1
|
Mohamed AA, Wang PY, Bartel DP, Vos SM. The structural basis for RNA slicing by human Argonaute2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.19.608718. [PMID: 39229170 PMCID: PMC11370433 DOI: 10.1101/2024.08.19.608718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Argonaute (AGO) proteins associate with guide RNAs to form complexes that slice transcripts that pair to the guide. This slicing drives post-transcriptional gene-silencing pathways that are essential for many eukaryotes and the basis for new clinical therapies. Despite this importance, structural information on eukaryotic AGOs in a fully paired, slicing-competent conformation-hypothesized to be intrinsically unstable-has been lacking. Here we present the cryogenic-electron microscopy structure of a human AGO-guide complex bound to a fully paired target, revealing structural rearrangements that enable this conformation. Critically, the N domain of AGO rotates to allow the RNA full access to the central channel and forms contacts that license rapid slicing. Moreover, a conserved loop in the PIWI domain secures the RNA near the active site to enhance slicing rate and specificity. These results explain how AGO accommodates targets possessing the pairing specificity typically observed in biological and clinical slicing substrates.
Collapse
Affiliation(s)
- Abdallah A. Mohamed
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA, 02139, USA
- These authors contributed equally
| | - Peter Y. Wang
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA, 02139, USA
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
- These authors contributed equally
| | - David P. Bartel
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA, 02139, USA
- Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
| | - Seychelle M. Vos
- Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA, 02139, USA
- Howard Hughes Medical Institute, Cambridge, MA, 02142, USA
- Lead contact
| |
Collapse
|
2
|
Finocchio G, Koopal B, Potocnik A, Heijstek C, Westphal AH, Jinek M, Swarts DC. Target DNA-dependent activation mechanism of the prokaryotic immune system SPARTA. Nucleic Acids Res 2024; 52:2012-2029. [PMID: 38224450 PMCID: PMC10899771 DOI: 10.1093/nar/gkad1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/16/2024] Open
Abstract
In both prokaryotic and eukaryotic innate immune systems, TIR domains function as NADases that degrade the key metabolite NAD+ or generate signaling molecules. Catalytic activation of TIR domains requires oligomerization, but how this is achieved varies in distinct immune systems. In the Short prokaryotic Argonaute (pAgo)/TIR-APAZ (SPARTA) immune system, TIR NADase activity is triggered upon guide RNA-mediated recognition of invading DNA by an unknown mechanism. Here, we describe cryo-EM structures of SPARTA in the inactive monomeric and target DNA-activated tetrameric states. The monomeric SPARTA structure reveals that in the absence of target DNA, a C-terminal tail of TIR-APAZ occupies the nucleic acid binding cleft formed by the pAgo and TIR-APAZ subunits, inhibiting SPARTA activation. In the active tetrameric SPARTA complex, guide RNA-mediated target DNA binding displaces the C-terminal tail and induces conformational changes in pAgo that facilitate SPARTA-SPARTA dimerization. Concurrent release and rotation of one TIR domain allow it to form a composite NADase catalytic site with the other TIR domain within the dimer, and generate a self-complementary interface that mediates cooperative tetramerization. Combined, this study provides critical insights into the structural architecture of SPARTA and the molecular mechanism underlying target DNA-dependent oligomerization and catalytic activation.
Collapse
Affiliation(s)
- Giada Finocchio
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Balwina Koopal
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Ana Potocnik
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Clint Heijstek
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Adrie H Westphal
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Martin Jinek
- Department of Biochemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| |
Collapse
|
3
|
Maeda F, Adachi S, Natsume T. Non-destructive and efficient method for obtaining miRNA information in cells by artificial extracellular vesicles. Sci Rep 2023; 13:22231. [PMID: 38097629 PMCID: PMC10721859 DOI: 10.1038/s41598-023-48995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/02/2023] [Indexed: 12/17/2023] Open
Abstract
In recent years, research has explored the use of microRNA (miRNA) analysis in extracellular vesicles (EVs) as a minimally invasive strategy for the diagnosis and prediction of diseases. This is because miRNAs in EVs partly reflect the miRNA information and cellular status of the origin cells. However, not all intracellular miRNAs are internalized into EVs. Therefore, the miRNA information obtained from EVs is limited. To get more miRNA information, we aimed to produce artificial EVs (aEVs) encapsulating Argonaute 2 (Ago2) miRNA-binding protein, which actively incorporate miRNAs within themselves. In this study, we utilized the protein EPN-01, which is capable of releasing aEVs encapsulating it and associated proteins. This system enables us to obtain more miRNA species and increase each miRNA's yield in the EV fraction. Furthermore, we examined whether miRNAs in the EV fraction using our system reflect the cellular condition. In cells treated with CoCl2, a reagent for inducing a hypoxia-mimic state, we detected a change in the level of hypoxia marker miR-210 with aEVs. To the best of our knowledge, this is the first report on a method to increase the yield and variety of endogenous miRNAs in the EV fraction. This approach leads to improved accuracy of cell status assessment using miRNAs in EVs.
Collapse
Affiliation(s)
- Fumio Maeda
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aoumi, Koto-ku, Tokyo, 135-0064, Japan.
| | - Shungo Adachi
- Department of Proteomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan.
| | - Tohru Natsume
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, 2-3-26 Aoumi, Koto-ku, Tokyo, 135-0064, Japan
| |
Collapse
|
4
|
Wu Z, Yu L, Shi W, Ma J. Argonaute protein-based nucleic acid detection technology. Front Microbiol 2023; 14:1255716. [PMID: 37744931 PMCID: PMC10515653 DOI: 10.3389/fmicb.2023.1255716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
It is vital to diagnose pathogens quickly and effectively in the research and treatment of disease. Argonaute (Ago) proteins are recently discovered nucleases with nucleic acid shearing activity that exhibit specific recognition properties beyond CRISPR-Cas nucleases, which are highly researched but restricted PAM sequence recognition. Therefore, research on Ago protein-mediated nucleic acid detection technology has attracted significant attention from researchers in recent years. Using Ago proteins in developing nucleic acid detection platforms can enable efficient, convenient, and rapid nucleic acid detection and pathogen diagnosis, which is of great importance for human life and health and technological development. In this article, we introduce the structure and function of Argonaute proteins and discuss the latest advances in their use in nucleic acid detection.
Collapse
Affiliation(s)
- Zhiyun Wu
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Li Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Institute of Stem Cell, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Weifeng Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Jinhong Ma
- Department of Clinical Laboratory, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| |
Collapse
|
5
|
Wang Y, Wang Y, Chen Y, Yan Q, Lin A. Research progress in mitochondrial gene editing technology. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023; 52:460-472. [PMID: 37643980 PMCID: PMC10495247 DOI: 10.3724/zdxbyxb-2023-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
Mitochondrial DNA (mtDNA) mutations result in a variety of genetic diseases. As an emerging therapeutic method, mtDNA editing technology recognizes targets more based on the protein and less on the nucleic acid. Although the protein recognition type mtDNA editing technology represented by zinc finger nuclease technology, transcription activator like effector nuclease technology and base editing technology has made some progress, the disadvantages of complex recognition sequence design hinder further popularization. Gene editing based on nucleic acid recognition by the CRISPR system shows superiority due to the simple structure, easy design and modification. However, the lack of effective means to deliver nucleic acids into mitochondria limits application in the field of mtDNA editing. With the advances in the study of endogenous and exogenous import pathways and the deepening understanding of DNA repair mechanisms, growing evidence shows the feasibility of nucleic acid delivery and the broad application prospects of nucleic acid recognition type mtDNA editing technology. Based on the classification of recognition elements, this article summarizes the current principles and development of mitochondrial gene editing technology, and discusses its application prospects.
Collapse
Affiliation(s)
- Yichen Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
| | - Ying Wang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Yu Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Cancer Center, Hangzhou 310058, China
| | - Qingfeng Yan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
- Zhejiang University Cancer Center, Hangzhou 310058, China.
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Center for RNA Medicine, International Institutes of Medicine, Zhejiang University, Jinhua 322000, Zhejiang Province, China.
| |
Collapse
|
6
|
Koopal B, Mutte SK, Swarts DC. A long look at short prokaryotic Argonautes. Trends Cell Biol 2022:S0962-8924(22)00239-2. [DOI: 10.1016/j.tcb.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022]
|
7
|
Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2. Nat Commun 2022; 13:3825. [PMID: 35780145 PMCID: PMC9250533 DOI: 10.1038/s41467-022-31480-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Human Argonaute 2 (hAgo2) constitutes the functional core of the RNA interference pathway. Guide RNAs direct hAgo2 to target mRNAs, which ultimately leads to hAgo2-mediated mRNA degradation or translational inhibition. Here, we combine site-specifically labeled hAgo2 with time-resolved single-molecule FRET measurements to monitor conformational states and dynamics of hAgo2 and hAgo2-RNA complexes in solution that remained elusive so far. We observe dynamic anchoring and release of the guide’s 3’-end from the PAZ domain during the stepwise target loading process even with a fully complementary target. We find differences in structure and dynamic behavior between partially and fully paired canonical hAgo2-guide/target complexes and the miRNA processing complex formed by hAgo2 and pre-miRNA451. Furthermore, we detect a hitherto unknown conformation of hAgo2-guide/target complexes that poises them for target-directed miRNA degradation. Taken together, our results show how the conformational flexibility of hAgo2-RNA complexes determines function and the fate of the ribonucleoprotein particle. Single-molecule FRET measurements provide detailed insights into the conformational states and dynamics of human Argonaute 2 that are required for its function at the core of the eukaryotic RNA silencing pathway.
Collapse
|
8
|
Ma X, Zhao F, Zhou B. The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2022; 23:ijms23084124. [PMID: 35456943 PMCID: PMC9032736 DOI: 10.3390/ijms23084124] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Plant growth and development are greatly affected by the environment. Many genes have been identified to be involved in regulating plant development and adaption of abiotic stress. Apart from protein-coding genes, more and more evidence indicates that non-coding RNAs (ncRNAs), including small RNAs and long ncRNAs (lncRNAs), can target plant developmental and stress-responsive mRNAs, regulatory genes, DNA regulatory regions, and proteins to regulate the transcription of various genes at the transcriptional, posttranscriptional, and epigenetic level. Currently, the molecular regulatory mechanisms of sRNAs and lncRNAs controlling plant development and abiotic response are being deeply explored. In this review, we summarize the recent research progress of small RNAs and lncRNAs in plants, focusing on the signal factors, expression characters, targets functions, and interplay network of ncRNAs and their targets in plant development and abiotic stress responses. The complex molecular regulatory pathways among small RNAs, lncRNAs, and targets in plants are also discussed. Understanding molecular mechanisms and functional implications of ncRNAs in various abiotic stress responses and development will benefit us in regard to the use of ncRNAs as potential character-determining factors in molecular plant breeding.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fei Zhao
- Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|
9
|
Kropocheva EV, Lisitskaya LA, Agapov AA, Musabirov AA, Kulbachinskiy AV, Esyunina DM. Prokaryotic Argonaute Proteins as a Tool for Biotechnology. Mol Biol 2022; 56:854-873. [PMID: 36060308 PMCID: PMC9427165 DOI: 10.1134/s0026893322060103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/20/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
Programmable nucleases are the most important tool for manipulating the genes and genomes of both prokaryotes and eukaryotes. Since the end of the 20th century, many approaches were developed for specific modification of the genome. The review briefly considers the advantages and disadvantages of the main genetic editors known to date. The main attention is paid to programmable nucleases from the family of prokaryotic Argonaute proteins. Argonaute proteins can recognize and cleave DNA sequences using small complementary guide molecules and play an important role in protecting prokaryotic cells from invading DNA. Argonaute proteins have already found applications in biotechnology for targeted cleavage and detection of nucleic acids and can potentially be used for genome editing.
Collapse
Affiliation(s)
- E. V. Kropocheva
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - L. A. Lisitskaya
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. A. Agapov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. A. Musabirov
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - A. V. Kulbachinskiy
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| | - D. M. Esyunina
- Institute of Molecular Genetics, National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia
| |
Collapse
|
10
|
Lee KZ, Mechikoff MA, Kikla A, Liu A, Pandolfi P, Fitzgerald K, Gimble FS, Solomon KV. NgAgo possesses guided DNA nicking activity. Nucleic Acids Res 2021; 49:9926-9937. [PMID: 34478558 PMCID: PMC8464042 DOI: 10.1093/nar/gkab757] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3' end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli. Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports.
Collapse
Affiliation(s)
- Kok Zhi Lee
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Michael A Mechikoff
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Archana Kikla
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Arren Liu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Paula Pandolfi
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Kevin Fitzgerald
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Frederick S Gimble
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47906, USA.,Department of Biochemistry, Purdue University, West Lafayette, IN, 47906, USA
| | - Kevin V Solomon
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA.,Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
11
|
Jin S, Zhan J, Zhou Y. Argonaute proteins: structures and their endonuclease activity. Mol Biol Rep 2021; 48:4837-4849. [PMID: 34117606 DOI: 10.1007/s11033-021-06476-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/05/2021] [Indexed: 01/12/2023]
Abstract
Argonaute proteins are highly conserved and widely expressed in almost all organisms. They not only play a critical role in the biogenesis of small RNAs but also defend against invading nucleic acids via small RNA or DNA-mediated gene silencing pathways. One functional mechanism of Argonaute proteins is acting as a nucleic-acid-guided endonuclease, which can cleave targets complementary to DNA or RNA guides. The cleavage then leads to translational silencing directly or indirectly by recruiting additional silencing proteins. Here, we summarized the latest research progress in structural and biological studies of Argonaute proteins and pointed out their potential applications in the field of gene editing.
Collapse
Affiliation(s)
- Shujuan Jin
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Jian Zhan
- Institute for Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Yaoqi Zhou
- Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
- Institute for Glycomics, Griffith University, Brisbane, QLD, Australia.
- Institute for Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, 518055, China.
| |
Collapse
|
12
|
Shi W, Roderick G, Zhang GS. Mechanisms of Novel Host Use by Bactrocera tau (Tephritid: Diptera) Revealed by RNA Transcriptomes. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5930888. [PMID: 33078842 PMCID: PMC7751176 DOI: 10.1093/jisesa/ieaa102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Use of novel plant hosts can facilitate the establishment and range expansion of herbivorous invasive species. However, the inherent mechanisms of novel host use are still unclear in many herbivorous species. Here, we examine mechanisms of novel host use in the invasive tephritid fruit fly Bactrocera tau (Walker)(Diptera: Tephritidae) by documenting changes in the RNA transcriptomes associated with a novel host. RNA transcripts of B. tau were obtained with high-throughput sequencing from samples continuously reared on two traditional Cucurbitaceae hosts and a novel host (banana). We found transcriptome variation was strongly associated with feeding on banana. Moreover, B. tau feeding on banana contained more differentially expressed genes (DEGs) and more annotated categories of DEGs in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database with 1,595 DEGs and 21 major annotated pathways. The annotated categories of DEGs in individuals reared on banana differed with from those individuals feeding on other hosts and were enriched in oxidative phosphorylation, citrate cycle pathway, and four other carbohydrate pathways. For B. tau feeding on banana, the predominant numbers of upregulated genes in the mitochondrial NADH (56 on average) and a relatively higher numbers of upregulated genes (13 on average) were found in oxidative phosphorylation and the TCA pathway, respectively. Changes in RNA transcriptomes associated with novel host use, especially for genes related to energy and carbohydrate metabolism, help to explain how B. tau can be successful in use of novel hosts and may be useful in developing novel strategies for control of tephritid flies.
Collapse
Affiliation(s)
- Wei Shi
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - George Roderick
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, CA
| | - Gen-Song Zhang
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| |
Collapse
|
13
|
Sibisi P, Venter E. Wheat Argonaute 5 Functions in Aphid-Plant Interaction. FRONTIERS IN PLANT SCIENCE 2020; 11:641. [PMID: 32528501 PMCID: PMC7266077 DOI: 10.3389/fpls.2020.00641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/24/2020] [Indexed: 05/21/2023]
Abstract
Aphids feeding on plants experience similar responses to pathogens due to the prolonged and intimate contact with the plant. Diuraphis noxia is an economically important aphid pest on wheat that exhibits such an interaction. Studies on small RNA (sRNA) that regulate genes imparting resistance to wheat against D. noxia have predicted an Argonaute 5 (TaAGO5) gene as possible role player in the resistance response. Functional characterization revealed that TaAGO5 is crucial in regulating the response to infestation by D. noxia. Knockdown of TaAGO5 by 22% in D. noxia resistant wheat resulted in a completely susceptible phenotype. The fecundity and stress levels of D. noxia feeding on these silenced plants were similar to aphids feeding on the susceptible controls. Thus, TaAGO5 is crucial in the defense response by wheat plants during aphid feeding and this is similar to Nicotiana benthaminia plants experiencing arthropod herbivory. Additionally, TaAGO5 was differentially regulated by the Barley mosaic virus (BMV) used in the functional characterization. This provides evidence that TaAGO5 could play a role during virus infection of wheat. The role of AGO5 proteins in plant responses to arthropod herbivory and virus infection is known for dicotyledonous plants. Here, we present data that indicate that this role of TaAGO5 is conserved in wheat and possibly for monocotyledonous plants. These observations extend our knowledge on the roles of AGO proteins in plant resistance.
Collapse
|
14
|
Sala L, Chandrasekhar S, Vidigal JA. AGO unchained: Canonical and non-canonical roles of Argonaute proteins in mammals. Front Biosci (Landmark Ed) 2020; 25:1-42. [PMID: 31585876 DOI: 10.2741/4793] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Argonaute (AGO) proteins play key roles in animal physiology by binding to small RNAs and regulating the expression of their targets. In mammals, they do so through two distinct pathways: the miRNA pathway represses genes through a multiprotein complex that promotes both decay and translational repression; the siRNA pathway represses transcripts through direct Ago2-mediated cleavage. Here, we review our current knowledge of mechanistic details and physiological requirements of both these pathways and briefly discuss their implications to human disease.
Collapse
Affiliation(s)
- Laura Sala
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Srividya Chandrasekhar
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joana A Vidigal
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, Bethesda, MD 20892, USA,
| |
Collapse
|
15
|
Sheu-Gruttadauria J, Pawlica P, Klum SM, Wang S, Yario TA, Schirle Oakdale NT, Steitz JA, MacRae IJ. Structural Basis for Target-Directed MicroRNA Degradation. Mol Cell 2019; 75:1243-1255.e7. [PMID: 31353209 PMCID: PMC6754277 DOI: 10.1016/j.molcel.2019.06.019] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/08/2019] [Accepted: 06/14/2019] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) broadly regulate gene expression through association with Argonaute (Ago), which also protects miRNAs from degradation. However, miRNA stability is known to vary and is regulated by poorly understood mechanisms. A major emerging process, termed target-directed miRNA degradation (TDMD), employs specialized target RNAs to selectively bind to miRNAs and induce their decay. Here, we report structures of human Ago2 (hAgo2) bound to miRNAs and TDMD-inducing targets. miRNA and target form a bipartite duplex with an unpaired flexible linker. hAgo2 cannot physically accommodate the RNA, causing the duplex to bend at the linker and display the miRNA 3' end for enzymatic attack. Altering 3' end display by changing linker flexibility, changing 3' end complementarity, or mutationally inducing 3' end release impacts TDMD efficiency, leading to production of distinct 3'-miRNA isoforms in cells. Our results uncover the mechanism driving TDMD and reveal 3' end display as a key determinant regulating miRNA activity via 3' remodeling and/or degradation.
Collapse
Affiliation(s)
- Jessica Sheu-Gruttadauria
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Paulina Pawlica
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Shannon M Klum
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Sonia Wang
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Therese A Yario
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA
| | - Nicole T Schirle Oakdale
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06536, USA.
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Chung BYW, Valli A, Deery MJ, Navarro FJ, Brown K, Hnatova S, Howard J, Molnar A, Baulcombe DC. Distinct roles of Argonaute in the green alga Chlamydomonas reveal evolutionary conserved mode of miRNA-mediated gene expression. Sci Rep 2019; 9:11091. [PMID: 31366981 PMCID: PMC6668577 DOI: 10.1038/s41598-019-47415-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
The unicellular green alga Chlamydomonas reinhardtii is evolutionarily divergent from higher plants, but has a fully functional silencing machinery including microRNA (miRNA)-mediated translation repression and mRNA turnover. However, distinct from the metazoan machinery, repression of gene expression is primarily associated with target sites within coding sequences instead of 3′UTRs. This feature indicates that the miRNA-Argonaute (AGO) machinery is ancient and the primary function is for post transcriptional gene repression and intermediate between the mechanisms in the rest of the plant and animal kingdoms. Here, we characterize AGO2 and 3 in Chlamydomonas, and show that cytoplasmically enriched Cr-AGO3 is responsible for endogenous miRNA-mediated gene repression. Under steady state, mid-log phase conditions, Cr-AGO3 binds predominantly miR-C89, which we previously identified as the predominant miRNA with effects on both translation repression and mRNA turnover. In contrast, the paralogue Cr-AGO2 is nuclear enriched and exclusively binds to 21-nt siRNAs. Further analysis of the highly similar Cr-AGO2 and Cr-AGO 3 sequences (90% amino acid identity) revealed a glycine-arginine rich N-terminal extension of ~100 amino acids that, given previous work on unicellular protists, may associate AGO with the translation machinery. Phylogenetic analysis revealed that this glycine-arginine rich N-terminal extension is present outside the animal kingdom and is highly conserved, consistent with our previous proposal that miRNA-mediated CDS-targeting operates in this green alga.
Collapse
Affiliation(s)
- Betty Y-W Chung
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom. .,Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom.
| | - Adrian Valli
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom.,Department of Plant Molecular Genetics, Spanish National Centre for Biotechnology, Madrid, 28049, Spain
| | - Michael J Deery
- Cambridge System Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Francisco J Navarro
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, United Kingdom
| | - Silvia Hnatova
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom
| | - Julie Howard
- Cambridge System Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Attila Molnar
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, United Kingdom.
| |
Collapse
|
17
|
Lisitskaya L, Aravin AA, Kulbachinskiy A. DNA interference and beyond: structure and functions of prokaryotic Argonaute proteins. Nat Commun 2018; 9:5165. [PMID: 30514832 PMCID: PMC6279821 DOI: 10.1038/s41467-018-07449-7] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 10/26/2018] [Indexed: 12/14/2022] Open
Abstract
Recognition and repression of RNA targets by Argonaute proteins guided by small RNAs is the essence of RNA interference in eukaryotes. Argonaute proteins with diverse structures are also found in many bacterial and archaeal genomes. Recent studies revealed that, similarly to their eukaryotic counterparts, prokaryotic Argonautes (pAgos) may function in cell defense against foreign genetic elements but, in contrast, preferably act on DNA targets. Many crucial details of the pAgo action, and the roles of a plethora of pAgos with non-conventional architecture remain unknown. Here, we review available structural and biochemical data on pAgos and discuss their possible functions in host defense and other genetic processes in prokaryotic cells. In this review, Aravin and colleagues examine bacterial and archaeal Argonaute proteins, discuss their diverse architectures and their possible roles in host defense, proposing additional functions for Argonaute proteins in prokaryotic cells.
Collapse
Affiliation(s)
- Lidiya Lisitskaya
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia
| | - Alexei A Aravin
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia. .,Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| |
Collapse
|
18
|
Dayeh DM, Kruithoff BC, Nakanishi K. Structural and functional analyses reveal the contributions of the C- and N-lobes of Argonaute protein to selectivity of RNA target cleavage. J Biol Chem 2018. [PMID: 29519815 DOI: 10.1074/jbc.ra117.001051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Some gene transcripts have cellular functions as regulatory noncoding RNAs. For example, ∼23-nucleotide (nt)-long siRNAs are loaded into Argonaute proteins. The resultant ribonucleoprotein assembly, the RNA-induced silencing complex (RISC), cleaves RNAs that are extensively base-paired with the loaded siRNA. To date, base complementarity is recognized as the major determinant of specific target cleavage (or slicing), but little is known about how Argonaute inspects base pairing before cleavage. A hallmark of Argonaute proteins is their bilobal structure, but despite the significance of this structure for curtailing slicing activity against mismatched targets, the molecular mechanism remains elusive. Here, our structural and functional studies of a bilobed yeast Argonaute protein and its isolated catalytic C-terminal lobe (C-lobe) revealed that the C-lobe alone retains almost all properties of bilobed Argonaute: siRNA-duplex loading, passenger cleavage/ejection, and siRNA-dependent RNA cleavage. A 2.1 Å-resolution crystal structure revealed that the catalytic C-lobe mirrors the bilobed Argonaute in terms of guide-RNA recognition and that all requirements for transitioning to the catalytically active conformation reside in the C-lobe. Nevertheless, we found that in the absence of the N-terminal lobe (N-lobe), target RNAs are scanned for complementarity only at positions 5-14 on a 23-nt guide RNA before endonucleolytic cleavage, thereby allowing for some off-target cleavage. Of note, acquisition of an N-lobe expanded the range of the guide RNA strand used for inspecting target complementarity to positions 2-23. These findings offer clues to the evolution of the bilobal structure of catalytically active Argonaute proteins.
Collapse
Affiliation(s)
- Daniel M Dayeh
- From the Center for RNA Biology.,the Department of Chemistry and Biochemistry, and.,the Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210
| | - Bradley C Kruithoff
- From the Center for RNA Biology.,the Department of Chemistry and Biochemistry, and
| | - Kotaro Nakanishi
- From the Center for RNA Biology, .,the Department of Chemistry and Biochemistry, and.,the Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
19
|
Nucleic Acid-Binding Assay of Argonaute Protein Using Fluorescence Polarization. Methods Mol Biol 2017. [PMID: 29030845 DOI: 10.1007/978-1-4939-7339-2_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Nucleic acid binding by the Argonaute protein is an important trigger step in the Argonaute-dependent gene silencing system. We established an in vitro method to detect the nucleic acid binding activity of the Argonaute protein by fluorescence polarization. In this chapter, we will describe the expression and purification of the prokaryotic (Rhodobacter sphaeroides) Argonaute protein, and the nucleic acid-binding analysis using a Fluorescence Polarization System (Beacon 2000).
Collapse
|
20
|
Yamane D, Selitsky SR, Shimakami T, Li Y, Zhou M, Honda M, Sethupathy P, Lemon SM. Differential hepatitis C virus RNA target site selection and host factor activities of naturally occurring miR-122 3΄ variants. Nucleic Acids Res 2017; 45:4743-4755. [PMID: 28082397 PMCID: PMC5416874 DOI: 10.1093/nar/gkw1332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 12/22/2016] [Indexed: 01/07/2023] Open
Abstract
In addition to suppressing cellular gene expression, certain miRNAs potently facilitate replication of specific positive-strand RNA viruses. miR-122, a pro-viral hepatitis C virus (HCV) host factor, binds and recruits Ago2 to tandem sites (S1 and S2) near the 5΄ end of the HCV genome, stabilizing it and promoting its synthesis. HCV target site selection follows canonical miRNA rules, but how non-templated 3΄ miR-122 modifications impact this unconventional miRNA action is unknown. High-throughput sequencing revealed that a 22 nt miRNA with 3΄G (‘22–3΄G’) comprised <63% of total miR-122 in human liver, whereas other variants (23–3΄A, 23–3΄U, 21–3΄U) represented 11–17%. All loaded equivalently into Ago2, and when tested individually functioned comparably in suppressing gene expression. In contrast, 23–3΄A and 23–3΄U were more active than 22–3΄G in stabilizing HCV RNA and promoting its replication, whereas 21–3΄U was almost completely inactive. This lack of 21–3΄U HCV host factor activity correlated with reduced recruitment of Ago2 to the HCV S1 site. Additional experiments demonstrated strong preference for guanosine at nt 22 of miR-122. Our findings reveal the importance of non-templated 3΄ miR-122 modifications to its HCV host factor activity, and identify unexpected differences in miRNA requirements for host gene suppression versus RNA virus replication.
Collapse
Affiliation(s)
- Daisuke Yamane
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Departments of Medicine and Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - Sara R Selitsky
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Bioinformatics and Computational Biology Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tetsuro Shimakami
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa 920-8641, Japan
| | - You Li
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Departments of Medicine and Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| | - Mi Zhou
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Bioinformatics and Computational Biology Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Masao Honda
- Department of Gastroenterology, Kanazawa University Graduate School of Medicine, Kanazawa, Ishikawa 920-8641, Japan
| | - Praveen Sethupathy
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Bioinformatics and Computational Biology Curriculum, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Genetics, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stanley M Lemon
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Departments of Medicine and Microbiology & Immunology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7292, USA
| |
Collapse
|
21
|
Abstract
Comparative sequence analysis is widely used for the reconstruction of phylogeny and for understanding the evolutionary history of gene families. Here, we describe the methodologies to reconstruct the phylogenetic and evolutionary history of a gene family across genomes with a focus on the ARGONAUTE (AGO) family of proteins in plants. The method described here may easily be adapted for studying molecular evolution of a wide variety of gene families. We enlist methods as well as parameters for the collection of molecular data (nucleic acids and peptides), preparation of datasets, and selection of evolutionary models and various methods for the phylogenetic and evolutionary analysis, such as maximum likelihood and Bayesian inference.
Collapse
Affiliation(s)
- Ravi K Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia, West Bengal, 741246, India
| | - Shree P Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Nadia, West Bengal, 741246, India.
| |
Collapse
|
22
|
Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain. Proc Natl Acad Sci U S A 2016; 113:12697-12702. [PMID: 27791114 DOI: 10.1073/pnas.1609287113] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs), long thought to be restricted to germline, have recently been discovered in neurons of Aplysia, with a role in the epigenetic regulation of gene expression underlying long-term memory. We here ask whether piwi/piRNAs are also expressed and have functional roles in the mammalian brain. Large-scale RNA sequencing and subsequent analysis of protein expression revealed the presence in brain of several piRNA biogenesis factors including a mouse piwi (Mili), as well as small RNAs, albeit at low levels, resembling conserved piRNAs in mouse testes [primarily LINE1 (long interspersed nuclear element1) retrotransposon-derived]. Despite the seeming low expression of these putative piRNAs, single-base pair CpG methylation analyses across the genome of Mili/piRNA-deficient (Mili-/- ) mice demonstrate that brain genomic DNA is preferentially hypomethylated within intergenic areas and LINE1 promoter areas of the genome. Furthermore, Mili mutant mice exhibit behavioral deficits such as hyperactivity and reduced anxiety. These results suggest that putative piRNAs exist in mammalian brain, and similar to the role of piRNAs in testes, they may be involved in the silencing of retrotransposons, which in brain have critical roles in contributing to genomic heterogeneity underlying adaptation, stress response, and brain pathology. We also describe the presence of another class of small RNAs in the brain, with features of endogenous siRNAs, which may have taken over the role of invertebrate piRNAs in their capacity to target both transposons, as well as protein-coding genes. Thus, RNA interference through gene and retrotransposon silencing previously encountered in Aplysia may also have potential roles in the mammalian brain.
Collapse
|
23
|
Miyoshi T, Ito K, Murakami R, Uchiumi T. Structural basis for the recognition of guide RNA and target DNA heteroduplex by Argonaute. Nat Commun 2016; 7:11846. [PMID: 27325485 PMCID: PMC4919518 DOI: 10.1038/ncomms11846] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/05/2016] [Indexed: 01/05/2023] Open
Abstract
Argonaute proteins are key players in the gene silencing mechanisms mediated by small nucleic acids in all domains of life from bacteria to eukaryotes. However, little is known about the Argonaute protein that recognizes guide RNA/target DNA. Here, we determine the 2 Å crystal structure of Rhodobacter sphaeroides Argonaute (RsAgo) in a complex with 18-nucleotide guide RNA and its complementary target DNA. The heteroduplex maintains Watson-Crick base-pairing even in the 3'-region of the guide RNA between the N-terminal and PIWI domains, suggesting a recognition mode by RsAgo for stable interaction with the target strand. In addition, the MID/PIWI interface of RsAgo has a system that specifically recognizes the 5' base-U of the guide RNA, and the duplex-recognition loop of the PAZ domain is important for the DNA silencing activity. Furthermore, we show that Argonaute discriminates the nucleic acid type (RNA/DNA) by recognition of the duplex structure of the seed region.
Collapse
Affiliation(s)
- Tomohiro Miyoshi
- Center for Transdisciplinary Research, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Kosuke Ito
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Ryo Murakami
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| | - Toshio Uchiumi
- Department of Biology, Faculty of Science, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
24
|
Ghosh U, Adhya S. Non-equivalent Roles of AGO1 and AGO2 in mRNA Turnover and Translation of Cyclin D1 mRNA. J Biol Chem 2016; 291:7119-27. [PMID: 26846850 DOI: 10.1074/jbc.m115.696377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 11/06/2022] Open
Abstract
Mammalian Argonaute proteins (AGO1-4), in combination with microRNAs (miRs), bind to target mRNAs to initiate degradation and/or translation repression, but the relationships between these two effects is unclear. Although the AGO isoforms ofDrosophilaand plants perform different functions, mammalian AGO isoforms are considered to be functionally degenerate in terms of miR loading and downstream silencing effects. However, we found that, in quiescent (G0) rat myoblasts transiting to the G1 phase, cyclin D1 (Ccnd1) mRNA was associated with two functionally distinct AGO-miR complexes. While AGO1-miR-1 down-regulated the mRNA level, AGO2-let-7 delayed the timing of translation. Knockdown (KD) of AGO2, or antisense-mediated depletion of Let-7, caused Ccnd1 translation to occur earlier, but had no significant effect on mRNA abundance. Conversely, down-regulation of either AGO1 or miR-1, resulted in elevated Ccnd1 mRNA levels at early times, but failed to affect the timing of translation. These results show that the two miR-mediated silencing effects, viz. mRNA decay and translation repression, are independent processes induced by individual AGO isoforms in association with specific miRs.
Collapse
Affiliation(s)
- Utpalendu Ghosh
- From the Genetic Engineering Laboratory, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Calcutta 700032, India
| | - Samit Adhya
- From the Genetic Engineering Laboratory, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Calcutta 700032, India
| |
Collapse
|
25
|
Conformational Dynamics of Ago-Mediated Silencing Processes. Int J Mol Sci 2015; 16:14769-85. [PMID: 26140373 PMCID: PMC4519871 DOI: 10.3390/ijms160714769] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/10/2015] [Accepted: 06/17/2015] [Indexed: 12/15/2022] Open
Abstract
Argonaute (Ago) proteins are key players of nucleic acid-based interference mechanisms. Their domains and structural organization are widely conserved in all three domains of life. However, different Ago proteins display various substrate preferences. While some Ago proteins are able to use several substrates, others are limited to a single one. Thereby, they were demonstrated to act specifically on their preferred substrates. Here, we discuss mechanisms of Ago-mediated silencing in relation to structural and biochemical insights. The combination of biochemical and structural information enables detailed analyses of the complex dynamic interplay between Ago proteins and their substrates. Especially, transient binding data allow precise investigations of structural transitions taking place upon Ago-mediated guide and target binding.
Collapse
|
26
|
Singh RK, Gase K, Baldwin IT, Pandey SP. Molecular evolution and diversification of the Argonaute family of proteins in plants. BMC PLANT BIOLOGY 2015; 15:23. [PMID: 25626325 PMCID: PMC4318128 DOI: 10.1186/s12870-014-0364-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 12/02/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND Argonaute (AGO) proteins form the core of the RNA-induced silencing complex, a central component of the smRNA machinery. Although reported from several plant species, little is known about their evolution. Moreover, these genes have not yet been cloned from the ecological model plant, Nicotiana attenuata, in which the smRNA machinery is known to mediate important ecological traits. RESULTS Here, we not only identify 11 AGOs in N. attenuata, we further annotate 133 genes in 17 plant species, previously not annotated in the Phytozome database, to increase the number of plant AGOs to 263 genes from 37 plant species. We report the phylogenetic classification, expansion, and diversification of AGOs in the plant kingdom, which resulted in the following hypothesis about their evolutionary history: an ancestral AGO underwent duplication events after the divergence of unicellular green algae, giving rise to four major classes with subsequent gains/losses during the radiation of higher plants, resulting in the large number of extant AGOs. Class-specific signatures in the RNA-binding and catalytic domains, which may contribute to the functional diversity of plant AGOs, as well as context-dependent changes in sequence and domain architecture that may have consequences for gene function were found. CONCLUSIONS Together, the results demonstrate that the evolution of AGOs has been a dynamic process producing the signatures of functional diversification in the smRNA pathways of higher plants.
Collapse
Affiliation(s)
- Ravi K Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, 741246, West Bengal, India.
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany.
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, 07745, Germany.
| | - Shree P Pandey
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Campus, Mohanpur, Nadia, 741246, West Bengal, India.
| |
Collapse
|
27
|
Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J. The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 2014; 21:743-53. [PMID: 25192263 DOI: 10.1038/nsmb.2879] [Citation(s) in RCA: 342] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/30/2014] [Indexed: 02/07/2023]
Abstract
Argonaute proteins are conserved throughout all domains of life. Recently characterized prokaryotic Argonaute proteins (pAgos) participate in host defense by DNA interference, whereas eukaryotic Argonaute proteins (eAgos) control a wide range of processes by RNA interference. Here we review molecular mechanisms of guide and target binding by Argonaute proteins, and describe how the conformational changes induced by target binding lead to target cleavage. On the basis of structural comparisons and phylogenetic analyses of pAgos and eAgos, we reconstruct the evolutionary journey of the Argonaute proteins through the three domains of life and discuss how different structural features of pAgos and eAgos relate to their distinct physiological roles.
Collapse
Affiliation(s)
- Daan C Swarts
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| | - Kira Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yanli Wang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kotaro Nakanishi
- Department of Chemistry and Biochemistry, Ohio State University, Columbus, Ohio, USA
| | | | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Dinshaw J Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - John van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
28
|
Nakanishi K, Ascano M, Gogakos T, Ishibe-Murakami S, Serganov AA, Briskin D, Morozov P, Tuschl T, Patel DJ. Eukaryote-specific insertion elements control human ARGONAUTE slicer activity. Cell Rep 2014; 3:1893-900. [PMID: 23809764 DOI: 10.1016/j.celrep.2013.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022] Open
Abstract
We have solved the crystal structure of human ARGONAUTE1 (hAGO1) bound to endogenous 5'-phosphorylated guide RNAs. To identify changes that evolutionarily rendered hAGO1 inactive, we compared our structure with guide-RNA-containing and cleavage-active hAGO2. Aside from mutation of a catalytic tetrad residue, proline residues at positions 670 and 675 in hAGO1 introduce a kink in the cS7 loop, forming a convex surface within the hAGO1 nucleic-acid-binding channel near the inactive catalytic site. We predicted that even upon restoration of the catalytic tetrad, hAGO1-cS7 sterically hinders the placement of a fully paired guide-target RNA duplex into the endonuclease active site. Consistent with this hypothesis, reconstitution of the catalytic tetrad with R805H led to low-level hAGO1 cleavage activity, whereas combining R805H with cS7 substitutions P670S and P675Q substantially augmented hAGO1 activity. Evolutionary amino acid changes to hAGO1 were readily reversible, suggesting that loading of guide RNA and pairing of seed-based miRNA and target RNA constrain its sequence drift.
Collapse
Affiliation(s)
- Kotaro Nakanishi
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Role of the Trypanosoma brucei HEN1 family methyltransferase in small interfering RNA modification. EUKARYOTIC CELL 2013; 13:77-86. [PMID: 24186950 DOI: 10.1128/ec.00233-13] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Parasitic protozoa of the flagellate order Kinetoplastida represent one of the deepest branches of the eukaryotic tree. Among this group of organisms, the mechanism of RNA interference (RNAi) has been investigated in Trypanosoma brucei and to a lesser degree in Leishmania (Viannia) spp. The pathway is triggered by long double-stranded RNA (dsRNA) and in T. brucei requires a set of five core genes, including a single Argonaute (AGO) protein, T. brucei AGO1 (TbAGO1). The five genes are conserved in Leishmania (Viannia) spp. but are absent in other major kinetoplastid species, such as Trypanosoma cruzi and Leishmania major. In T. brucei small interfering RNAs (siRNAs) are methylated at the 3' end, whereas Leishmania (Viannia) sp. siRNAs are not. Here we report that T. brucei HEN1, an ortholog of the metazoan HEN1 2'-O-methyltransferases, is required for methylation of siRNAs. Loss of TbHEN1 causes a reduction in the length of siRNAs. The shorter siRNAs in hen1(-/-) parasites are single stranded and associated with TbAGO1, and a subset carry a nontemplated uridine at the 3' end. These findings support a model wherein TbHEN1 methylates siRNA 3' ends after they are loaded into TbAGO1 and this methylation protects siRNAs from uridylation and 3' trimming. Moreover, expression of TbHEN1 in Leishmania (Viannia) panamensis did not result in siRNA 3' end methylation, further emphasizing mechanistic differences in the trypanosome and Leishmania RNAi mechanisms.
Collapse
|
30
|
Abstract
Multiple Argonaute proteins are implicated in gene silencing by RNA interference (RNAi), but only one is known to be an endonuclease that can cleave target mRNAs. Chimeric Argonaute proteins now reveal an unexpected mechanism by which mutations distal to the catalytic center can unmask intrinsic catalytic activity, results hinting at structurally mediated regulation.
Collapse
|
31
|
Molecular dissection of human Argonaute proteins by DNA shuffling. Nat Struct Mol Biol 2013; 20:818-26. [PMID: 23748378 DOI: 10.1038/nsmb.2607] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 05/13/2013] [Indexed: 01/01/2023]
Abstract
A paramount task in RNA interference research is to decipher the complex biology of cellular effectors, exemplified in humans by four pleiotropic Argonaute proteins (Ago1-Ago4). Here, we exploited DNA family shuffling, a molecular evolution technology, to generate chimeric Ago protein libraries for dissection of intricate phenotypes independently of prior structural knowledge. Through shuffling of human Ago2 and Ago3, we discovered two N-terminal motifs that govern RNA cleavage in concert with the PIWI domain. Structural modeling predicts an impact on protein rigidity and/or RNA-PIWI alignment, suggesting new mechanistic explanations for Ago3's slicing deficiency. Characterization of hybrids including Ago1 and Ago4 solidifies that slicing requires the juxtaposition and combined action of multiple disseminated modules. We also present a Gateway library of codon-optimized chimeras of human Ago1-Ago4 and molecular evolution analysis software as resources for future investigations into RNA interference sequence-structure-function relationships.
Collapse
|
32
|
Hauptmann J, Dueck A, Harlander S, Pfaff J, Merkl R, Meister G. Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nat Struct Mol Biol 2013; 20:814-7. [PMID: 23665583 DOI: 10.1038/nsmb.2577] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 04/04/2013] [Indexed: 01/15/2023]
Abstract
Argonaute proteins interact with small RNAs that guide them to complementary target RNAs, thus leading to inhibition of gene expression. Some but not all Argonaute proteins are endonucleases and can cleave the complementary target RNA. Here, we have mutated inactive human Ago1 and Ago3 and generated catalytic Argonaute proteins. We find that two short sequence elements at the N terminus are important for activity. In addition, PIWI-domain mutations in Ago1 may misarrange the catalytic center. Our work helps in understanding of the structural requirements that make an Argonaute protein an active endonucleolytic enzyme.
Collapse
Affiliation(s)
- Judith Hauptmann
- Biochemistry Center Regensburg, Laboratory for RNA Biology, University of Regensburg, Germany
| | | | | | | | | | | |
Collapse
|