1
|
Yadav RS, Kushawaha B, Dhariya R, Swain DK, Yadav B, Anand M, Kumari P, Rai PK, Singh D, Yadav S, Garg SK. Lead and calcium crosstalk tempted acrosome damage and hyperpolarization of spermatozoa: signaling and ultra-structural evidences. Biol Res 2024; 57:44. [PMID: 38965573 PMCID: PMC11225213 DOI: 10.1186/s40659-024-00517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND Exposure of humans and animals to heavy metals is increasing day-by-day; thus, lead even today remains of significant public health concern. According to CDC, blood lead reference value (BLRV) ranges from 3.5 µg/dl to 5 μg/dl in adults. Recently, almost 2.6% decline in male fertility per year has been reported but the cause is not well established. Lead (Pb2+) affects the size of testis, semen quality, and secretory functions of prostate. But the molecular mechanism(s) of lead toxicity in sperm cells is not clear. Thus, present study was undertaken to evaluate the adverse effects of lead acetate at environmentally relevant exposure levels (0.5, 5, 10 and 20 ppm) on functional and molecular dynamics of spermatozoa of bucks following in vitro exposure for 15 min and 3 h. RESULTS Lead significantly decreased motility, viable count, and motion kinematic patterns of spermatozoa like curvilinear velocity, straight-line velocity, average path velocity, beat cross frequency and maximum amplitude of head lateral displacement even at 5 ppm concentration. Pb2+ modulated intracellular cAMP and Ca2+ levels in sperm cells through L-type calcium channels and induced spontaneous or premature acrosome reaction (AR) by increasing tyrosine phosphorylation of sperm proteins and downregulated mitochondrial transmembrane potential. Lead significantly increased DNA damage and apoptosis as well. Electron microscopy studies revealed Pb2+ -induced deleterious effects on plasma membrane of head and acrosome including collapsed cristae in mitochondria. CONCLUSIONS Pb2+ not only mimics Ca2+ but also affects cellular targets involved in generation of cAMP, mitochondrial transmembrane potential, and ionic exchange. Lead seems to interact with Ca2+ channels because of charge similarity and probably enters the sperm cell through these channels and results in hyperpolarization. Our findings also indicate lead-induced TP and intracellular Ca2+ release in spermatozoa which in turn may be responsible for premature acrosome exocytosis which is essential feature of capacitation for fertilization. Thus, lead seems to reduce the fertilizing capacity of spermatozoa even at 0.5 ppm concentrations.
Collapse
Affiliation(s)
- Rajkumar Singh Yadav
- Department of Pharmacology and Toxicology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Bhawna Kushawaha
- College of Biotechnology, Mathura, India.
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India.
- University of Nebraska Medical Center (UNMC), Omaha, USA.
| | - Rahul Dhariya
- College of Biotechnology, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Dilip Kumar Swain
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Brijesh Yadav
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Mukul Anand
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Priyambada Kumari
- College of Biotechnology, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | | | - Dipty Singh
- ICMR-National Institute for Research in Reproductive Health (NIRRH), Mumbai, India
| | - Sarvajeet Yadav
- Department of Veterinary Physiology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India
| | - Satish Kumar Garg
- Department of Pharmacology and Toxicology, U.P. Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura, India.
- U.P. Pandit Deen Dayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, Uttar Pradesh, 281001, India.
| |
Collapse
|
2
|
Liang M, Ji N, Song J, Kang H, Zeng X. Flagellar pH homeostasis mediated by Na+/H+ exchangers regulates human sperm functions through coupling with CatSper and KSper activation. Hum Reprod 2024; 39:674-688. [PMID: 38366201 DOI: 10.1093/humrep/deae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 01/19/2024] [Indexed: 02/18/2024] Open
Abstract
STUDY QUESTION Whether and how do Na+/H+ exchangers (NHEs) regulate the physiological functions of human sperm? SUMMARY ANSWER NHE-mediated flagellar intracellular pH (pHi) homeostasis facilitates the activation of the pH-sensitive, sperm-specific Ca2+ channel (CatSper) and the sperm-specific K+ channel (KSper), which subsequently modulate sperm motility, hyperactivation, flagellar tyrosine phosphorylation, and the progesterone (P4)-induced acrosome reaction. WHAT IS KNOWN ALREADY Sperm pHi alkalization is an essential prerequisite for the acquisition of sperm-fertilizing capacity. Different sperm functions are strictly controlled by particular pHi regulatory mechanisms. NHEs are suggested to modulate sperm H+ efflux. STUDY DESIGN, SIZE, DURATION This was a laboratory study that used samples from >50 sperm donors over a period of 1 year. To evaluate NHE action on human sperm function, 5-(N,N-dimethyl)-amiloride (DMA), a highly selective inhibitor of NHEs, was utilized. All experiments were repeated at least five times using different individual sperm samples or cells. PARTICIPANTS/MATERIALS, SETTING, METHODS By utilizing the pH fluorescent indicator pHrodo Red-AM, we detected alterations in single-cell pHi value in human sperm. The currents of CatSper and KSper in human sperm were recorded by the whole-cell patch-clamp technique. Changes in population and single-cell Ca2+ concentrations ([Ca2+]i) of human sperm loaded with Fluo 4-AM were measured. Membrane potential (Vm) and population pHi were quantitatively examined by a multimode plate reader after sperm were loaded with 3,3'-dipropylthiadicarbocyanine iodide and 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein, acetoxymethyl ester, respectively. Sperm motility parameters were assessed by a computer-assisted semen analysis system. Tyrosine phosphorylation was determined by immunofluorescence, and sperm acrosome reaction was evaluated by Pisum sativum agglutinin-FITC staining. MAIN RESULTS AND THE ROLE OF CHANCE DMA-induced NHEs inhibition severely acidified the human sperm flagellar pHi from 7.20 ± 0.04 to 6.38 ± 0.12 (mean ± SEM), while the effect of DMA on acrosomal pHi was less obvious (from 5.90 ± 0.13 to 5.57 ± 0.12, mean ± SEM). The whole-cell patch-clamp recordings revealed that NHE inhibition remarkably suppressed alkalization-induced activation of CatSper and KSper. As a consequence, impairment of [Ca2+]i homeostasis and Vm maintenance were detected in the presence of DMA. During the capacitation process, pre-treatment with DMA for 2 h potently decreased sperm pHi, which in turn decreased sperm motility and kinetic parameters. Sperm capacitation-associated functions, including hyperactivation, tyrosine phosphorylation, and P4-induced acrosome reaction, were also compromised by NHE inhibition. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in vitro study. Caution should be taken when extrapolating these results to in vivo applications. WIDER IMPLICATIONS OF THE FINDINGS This study revealed that NHEs are important physiological regulators for human CatSper and KSper, which are indispensable for human sperm fertility, suggesting that malfunction of NHEs could be an underlying mechanism for the pathogenesis of male infertility. FUNDING/COMPETING INTEREST(S) This work was supported by the National Natural Science Foundation of China (32271167 and 81871202 to X.Z.), Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC20211543 to X.Z.), the Social Development Project of Jiangsu Province (No. BE2022765 to X.Z.), the Society and livelihood Project of Nantong City (No. MS22022087 to X.Z.), and the Natural Science Foundation of Jiangsu Province (BK20220608 to H.K.). The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Min Liang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Nanxi Ji
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Jian Song
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Hang Kang
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong, China
| |
Collapse
|
3
|
Zhang X, Liang M, Song D, Huang R, Chen C, Liu X, Chen H, Wang Q, Sun X, Song J, Zhang J, Kang H, Zeng X. Both protein and non-protein components in extracellular vesicles of human seminal plasma improve human sperm function via CatSper-mediated calcium signaling. Hum Reprod 2024; 39:658-673. [PMID: 38335261 DOI: 10.1093/humrep/deae018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/10/2024] [Indexed: 02/12/2024] Open
Abstract
STUDY QUESTION What is the significance and mechanism of human seminal plasma extracellular vesicles (EVs) in regulating human sperm functions? SUMMARY ANSWER EV increases the intracellular Ca2+ concentrations [Ca2+]i via extracellular Ca2+ influx by activating CatSper channels, and subsequently modulate human sperm motility, especially hyperactivated motility, which is attributed to both protein and non-protein components in EV. WHAT IS KNOWN ALREADY EVs are functional regulators of human sperm function, and EV cargoes from normal and asthenozoospermic seminal plasma are different. Pre-fusion of EV with sperm in the acidic and non-physiological sucrose buffer solution could elevate [Ca2+]i in human sperm. CatSper, a principle Ca2+ channel in human sperm, is responsible for the [Ca2+]i regulation when sperm respond to diverse extracellular stimuli. However, the role of CatSper in EV-evoked calcium signaling and its potential physiological significance remain unclear. STUDY DESIGN, SIZE, DURATION EV isolated from the seminal plasma of normal and asthenozoospermic semen were utilized to investigate the mechanism by which EV regulates calcium signal in human sperm, including the involvement of CatSper and the responsible cargoes in EV. In addition, the clinical application potential of EV and EV protein-derived peptides were also evaluated. This is a laboratory study that went on for more than 5 years and involved more than 200 separate experiments. PARTICIPANTS/MATERIALS, SETTING, METHODS Semen donors were recruited in accordance with the Institutional Ethics Committee on human subjects of the Affiliated Hospital of Nantong University and Jiangxi Maternal and Child Health Hospital. The Flow NanoAnalyzer, western blotting, and transmission electron microscope were used to systematically characterize seminal plasma EV. Sperm [Ca2+]i responses were examined by fluorimetric measurement. The whole-cell patch-clamp technique was performed to record CatSper currents. Sperm motility parameters were assessed by computer-assisted sperm analysis. Sperm hyperactivation was also evaluated by examining their penetration ability in viscous methylcellulose media. Protein and non-protein components in EV were analyzed by liquid chromatography-mass spectrum. The levels of prostaglandins, reactive oxygen species, malonaldehyde, and DNA integrity were detected by commercial kits. MAIN RESULTS AND THE ROLE OF CHANCE EV increased [Ca2+]i via an extracellular Ca2+ influx, which could be suppressed by a CatSper inhibitor. Also, EV potentiated CatSper currents in human sperm. Furthermore, the EV-in [Ca2+]i increase and CatSper currents were absent in a CatSper-deficient sperm, confirming the crucial role of CatSper in EV induced Ca2+ signaling in human sperm. Both proteins and non-protein components of EV contributed to the increase of [Ca2+]i, which were important for the effects of EV on human sperm. Consequently, EV and its cargos promoted sperm hyperactivated motility. In addition, seminal plasma EV protein-derived peptides, such as NAT1-derived peptide (N-P) and THBS-1-derived peptide (T-P), could activate the sperm calcium signal and enhance sperm function. Interestingly, EV derived from asthenozoospermic semen caused a lower increase of [Ca2+]i than that isolated from normal seminal plasma (N-EV), and N-EV significantly improved sperm motility and function in both asthenozoospermic samples and frozen-thawed sperm. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in vitro study and caution must be taken when extrapolating the physiological relevance to in vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS Our findings demonstrate that the CatSper-mediated-Ca2+ signaling is involved in EV-modulated sperm function under near physiological conditions, and EV and their derivates are a novel CatSper and sperm function regulators with potential for clinical application. They may be developed to improve sperm motility resulting from low [Ca2+]i response and/or freezing and thawing. STUDY FUNDING/COMPETING INTEREST(S) This research was supported by the National Natural Science Foundation of China (32271167), the Social Development Project of Jiangsu Province (BE2022765), the Nantong Social and People's Livelihood Science and Technology Plan (MS22022087), the Basic Science Research Program of Nantong (JC22022086), and the Jiangsu Innovation and Entrepreneurship Talent Plan (JSSCRC2021543). The authors declare no conflict of interest.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Min Liang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Dandan Song
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Rongzu Huang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaojun Liu
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Qingxin Wang
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaoli Sun
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jian Song
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, China
| | - Jiali Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Hang Kang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| |
Collapse
|
4
|
Zhang Z, Xiong Y, Jiang H, Wang Q, Hu X, Wei X, Chen Q, Chen T. Vaginal extracellular vesicles impair fertility in endometriosis by favoring Th17/Treg imbalance and inhibiting sperm activity. J Cell Physiol 2024; 239:e31188. [PMID: 38192157 DOI: 10.1002/jcp.31188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/10/2024]
Abstract
Extracellular vesicles (EVs) play a key role in various diseases. However, their effect on endometriosis (EMs)-associated infertility is poorly understood. We co-cultured EVs from the female vaginal secretions with human sperm and also generated a mouse model of EMs by allogenic transplant to explore the effect of EVs on fertility. EVs from individuals with EMs-associated infertility (E-EVs) significantly inhibited the total motility (26.46% vs. 47.1%), progressive motility (18.78% vs. 41.06%), linear velocity (21.98 vs. 41.91 µm/s) and the acrosome reaction (AR) rate (5% vs. 22.3%) of human sperm in contrast to the control group (PBS). Furthermore, E-EVs dose-dependently decreased the intracellular Ca2+ ([Ca2+]i), a pivotal regulator of sperm function. Conversely, healthy women (H-EVs) increased human sperm motion parameters, the AR rate, and sperm [Ca2+]i. Importantly, the mouse model of EMs confirmed that E-EVs further decreased the conception rate and the mean number of embryo implantations (7.6 ± 3.06 vs. 4.5 ± 3.21) compared with the control mice by inducing the production of inflammatory cytokines leading to a Th17/Treg imbalance. H-EVs could restore impaired fertility by restoring the Th17/Treg balance. We determined the impact of EVs derived from the female genital tract on human sperm function and studied the possible mechanisms by which it affects fertility. Our findings provide a novel rationale to ameliorate EMs-associated infertility.
Collapse
Affiliation(s)
- Zuo Zhang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yangbai Xiong
- International Tourism and Convention Management, Hong Kong Polytechnic University, Hong Kong, China
| | - Huifu Jiang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qian Wang
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinyue Hu
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Wei
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The 2nd Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tingtao Chen
- National Engineering Research Center for Bioengineering Drugs and the Technologies, Institution of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
5
|
Tufoni C, Battistella A, Luppi S, Boscolo R, Ricci G, Lazzarino M, Andolfi L. Flagellar beating forces of human spermatozoa with different motility behaviors. Reprod Biol Endocrinol 2024; 22:28. [PMID: 38448984 PMCID: PMC10916019 DOI: 10.1186/s12958-024-01197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND One of the causes of male infertility is associated with altered spermatozoa motility. These sperm features are frequently analyzed by image-based approaches, which, despite allowing the acquisition of crucial parameters to assess sperm motility, they are unable to provide details regarding the flagellar beating forces, which have been neglected until now. RESULTS In this work we exploit Fluidic Force Microscopy to investigate and quantify the forces associated with the flagellar beating frequencies of human spermatozoa. The analysis is performed on two groups divided according to the progressive motility of semen samples, as identified by standard clinical protocols. In the first group, 100% of the spermatozoa swim linearly (100% progressive motility), while, in the other, spermatozoa show both linear and circular motility (identified as 80 - 20% progressive motility). Significant differences in flagellar beating forces between spermatozoa from semen sample with different progressive motility are observed. Particularly, linear motile spermatozoa exhibit forces higher than those with a circular movement. CONCLUSIONS This research can increase our understanding of sperm motility and the role of mechanics in fertilization, which could help us unveil some of the causes of idiopathic male infertility.
Collapse
Affiliation(s)
- Cristina Tufoni
- University of Trieste, Trieste, 34100, Italy
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5 Area Science Park Basovizza, Trieste, 34149, Italy
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Alice Battistella
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5 Area Science Park Basovizza, Trieste, 34149, Italy
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Stefania Luppi
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Rita Boscolo
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy.
| | - Marco Lazzarino
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5 Area Science Park Basovizza, Trieste, 34149, Italy
| | - Laura Andolfi
- CNR-Istituto Officina dei Materiali (IOM), SS 14 km 163.5 Area Science Park Basovizza, Trieste, 34149, Italy.
| |
Collapse
|
6
|
Jalalabadi FN, Cheraghi E, Janatifar R, Momeni HR. The Detection of CatSper1 and CatSper3 Expression in Men with Normozoospermia and Asthenoteratozoospermia and Its Association with Sperm Parameters, Fertilization Rate, Embryo Quality. Reprod Sci 2024; 31:704-713. [PMID: 37957468 DOI: 10.1007/s43032-023-01397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023]
Abstract
CatSper affects sperm function and male fertilization capacity markers, including sperm motility and egg penetration. The study has aimed to evaluate the mRNA expression of CatSper1, and CatSper3 in the spermatozoa of men with normozoospermia and Asthenoteratozoospermia, and to assess the correlation between genes expression and sperm parameters, fertilization rate, and embryo quality in intracytoplasmic sperm injection (ICSI). Reverse transcription-polymerase chain reaction was utilized to evaluate the mRNA expression of CatSper1 and CatSper3 in sperm in two patient groups: Normozoospermia (NOR; n = 32), and Asthenoteratozoospermia (AT; n = 22). In all patients receiving intracytoplasmic sperm injection, the fertilization rate and embryo quality were evaluated. CatSper1, and CatSper3 mRNA expression in sperm was significantly lower in AT males than in NOR (P < 0.05). Levels of these genes demonstrated a significant positive correlation with sperm motility, mitochondrial membrane potential (MMP), capacitation, fertilization rate, cleavage rate, and embryo quality (P < 0.05) following ICSI. However, a negative correlation was found between mRNA expression of CatSper1, 3 and sperm DNA fragmentation (P < 0.05). Findings indicate low levels of CatSper1 and CatSper3 mRNA expression in men with Asthenoteratozoospermia, which resulted in poor sperm quality and impaired embryo development following ICSI therapy.
Collapse
Affiliation(s)
| | - Ebrahim Cheraghi
- Department of Biology, Faculty of Science, University of Qom, Qom, Iran
| | - Rahil Janatifar
- Department of Reproductive Biology, Academic Center for Education Culture and Research (ACECR), Qom, Iran
| | - Hamid Reza Momeni
- Biology Department, Faculty of Science, Arak University, Arak, Iran.
| |
Collapse
|
7
|
Yi S, Feng Y, Wang Y, Ma F. Sialylation: fate decision of mammalian sperm development, fertilization, and male fertility†. Biol Reprod 2023; 109:137-155. [PMID: 37379321 DOI: 10.1093/biolre/ioad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Sperm development, maturation, and successful fertilization within the female reproductive tract are intricate and orderly processes that involve protein translation and post-translational modifications. Among these modifications, sialylation plays a crucial role. Any disruptions occurring throughout the sperm's life cycle can result in male infertility, yet our current understanding of this process remains limited. Conventional semen analysis often fails to diagnose some infertility cases associated with sperm sialylation, emphasizing the need to comprehend and investigate the characteristics of sperm sialylation. This review reanalyzes the significance of sialylation in sperm development and fertilization and evaluates the impact of sialylation damage on male fertility under pathological conditions. Sialylation serves a vital role in the life journey of sperm, providing a negatively charged glycocalyx and enriching the molecular structure of the sperm surface, which is beneficial to sperm reversible recognition and immune interaction. These characteristics are particularly crucial during sperm maturation and fertilization within the female reproductive tract. Moreover, enhancing the understanding of the mechanism underlying sperm sialylation can promote the development of relevant clinical indicators for infertility detection and treatment.
Collapse
Affiliation(s)
- Shiqi Yi
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, China
| | - Yan Wang
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China
- Department of Obstetrics and Gynecology, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
8
|
Cong S, Zhang J, Pan F, Pan L, Zhang A, Ma J. Research progress on ion channels and their molecular regulatory mechanisms in the human sperm flagellum. FASEB J 2023; 37:e23052. [PMID: 37352114 DOI: 10.1096/fj.202300756r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
The ion channels in sperm tail play an important role in triggering key physiological reactions, e.g., progressive motility, hyperactivation, required for successful fertilization. Among them, CatSper and KSper have been shown to be important ion channels for the transport of Ca2+ and K+ . Moreover, the voltage-gated proton channel Hv1, the sperm-specific sodium-hydrogen exchanger (sNHE), the epithelial sodium channel (ENaC), members of the temperature-sensitive TRP channel family, and the cystic fibrosis transmembrane regulator (CFTR) are also found in the flagellum. This review focuses on the latest advances in ion channels located at the flagellum, describes how they affect sperm physiological function, and summarizes some primary mutual regulation mechanism between ion channels, including PH, membrane potential, and cAMP. These ion channels may be promising targets for clinical application in infertility.
Collapse
Affiliation(s)
- Shengnan Cong
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jingjing Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Feng Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Lianjun Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Aixia Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jiehua Ma
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
9
|
Pinto FM, Odriozola A, Candenas L, Subirán N. The Role of Sperm Membrane Potential and Ion Channels in Regulating Sperm Function. Int J Mol Sci 2023; 24:6995. [PMID: 37108159 PMCID: PMC10138380 DOI: 10.3390/ijms24086995] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
During the last seventy years, studies on mammalian sperm cells have demonstrated the essential role of capacitation, hyperactivation and the acrosome reaction in the acquisition of fertilization ability. These studies revealed the important biochemical and physiological changes that sperm undergo in their travel throughout the female genital tract, including changes in membrane fluidity, the activation of soluble adenylate cyclase, increases in intracellular pH and Ca2+ and the development of motility. Sperm are highly polarized cells, with a resting membrane potential of about -40 mV, which must rapidly adapt to the ionic changes occurring through the sperm membrane. This review summarizes the current knowledge about the relationship between variations in the sperm potential membrane, including depolarization and hyperpolarization, and their correlation with changes in sperm motility and capacitation to further lead to the acrosome reaction, a calcium-dependent exocytosis process. We also review the functionality of different ion channels that are present in spermatozoa in order to understand their association with human infertility.
Collapse
Affiliation(s)
- Francisco M. Pinto
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Ainize Odriozola
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| | - Luz Candenas
- Instituto de Investigaciones Químicas, CSIC-University of Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain;
| | - Nerea Subirán
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), 48940 Bizkaia, Spain; (A.O.); (N.S.)
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
- MEPRO Medical Reproductive Solutions, 20009 San Sebastian, Spain
| |
Collapse
|
10
|
Chen C, Zhang Z, Gu X, Sheng X, Xiao L, Wang X. Exosomes: New regulators of reproductive development. Mater Today Bio 2023; 19:100608. [PMID: 36969697 PMCID: PMC10034510 DOI: 10.1016/j.mtbio.2023.100608] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/12/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
Exosomes are a subtype of extracellular vesicles (EVs) with a size range between 30 and 150 nm, which can be released by the majority of cell types and circulate in body fluid. They function as a long-distance cell-to-cell communication mechanism that modulates the gene expression profile and fate of target cells. Increasing evidence has indicated exosomes' central role in regulating various complex reproductive processes. However, to our knowledge, a review that focally and vividly describes the role of exosomes in reproductive development is still lacking. This review highlights our knowledge about the contribution of exosomes to early mammalian reproduction, such as gametogenesis, fertilization, early embryonic development, implantation, placentation and pregnancy. The discussion is primarily drawn from literature pertaining to the mammalian lineage with emphasis on the roles of exosomes in human reproduction and laboratory and livestock models.
Collapse
|
11
|
Sun Z, Xu W, Yuan Y, Song D, Chen H, Luo T, Chen Y. Scutellarein stimulates human sperm function by increasing the levels of intracellular calcium and tyrosine phosphorylation. Andrologia 2022; 54:e14625. [PMID: 36257765 DOI: 10.1111/and.14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 09/15/2022] [Accepted: 10/08/2022] [Indexed: 11/30/2022] Open
Abstract
As a kind of flavonoid, scutellarein is widely used to protect against various human diseases. Although the protective effects of scutellarein have been well studied, its influence on human reproduction remains unknown. In this research, we evaluated the effect of scutellarein on human sperm functions in vitro. Three different concentrations of scutellarein (1, 10, 100 μM) were applied to ejaculated human sperm. Fertilisation-essential functions, as well as the intracellular calcium concentration ([Ca2+ ]i ) and protein-tyrosine phosphorylation, two factors which are vital for sperm function regulation, were evaluated. The results demonstrated that all concentrations of scutellarein utilised in this study could significantly increase sperm spontaneous capacitation and acrosome reaction through the enhancement of [Ca2+ ]i . Besides, the level of tyrosine phosphorylation of sperm could also be increased by scutellarein. Meanwhile, the sperm motility could be improved by 10 and 100 μM scutellarein, which also make a significant enhancement in sperm penetration ability and hyperactivation. This is one of the limited studies showing the regulation of scutellarein on human spermatozoa functions and is helpful to enrich its application.
Collapse
Affiliation(s)
- Zhihong Sun
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, People's Republic of China
| | - Wenqing Xu
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, People's Republic of China
| | - Yuan Yuan
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, People's Republic of China
| | - Dandan Song
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, People's Republic of China
| | - Houyang Chen
- Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, People's Republic of China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, People's Republic of China.,Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, People's Republic of China
| | - Ying Chen
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, People's Republic of China.,Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, People's Republic of China
| |
Collapse
|
12
|
Xiang J, Kang H, Li HG, Shi YL, Zhang YL, Ruan CL, Liu LH, Gao HQ, Luo T, Hu GS, Zhu WL, Jia JM, Chen JC, Fang JB. Competitive CatSper Activators of Progesterone from Rhynchosia volubilis. PLANTA MEDICA 2022; 88:881-890. [PMID: 34359084 PMCID: PMC9439852 DOI: 10.1055/a-1542-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
The root Rhynchosia volubilis was widely used for contraception in folk medicine, although its molecular mechanism on antifertility has not yet been revealed. In human sperm, it was reported that the cation channel of sperm, an indispensable cation channel for the fertilization process, could be regulated by various steroid-like compounds in plants. Interestingly, these nonphysiological ligands would also disturb the activation of the cation channel of sperm induced by progesterone. Therefore, this study aimed to explore whether the compounds in R. volubilis affect the physiological regulation of the cation channel of sperm. The bioguided isolation of the whole herb of R. volubilis has resulted in the novel discovery of five new prenylated isoflavonoids, rhynchones A - E (1: - 5: ), a new natural product, 5'-O-methylphaseolinisoflavan (6: ) (1H and 13C NMR data, Supporting Information), together with twelve known compounds (7: - 18: ). Their structures were established by extensive spectroscopic analyses and drawing a comparison with literature data, while their absolute configurations were determined by electronic circular dichroism calculations. The experiments of intracellular Ca2+ signals and patch clamping recordings showed that rhynchone A (1: ) significantly reduced cation channel of sperm activation by competing with progesterone. In conclusion, our findings indicat that rhynchone A might act as a contraceptive compound by impairing the activation of the cation channel of sperm and thus prevent fertilization.
Collapse
Affiliation(s)
- Jin Xiang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Kang
- Institute of Life Science and School of Life Science, Nanchang University, Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, China
| | - Hong-Gang Li
- Institute of Reproductive Health/Center of Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Long Shi
- CAS Key Laboratory of Receptor Research & Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Ya-Li Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Chang-Lei Ruan
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin-Hui Liu
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han-Qi Gao
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, China
| | - Gao-Sheng Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Wei-Liang Zhu
- CAS Key Laboratory of Receptor Research & Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Ming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Jia-Chun Chen
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Bo Fang
- School of Pharmacy, Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
de Villiers C, Maree L, Katz AA, van der Horst G. The in-vitro effect of gonadotropin-releasing hormones, GnRH-I and GnRH-II, on the motility, vitality and acrosome integrity of Vervet monkey (Chlorocebus aethiops) spermatozoa. Reprod Domest Anim 2022; 57:1394-1405. [PMID: 35877200 DOI: 10.1111/rda.14216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
Abstract
Two isoforms of the gonadotropin-releasing hormone (GnRH), GnRH-I and GnRH-II, are expressed in mammals, and the presence of one or more GnRH-like peptides has been demonstrated in the male reproductive tract. GnRH and its receptors (GnRHR) are present in human and non-human primate testis, prostate, epididymis, seminal vesicle, spermatozoa and seminal human plasma. GnRH-II is site-specific and acts directly in an inhibitory or stimulatory fashion. Previous studies speculated that GnRH-II could disrupt specific sperm processes, such as sperm motility or capacitation and could be utilized as an effective contraceptive agent. Our study aimed to investigate the in-vitro effects of GnRH-I and GnRH-II on Vervet monkey sperm function. Electro-ejaculated semen samples from 10 Vervet monkeys (Chlorocebus aethiops) were used to select motile sperm populations. Sperm aliquots were incubated with GnRH-I and GnRH-II at different concentrations for 1 h, where after sperm motility and kinematic parameters were assessed using the automated Sperm Class Analyser. Additional sperm aliquots were incubated with two 10-amino acid control peptides, a non-related peptide and an inactive peptide to exclude the possible influence on sperm motility from other peptides with a structure similar to GnRH. Additionally, a GnRHR-I antagonist (GnRHR-A), Cetrorelix, was tested to establish its antagonistic capability on GnRH. The effect of selected concentrations of GnRH-I and GnRH-II on sperm vitality and acrosome intactness was also evaluated after 10- and 60 min exposure. Analysis of the percentage total sperm motility revealed that different concentrations for GnRH-I and GnRH-II inhibited sperm motility significantly. While sperm progressiveness was also notably affected and a trend of decreased sperm kinematics were evident, no effect was found on sperm vitality or acrosome intactness. The non-related and inactive peptides had no impact on sperm motility. The GnRHR-A demonstrated no effect on sperm motility and effectively blocked the inhibitory outcome on the motility of both GnRH isoforms. While GnRH-I or GnRH-II at low-dose concentrations resulted in in-vitro inhibition of sperm motility, it appears to have no adverse effects on other sperm functional parameters evaluated. These collective observations possibly indicate an essential role for GnRH in the in-vivo process of sperm selection in the female reproductive tract.
Collapse
Affiliation(s)
- Charon de Villiers
- PUDAC-Delft Animal Facility, South African Medical Research Council, Cape Town, South Africa
| | - Liana Maree
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| | - Arieh A Katz
- Department of Integrative Biomedical Sciences and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Gerhard van der Horst
- Department of Medical Biosciences, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
14
|
Calcium chloride dihydrate supplementation at ICSI improves fertilization and pregnancy rates in patients with previous low fertilization: a retrospective paired treatment cycle study. J Assist Reprod Genet 2022; 39:1055-1064. [PMID: 35262809 PMCID: PMC9107552 DOI: 10.1007/s10815-022-02407-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/18/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE To determine if 5mM calcium chloride dihydrate supplementation of the Polyvinylpyrrolidone (PVP) media at the time of ICSI (ICSI-Ca) improves fertilization, utilization, and clinical pregnancy rates compared to ICSI alone, particularly in patients with a history of low fertilization (< 50%). METHODS Retrospective study between 2016 and 2021 at Monash IVF Victoria on a paired cohort of patients (n = 178 patients) where an ICSI cycle was analyzed coupled with the subsequent ICSI-Ca cycle. The paired cohort was further subdivided into a low-fertilization cohort (< 50% fertilization on previous cycles: n = 66 patients) compared to the remaining patients with fertilization ≥ 50% (n = 122). Exclusion criteria included donor cycles, PGT patients, surgical sperm retrieval, women ≥ 45 years old, patients with > 6 cycles, and patients with ≤ 5 inseminated oocytes. RESULTS Calcium supplementation significantly increased both fertilization (28.8% ICSI vs 49.7% ICSI-Ca, P < 0.0001) and clinical pregnancy rate (4.9% ICSI vs 25.0% ICSI-Ca: P < 0.05) in the low-fertilization cohort but not in the normal-fertilization cohort. Interestingly, utilization rate significantly increased in the normal-fertilization cohort (32.6% ICSI vs ICSI-Ca: 44.9%, P < 0.01) but not in the low-fertilization cohort, although the number of embryos utilized per patient after ICSI-Ca increased in both groups. CONCLUSION Calcium supplementation does not appear to be a detrimental addition to ICSI and may improve IVF outcomes, particularly for patients with a history of low fertilization. Further investigations including prospective case-matched studies or a RCT are required to confirm these findings.
Collapse
|
15
|
Chen C, Li B, Huang R, Dong S, Zhou Y, Song J, Zeng X, Zhang X. Involvement of Ca 2+ and ROS signals in nickel-impaired human sperm function. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113181. [PMID: 35026585 DOI: 10.1016/j.ecoenv.2022.113181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
As one of the main environmental pollutants and occupational hazards, nickel has been reported to have mutagenic, carcinogenic, and teratogenic properties, as well as reproductive toxicity. However, how nickel affects human reproduction is still unclear. In this study, the toxicity of nickel on human sperm and the underlying mechanisms were evaluated in vitro. We found that NiCl2 (10, 50, and 250 μM) impaired sperm total motility and progressive motility in a dose- and time-dependent manner. In addition, sperm hyperactivation and the ability of human sperm to penetrate a viscous medium were found to be compromised after nickel exposure. Mechanically, NiCl2 significantly inhibited the basal intracellular Ca2+ signaling. Besides, reactive oxygen species (ROS), superoxide, and malondialdehyde levels were increased in human sperm after exposure to different concentrations of NiCl2. Consistently, eliminating excess ROS by N-acetyl-L-cysteine or tocopherol significantly alleviated nickel-impaired sperm motility. Taken together, these results revealed that nickel could compromise sperm functions by interfering with Ca2+ signaling and inducing excessive oxidative stress. These findings suggest that, in the high and occupational nickel exposure environments, the contribution of nickel toxicity to the males who wish to preserve their fertility is worthy of careful evaluation.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Bingqian Li
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Rongzu Huang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Yang Zhou
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Jian Song
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China.
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong 226019, PR China.
| |
Collapse
|
16
|
|
17
|
Keyser S, van der Horst G, Maree L. Progesterone, Myo-Inositol, Dopamine and Prolactin Present in Follicular Fluid Have Differential Effects on Sperm Motility Subpopulations. Life (Basel) 2021; 11:1250. [PMID: 34833125 PMCID: PMC8617736 DOI: 10.3390/life11111250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 12/14/2022] Open
Abstract
Considering the challenges surrounding causative factors in male infertility, rather than relying on standard semen analysis, the assessment of sperm subpopulations and functional characteristics essential for fertilization is paramount. Furthermore, the diagnostic value of sperm interactions with biological components in the female reproductive tract may improve our understanding of subfertility and provide applications in assisted reproductive techniques. We investigated the response of two sperm motility subpopulations (mimicking the functionality of potentially fertile and sub-fertile semen samples) to biological substances present in the female reproductive tract. Donor semen was separated via double density gradient centrifugation, isolated into high (HM) and low motile (LM) sperm subpopulations and incubated in human tubal fluid (HTF), capacitating HTF, HD-C medium, progesterone, myo-inositol, dopamine and prolactin. Treated subpopulations were evaluated for vitality, motility percentages and kinematic parameters, hyperactivation, positive reactive oxygen species (ROS), intact mitochondrial membrane potential (MMP) and acrosome reaction (AR). While all media had a significantly positive effect on the LM subpopulation, dopamine appeared to significantly improve both subpopulations' functional characteristics. HD-C, progesterone and myo-inositol resulted in increased motility, kinematic and hyperactivation parameters, whereas prolactin and myo-inositol improved the LM subpopulations' MMP intactness and reduced ROS. Furthermore, progesterone, myo-inositol and dopamine improved the HM subpopulations' motility parameters and AR. Our results suggest that treatment of sub-fertile semen samples with biological substances present in follicular fluid might assist the development of new strategies for IVF treatment.
Collapse
Affiliation(s)
| | | | - Liana Maree
- Comparative Spermatology Laboratory, Department of Medical Bioscience, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (S.K.); (G.v.d.H.)
| |
Collapse
|
18
|
Mammalian sperm hyperactivation regulates navigation via physical boundaries and promotes pseudo-chemotaxis. Proc Natl Acad Sci U S A 2021; 118:2107500118. [PMID: 34716265 DOI: 10.1073/pnas.2107500118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
Mammalian sperm migration within the complex and dynamic environment of the female reproductive tract toward the fertilization site requires navigational mechanisms, through which sperm respond to the tract environment and maintain the appropriate swimming behavior. In the oviduct (fallopian tube), sperm undergo a process called "hyperactivation," which involves switching from a nearly symmetrical, low-amplitude, and flagellar beating pattern to an asymmetrical, high-amplitude beating pattern that is required for fertilization in vivo. Here, exploring bovine sperm motion in high-aspect ratio microfluidic reservoirs as well as theoretical and computational modeling, we demonstrate that sperm hyperactivation, in response to pharmacological agonists, modulates sperm-sidewall interactions and thus navigation via physical boundaries. Prior to hyperactivation, sperm remained swimming along the sidewalls of the reservoirs; however, once hyperactivation caused the intrinsic curvature of sperm to exceed a critical value, swimming along the sidewalls was reduced. We further studied the effect of noise in the intrinsic curvature near the critical value and found that these nonthermal fluctuations yielded an interesting "Run-Stop" motion on the sidewall. Finally, we observed that hyperactivation produced a "pseudo-chemotaxis" behavior, in that sperm stayed longer within microfluidic chambers containing higher concentrations of hyperactivation agonists.
Collapse
|
19
|
Ferreira JJ, Lybaert P, Puga-Molina LC, Santi CM. Conserved Mechanism of Bicarbonate-Induced Sensitization of CatSper Channels in Human and Mouse Sperm. Front Cell Dev Biol 2021; 9:733653. [PMID: 34650979 PMCID: PMC8505895 DOI: 10.3389/fcell.2021.733653] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
To fertilize an egg, mammalian sperm must undergo capacitation in the female genital tract. A key contributor to capacitation is the calcium (Ca2+) channel CatSper, which is activated by membrane depolarization and intracellular alkalinization. In mouse epididymal sperm, membrane depolarization by exposure to high KCl triggers Ca2+ entry through CatSper only in alkaline conditions (pH 8.6) or after in vitro incubation with bicarbonate (HCO3–) and bovine serum albumin (capacitating conditions). However, in ejaculated human sperm, membrane depolarization triggers Ca2+ entry through CatSper in non-capacitating conditions and at lower pH (< pH 7.4) than is required in mouse sperm. Here, we aimed to determine the mechanism(s) by which CatSper is activated in mouse and human sperm. We exposed ejaculated mouse and human sperm to high KCl to depolarize the membrane and found that intracellular Ca2+ concentration increased at pH 7.4 in sperm from both species. Conversely, intracellular Ca2+ concentration did not increase under these conditions in mouse epididymal or human epididymal sperm. Furthermore, pre-incubation with HCO3– triggered an intracellular Ca2+ concentration increase in response to KCl in human epididymal sperm. Treatment with protein kinase A (PKA) inhibitors during exposure to HCO3– inhibited Ca2+ concentration increases in mouse epididymal sperm and in both mouse and human ejaculated sperm. Finally, we show that soluble adenylyl cyclase and increased intracellular pH are required for the intracellular Ca2+ concentration increase in both human and mouse sperm. In summary, our results suggest that a conserved mechanism of activation of CatSper channels is present in both human and mouse sperm. In this mechanism, HCO3– in semen activates the soluble adenylyl cyclase/protein kinase A pathway, which leads to increased intracellular pH and sensitizes CatSper channels to respond to membrane depolarization to allow Ca2+ influx. This indirect mechanism of CatSper sensitization might be an early event capacitation that occurs as soon as the sperm contact the semen.
Collapse
Affiliation(s)
- Juan J Ferreira
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Pascale Lybaert
- Research Laboratory on Human Reproduction, Faculté de Médecine, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Lis C Puga-Molina
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States
| | - Celia M Santi
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, MO, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
20
|
Taiwo BG, Frettsome-Hook RL, Taylor AE, Correia JN, Lefievre L, Publicover SJ, Conner SJ, Kirkman-Brown JC. Complex combined steroid mix of the female tract modulates human sperm. Reprod Biol 2021; 21:100561. [PMID: 34619633 DOI: 10.1016/j.repbio.2021.100561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 09/08/2021] [Indexed: 11/29/2022]
Abstract
Human spermatozoa interact with a complex biochemical environment in the female reproductive tract en route to the site of fertilisation. Ovarian follicular fluid contributes to this complex milieu and is known to contain steroids such as progesterone, whose effects on sperm physiology have been widely characterised. We have previously reported that progesterone stimulates intracellular calcium concentration ([Ca2+]i) signalling and acrosome reaction in human spermatozoa. To characterise the effects of the unified complete follicular fluid steroid hormone complement on human spermatozoa, a comprehensive, data-based, 'physiological standard' steroid hormone balance of follicular fluid (shFF) was created from individual constituents. shFF induced a rapid biphasic [Ca2+]i elevation in human spermatozoa. Using population fluorimetry, we compared [Ca2+]i signal amplitude in cells exposed to serial applications of shFF (6 steps from 10-5X up to 1X shFF) with responses to the equivalent progesterone component alone (6 steps from 135 pM - 13.5μM). Threshold for the response to shFF was right-shifted (≈10-fold) compared to progesterone alone, but the maximum response to shFF was greatly enhanced. An acrosome reaction assay was used to assess functional effects of shFF-induced sperm calcium signalling. shFF as well as progesterone-treated spermatozoa showed a significant increase in % acrosome reaction (P < 0.01). All of this evidence suggests the modulation of progesterone-mediated responses by other follicular fluid steroids.
Collapse
Affiliation(s)
- Benjamin Gbenro Taiwo
- Centre for Human Reproductive Science (ChRS), Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, United Kingdom; Birmingham Women's Fertility Centre, Birmingham Women's Hospital, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Rebecca Louise Frettsome-Hook
- Centre for Human Reproductive Science (ChRS), Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, United Kingdom; Birmingham Women's Fertility Centre, Birmingham Women's Hospital, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Angela Elizabeth Taylor
- Centre for Human Reproductive Science (ChRS), Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, United Kingdom
| | - João Natalino Correia
- Centre for Human Reproductive Science (ChRS), Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, United Kingdom
| | - Linda Lefievre
- Centre for Human Reproductive Science (ChRS), Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, United Kingdom
| | | | - Sarah Jayne Conner
- Centre for Human Reproductive Science (ChRS), Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, United Kingdom; Birmingham Women's Fertility Centre, Birmingham Women's Hospital, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom
| | - Jackson Carl Kirkman-Brown
- Centre for Human Reproductive Science (ChRS), Institute of Metabolism and Systems Research, College of Medical & Dental Sciences, University of Birmingham, United Kingdom; Birmingham Women's Fertility Centre, Birmingham Women's Hospital, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, United Kingdom.
| |
Collapse
|
21
|
Rahban R, Rehfeld A, Schiffer C, Brenker C, Egeberg Palme DL, Wang T, Lorenz J, Almstrup K, Skakkebaek NE, Strünker T, Nef S. The antidepressant Sertraline inhibits CatSper Ca2+ channels in human sperm. Hum Reprod 2021; 36:2638-2648. [PMID: 34486673 PMCID: PMC8450872 DOI: 10.1093/humrep/deab190] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/01/2021] [Indexed: 12/12/2022] Open
Abstract
STUDY QUESTION Do selective serotonin reuptake inhibitor (SSRI) antidepressants affect the function of human sperm? SUMMARY ANSWER The SSRI antidepressant Sertraline (e.g. Zoloft) inhibits the sperm-specific Ca2+ channel CatSper and affects human sperm function in vitro. WHAT IS KNOWN ALREADY In human sperm, CatSper translates changes of the chemical microenvironment into changes of the intracellular Ca2+ concentration ([Ca2+]i) and swimming behavior. CatSper is promiscuously activated by oviductal ligands, but also by synthetic chemicals that might disturb the fertilization process. It is well known that SSRIs have off-target actions on Ca2+, Na+ and K+ channels in somatic cells. Whether SSRIs affect the activity of CatSper is, however, unknown. STUDY DESIGN, SIZE, DURATION We studied the action of the seven drugs belonging to the most commonly prescribed class of antidepressants, SSRIs, on resting [Ca2+]i and Ca2+ influx via CatSper in human sperm. The SSRI Sertraline was selected for in-depth analysis of its action on steroid-, prostaglandin-, pH- and voltage-activation of human CatSper. Moreover, the action of Sertraline on sperm acrosomal exocytosis and penetration into viscous media was evaluated. PARTICIPANTS/MATERIALS, SETTING, METHODS The activity of CatSper was investigated in sperm of healthy volunteers, using kinetic Ca2+ fluorimetry and patch-clamp recordings. Acrosomal exocytosis was investigated using Pisum sativum agglutinin and image cytometry. Sperm penetration in viscous media was evaluated using the Kremer test. MAIN RESULTS AND THE ROLE OF CHANCE Several SSRIs affected [Ca2+]i and attenuated ligand-induced Ca2+ influx via CatSper. In particular, the SSRI Sertraline almost completely suppressed Ca2+ influx via CatSper. Remarkably, the drug was about four-fold more potent to suppress prostaglandin- versus steroid-induced Ca2+ influx. Sertraline also suppressed alkaline- and voltage-activation of CatSper, indicating that the drug directly inhibits the channel. Finally, Sertraline impaired ligand-induced acrosome reaction and sperm penetration into viscous media. LIMITATIONS, REASONS FOR CAUTION This is an in vitro study. Future studies have to assess the physiological relevance in vivo. WIDER IMPLICATIONS OF THE FINDINGS The off-target action of Sertraline on CatSper in human sperm might impair the fertilization process. In a research setting, Sertraline may be used to selectively inhibit prostaglandin-induced Ca2+ influx. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Swiss Centre for Applied Human Toxicology (SCAHT), the Département de l’Instruction Publique of the State of Geneva, the German Research Foundation (CRU326), the Interdisciplinary Center for Clinical Research, Münster (IZKF; Str/014/21), the Innovation Fund Denmark (grant numbers 14-2013-4) and the EDMaRC research grant from the Kirsten and Freddy Johansen’s Foundation. The authors declare that no conflict of interest could be perceived as prejudicing the impartiality of the research reported. TRIAL REGISTRATION NUMBER NA.
Collapse
Affiliation(s)
- Rita Rahban
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| | - Anders Rehfeld
- Department of Growth and Reproduction, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Christian Schiffer
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | | | - Tao Wang
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany.,Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Johannes Lorenz
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Kristian Almstrup
- Department of Growth and Reproduction, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Niels E Skakkebaek
- Department of Growth and Reproduction, University of Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Serge Nef
- Department of Genetic Medicine and Development, University of Geneva, Geneva, Switzerland.,Swiss Centre for Applied Human Toxicology, Basel, Switzerland
| |
Collapse
|
22
|
Li N, Kang H, Peng Z, Wang HF, Weng SQ, Zeng XH. Physiologically detectable bisphenol A impairs human sperm functions by reducing protein-tyrosine phosphorylation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112418. [PMID: 34146982 DOI: 10.1016/j.ecoenv.2021.112418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Bisphenol A (BPA), a widely used plastic monomer and plasticizer, is detectable in blood, urine and semen of a healthy people, with concentrations ranging from 0.1 nM to 10 nM. It has been shown that in vitro exposure of BPA as low as 0.001 nM could significantly inhibited mouse sperm motility and acrosome reaction. However, it is still unclear whether BPA at those physiologically detectable concentration affects human sperm. METHODS The effects of different concentrations of BPA (0, 10-3, 10-2, 10-1, 10, 103 nM) on sperm functions were examined, including human sperm viability, kinematic parameters, hyperactivation and capacitation. RESULTS BPA caused a remarkable decline in human sperm viability, motility and progressive motility, hyperactivation, capacitation and progesterone-induced acrosome reaction. Mechanism studies showed that BPA could suppress the protein tyrosine phosphorylation level of human sperm, but had no effect on sperm calcium signaling. CONCLUSIONS Physiologically detectable concentrations of BPA may impair human sperm functions via suppressing protein tyrosine phosphorylation of human sperm, implying that environmental pollution of BPA might be a factor contributing to male infertility.
Collapse
Affiliation(s)
- Na Li
- Clinical Medical Research Center, Yichun People's Hospital, Yichun, Jiangxi 336000, PR China; Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China; Laboratory Department, Affiliated Reproductive Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330031, PR China
| | - Hang Kang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Zhen Peng
- Clinical Medical Research Center, Yichun People's Hospital, Yichun, Jiangxi 336000, PR China; Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Hua-Feng Wang
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Shi-Qi Weng
- Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China
| | - Xu-Hui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226000, PR China; Institute of Life Science, Nanchang University, Nanchang, Jiangxi 330031, PR China.
| |
Collapse
|
23
|
Li P, Wei K, He X, Zhang L, Liu Z, Wei J, Chen X, Wei H, Chen T. Vaginal Probiotic Lactobacillus crispatus Seems to Inhibit Sperm Activity and Subsequently Reduces Pregnancies in Rat. Front Cell Dev Biol 2021; 9:705690. [PMID: 34485291 PMCID: PMC8414900 DOI: 10.3389/fcell.2021.705690] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/13/2021] [Indexed: 01/12/2023] Open
Abstract
Background The vaginal microbiota is associated with the health of the female reproductive system and the offspring. Lactobacillus crispatus belongs to one of the most important vaginal probiotics, while its role in the agglutination and immobilization of human sperm, fertility, and offspring health is unclear. Methods Adherence assays, sperm motility assays, and Ca2+-detecting assays were used to analyze the adherence properties and sperm motility of L. crispatus Lcr-MH175, attenuated Salmonella typhimurium VNP20009, engineered S. typhimurium VNP20009 DNase I, and Escherichia coli O157:H7 in vitro. The rat reproductive model was further developed to study the role of L. crispatus on reproduction and offspring health, using high-throughput sequencing, real-time PCR, and molecular biology techniques. Results Our results indicated that L. crispatus, VNP20009, VNP20009 DNase I, and E. coli O157:H7 significantly inhibited the sperm motility in vitro via adversely affecting the sperm intracellular Ca2+ concentration and showed a high adhesion to sperms. The in vivo results indicated that L. crispatus and other tested bacteria greatly reduced the pregnancy rates, but L. crispatus had a positive effect on maternal health and offspring development. Moreover, the transplantation of L. crispatus could sustain a normal bacterial composition of the vaginal microbiota in healthy rats and markedly reduced the expression of uterine inflammatory factors (toll-like receptor-4/nuclear factor kappa-B, tumor necrosis factor-α, production of interleukin-1β, etc.) and apoptosis factors (Fas Ligand, Bcl-2-associated X protein/B cell lymphoma-2, etc.) compared with the other tested strains. Conclusion Our study demonstrated that the vaginal probiotic L. crispatus greatly affected the sperm activity and could also reduce pregnancies through its adhesion property, which might account for some unexplained infertility. Therefore, more caution should be paid when using L. crispatus as a vaginal viable preparation in women of child-bearing age, especially for women whose partners have abnormal sperms.
Collapse
Affiliation(s)
- Ping Li
- School of Life Sciences, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Kehong Wei
- School of Life Sciences, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xia He
- Department of Obstetrics and Gynecology, The Ninth Hospital of Nanchang, Nanchang, China
| | - Lu Zhang
- School of Life Sciences, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Zhaoxia Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Wei
- School of Life Sciences, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Xiaomei Chen
- School of Life Sciences, Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Hong Wei
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tingtao Chen
- School of Life Sciences, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Rehfeld A. Revisiting the action of steroids and triterpenoids on the human sperm Ca2+ channel CatSper. Mol Hum Reprod 2021; 26:816-824. [PMID: 32926144 DOI: 10.1093/molehr/gaaa062] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
The sperm-specific Ca2+ channel CatSper (cation channel of sperm) is vital for male fertility. Contradictory findings have been published on the regulation of human CatSper by the endogenous steroids estradiol, testosterone and hydrocortisone, as well as the plant triterpenoids, lupeol and pristimerin. The aim of this study was to elucidate this controversy by investigating the action of these steroids and plant triterpenoids on human CatSper using population-based Ca2+-fluorimetric measurements, the specific CatSper-inhibitor RU1968 and a functional test assessing the CatSper-dependent penetration of human sperm cells into methylcellulose. Estradiol, testosterone and hydrocortisone were found to induce Ca2+-signals in human sperm cells with EC50 values in the lower μM range. By employing the specific CatSper-inhibitor RU1968, all three steroids were shown to induce Ca2+-signals through an action on CatSper, similar to progesterone. The steroids were found to dose-dependently inhibit subsequent progesterone-induced Ca2+-signals with IC50 values in the lower μM range. Additionally, the three steroids were found to significantly increase the penetration of human sperm cells into methylcellulose, similar to the effect of progesterone. The two plant triterpenoids, lupeol and pristimerin, were unable to inhibit progesterone-induced Ca2+-signals, whereas the CatSper-inhibitor RU1968 strongly inhibited progesterone-induced Ca2+-signals. In conclusion, this study supports the claim that the steroids estradiol, testosterone and hydrocortisone act agonistically on CatSper in human sperm cells, thereby mimicking the effect of progesterone, and that lupeol and pristimerin do not act as inhibitors of human CatSper.
Collapse
Affiliation(s)
- Anders Rehfeld
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
25
|
Rimmer MP, Gregory CD, Mitchell RT. Extracellular vesicles in urological malignancies. Biochim Biophys Acta Rev Cancer 2021; 1876:188570. [PMID: 34019971 PMCID: PMC8351753 DOI: 10.1016/j.bbcan.2021.188570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bound structures released from cells containing bioactive cargoes. Both the type of cargo and amount loaded varies compared to that of the parent cell. The characterisation of EVs in cancers of the male urogenital tract has identified several cargoes with promising diagnostic and disease monitoring potential. EVs released by cancers of the male urogenital tract promote cell-to-cell communication, migration, cancer progression and manipulate the immune system promoting metastasis by evading the immune response. Their use as diagnostic biomarkers represents a new area of screening and disease detection, potentially reducing the need for invasive biopsies. Many validated EV cargoes have been found to have superior sensitivity and specificity than current diagnostic tools currently in use. The use of EVs to improve disease monitoring and develop novel therapeutics will enable clinicians to individualise patient management in the exciting era of personalised medicine.
Collapse
Affiliation(s)
- Michael P Rimmer
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, UK.
| | - Christopher D Gregory
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, UK.
| |
Collapse
|
26
|
Campbell MJ, Sucquart IE, Whittaker A, Sanganee HJ, Barratt CLR, Martins da Silva SJ. Myeloperoxidase inhibitor AZD5904 enhances human sperm function in vitro. Hum Reprod 2021; 36:560-570. [PMID: 33393586 DOI: 10.1093/humrep/deaa328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/02/2020] [Indexed: 11/14/2022] Open
Abstract
STUDY QUESTION Does AZD5904, a myeloperoxidase inhibitor (MPOi), have any effect on human sperm function in vitro? SUMMARY ANSWER AZD5904 improves sperm function in an in vitro model of oxidative stress (OS) and potentially offers a novel treatment approach for male infertility. WHAT IS KNOWN ALREADY Male infertility is an underlying or contributory cause in half of all couples experiencing difficulties conceiving, yet there is currently no effective treatment or cure. OS is a common pathology in a significant proportion of infertile men. It can negatively affect sperm motility and the ability to fertilize a mature oocyte, as well as DNA integrity, and therefore represents an attractive target for therapeutic intervention. STUDY DESIGN, SIZE, DURATION This study included population-based samples from men (23-50 years) attending Ninewells Assisted Conception Unit, Dundee for diagnostic semen analysis, July 2017-September 2018. Semen samples (n = 47) from 45 patients were used. PARTICIPANTS/MATERIALS, SETTING, METHODS Neutrophils activated using zymosan were incubated with prepared human spermatozoa for 2 h (T2) and 24 h (T24) to create an in vitro model of OS. Parallel samples were co-incubated with AZD5904, an MPOi, to examine its effects. Sperm motility was assessed by computer-assisted sperm analysis at T2 and T24. Functional motility was assessed by sperm penetration assay. Statistical analysis was performed using GraphPad Prism. MAIN RESULTS AND THE ROLE OF CHANCE There was no significant difference in total or progressive sperm motility between any treatment and control groups at T2 or T24. Nonetheless, significant positive effects on sperm function were observed with AZD5904, with 16/45 (35.6%) samples (with both normal and abnormal baseline semen analysis characteristics) displaying a ≥20% increase in sperm penetrated through viscous media (P < 0.003). LIMITATIONS, REASONS FOR CAUTION This was an in vitro study. WIDER IMPLICATIONS OF THE FINDINGS Treatment with AZD5904 resulted in significant increased sperm penetration in one of three samples treated, which is likely to represent improvement in sperm function required for fertilization. We are now planning a clinical trial to validate these results and hope that this could represent a new treatment for male infertility. STUDY FUNDING/COMPETING INTEREST(S) AZD5904 was shared through the AstraZeneca Open Innovation program. The study was funded by AstraZeneca and sponsored by the University of Dundee. Additional funding was provided by Chief Scientist Office/NHS Research Scotland (S.J.M.d.S.). A.W. and H.J.S. are both full time employees of AstraZeneca. A.W. and H.J.S. are inventors on a patent filed by AstraZeneca titled MPOi for use in medicine which includes MPOi for use in the treatment of male infertility (WO 2019/016074 Al). S.J.M.d.S. is Associate Editor of Human Reproduction and Editorial Board member of Reproduction & Fertility. C.L.R.B. is Editor of RBMO and has received lecturing fees from Merck and Ferring and is on the Scientific Advisory Panel for Ohana BioSciences. C.L.R.B. was chair of the World Health Organization Expert Synthesis Group on Diagnosis of Male infertility (2012-2016). C.L.R.B. has a patent WO2013054111 A1 issued. The other authors declare no conflict of interest. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- M J Campbell
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - I E Sucquart
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - A Whittaker
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - H J Sanganee
- Emerging Innovations Unit, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - C L R Barratt
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - S J Martins da Silva
- Reproductive Medicine Research Group, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
27
|
Torrezan-Nitao E, Brown SG, Mata-Martínez E, Treviño CL, Barratt C, Publicover S. [Ca2+]i oscillations in human sperm are triggered in the flagellum by membrane potential-sensitive activity of CatSper. Hum Reprod 2021; 36:293-304. [PMID: 33305795 DOI: 10.1093/humrep/deaa302] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/22/2020] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION How are progesterone (P4)-induced repetitive intracellular Ca2+ concentration ([Ca2+]i) signals (oscillations) in human sperm generated? SUMMARY ANSWER P4-induced [Ca2+]i oscillations are generated in the flagellum by membrane potential (Vm)-sensitive Ca2+-influx through CatSper channels. WHAT IS KNOWN ALREADY A subset of human sperm display [Ca2+]i oscillations that regulate flagellar beating and acrosome reaction. Although pharmacological manipulations indicate involvement of stored Ca2+ in these oscillations, influx of extracellular Ca2+ is also required. STUDY DESIGN, SIZE, DURATION This was a laboratory study that used >20 sperm donors and involved more than 100 separate experiments and analysis of more than 1000 individual cells over a period of 2 years. PARTICIPANTS/MATERIALS, SETTING, METHODS Semen donors and patients were recruited in accordance with local ethics approval from Birmingham University and Tayside ethics committees. [Ca2+]i responses and Vm of individual cells were examined by fluorescence imaging and whole-cell current clamp. MAIN RESULTS AND THE ROLE OF CHANCE P4-induced [Ca2+]i oscillations originated in the flagellum, spreading to the neck and head (latency of 1-2 s). K+-ionophore valinomycin (1 µM) was used to investigate the role of membrane potential (Vm). Direct assessment by whole-cell current-clamp confirmed that Vm in valinomycin-exposed cells was determined primarily by K+ equilibrium potential (EK) and was rapidly 'reset' upon manipulation of [K+]o. Pre-treatment of sperm with valinomycin ([K+]o = 5.4 mM) had no effect on the P4-induced [Ca2+] transient (P = 0.95; eight experiments), but application of valinomycin to P4-pretreated sperm suppressed activity in 82% of oscillating cells (n = 257; P = 5 × 10-55 compared to control) and significantly reduced both the amplitude and frequency of persisting oscillations (P = 0.0001). Upon valinomycin washout, oscillations re-started in most cells. When valinomycin was applied in saline with elevated [K+], the inhibitory effect of valinomycin was reduced and was dependent on EK (P = 10-25). Amplitude and frequency of [Ca2+]i oscillations that persisted in the presence of valinomycin showed similar sensitivity to EK (P < 0.01). The CatSper inhibitor RU1968 (4.8 and 11 µM) caused immediate and reversible arrest of activity in 36% and 96% of oscillating cells, respectively (P < 10-10). Quinidine (300 µM) which blocks the sperm K+ current (IKsper) completely, inhibited [Ca2+]i oscillations. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION This was an in-vitro study and caution must be taken when extrapolating these results to in-vivo regulation of sperm. WIDER IMPLICATIONS OF THE FINDINGS [Ca2+]i oscillations in human sperm are functionally important and their absence is associated with failed fertilisation at IVF. The data reported here provide new understanding of the mechanisms that underlie the regulation and generation (or failure) of these oscillations. STUDY FUNDING/COMPETING INTEREST(S) E.T.-N. was in receipt of a postgraduate scholarship from the CAPES Foundation (Ministry of Education, Brazil). E.M-M received travel funds from the Programa de Apoyo a los Estudios de Posgrado (Maestria y Doctorado en Ciencias Bioquimicas-Universidad Autonoma de Mexico). SGB and CLRB are recipients of a Chief Scientist Office (NHS Scotland) grant TCS/17/28. The authors have no conflicts of interest.
Collapse
Affiliation(s)
| | - Sean G Brown
- School of Applied Sciences, Division of Health Sciences, Abertay University, Dundee DD11HG, UK
| | - Esperanza Mata-Martínez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, México
| | - Christopher Barratt
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | | |
Collapse
|
28
|
Mata-Martínez E, Sánchez-Tusie AA, Darszon A, Mayorga LS, Treviño CL, De Blas GA. Epac activation induces an extracellular Ca 2+ -independent Ca 2+ wave that triggers acrosome reaction in human spermatozoa. Andrology 2021; 9:1227-1241. [PMID: 33609309 DOI: 10.1111/andr.12989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 01/02/2023]
Abstract
BACKGROUND The signaling pathways of the intracellular second messengers cAMP and Ca2+ play a crucial role in numerous physiological processes in human spermatozoa. One such process is the acrosome reaction (AR), which is necessary for spermatozoa to traverse the egg envelope and to expose a fusogenic membrane allowing the egg-sperm fusion. Progesterone and zona pellucida elicit an intracellular Ca2+ increase that is needed for the AR in the mammalian spermatozoa. This increase is mediated by an initial Ca2+ influx but also by a release from intracellular Ca2+ stores. It is known that intracellular Ca2+ stores play a central role in the regulation of [Ca2+ ]i and in the generation of complex Ca2+ signals such as oscillations and waves. In the human spermatozoa, it has been proposed that the cAMP analog and specific agonist of Epac 8-(p-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (2'-O-Me-cAMP) elicits an intracellular Ca2+ release involved in the AR. OBJECTIVE To identify the molecular entities involved in the Ca2+ mobilization triggered by 2'-O-Me-cAMP in human spermatozoa. MATERIALS AND METHODS In capacitated human spermatozoa, we monitored Ca2+ dynamics and the occurrence of the AR in real time using Fluo 3-AM and FM4-64 in a Ca2+ -free medium. RESULTS Epac activation by 2'-O-Me-cAMP induced a Ca2+ wave that started in the midpiece and propagated to the acrosome region. This Ca2+ response was sensitive to rotenone, CGP, xestospongin, NED-19, and thapsigargin, suggesting the participation of different ion transporters (mitochondrial complex I and Na+ /Ca2+ exchanger, inositol 3-phosphate receptors, two-pore channels and internal store Ca2+ -ATPases). DISCUSSION Our results suggest that Epac activation promotes a dynamic crosstalk between three different intracellular Ca2+ stores: the mitochondria, the redundant nuclear envelope, and the acrosome. CONCLUSION The Ca2+ wave triggered by Epac activation is necessary to induce the AR and to enhance the flagellar beat.
Collapse
Affiliation(s)
- Esperanza Mata-Martínez
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Ana Alicia Sánchez-Tusie
- Laboratorio de Fisiología Celular y Molecular, Departamento de Investigación Biomédica, Facultad de Medicina, Universidad Autónoma de Querétaro, México
| | - Alberto Darszon
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, México
| | - Luis S Mayorga
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Claudia L Treviño
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Morelos, México
| | - Gerardo A De Blas
- Laboratorio de Fusión de Membranas y Exocitosis Acrosomal, Instituto de Histología y Embriología Dr. Mario H. Burgos (IHEM), Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina.,Laboratorio de Teleanálisis e Investigación Traslacional, Área Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| |
Collapse
|
29
|
Corkidi G, Hernández-Herrera P, Montoya F, Gadêlha H, Darszon A. Long-term segmentation-free assessment of head-flagellum movement and intracellular calcium in swimming human sperm. J Cell Sci 2021; 134:jcs.250654. [PMID: 33431515 DOI: 10.1242/jcs.250654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 12/14/2020] [Indexed: 12/31/2022] Open
Abstract
Human spermatozoa are the archetype of long-term self-organizing transport in nature and are critical for reproductive success. They utilize coordinated head and flagellar movements to swim long distances within the female reproductive tract in order to find and fertilize the egg. However, to date, long-term analysis of the sperm head-flagellar movements, or indeed those of other flagellated microorganisms, remains elusive due to limitations in microscopy and flagellar-tracking techniques. Here, we present a novel methodology based on local orientation and isotropy of bio-images to obtain long-term kinematic and physiological parameters of individual free-swimming spermatozoa without requiring image segmentation (thresholding). This computer-assisted segmentation-free method evaluates, for the first time, characteristics of the head movement and flagellar beating for up to 9.2 min. We demonstrate its powerful use by showing how releasing Ca2+ from internal stores significantly alters long-term sperm behavior. The method allows for straightforward generalization to other bio-imaging applications, such as studies of bull sperm and Trypanosoma, or indeed of other flagellated microorganisms - appealing to communities other than those investigating sperm biology.
Collapse
Affiliation(s)
- Gabriel Corkidi
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingenería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| | - Paul Hernández-Herrera
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingenería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| | - Fernando Montoya
- Laboratorio de Imágenes y Visión por Computadora, Departamento de Ingenería Celular y Biocatálisis, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| | - Hermes Gadêlha
- Department of Engineering Mathematics & Bristol Robotics Laboratory, University of Bristol, Bristol BS8 1QU, UK
| | - Alberto Darszon
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, UNAM, 62210 Cuernavaca, México
| |
Collapse
|
30
|
Sun X, Chen W, Weng S, Pan T, Hu X, Wang F, Xia T, Chen H, Luo T. Effects of the environmental endocrine disruptors di-2-ethylhexyl phthalate and mono-2-ethylhexyl phthalate on human sperm function in vitro. Reprod Fertil Dev 2021; 32:629-636. [PMID: 32027815 DOI: 10.1071/rd19164] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/20/2019] [Indexed: 12/17/2022] Open
Abstract
Di-2-ethylhexyl phthalate (DEHP), a plastic-derived, endocrine-disrupting chemical, has been shown to exhibit male reproductive toxicity. However, its effects on human mature spermatozoa are largely unknown. In this study we investigated the invitro effects of DEHP and mono-2-ethylhexyl phthalate (MEHP; the main metabolite of DEHP) on sperm function and the mechanisms involved. Human spermatozoa were exposed to phthalates invitro at the doses that cover the concentrations detected in human semen: 20nM-8 μM DEHP, 1nM-20 μM MEHP or a mixture of 20nM-8 μM DEHP and 1nM-20 μM MEHP. DEHP and MEHP, alone or in combination, had no effect on the viability, membrane integrity, motility, homeostasis of reactive oxygen species or mitochondrial activity of human spermatozoa. Interestingly, 1nM-20 μM MEHP and combinations of 20nM-8 μM DEHP and 1nM-20 μM MEHP enhanced penetration ability, hyperactivation and the spontaneous acrosome reaction of human spermatozoa, and increased intracellular free Ca2+ concentrations ([Ca2+]i) and tyrosine phosphorylation, two key signalling pathways that regulate sperm function. The findings of this study suggest that invitro exposure to MEHP metabolised from DEHP affects human sperm function by inducing increases in sperm [Ca2+]i and tyrosine phosphorylation, which adds to our understanding of the effects of DEHP on male reproduction.
Collapse
Affiliation(s)
- Xinyi Sun
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China; and Nanchang University Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Wenqiong Chen
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Shiqi Weng
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Tingting Pan
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Xiaonian Hu
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Fang Wang
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Tianxinyu Xia
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China; and Nanchang University Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, 318/81 Avenue, Nanchang, Jiangxi 330006, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China; and Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, 999 Xuefu Road, Honggutan New District, Nanchang, Jiangxi 330031, China; and Corresponding author.
| |
Collapse
|
31
|
Wang J, Tang H, Zou Q, Zheng A, Li H, Yang S, Xiang J. Patient with CATSPER3 mutations-related failure of sperm acrosome reaction with successful pregnancy outcome from intracytoplasmic sperm injection (ICSI). Mol Genet Genomic Med 2020; 9:e1579. [PMID: 33350607 PMCID: PMC8077087 DOI: 10.1002/mgg3.1579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Purpose This study is intended to investigate the candidate pathogenic gene in a patient with primary infertility but without the defect in routine semen parameters from a consanguineous family and explore the potential impacts of mutations on assisted reproductive technology outcome. Methods Whole‐exome sequencing (WES) was carried out. A variant in his family found by WES was verified by Sanger sequencing. Intracytoplasmic sperm injection (ICSI) was applied to obtain a successful outcome. Results A Cation Channel of Sperm 3(CATSPER3) homozygous variant (NM_ 178019.3:exon5:c.707T>A, p.L236*) was identified for the first time. The anti‐CD46 immunofluorescence analysis revealed the failure of sperm acrosome reaction (AR) caused by the mutation. ICSI treatment was successful. Conclusion This is the first report of a homozygous pathogenic CATSPER3 mutation. This mutation may cause male infertility with the failure of AR but without the defect in routine semen parameters. ICSI was supposed to be the most appropriate therapy.
Collapse
Affiliation(s)
- Jiaxiong Wang
- Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Hui Tang
- Suzhou Center Affiliated to State Key Laboratory of Reproductive Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Qinyan Zou
- Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Aiyan Zheng
- Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Hong Li
- Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Shenmin Yang
- Center for Reproduction and Genetics, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Jingjing Xiang
- Suzhou Center Affiliated to State Key Laboratory of Reproductive Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, China
| |
Collapse
|
32
|
Rahban R, Nef S. CatSper: The complex main gate of calcium entry in mammalian spermatozoa. Mol Cell Endocrinol 2020; 518:110951. [PMID: 32712386 DOI: 10.1016/j.mce.2020.110951] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Calcium ions (Ca2+) are involved in nearly every aspect of cellular life. They are one of the most abundant elements in mammals and play a vital role in physiological and biochemical processes acting mainly as intracellular messengers. In spermatozoa, several key functions are regulated by cytoplasmic Ca2+ concentration such as sperm capacitation, chemotaxis, hyperactive motility, and acrosome reaction. The sperm-specific ion channel CatSper is the principal calcium channel in sperm mediating the calcium influx into the sperm flagellum and acting as an essential modulator of downstream mechanisms involved in fertilization. This review aims to provide insights into the structure, localization, and function of the mammalian CatSper channel, primarily human and mice. The activation of CatSper by progesterone and prostaglandins, as well as the ligand-independent regulation of the channel by a change in the membrane voltage and intracellular pH are going to be addressed. Finally, major questions, challenges, and perspectives are discussed.
Collapse
Affiliation(s)
- Rita Rahban
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1206, Geneva, Switzerland.
| | - Serge Nef
- Swiss Centre for Applied Human Toxicology (SCAHT), Switzerland; Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Rue Michel-Servet 1, 1206, Geneva, Switzerland.
| |
Collapse
|
33
|
Dos Santos da Silva L, Borges Domingues W, Fagundes Barreto B, da Silveira Martins AW, Dellagostin EN, Komninou ER, Corcini CD, Varela Junior AS, Campos VF. Capillary electroporation affects the expression of miRNA-122-5p from bull sperm cells. Gene 2020; 768:145286. [PMID: 33144270 DOI: 10.1016/j.gene.2020.145286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/13/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023]
Abstract
Sperm-mediated gene transfer (SMGT) has a potential application in the generation of transgenic animals. Capillary electroporation consists of the application of electrical pulses, resulting in an increased transfection rate. Little is known about the impacts of the transfection of exogenous DNA on sperm epigenetics. MicroRNAs are epigenetic factors that are related to sperm motility. MiRNA-122-5p regulates genes that influence motility, and consequently, the fertilizing potential of sperm. Therefore, we aimed at identifying whether epigenetic factors such as microRNAs could be altered after DNA transfection, using the capillary electroporation technique. In this study, bull sperm was electroporated using voltages of 600 V, 1500 V, and 0 V (control group), with or without exogenous DNA. Parameters of sperm quality were analyzed using CASA and flow cytometry, and expression of the miRNA-122-5p was analyzed using RT-qPCR. It was observed that electroporation increased the internalization of exogenous DNA (P < 0.05), but did not impair the mitochondrial activity (P > 0.05). It reduced sperm motility (P < 0.05). The expression of miRNA-122-5p was upregulated in sperm electroporated at 1500 V, and the presence of exogenous DNA did not affect its expression. Thus, we can conclude that electroporation influences the expression of miRNA-122-5p from bull sperm cells.
Collapse
Affiliation(s)
- Lucas Dos Santos da Silva
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - William Borges Domingues
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bruna Fagundes Barreto
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Amanda Weege da Silveira Martins
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eduardo Nunes Dellagostin
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Eliza Rossi Komninou
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Carine D Corcini
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Antônio Sergio Varela Junior
- ReproPel, Programa de Pós-Graduação em Veterinária, Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil; Laboratório de Reprodução Animal, Programa de Pós-Graduação em Biologia de Ambientes Aquáticos Continentais, Instituto de Ciências Biológicas - Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Vinicius Farias Campos
- Laboratório de Genômica Estrutural, Programa de Pós-Graduação em Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
34
|
Finkelstein M, Etkovitz N, Breitbart H. Ca 2+ signaling in mammalian spermatozoa. Mol Cell Endocrinol 2020; 516:110953. [PMID: 32712383 DOI: 10.1016/j.mce.2020.110953] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/08/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
Calcium is an essential ion which regulates sperm motility, capacitation and the acrosome reaction (AR), three processes necessary for successful fertilization. The AR enables the spermatozoon to penetrate into the egg. In order to undergo the AR, the spermatozoon must reside in the female reproductive tract for several hours, during which a series of biochemical transformations takes place, collectively called capacitation. An early event in capacitation is relatively small elevation of intracellular Ca2+ (in the nM range) and bicarbonate, which collectively activate the soluble adenylyl cyclase to produce cyclic-AMP; c-AMP activates protein kinase A (PKA), leading to indirect tyrosine phosphorylation of proteins. During capacitation, there is an increase in the membrane-bound phospholipase C (PLC) which is activated prior to the AR by relatively high increase in intracellular Ca2+ (in the μM range). PLC catalyzes the hydrolysis of phosphatidyl-inositol-4,5-bisphosphate (PIP2) to diacylglycerol and inositol-trisphosphate (IP3), leading to activation of protein kinase C (PKC) and the IP3-receptor. PKC activates a Ca2+- channel in the plasma membrane, and IP3 activates the Ca2+- channel in the outer acrosomal membrane, leading to Ca2+ depletion from the acrosome. As a result, the plasma-membrane store-operated Ca2+ channel (SOCC) is activated to increase cytosolic Ca2+ concentration, enabling completion of the acrosome reaction. The hydrolysis of PIP2 by PLC results in the release and activation of PIP2-bound gelsolin, leading to F-actin dispersion, an essential step prior to the AR. Ca2+ is also involved in the regulation of sperm motility. During capacitation, the sperm develops a unique motility pattern called hyper-activated motility (HAM) which is essential for successful fertilization. The main Ca2+-channel that mediates HAM is the sperm-specific CatSper located in the sperm tail.
Collapse
Affiliation(s)
| | - Nir Etkovitz
- Sperm Bank, Sheba Hospital, Tel-Hashomer, Israel
| | - Haim Breitbart
- The Mina & Everard Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
35
|
Tamburrino L, Marchiani S, Muratori M, Luconi M, Baldi E. Progesterone, spermatozoa and reproduction: An updated review. Mol Cell Endocrinol 2020; 516:110952. [PMID: 32712385 DOI: 10.1016/j.mce.2020.110952] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/16/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
The rapid effects of steroids on spermatozoa have been demonstrated for the first time more than three decades ago. Progesterone (P), which is present throughout the female genital tract with peaks of levels in the cumulus matrix surrounding the oocyte, has been shown to stimulate several sperm functions in vitro, including capacitation, hyperactivation, chemotaxis and acrosome reaction (AR). Besides an increase of intracellular calcium, P has been shown to activate other sperm signalling pathways including tyrosine phosphorylation of several sperm proteins. All these effects are mediated by extra-nuclear pathways likely involving interaction with molecules present on the sperm surface. In particular, the increase in intracellular calcium ([Ca2+]i) in spermatozoa from human and several other mammalian species is mediated by the sperm specific calcium channel CatSper, whose expression and function are required for sperm hyperactive motility. P-mediated CatSper activation is indeed involved in promoting sperm hyperactivation, but the involvement of this channel in other P-stimulated sperm functions, such as AR and chemotaxis, is less clear and further studies are required to disclose all the involved pathways. In human spermatozoa, responsiveness to P in terms of [Ca2+]i increase and AR is highly related to sperm fertilizing ability in vitro, suggesting that the steroid is a physiological inducer of AR during in vitro fertilization. In view of their physiological relevance, P-stimulated sperm functions are currently investigated to develop new tools to select highly performant spermatozoa for assisted reproduction.
Collapse
Affiliation(s)
- Lara Tamburrino
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Sara Marchiani
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Monica Muratori
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Michaela Luconi
- Department of Experimental and Clinical Biomedical Science, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - Elisabetta Baldi
- Department of Experimental and Clinical Medicine, University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
| |
Collapse
|
36
|
Jokiniemi A, Magris M, Ritari J, Kuusipalo L, Lundgren T, Partanen J, Kekäläinen J. Post-copulatory genetic matchmaking: HLA-dependent effects of cervical mucus on human sperm function. Proc Biol Sci 2020; 287:20201682. [PMID: 32811307 PMCID: PMC7482290 DOI: 10.1098/rspb.2020.1682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Several studies have demonstrated that women show pre-copulatory mating preferences for human leucocyte antigen (HLA)-dissimilar men. A fascinating, yet unexplored, possibility is that the ultimate mating bias towards HLA-dissimilar partners could occur after copulation, at the gamete level. Here, we explored this possibility by investigating whether the selection towards HLA-dissimilar partners occurs in the cervical mucus. After combining sperm and cervical mucus from multiple males and females (full factorial design), we found that sperm performance (swimming velocity, hyperactivation, and viability) was strongly influenced by the male–female combination. This indicates that sperm fertilization capability may be dependent on the compatibility between cervical mucus (female) and sperm (male). We also found that sperm viability was associated with partners' HLA dissimilarity, indicating that cervical mucus may selectively facilitate later gamete fusion between immunogenetically compatible partners. Together, these results provide novel insights into the female-mediated sperm selection (cryptic female choice) in humans and indicate that processes occurring after copulation may contribute to the mating bias towards HLA-dissimilar partners. Finally, by showing that sperm performance in cervical mucus is influenced by partners' genetic compatibility, the present findings may promote a deeper understanding of infertility.
Collapse
Affiliation(s)
- Annalaura Jokiniemi
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Martina Magris
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Jarmo Ritari
- Finnish Red Cross Blood Service, Research and Development, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Liisa Kuusipalo
- North Karelia Central Hospital, Tikkamäentie 16, 80210 Joensuu, Finland
| | - Tuulia Lundgren
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| | - Jukka Partanen
- Finnish Red Cross Blood Service, Research and Development, Haartmaninkatu 8, 00290 Helsinki, Finland
| | - Jukka Kekäläinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, PO Box 111, 80101 Joensuu, Finland
| |
Collapse
|
37
|
Wang T, Young S, Krenz H, Tüttelmann F, Röpke A, Krallmann C, Kliesch S, Zeng XH, Brenker C, Strünker T. The Ca 2+ channel CatSper is not activated by cAMP/PKA signaling but directly affected by chemicals used to probe the action of cAMP and PKA. J Biol Chem 2020; 295:13181-13193. [PMID: 32703901 DOI: 10.1074/jbc.ra120.013218] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
The sperm-specific Ca2+ channel CatSper (cation channel of sperm) controls the influx of Ca2+ into the flagellum and, thereby, the swimming behavior of sperm. A hallmark of human CatSper is its polymodal activation by membrane voltage, intracellular pH, and oviductal hormones. Whether CatSper is also activated by signaling pathways involving an increase of cAMP and ensuing activation of PKA is, however, a matter of controversy. To shed light on this question, we used kinetic ion-sensitive fluorometry, patch-clamp recordings, and optochemistry to study transmembrane Ca2+ flux and membrane currents in human sperm from healthy donors and from patients that lack functional CatSper channels. We found that human CatSper is neither activated by intracellular cAMP directly nor indirectly by the cAMP/PKA-signaling pathway. Instead, we show that nonphysiological concentrations of cAMP and membrane-permeable cAMP analogs used to mimic the action of intracellular cAMP activate human CatSper from the outside via a hitherto-unknown extracellular binding site. Finally, we demonstrate that the effects of common PKA inhibitors on human CatSper rest predominantly, if not exclusively, on off-target drug actions on CatSper itself rather than on inhibition of PKA. We conclude that the concept of an intracellular cAMP/PKA-activation of CatSper is primarily based on unspecific effects of chemical probes used to interfere with cAMP signaling. Altogether, our findings solve several controversial issues and reveal a novel ligand-binding site controlling the activity of CatSper, which has important bearings on future studies of cAMP and Ca2+ signaling in sperm.
Collapse
Affiliation(s)
- Tao Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, China; Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Samuel Young
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Henrike Krenz
- Institute of Medical Informatics, University of Münster, Münster, Germany
| | - Frank Tüttelmann
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Albrecht Röpke
- Institute of Human Genetics, University of Münster, Münster, Germany
| | - Claudia Krallmann
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Sabine Kliesch
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany
| | - Xu-Hui Zeng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, China.
| | - Christoph Brenker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany.
| | - Timo Strünker
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, University of Münster, Münster, Germany; Cells in Motion Interfaculty Centre, University of Münster, Münster, Germany.
| |
Collapse
|
38
|
Gallagher MT, Cupples G, Ooi EH, Kirkman-Brown JC, Smith DJ. Rapid sperm capture: high-throughput flagellar waveform analysis. Hum Reprod 2020; 34:1173-1185. [PMID: 31170729 PMCID: PMC6613345 DOI: 10.1093/humrep/dez056] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Can flagellar analyses be scaled up to provide automated tracking of motile sperm, and does knowledge of the flagellar waveform provide new insight not provided by routine head tracking? SUMMARY ANSWER High-throughput flagellar waveform tracking and analysis enable measurement of experimentally intractable quantities such as energy dissipation, disturbance of the surrounding medium and viscous stresses, which are not possible by tracking the sperm head alone. WHAT IS KNOWN ALREADY The clinical gold standard for sperm motility analysis comprises a manual analysis by a trained professional, with existing automated sperm diagnostics [computer-aided sperm analysis (CASA)] relying on tracking the sperm head and extrapolating measures. It is not currently possible with either of these approaches to track the sperm flagellar waveform for large numbers of cells in order to unlock the potential wealth of information enclosed within. STUDY DESIGN, SIZE, DURATION The software tool in this manuscript has been developed to enable high-throughput, repeatable, accurate and verifiable analysis of the sperm flagellar beat. PARTICIPANTS/MATERIALS, SETTING, METHODS Using the software tool [Flagellar Analysis and Sperm Tracking (FAST)] described in this manuscript, we have analysed 176 experimental microscopy videos and have tracked the head and flagellum of 205 progressive cells in diluted semen (DSM), 119 progressive cells in a high-viscosity medium (HVM) and 42 stuck cells in a low-viscosity medium. Unscreened donors were recruited at Birmingham Women's and Children's NHS Foundation Trust after giving informed consent. MAIN RESULTS AND THE ROLE OF CHANCE We describe fully automated tracking and analysis of flagellar movement for large cell numbers. The analysis is demonstrated on freely motile cells in low- and high-viscosity fluids and validated on published data of tethered cells undergoing pharmacological hyperactivation. Direct analysis of the flagellar beat reveals that the CASA measure 'beat cross frequency' does not measure beat frequency; attempting to fit a straight line between the two measures gives ${\mathrm{R}}^2$ values of 0.042 and 0.00054 for cells in DSM and HVM, respectively. A new measurement, track centroid speed, is validated as an accurate differentiator of progressive motility. Coupled with fluid mechanics codes, waveform data enable extraction of experimentally intractable quantities such as energy dissipation, disturbance of the surrounding medium and viscous stresses. We provide a powerful and accessible research tool, enabling connection of the mechanical activity of the sperm to its motility and effect on its environment. LARGE SCALE DATA The FAST software package and all documentation can be downloaded from www.flagellarCapture.com. LIMITATIONS, REASONS FOR CAUTION The FAST software package has only been tested for use with negative phase contrast microscopy. Other imaging modalities, with bright cells on a dark background, have not been tested but may work. FAST is not designed to analyse raw semen; it is specifically for precise analysis of flagellar kinematics, as that is the promising area for computer use. Flagellar capture will always require that cells are at a dilution where their paths do not frequently cross. WIDER IMPLICATIONS OF THE FINDINGS Combining tracked flagella with mathematical modelling has the potential to reveal new mechanistic insight. By providing the capability as a free-to-use software package, we hope that this ability to accurately quantify the flagellar waveform in large populations of motile cells will enable an abundant array of diagnostic, toxicological and therapeutic possibilities, as well as creating new opportunities for assessing and treating male subfertility. STUDY FUNDING/COMPETING INTEREST(S) M.T.G., G.C., J.C.K-B. and D.J.S. gratefully acknowledge funding from the Engineering and Physical Sciences Research Council, Healthcare Technologies Challenge Award (Rapid Sperm Capture EP/N021096/1). J.C.K-B. is funded by a National Institute of Health Research (NIHR) and Health Education England, Senior Clinical Lectureship Grant: The role of the human sperm in healthy live birth (NIHRDH-HCS SCL-2014-05-001). This article presents independent research funded in part by the NIHR and Health Education England. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The data for experimental set (2) were funded through a Wellcome Trust-University of Birmingham Value in People Fellowship Bridging Award (E.H.O.).The authors declare no competing interests.
Collapse
Affiliation(s)
- M T Gallagher
- School of Mathematics.,Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Centre for Human Reproductive Science, Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, UK
| | - G Cupples
- School of Mathematics.,Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Centre for Human Reproductive Science, Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, UK
| | - E H Ooi
- School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - J C Kirkman-Brown
- Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Centre for Human Reproductive Science, Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, UK
| | - D J Smith
- School of Mathematics.,Institute for Metabolism and Systems Research, University of Birmingham, Birmingham, UK.,Centre for Human Reproductive Science, Birmingham Women's and Children's National Health Service Foundation Trust, Birmingham, UK
| |
Collapse
|
39
|
Luo T, Chen HY, Zou QX, Wang T, Cheng YM, Wang HF, Wang F, Jin ZL, Chen Y, Weng SQ, Zeng XH. A novel copy number variation in CATSPER2 causes idiopathic male infertility with normal semen parameters. Hum Reprod 2020; 34:414-423. [PMID: 30629171 DOI: 10.1093/humrep/dey377] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 11/20/2018] [Accepted: 11/30/2018] [Indexed: 12/28/2022] Open
Abstract
STUDY QUESTION Are genetic abnormalities in CATSPER (cation channel of sperm) genes associated with idiopathic male infertility with normal semen parameters and, if so, how do they affect male fertility? SUMMARY ANSWER A novel copy number variation (CNV) in CATSPER2 causes idiopathic male infertility with normal semen parameters by disrupting the ability of sperm to penetrate viscous media, undergo hyperactivation and respond to progesterone. WHAT IS KNOWN ALREADY CATSPER is the principle Ca2+ channel mediating extracellular Ca2+ influx into spermatozoa. Although several case reports have suggested a causal relationship between CATSPER disruption and human male infertility, whether genetic abnormalities in CATSPER genes are associated with idiopathic male infertility with normal semen parameters remains unclear. STUDY DESIGN, SIZE, DURATION Spermatozoa were obtained from men attending the reproductive medical center at Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China between January 2014 and June 2016. In total, 120 men from infertile couples and 20 healthy male donors were selected to take part in the study, based on their normal semen parameters. PARTICIPANTS/MATERIALS, SETTING, METHODS CATSPER and KSPER currents were assessed using the whole-cell patch-clamp technique. Whole-genome sequencing and TaqMan® CNV assays were performed to identify genetic variations. The expression levels of genes encoding the CATSPER complex were measured by quantitative real-time PCR and Western blot. Sperm motion characteristics and hyperactivation were examined with a computer-aided sperm analysis (CASA) system. Sperm responses to progesterone, assessed as increases in CATSPER current and intercellular Ca2+ concentrations ([Ca2+]i), as well as inducement of penetration ability and acrosome reaction, were examined by means of whole-cell patch-clamp technique, single-sperm [Ca2+]i imaging, penetration into methylcellulose assay and chlortetracycline staining, respectively. MAIN RESULTS AND THE ROLE OF CHANCE An infertile man with complete disruption of CATSPER current was identified. This individual has a novel CNV which disrupts one gene copy in the region 43894500-43950000 in chromosome 15 (GRCh37.p13 Primary Assembly, nsv3067119), containing the whole DNA sequence of CATSPER2. This CNV affected the expression of CATSPER2, resulting in dramatically reduced levels of CATSPER2 proteins in the individual's spermatozoa. Although this individual exhibited normal semen parameters, his spermatozoa showed impaired penetration ability, deficient hyperactivation, and did not respond to progesterone, in terms of monovalent current potentiation, [Ca2+]i increase, penetration ability enhancement and acrosome reaction inducement, which may explain the individual's idiopathic infertility. LARGE SCALE DATA N/A. LIMITATIONS, REASONS FOR CAUTION Our novel findings require more cases to support the CATSPER2 CNV identified in this study as a common cause of idiopathic male infertility in patients with normal semen parameters. Therefore, caution must be taken when extrapolating the use of this CNV as a potential biomarker for idiopathic male infertility. WIDER IMPLICATIONS OF THE FINDINGS The findings from the unique human CATSPER 'knockout' model in this study not only confirm the essential roles of CATSPER in mediating progesterone response and regulating hyperactivation in human spermatozoa but also reveal that disruption of CATSPER current is a significant factor causing idiopathic male infertility. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by National Natural Science Foundation of China (81771644 and 31400996 to T.L.; 31230034 to X.Z.); National Basic Research Program of China (973 Program, 2015CB943003 to X.Z.); National Key Research and Development Program of China (2016YFC1000905 to T.L.); Natural Science Foundation of Jiangxi, China (20121BBG70021 and GJJ12015 to X.Z.; 20161BAB204167 and 20171ACB21006 to T.L.) and the open project of National Population and Family Planning Key Laboratory of Contraceptives and Devices Research (No. 2016KF07 to T.L.). The authors have no conflicts of interest to declare.
Collapse
Affiliation(s)
- Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China.,Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi, PR China
| | - Hou-Yang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, PR China
| | - Qian-Xing Zou
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Tao Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Yi-Min Cheng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Hua-Feng Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Fang Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Zhong-Lin Jin
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, PR China
| | - Ying Chen
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Shi-Qi Weng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xu-Hui Zeng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, PR China.,Key Laboratory of Reproductive Physiology and Pathology in Jiangxi Province, Nanchang, Jiangxi, PR China.,Jiangxi Provincial Collaborative Innovation Center for Cardiovascular, Digestive and Neuropsychiatric Diseases, Nanchang, Jiangxi, PR China
| |
Collapse
|
40
|
Achikanu C, Correia J, Guidobaldi HA, Giojalas LC, Barratt CLR, Da Silva SM, Publicover S. Continuous behavioural 'switching' in human spermatozoa and its regulation by Ca2+-mobilising stimuli. Mol Hum Reprod 2020; 25:423-432. [PMID: 31194869 PMCID: PMC6736438 DOI: 10.1093/molehr/gaz034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/28/2019] [Indexed: 12/12/2022] Open
Abstract
Human sperm show a variety of different behaviours (types of motility) that have different functional roles. Previous reports suggest that sperm may reversibly switch between these behaviours. We have recorded and analysed the behaviour of individual human sperm (180 cells in total), each cell monitored continuously for 3–3.5 min either under control conditions or in the presence of Ca2+-mobilising stimuli. Switching between different behaviours was assessed visually (1 s bins using four behaviour categories), and was verified by fractal dimension analysis of sperm head tracks. In the absence of stimuli, ~90% of cells showed at least one behavioural transition (mean rate under control conditions = 6.4 ± 0.8 transitions.min−1). Type 1 behaviour (progressive, activated-like motility) was most common, but the majority of cells (>70%) displayed at least three behaviour types. Treatment of sperm with Ca2+-mobilising agonists had negligible effects on the rate of switching but increased the time spent in type 2 and type 3 (hyperactivation-like) behaviours (P < 2*10−8; chi-square). Treatment with 4-aminopyridine under alkaline conditions (pHo = 8.5), a highly-potent Ca2+-mobilising stimulus, was the most effective in increasing the proportion of type 3 behaviour, biasing switching away from type 1 (P < 0.005) and dramatically extending the duration of type 3 events (P < 10−16). Other stimuli, including 300 nM progesterone and 1% human follicular fluid, had qualitatively similar effects but were less potent. We conclude that human sperm observed in vitro constitutively display a range of behaviours and regulation of motility by [Ca2+]i, at the level of the single cell, is achieved not by causing cells to adopt a ‘new’ behaviour but by changing the relative contributions of those behaviours.
Collapse
Affiliation(s)
- Cosmas Achikanu
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Joao Correia
- School of Biosciences, University of Birmingham, Birmingham, UK
| | - Héctor A Guidobaldi
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Biología Celular y Molecular, Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina.,Instituto de Investigaciones Biológicas y Tecnológicas, UNC, CONICET, FCEFyN, Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina
| | - Laura C Giojalas
- Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales, Centro de Biología Celular y Molecular, Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina.,Instituto de Investigaciones Biológicas y Tecnológicas, UNC, CONICET, FCEFyN, Av. Vélez Sarsfield 1611, CP X5016GCA, Córdoba, Argentina
| | - Christopher L R Barratt
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, Dundee DD19SY, UK.,University of Dundee, Dundee DD19SY, UK 4Assisted Conception Unit, Ninewells Hospital Dundee, Dundee DD19SY, UK
| | - Sarah Martins Da Silva
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, Dundee DD19SY, UK.,University of Dundee, Dundee DD19SY, UK 4Assisted Conception Unit, Ninewells Hospital Dundee, Dundee DD19SY, UK
| | - Stephen Publicover
- School of Biosciences, University of Birmingham, Birmingham, UK.,Centre for Human Reproductive Science, University of Birmingham, UK
| |
Collapse
|
41
|
Ebrahimi B, Keshtgar S. The Effects of EGTA on the Quality of Fresh and Cryopreserved-Thawed Human Spermatozoa. IRANIAN JOURNAL OF MEDICAL SCIENCES 2020; 45:188-198. [PMID: 32546885 PMCID: PMC7253491 DOI: 10.30476/ijms.2019.45787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Sperm cryopreservation-thawing process has damaging effects on the structure and function of sperm, namely cryoinjury.
Calcium overload has been reported as a postulated mechanism for sperm damage during the first steps after thawing.
This study was designed to assess the intracellular calcium (Ca2+i) after cryopreservation and to clarify the role
of a calcium chelator ethylene glycol-bis (2-aminoethyl ether)-N, N, N′, N′-tetraacetic acid (EGTA) on human sperm quality. Methods: Forty semen samples were obtained from fertile men (March 2017 to 2018). The samples were randomly divided into fresh (F)
and cryopreserved-thawed (CT) groups. The F and CT samples were divided into control and 1 mM EGTA-treated groups.
Sperm kinematics and membrane integrity were assessed. The reactive oxygen species (ROS) and adenosine triphosphate
(ATP) were measured by luminescent methods. Ca2+i, apoptotic rate, and mitochondrial membrane potential (MMP) were
evaluated using flow cytometric methods. Data were compared using SPSS software, version 16.0 by ANOVA and Kruskal-Wallis test. P<0.05 was considered as significant. Results: Cryopreservation decreased sperm motility, viability, membrane integrity, Ca2+i, MMP, and induced cell apoptosis
and ROS production. EGTA could not protect the cryopreserved sperm from cryoinjury. It was found to have destructive
effects on fresh sperm motility and viability (P=0.009) relative to cryopreserved sperm. ATP was reduced (P=0.02)
and ROS production (P=0.0001) was increased in the EGTA-treated F and CT sperms. Conclusion: Despite Ca2+i reduction by EGTA, it had no protective effects on fresh or cryopreserved sperm. We concluded that sperm
cryoinjury was not dependent on calcium overload, and it was suggested that cryoinjury was mainly related to cell membranes damage.
Collapse
Affiliation(s)
- Bahareh Ebrahimi
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Keshtgar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
42
|
Baskaran S, Finelli R, Agarwal A, Henkel R. Reactive oxygen species in male reproduction: A boon or a bane? Andrologia 2020; 53:e13577. [PMID: 32271474 DOI: 10.1111/and.13577] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) are free radicals derived from oxygen during normal cellular metabolism. ROS play a crucial role in the physiological processes and signalling pathways associated with male fertility. At physiological concentrations, ROS act as molecular mediators of signal transduction pathways involved in the regulation of the hypothalamic-pituitary-gonadal axis, spermatogenesis and steroidogenesis. They also trigger the morphological changes required for sperm maturation, such as DNA compaction and flagellar modification. Furthermore, ROS modulate crucial processes involved in the attainment of sperm fertilising ability such as capacitation, hyperactivation, acrosome reaction and sperm-oocyte fusion. Conversely, oxidative stress prevails when the concentration of ROS overwhelms the body's antioxidant defence. Various endogenous and exogenous factors enhance the synthesis of ROS resulting in the disruption of structural and functional integrity of spermatozoa through the induction of apoptotic pathway and oxidation of molecules, such as lipids, proteins and DNA. Therefore, maintenance of a balanced redox state is critical for normal male reproductive functions. This article discusses the dual role of ROS in male reproduction, highlighting the physiological role as well as their pathological implications on male fertility.
Collapse
Affiliation(s)
- Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
43
|
Luo T, Wang F, Weng S, Chen H, Kang H, Wang J, Luo S. Anethole compromises human sperm function by affecting the sperm intracellular calcium concentration and tyrosine phosphorylation. Reprod Toxicol 2020; 93:99-105. [PMID: 32004625 DOI: 10.1016/j.reprotox.2020.01.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/12/2020] [Accepted: 01/24/2020] [Indexed: 11/28/2022]
Abstract
Anethole is a natural anisole derivative that has been widely used in food and daily chemical industries, agricultural applications and the traditional medicine. It is closely related to aspects of daily life, and humans can easily be exposed to it. Although the reproductive toxicity of anethole was shown in the rat, its effect on human reproduction remains unknown. In this study, we examined the effect of anethole on human sperm in vitro. Different anethole doses (0.1, 1, 10, and 100 μM) were applied to ejaculated human sperm. Fertilization-essential functions, as well as the intracellular calcium concentration ([Ca2+]i) and tyrosine phosphorylation, two vital factors for regulating sperm function, were measured. The results indicated that 10 and 100 μM anethole significantly reduced the motility, hyperactivation, and penetration ability of human sperm (P < 0.05) and inhibited the increase in human sperm functions induced by progesterone, a hormone essential for sperm function activation. Additionally, 10 and 100 μM anethole decreased both basal and progesterone-increased tyrosine phosphorylation, [Ca2+]i, and the current of CATSPER, a cation channel of sperm predominant for Ca2+ influx. These results suggest that anethole inhibits human sperm functions by reducing sperm [Ca2+]i through CATSPER and suppressing tyrosine phosphorylation in vitro, raising the fact that the caution is needed when overtaking anethole.
Collapse
Affiliation(s)
- Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Fang Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Shiqi Weng
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, Jiangxi 330006, PR China
| | - Hang Kang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, Jiangxi, 330031, PR China
| | - Jie Wang
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Sha Luo
- Department of Horticulture, College of Agronomy, Jiangxi Agricultural University, Nanchang, 330045, PR China.
| |
Collapse
|
44
|
Matamoros-Volante A, Treviño CL. Capacitation-associated alkalization in human sperm is differentially controlled at the subcellular level. J Cell Sci 2020; 133:jcs238816. [PMID: 31932506 DOI: 10.1242/jcs.238816] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/20/2019] [Indexed: 12/28/2022] Open
Abstract
Capacitation in mammalian sperm involves the accurate balance of intracellular pH (pHi), but the mechanisms controlling this process are not fully understood, particularly regarding the spatiotemporal regulation of the proteins involved in pHi modulation. Here, we employed an image-based flow cytometry technique combined with pharmacological approaches to study pHi dynamics at the subcellular level during capacitation. We found that, upon capacitation induction, sperm cells undergo intracellular alkalization in the head and principal piece regions. The observed localized pHi increases require the initial uptake of HCO3-, which is mediated by several proteins acting consistently with their subcellular localization. Hv1 proton channel (also known as HVCN1) and cAMP-activated protein kinase (protein kinase A, PKA) antagonists impair alkalization mainly in the principal piece. Na+/HCO3- cotransporter (NBC) and cystic fibrosis transmembrane regulator (CFTR) antagonists impair alkalization only mildly, predominantly in the head. Motility measurements indicate that inhibition of alkalization in the principal piece prevents the development of hyperactivated motility. Altogether, our findings shed light on the complex control mechanisms of pHi and underscore their importance during human sperm capacitation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Arturo Matamoros-Volante
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, México
| | - Claudia L Treviño
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, México
| |
Collapse
|
45
|
Yang Y, Chen H, Weng S, Pan T, Chen W, Wang F, Luo T, Tang Y. In vitro exposure to metformin activates human spermatozoa at therapeutically relevant concentrations. Andrology 2020; 8:663-670. [PMID: 31944615 DOI: 10.1111/andr.12755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 12/18/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Metformin, a drug used to treat type 2 diabetes, has gained attention for its multiple therapeutic applications. However, little is known about its effects on human sperm function at therapeutically relevant concentration. OBJECTIVES The aim of this study was to elucidate the in vitro actions of metformin on human sperm function and explore the underlying mechanism of any effects. MATERIALS AND METHODS Human ejaculated spermatozoa were treated with therapeutically relevant concentrations (0.25, 5, 10, 20, 40, and 80 µM) of metformin in vitro. Fertilization-essential functions of spermatozoa were examined, including viability, motility, capacitation, acrosome reaction, hyperactivation, and penetration ability. The signaling pathways mediated by 5'-AMP-activated protein kinase (AMPK), intracellular calcium concentration ([Ca2+ ]i ), and tyrosine phosphorylation of spermatozoa were also measured. RESULTS Although metformin did not affect sperm viability, motility, and [Ca2+ ]i , it significantly increased the percentages of capacitated spermatozoa, acrosomal-reacted spermatozoa, and hyperactivated spermatozoa as well as penetration ability of human spermatozoa at the concentrations of 40 and 80 µM (P < .05). These concentrations of metformin also elevated the levels of phosphorylated AMPK and tyrosine phosphorylation in human spermatozoa. In addition, activation of AMPK by A769662 (an AMPK activator) had similar effects to metformin on human spermatozoa, while inhibition of AMPK by Compound C (an AMPK inhibitor) suppressed the enhancement of metformin on human spermatozoa. CONCLUSION Our findings indicate that metformin activates human sperm function through an AMPK-related mechanism which increases tyrosine phosphorylation at therapeutically relevant concentrations, thereby suggesting its improvement on human sperm function when treating subfertile males of type 2 diabetes.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Shiqi Weng
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Tingting Pan
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Wenqiong Chen
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Fang Wang
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Tao Luo
- Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Yuxin Tang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China.,Reproductive Department of Urology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| |
Collapse
|
46
|
Trebichalská Z, Holubcová Z. Perfect date-the review of current research into molecular bases of mammalian fertilization. J Assist Reprod Genet 2020; 37:243-256. [PMID: 31909446 PMCID: PMC7056734 DOI: 10.1007/s10815-019-01679-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/22/2019] [Indexed: 12/21/2022] Open
Abstract
Fertilization is a multistep process during which two terminally differentiated haploid cells, an egg and a sperm, combine to produce a totipotent diploid zygote. In the early 1950s, it became possible to fertilize mammalian eggs in vitro and study the sequence of cellular and molecular events leading to embryo development. Despite all the achievements of assisted reproduction in the last four decades, remarkably little is known about the molecular aspects of human conception. Current fertility research in animal models is casting more light on the complexity of the process all our lives start with. This review article provides an update on the investigation of mammalian fertilization and highlights the practical implications of scientific discoveries in the context of human reproduction and reproductive medicine.
Collapse
Affiliation(s)
- Zuzana Trebichalská
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Zuzana Holubcová
- Faculty of Medicine, Department of Histology and Embryology, Masaryk University, Kamenice 5, Brno, Czech Republic. .,Reprofit International, Clinic of Reproductive Medicine, Brno, Czech Republic.
| |
Collapse
|
47
|
Rehfeld A, Andersson AM, Skakkebæk NE. Bisphenol A Diglycidyl Ether (BADGE) and Bisphenol Analogs, but Not Bisphenol A (BPA), Activate the CatSper Ca 2+ Channel in Human Sperm. Front Endocrinol (Lausanne) 2020; 11:324. [PMID: 32508751 PMCID: PMC7248311 DOI: 10.3389/fendo.2020.00324] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
Aim: Evidence suggests that bisphenol A diglycidyl ether (BADGE), bisphenol A (BPA), and BPA analogs can interfere with human male fertility. However, the effect directly on human sperm function is not known. The CatSper Ca2+ channel in human sperm controls important sperm functions and is necessary for normal male fertility. Environmental chemicals have been shown to activate CatSper and thereby affect Ca2+ signaling in human sperm. BPA has previously been investigated for effects on Ca2+ signaling human sperm, whereas the effects of other BPA analogs are currently unknown. The aim of this study is thus to characterize the effect of BADGE, BPA, and the eight analogs BPG, BPAF, BPC, BPB, BPBP, BPE, BPF, BPS on Ca2+ signaling, and CatSper in human sperm. Methods: Direct effects of the bisphenols on Ca2+ signaling in human sperm cells were evaluated using a Ca2+ fluorimetric assay measuring changes in intracellular Ca2+. Effects via CatSper were assessed using the specific CatSper inhibitor RU1968. Effects on human sperm function was assessed using an image cytometry-based acrosome reaction assay and the modified Kremer's sperm-mucus penetration assay. Results: At 10 μM the bisphenols BPG, BPAF, BPC, BADGE, BPB, and BPBP induced Ca2+ signals in human sperm cells, whereas BPE, BPF, BPS, and BPA had no effect. The efficacy of the chemicals at 10 μM is BPG > BPAF > BPC > BADGE > BPB > BPBP. Dose-response relations of BPG, BPAF, BPC, BADGE, BPB, and BPBP yielded EC50-values in the nM-μM range. The induced Ca2+ signals were almost completely abolished using the CatSper inhibitor RU1968, indicating an effect of the bisphenols on CatSper. All bisphenols, except BPBP, were found to dose-dependently inhibit progesterone-induced Ca2+ signals, with BPG and BPAF displaying inhibition even in low μM doses. BPG and BPAF were shown to affect human sperm function in a progesterone-like manner. Conclusion: Our results show that the bisphenols BPG, BPAF, BPC, BADGE, BPB, and BPBP can affect Ca2+ signaling in human sperm cells through activation of CatSper. This could potentially disrupt human sperm function by interfering with normal CatSper-signaling and thus be a contributing factor in human infertility, either alone or in mixtures with other chemicals.
Collapse
Affiliation(s)
- Anders Rehfeld
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Anders Rehfeld
| | - A. M. Andersson
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - N. E. Skakkebæk
- Department of Growth and Reproduction, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
48
|
Machado SA, Sharif M, Wang H, Bovin N, Miller DJ. Release of Porcine Sperm from Oviduct Cells is Stimulated by Progesterone and Requires CatSper. Sci Rep 2019; 9:19546. [PMID: 31862909 PMCID: PMC6925244 DOI: 10.1038/s41598-019-55834-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 11/29/2019] [Indexed: 01/07/2023] Open
Abstract
Sperm storage in the female reproductive tract after mating and before ovulation is a reproductive strategy used by many species. When insemination and ovulation are poorly synchronized, the formation and maintenance of a functional sperm reservoir improves the possibility of fertilization. In mammals, the oviduct regulates sperm functions, such as Ca2+ influx and processes associated with sperm maturation, collectively known as capacitation. A fraction of the stored sperm is released by unknown mechanisms and moves to the site of fertilization. There is an empirical association between the hormonal milieu in the oviduct and sperm detachment; therefore, we tested directly the ability of progesterone to induce sperm release from oviduct cell aggregates. Sperm were allowed to bind to oviduct cells or an immobilized oviduct glycan and then challenged with progesterone, which stimulated the release of 48% of sperm from oviduct cells or 68% of sperm from an immobilized oviduct glycan. The effect of progesterone on sperm release was specific; pregnenolone and 17α-OH-progesterone did not affect sperm release. Ca2+ influx into sperm is associated with capacitation and development of hyperactivated motility. Progesterone increased sperm intracellular Ca2+, which was abrogated by blocking the sperm–specific Ca2+ channel CatSper with NNC 055-0396. NNC 055-0396 also blocked the progesterone-induced sperm release from oviduct cells or immobilized glycan. An inhibitor of the non-genomic progesterone receptor that activates CatSper similarly blocked sperm release. This is the first report indicating that release of sperm from the sperm reservoir is induced by progesterone action through CatSper channels.
Collapse
Affiliation(s)
- Sergio A Machado
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.,Department of Veterinary Medicine, Western Santa Catarina University, Xanxere, Brazil
| | - Momal Sharif
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.,Department of Obstetrics and Gynecology and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Huijing Wang
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.,Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nicolai Bovin
- Shemyakin Institute of Bioorganic Chemistry, Moscow, Russia
| | - David J Miller
- Department of Animal Sciences and Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
49
|
McBrinn RC, Fraser J, Hope AG, Gray DW, Barratt CLR, Martins da Silva SJ, Brown SG. Novel pharmacological actions of trequinsin hydrochloride improve human sperm cell motility and function. Br J Pharmacol 2019; 176:4521-4536. [PMID: 31368510 PMCID: PMC6932944 DOI: 10.1111/bph.14814] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Asthenozoospermia is a leading cause of male infertility, but development of pharmacological agents to improve sperm motility is hindered by the lack of effective screening platforms and knowledge of suitable molecular targets. We have demonstrated that a high-throughput screening (HTS) strategy and established in vitro tests can identify and characterise compounds that improve sperm motility. Here, we applied HTS to identify new compounds from a novel small molecule library that increase intracellular calcium ([Ca2+ ]i ), promote human sperm cell motility, and systematically determine the mechanism of action. EXPERIMENTAL APPROACH A validated HTS fluorometric [Ca2+ ]i assay was used to screen an in-house library of compounds. Trequinsin hydrochloride (a PDE3 inhibitor) was selected for detailed molecular (plate reader assays, electrophysiology, and cyclic nucleotide measurement) and functional (motility and acrosome reaction) testing in sperm from healthy volunteer donors and, where possible, patients. KEY RESULTS Fluorometric assays identified trequinsin as an efficacious agonist of [Ca2+ ]i , although less potent than progesterone. Functionally, trequinsin significantly increased cell hyperactivation and penetration into viscous medium in all donor sperm samples and cell hyperactivation in 22/25 (88%) patient sperm samples. Trequinsin-induced [Ca2+ ]i responses were cross-desensitised consistently by PGE1 but not progesterone. Whole-cell patch clamp electrophysiology confirmed that trequinsin activated CatSper and partly inhibited potassium channel activity. Trequinsin also increased intracellular cGMP. CONCLUSION AND IMPLICATIONS Trequinsin exhibits a novel pharmacological profile in human sperm and may be a suitable lead compound for the development of new agents to improve patient sperm function and fertilisation potential.
Collapse
Affiliation(s)
- Rachel C McBrinn
- School of Science, Engineering and Technology, Abertay University, Dundee, UK
| | - Joanna Fraser
- School of Science, Engineering and Technology, Abertay University, Dundee, UK
| | - Anthony G Hope
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - David W Gray
- Drug Discovery Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Christopher L R Barratt
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sarah J Martins da Silva
- Reproductive and Developmental Biology, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Sean G Brown
- School of Science, Engineering and Technology, Abertay University, Dundee, UK
| |
Collapse
|
50
|
Brown SG, Publicover SJ, Barratt CLR, Martins da Silva SJ. Human sperm ion channel (dys)function: implications for fertilization. Hum Reprod Update 2019; 25:758-776. [PMID: 31665287 PMCID: PMC6847974 DOI: 10.1093/humupd/dmz032] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 07/14/2019] [Accepted: 08/13/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Intensive research on sperm ion channels has identified members of several ion channel families in both mouse and human sperm. Gene knock-out studies have unequivocally demonstrated the importance of the calcium and potassium conductances in sperm for fertility. In both species, the calcium current is carried by the highly complex cation channel of sperm (CatSper). In mouse sperm, the potassium current has been conclusively shown to be carried by a channel consisting of the pore forming subunit SLO3 and auxiliary subunit leucine-rich repeat-containing 52 (LRRC52). However, in human sperm it is controversial whether the pore forming subunit of the channel is composed of SLO3 and/or SLO1. Deciphering the role of the proton-specific Hv1 channel is more challenging as it is only expressed in human sperm. However, definitive evidence for a role in, and importance for, human fertility can only be determined through studies using clinical samples. OBJECTIVE AND RATIONALE This review aims to provide insight into the role of sperm ion channels in human fertilization as evidenced from recent studies of sperm from infertile men. We also summarize the key discoveries from mouse ion channel knock-out models and contrast the properties of mouse and human CatSper and potassium currents. We detail the evidence for, and consequences of, defective ion channels in human sperm and discuss hypotheses to explain how defects arise and why affected sperm have impaired fertilization potential. SEARCH METHODS Relevant studies were identified using PubMed and were limited to ion channels that have been characterized in mouse and human sperm. Additional notable examples from other species are included as appropriate. OUTCOMES There are now well-documented fundamental differences between the properties of CatSper and potassium channel currents in mouse and human sperm. However, in both species, sperm lacking either channel cannot fertilize in vivo and CatSper-null sperm also fail to fertilize at IVF. Sperm-lacking potassium currents are capable of fertilizing at IVF, albeit at a much lower rate. However, additional complex and heterogeneous ion channel dysfunction has been reported in sperm from infertile men, the causes of which are unknown. Similarly, the nature of the functional impairment of affected patient sperm remains elusive. There are no reports of studies of Hv1 in human sperm from infertile men. WIDER IMPLICATIONS Recent studies using sperm from infertile men have given new insight and critical evidence supporting the supposition that calcium and potassium conductances are essential for human fertility. However, it should be highlighted that many fundamental questions remain regarding the nature of molecular and functional defects in sperm with dysfunctional ion channels. The development and application of advanced technologies remains a necessity to progress basic and clinical research in this area, with the aim of providing effective screening methodologies to identify and develop treatments for affected men in order to help prevent failed ART cycles. Conversely, development of drugs that block calcium and/or potassium conductances in sperm is a plausible strategy for producing sperm-specific contraceptives.
Collapse
Affiliation(s)
- Sean G Brown
- School of Applied Sciences, Abertay University, Dundee DD11HG, UK
| | | | - Christopher L R Barratt
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| | - Sarah J Martins da Silva
- Systems Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
| |
Collapse
|