules and mechanisms that regulate the bioavailability of TGF-β and compare these mechanisms with those used to regulate other TGF-β family members. We also assess the physiological significance of various latent TGF-β activators, as well as other extracellular modulators of TGF-β family signaling, by examining the available in vivo data from knockout mouse models and other biological systems.
Collapse
Affiliation(s)
- Ian B Robertson
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016
| | - Daniel B Rifkin
- Departments of Cell Biology, New York University School of Medicine, New York, New York 10016 Departments of Medicine, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
17
|
Hahner J, Hoyer M, Hillig S, Schulze-Tanzil G, Meyer M, Schröpfer M, Lohan A, Garbe LA, Heinrich G, Breier A. Diffusion chamber system for testing of collagen-based cell migration barriers for separation of ligament enthesis zones in tissue-engineered ACL constructs. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2015; 26:1085-99. [PMID: 26300365 DOI: 10.1080/09205063.2015.1076714] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A temporary barrier separating scaffold zones seeded with different cell types prevents faster growing cells from overgrowing co-cultured cells within the same construct. This barrier should allow sufficient nutrient diffusion through the scaffold. The aim of this study was to test the effect of two variants of collagen-based barriers on macromolecule diffusion, viability, and the spreading efficiency of primary ligament cells on embroidered scaffolds. Two collagen barriers, a thread consisting of a twisted film tape and a sponge, were integrated into embroidered poly(lactic-co-caprolactone) and polypropylene scaffolds, which had the dimension of lapine anterior cruciate ligaments (ACL). A diffusion chamber system was designed and established to monitor nutrient diffusion using fluorescein isothiocyanate-labeled dextran of different molecular weights (20, 40, 150, 500 kDa). Vitality of primary lapine ACL cells was tested at days 7 and 14 after seeding using fluorescein diacetate and ethidium bromide staining. Cell spreading on the scaffold surface was measured using histomorphometry. Nuclei staining of the cross-sectioned scaffolds revealed the penetration of ligament cells through both barrier types. The diffusion chamber was suitable to characterize the diffusivity of dextran molecules through embroidered scaffolds with or without integrated collagen barriers. The diffusion coefficients were generally significantly lower in scaffolds with barriers compared to those without barriers. No significant differences between diffusion coefficients of both barrier types were detected. Both barriers were cyto-compatible and prevented most of the ACL cells from crossing the barrier, whereby the collagen thread was easier to handle and allowed a higher rate of cell spreading.
Collapse
Affiliation(s)
- J Hahner
- a Leibniz-Institut für Polymerforschung, Institute of Polymer Materials , Hohe Straße 6, 01069 Dresden , Germany
| | - M Hoyer
- b Central Laboratory , DRK Manniske-Hospital , An der Wipper 2, 06567 Bad Frankenhausen , Germany.,c Department of Bioanalytics , Technical University , Seestraße 13, 13353 Berlin , Germany
| | - S Hillig
- a Leibniz-Institut für Polymerforschung, Institute of Polymer Materials , Hohe Straße 6, 01069 Dresden , Germany
| | - G Schulze-Tanzil
- d Institute of Anatomy , Paracelsus Medical University , Salzburg and Nuremberg, Prof. Ernst Nathan Straße 1, 90340 Nuremberg , Germany.,e Department of Trauma and Reconstructive Surgery , Charité-Universitätsmedizin Berlin , Campus Benjamin Franklin, Garystrasse 5, 14195 Berlin , Germany
| | - M Meyer
- f Research Institute of Leather and Plastic Sheeting - FILK , Meißner Ring 1-5, 09599 Freiberg , Germany
| | - M Schröpfer
- f Research Institute of Leather and Plastic Sheeting - FILK , Meißner Ring 1-5, 09599 Freiberg , Germany
| | - A Lohan
- g Forschungseinrichtungen für Experimentelle Medizin, Charité-Universitätsmedizin Berlin , Campus Benjamin Franklin, Kramerstr.6-10, 12207 Berlin , Germany
| | - L-A Garbe
- c Department of Bioanalytics , Technical University , Seestraße 13, 13353 Berlin , Germany
| | - G Heinrich
- a Leibniz-Institut für Polymerforschung, Institute of Polymer Materials , Hohe Straße 6, 01069 Dresden , Germany.,h Institute of Materials Science , Technische Universität Dresden , Helmholtzstraße 10, 01062 Dresden , Germany
| | - A Breier
- a Leibniz-Institut für Polymerforschung, Institute of Polymer Materials , Hohe Straße 6, 01069 Dresden , Germany
| |
Collapse
|
18
|
Ge J, Apicella M, Mills JA, Garçon L, French DL, Weiss MJ, Bessler M, Mason PJ. Dysregulation of the Transforming Growth Factor β Pathway in Induced Pluripotent Stem Cells Generated from Patients with Diamond Blackfan Anemia. PLoS One 2015; 10:e0134878. [PMID: 26258650 PMCID: PMC4530889 DOI: 10.1371/journal.pone.0134878] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/14/2015] [Indexed: 12/12/2022] Open
Abstract
Diamond Blackfan Anemia (DBA) is an inherited bone marrow failure syndrome with clinical features of red cell aplasia and variable developmental abnormalities. Most affected patients have heterozygous loss of function mutations in ribosomal protein genes but the pathogenic mechanism is still unknown. We generated induced pluripotent stem cells from DBA patients carrying RPS19 or RPL5 mutations. Transcriptome analysis revealed the striking dysregulation of the transforming growth factor β (TGFβ) signaling pathway in DBA lines. Expression of TGFβ target genes, such as TGFBI, BAMBI, COL3A1 and SERPINE1 was significantly increased in the DBA iPSCs. We quantified intermediates in canonical and non-canonical TGFβ pathways and observed a significant increase in the levels of the non-canonical pathway mediator p-JNK in the DBA iPSCs. Moreover, when the mutant cells were corrected by ectopic expression of WT RPS19 or RPL5, levels of p-JNK returned to normal. Surprisingly, nuclear levels of SMAD4, a mediator of canonical TGFβ signaling, were decreased in DBA cells due to increased proteolytic turnover. We also observed the up-regulation of TGFβ1R, TGFβ2, CDKN1A and SERPINE1 mRNA, and the significant decrease of GATA1 mRNA in the primitive multilineage progenitors. In summary our observations identify for the first time a dysregulation of the TGFβ pathway in the pathobiology of DBA.
Collapse
Affiliation(s)
- Jingping Ge
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Marisa Apicella
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Jason A. Mills
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Loïc Garçon
- UPMC University Paris 06, UMR_S938, and Assistance Publique- Hôpitaux de Paris, Paris, France
| | - Deborah L. French
- Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mitchell J. Weiss
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Monica Bessler
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Philip J. Mason
- Division of Hematology, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
19
|
Laszlo GS, Alonzo TA, Gudgeon CJ, Harrington KH, Gerbing RB, Wang YC, Ries RE, Raimondi SC, Hirsch BA, Gamis AS, Meshinchi S, Walter RB. Multimerin-1 (MMRN1) as Novel Adverse Marker in Pediatric Acute Myeloid Leukemia: A Report from the Children's Oncology Group. Clin Cancer Res 2015; 21:3187-95. [PMID: 25825478 DOI: 10.1158/1078-0432.ccr-14-2684] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/18/2015] [Indexed: 01/24/2023]
Abstract
PURPOSE Exploratory gene expression array analyses suggested multimerin-1 (MMRN1) to be a predictive biomarker in acute myelogenous leukemia (AML). Following up on these studies, we evaluated the role of MMRN1 expression as outcome predictor in two recent Children's Oncology Group trials. EXPERIMENTAL DESIGN We retrospectively quantified MMRN1 expression in 183 participants of AAML03P1 and 750 participants of AAML0531 by reverse-transcriptase PCR and correlated expression levels with disease characteristics and clinical outcome. RESULTS In AAML03P1, the highest quartile of MMRN1 expression (expression ≥0.5 relative to β-glucuronidase; n = 45) was associated with inferior event-free survival (EFS; P < 0.002) and higher relapse risk (P < 0.004). In AAML0531, in which we quantified MMRN1 mRNA for validation, patients with relative MMRN1 expression ≥0.5 (n = 160) less likely achieved remission (67% vs. 77%, P = 0.006), and more frequently had minimal residual disease (43% vs. 24%, P = 0.001) after one induction course. They had inferior overall survival (OS; 44% ± 9% vs. 69% ± 4% at 5 years; P < 0.001) and EFS (32% ± 8% vs. 54% ± 4% at 5 years; P < 0.001) and higher relapse risk (57% ± 10% vs. 35% ± 5% at 5 years; P < 0.001). These differences were partly attributable to the fact that patients with high MMRN1 expression less likely had cytogenetic/molecular low-risk disease (P < 0.001) than those with low MMRN1 expression. Nevertheless, after multivariable adjustment, high MMRN1 expression remained statistically significantly associated with shorter OS (HR, 1.57; 95% confidence interval, 1.17-2.12; P = 0.003) and EFS (HR, 1.34; 1.04-1.73; P = 0.025), and higher relapse risk (HR, 1.40; 1.01-1.94; P = 0.044). CONCLUSIONS Together, our studies identify MMRN1 expression as a novel biomarker that may refine AML risk stratification.
Collapse
Affiliation(s)
- George S Laszlo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Todd A Alonzo
- Department of Biostatistics, University of Southern California, Los Angeles, California. Children's Oncology Group, Monrovia, California
| | - Chelsea J Gudgeon
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Kimberly H Harrington
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | | | | | - Rhonda E Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Susana C Raimondi
- Children's Oncology Group, Monrovia, California. Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Betsy A Hirsch
- Children's Oncology Group, Monrovia, California. Department of Laboratory Medicine and Pathology, University of Minnesota Cancer Center, Minneapolis, Minnesota
| | - Alan S Gamis
- Children's Oncology Group, Monrovia, California. Division of Hematology-Oncology, Children's Mercy Hospitals and Clinics, Kansas City, Missouri
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Children's Oncology Group, Monrovia, California. Department of Pediatrics, University of Washington, Seattle, Washington
| | - Roland B Walter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington. Division of Hematology, Department of Medicine, University of Washington, Seattle, Washington. Department of Epidemiology, University of Washington, Seattle, Washington.
| |
Collapse
|
20
|
Cong Y, Ru JY, Bao NR, Guo T, Zhao JN. A single nucleotide polymorphism in the TGF-β1 gene (rs1982073 C>T) may contribute to increased risks of bone fracture, osteoporosis, and osteoarthritis: a meta-analysis. Clin Rheumatol 2014; 35:973-85. [PMID: 25501632 DOI: 10.1007/s10067-014-2840-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 01/26/2023]
Abstract
Genetic factors have been shown to be of great importance for the pathogenesis of bone diseases, such as fracture, osteoporosis (OP), and osteoarthritis (OA). However, published studies on the correlations of transforming growth factor-β1 (TGF-β1) gene polymorphisms with bone diseases have been hampered by small sample sizes or inconclusive findings. We hence aimed at examining the relationships between a single nucleotide polymorphism in the TGF-β1 gene (rs1982073 C>T) with bone fracture, OP, and OA risks in this meta-analysis. A systematic electronic search of literature was conducted to identify all published studies in English or Chinese on the association between the TGF-β1 gene and fracture, OP, or OA risks. Data were abstracted independently by two reviewers. To investigate the strength of this relationship, crude odds ratios with 95 % confidence intervals were used. An updated meta-analysis based on nine independent case-control studies were chosen (patients with fracture, OP, or OA = 1569; healthy controls = 1638). Results identified a higher frequency of rs1982073 C>T in patients with fracture, OP, or OA than in healthy controls. Ethnicity and genotyping method-stratified analysis under both models implied that the rs1982073 C>T polymorphism was positively correlated with the risk of fracture, OP, and OA among Asians under detection via the non-PCR-RFLP method. Disease-stratified results yielded that rs1982073 C>T may increase the risk of fracture, OP, and OA under the allele model, but was only significantly related to OP under the dominant model. According to the sample size-stratified analysis, subjects with the rs1982073 C>T polymorphism in the allele model were more likely to develop the three bone diseases in both the small and large sample size groups, and only in the large sample size under the dominant model. Our findings show that TGF-β1 rs1982073 C>T has a modest effect in increasing susceptibility to bone fracture, OP, and OA.
Collapse
Affiliation(s)
- Yu Cong
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road, No. 305, Nanjing, 210002, People's Republic of China
| | - Jiang-Ying Ru
- Department of Orthopedics, Jiangsu Provincial Corps Hospital of the Chinese People' Armed Police Force, Yangzhou, 225003, People's Republic of China
| | - Ni-Rong Bao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road, No. 305, Nanjing, 210002, People's Republic of China
| | - Ting Guo
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road, No. 305, Nanjing, 210002, People's Republic of China
| | - Jian-Ning Zhao
- Department of Orthopedics, Jinling Hospital, School of Medicine, Nanjing University, Zhongshan East Road, No. 305, Nanjing, 210002, People's Republic of China.
| |
Collapse
|
21
|
Wang W, Vootukuri S, Meyer A, Ahamed J, Coller BS. Association between shear stress and platelet-derived transforming growth factor-β1 release and activation in animal models of aortic valve stenosis. Arterioscler Thromb Vasc Biol 2014; 34:1924-32. [PMID: 24903096 DOI: 10.1161/atvbaha.114.303852] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Aortic valve stenosis (AS) is characterized by fibrosis and calcification of valves leading to aortic valve narrowing, resulting in high wall shear stress across the valves. We previously demonstrated that high shear stress can activate platelet-derived transforming growth factor-β1 (TGF-β1), a cytokine that induces fibrosis and calcification. The aim of this study was to investigate the role of shear-induced platelet release of TGF-β1 and its activation in AS. APPROACH AND RESULTS We studied hypercholesterolemic Ldlr(-/-)Apob(100/100)/Mttp(fl/fl)/Mx1Cre(+/+) (Reversa) mice that develop AS on Western diet and a surgical ascending aortic constriction mouse model that acutely simulates the hemodynamics of AS to study shear-induced platelet TGF-β1 release and activation. Reversa mice on Western diet for 6 months had thickening of the aortic valves, increased wall shear stress, and increased plasma TGF-β1 levels. There were weak and moderate correlations between wall shear stress and TGF-β1 levels in the progression and reversed Reversa groups and a stronger correlation in the ascending aortic constriction model in wild-type mice but not in mice with a targeted deletion of megakaryocyte and platelet TGF-β1 (Tgfb1(flox)). Plasma total TGF-β1 levels correlated with collagen deposition in the stenotic valves in Reversa mice. Although active TGF-β1 levels were too low to be measured directly, we found (1) canonical TGF-β1 (phosphorylated small mothers against decapentaplegic 2/3) signaling in the leukocytes and canonical and noncanonical (phosphorylated extracellular signal-regulated kinases 1/2) TGF-β1 signaling in aortic valves of Reversa mice on a Western diet, and (2) TGF-β1 signaling of both pathways in the ascending aortic constriction stenotic area in wild-type but not Tgfb1(flox) mice. CONCLUSIONS Shear-induced, platelet-derived TGF-β1 activation may contribute to AS.
Collapse
Affiliation(s)
- Wei Wang
- From the Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY
| | - Spandana Vootukuri
- From the Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY
| | - Alexander Meyer
- From the Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY
| | - Jasimuddin Ahamed
- From the Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY
| | - Barry S Coller
- From the Allen and Frances Adler Laboratory of Blood and Vascular Biology, Rockefeller University, New York, NY.
| |
Collapse
|
22
|
Chen XP, Lei FY, Qin YH, Zhou TB, Jiang L, Zhao YJ, Huang WF, Peng QL. The role of retinoic acid receptors in the signal pathway of all-trans retinoic acid-induced differentiation in adriamycin-induced podocyte injury. J Recept Signal Transduct Res 2014; 34:484-92. [PMID: 24846581 DOI: 10.3109/10799893.2014.920394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Abstract
Most proteins in nature are chemically modified after they are made to control how, when, and where they function. The 3 core features of proteins are posttranslationally modified: amino acid side chains can be modified, peptide bonds can be cleaved or isomerized, and disulfide bonds can be cleaved. Cleavage of peptide bonds is a major mechanism of protein control in the circulation, as exemplified by activation of the blood coagulation and complement zymogens. Cleavage of disulfide bonds is emerging as another important mechanism of protein control in the circulation. Recent advances in our understanding of control of soluble blood proteins and blood cell receptors by functional disulfide bonds is discussed as is how these bonds are being identified and studied.
Collapse
|
24
|
Xu HL, Ou C, Rong L, Zhou TB. The potential signal pathway between PAX2 and CD2AP in the renal interstitial fibrosis disease. J Recept Signal Transduct Res 2014; 34:290-8. [PMID: 24471428 DOI: 10.3109/10799893.2013.876045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Paired box gene 2 (PAX2) can regulate tissue development and cellular differentiation, and it is associated with renal diseases. CD2-associated protein (CD2AP) is an adaptor protein involving in a variety of physiological and disease processes. Renal interstitial fibrosis (RIF) is a hallmark of common progressive chronic diseases which lead to renal failure. This study was performed to investigate whether there was a potential signal pathway between PAX2 and CD2AP in RIF rats induced by unilateral ureteral obstruction (UUO). Eighty Wistar male rats were divided into two groups randomly: sham operation group (SHO) and model group subjected to UUO (GU), n = 40. The model was established by left ureteral ligation. Renal tissues were collected at 14 d and 28 d after surgery. RIF index, cell apoptosis index, protein expression of PAX2, CD2AP, transforming growth factor-βl (TGF-β1), collagen-IV (Col-IV), fibronectin (FN) in renal interstitium and renal tissue, and mRNA expression of PAX2, CD2AP, and TGF-β1 in renal tissue were detected. Compared with that in the SHO group, the PAX2 and CD2AP expressions (mRNA and protein) were significantly increased (p < 0.01). Protein expressions of TGF-β1, Col-IV, and FN, and RIF index or cell apoptosis index in the GU group were markedly elevated than those in the SHO group (all p < 0.01). PAX2 or CD2AP was positively correlated with TGF-β1, Col-IV, and FN, and RIF index or cell apoptosis index (all p < 0.05). Furthermore, PAX2 was positively correlated with CD2AP (p < 0.05). In conclusion, the expression of PAX2 or CD2AP was increased in RIF rats, and PAX2 was positively correlated with CD2AP. There might be a potential signaling pathway between PAX2 and CD2AP in RIF disease. Further research is needed to determine the association in RIF disease.
Collapse
|
25
|
Robertson IB, Rifkin DB. Unchaining the beast; insights from structural and evolutionary studies on TGFβ secretion, sequestration, and activation. Cytokine Growth Factor Rev 2013; 24:355-72. [PMID: 23849989 DOI: 10.1016/j.cytogfr.2013.06.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023]
Abstract
TGFβ is secreted in a latent state and must be "activated" by molecules that facilitate its release from a latent complex and allow binding to high affinity cell surface receptors. Numerous molecules have been implicated as potential mediators of this activation process, but only a limited number of these activators have been demonstrated to play a role in TGFβ mobilisation in vivo. Here we review the process of TGFβ secretion and activation using evolutionary data, sequence conservation and structural information to examine the molecular mechanisms by which TGFβ is secreted, sequestered and released. This allows the separation of more ancient TGFβ activators from those factors that emerged more recently, and helps to define a potential hierarchy of activation mechanisms.
Collapse
Affiliation(s)
- Ian B Robertson
- Department of Cell Biology, New York University School of Medicine, 550 First Avenue, Cell Biology Floor 6 Room 650, Medical Science Building, New York, NY 10016, United States.
| | | |
Collapse
|