1
|
Shi Y, Sheng P, Zhao Y, Wang X, Xu X, Sun S. Based on Bioinformatics to Explore the Mechanism of "Tangzhiqing" Decoction Alleviating Type 2 Diabetes-associated Cognitive Dysfunction in Mice by Regulating Hippocampal Neuron Apoptosis and Autophagy. Comb Chem High Throughput Screen 2024; 27:2565-2582. [PMID: 37990900 DOI: 10.2174/0113862073255849231030114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/24/2023] [Accepted: 09/14/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND Diabetic cognitive dysfunction (DCD) is emerging as a chronic complication of diabetes that is gaining increasing international recognition. The traditional Chinese medicine (TCM) formulation, Tangzhiqing decoction (TZQ), has shown the capacity to modulate the memory function of mice with DCD by ameliorating insulin resistance. Nevertheless, the precise mechanism underlying the effects of TZQ remains elusive. METHODS The chemical constituents of TZQ were screened using TCMSP databases, and DCDassociated disease targets were retrieved from various databases. Subsequently, core targets were identified through network topology analysis. The core targets underwent analysis using Gene Ontology (GO) functional annotations and enrichment in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. Models were established through high-fat and high-glucose diet feeding along with intraperitoneal injection of streptozotocin (STZ). TZQ and metformin were administered at varying doses over 8 weeks. The Morris water maze was employed to evaluate the cognitive capabilities of each rat group, while indicators of oxidative stress and insulin were assessed in mice. Neuronal apoptosis in distinct groups of mice's hippocampi was detected using TdT-mediated dUTP Nick-End Labeling (TUNEL), and western blot (WB) analysis was conducted to assess the expression of apoptosis- and autophagy-related proteins, including Bax, Bcl2, Caspase3, Caspase8, Beclin1, ATG7, LC3, p62, and Lamp2, within the hippocampus. RESULTS TZQ exhibited the capacity to modulate neuronal autophagy, ameliorate endoplasmic reticulum stress, apoptosis, inflammation, and oxidative stress, as well as to regulate synaptic plasticity and conduction. TZQ mitigated cognitive dysfunction in mice, while also regulating hippocampal inflammation and apoptosis. Additionally, it influenced the protein expression of autophagy-related factors such as Bax, Bcl2, Caspase3, Caspase8, Beclin1, ATG7, and LC3. Notably, this modulation significantly reduced neuronal apoptosis in the hippocampus and curbed excessive autophagy. CONCLUSION TZQ demonstrated a substantial reduction in neuronal apoptosis within the hippocampus and effectively suppressed excessive autophagy.
Collapse
Affiliation(s)
- Yinli Shi
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Pei Sheng
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Yun Zhao
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Xu Wang
- The First Clinical Medical College of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Xiru Xu
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| | - Sifan Sun
- Affiliated Hospital of Nanjing University of Traditional Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
2
|
Physiological Overview of the Potential Link between the UPS and Ca2+ Signaling. Antioxidants (Basel) 2022; 11:antiox11050997. [PMID: 35624861 PMCID: PMC9137615 DOI: 10.3390/antiox11050997] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 02/04/2023] Open
Abstract
The ubiquitin–proteasome system (UPS) is the main proteolytic pathway by which damaged target proteins are degraded after ubiquitination and the recruit of ubiquitinated proteins, thus regulating diverse physiological functions and the maintenance in various tissues and cells. Ca2+ signaling is raised by oxidative or ER stress. Although the basic function of the UPS has been extensively elucidated and has been continued to define its mechanism, the precise relationship between the UPS and Ca2+ signaling remains unclear. In the present review, we describe the relationship between the UPS and Ca2+ signaling, including Ca2+-associated proteins, to understand the end point of oxidative stress. The UPS modulates Ca2+ signaling via the degradation of Ca2+-related proteins, including Ca2+ channels and transporters. Conversely, the modulation of UPS is driven by increases in the intracellular Ca2+ concentration. The multifaceted relationship between the UPS and Ca2+ plays critical roles in different tissue systems. Thus, we highlight the potential crosstalk between the UPS and Ca2+ signaling by providing an overview of the UPS in different organ systems and illuminating the relationship between the UPS and autophagy.
Collapse
|
3
|
Xu F, Wu M, Lu X, Zhang H, Shi L, Xi Y, Zhou H, Wang J, Miao L, Gong DW, Cui W. Effect of Fc-Elabela-21 on renal ischemia/reperfusion injury in mice: Mediation of anti-apoptotic effect via Akt phosphorylation. Peptides 2022; 147:170682. [PMID: 34742787 DOI: 10.1016/j.peptides.2021.170682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Renal ischemia/reperfusion injury (IRI) is the most common cause of acute kidney injury (AKI), and patients with AKI have a high rate of mortality. Apelin is a therapeutic candidate for treatment of IRI and Elabela (ELA) is a recently discovered hormone that also activates the apelin receptor (APJ). We examined the use of ELA as a preventive treatment for IRI using in vitro and in vivo models. METHODS Male mice were subjected to renal IRI, with or without administration of a stabilized form of ELA (Fc-ELA-21) for 4 days. Renal tubular lesions were measured using H&E staining, reactive oxygen species (ROS) were measured using a dihydroethidium stain assay, and renal cell apoptosis was measured using the TUNEL assay and flow cytometry. Immortalized human proximal tubular epithelial (HK-2) cells were pretreated with or without LY294002 and/or ELA-32, maintained at normoxic or hypoxic conditions, and then returned to normal culture conditions to mimic IRI. Cell apoptosis was determined using the TUNEL assay and cell proliferation was determined using the MTT assay. The levels of Akt, p-Akt, ERK1/2, p- ERK1/2, Bcl-2, Bax, caspase-3 and cleaved caspase-3 were measured using western blotting. RESULTS Fc-ELA-21 administration reduced renal tissue damage, ROS production, and apoptosis in mice that had renal IRI. ELA-32 reduced HK-2 cell apoptosis and restored the proliferation of cells subjected to IRI. Akt phosphorylation had a role in the anti-apoptotic effect of ELA. CONCLUSION This study of in vitro and in vivo models of IRI indicated that the preventive and anti-apoptotic effects of ELA were mediated via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Feng Xu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China; Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Man Wu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Xuehong Lu
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Hong Zhang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Lin Shi
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Yue Xi
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Huifen Zhou
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Junhong Wang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Lining Miao
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China
| | - Da-Wei Gong
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine at Baltimore, United States
| | - Wenpeng Cui
- Department of Nephrology, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun 130041, China.
| |
Collapse
|
4
|
Du L, Xie Y, Zheng K, Wang N, Gao M, Yu T, Cao L, Shao Q, Zou Y, Xia W, Fang Q, Zhao B, Guo D, Peng X, Pan JA. Oxidative stress transforms 3CLpro into an insoluble and more active form to promote SARS-CoV-2 replication. Redox Biol 2021; 48:102199. [PMID: 34847508 PMCID: PMC8616692 DOI: 10.1016/j.redox.2021.102199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 01/01/2023] Open
Abstract
3CLpro is a key proteinase for SARS-CoV-2 replication and serves as an important target for antiviral drug development. However, how its activity is regulated intracellularly is still obscure. In this study, we developed a 3CLpro protease activity reporter system to examine the impact of various factors, including nutrient supplements, ions, pHs, or oxidative stress inducers, on 3CLpro protease activity. We found that oxidative stress could increase the overall activity of 3CLpro. Not altering the expression, oxidative stress decreased the solubility of 3CLpro in the lysis buffer containing 1% Triton-X-100. The Triton-X-100-insoluble 3CLpro was correlated with aggregates' formation and responsible for the increased enzymatic activity. The disulfide bonds formed between Cys85 sites of 3CLpro protomers account for the insolubility and the aggregation of 3CLpro. Besides being regulated by oxidative stress, 3CLpro impaired the cellular antioxidant capacity by regulating the cleavage of GPx1 at its N-terminus. This cleavage could further elevate the 3CLpro-proximate oxidative activity, favor aggregation and activation of 3CLpro, and thus lead to a positive feedback loop. In summary, we reported that oxidative stress transforms 3CLpro into a detergent-insoluble form that is more enzymatically active, leading to increased viral replication/transcription. Our study provided mechanistic evidence that suggests the therapeutic potential of antioxidants in the clinical treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Liubing Du
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Yanchun Xie
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Kai Zheng
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Niu Wang
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Mingcheng Gao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Ting Yu
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Liu Cao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - QianQian Shao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangming Science City, Shenzhen, 518107, China
| | - Yong Zou
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wei Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qianglin Fang
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangming Science City, Shenzhen, 518107, China
| | - Bo Zhao
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Deyin Guo
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China
| | - Xiaoxue Peng
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China.
| | - Ji-An Pan
- The Center for Infection and Immunity Study and Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
5
|
Zhu F, Li X, Tang X, Jiang J, Han Y, Li Y, Ma C, Liu Z, He Y. Neferine promotes the apoptosis of HNSCC through the accumulation of p62/SQSTM1 caused by autophagic flux inhibition. Int J Mol Med 2021; 48:124. [PMID: 33982791 PMCID: PMC8128420 DOI: 10.3892/ijmm.2021.4957] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/02/2021] [Indexed: 12/30/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC), one of the most common malignancies worldwide, often has a poor prognosis due to the associated metastasis and chemoresistance. Hence, the development of more effective chemotherapeutics is critical. Neferine, a bisbenzylisoquinoline alkaloid isolated from the seed embryo of Nelumbo nucifera (common name: Lotus), exerts antitumor effects by regulating apoptosis and autophagy pathways, making it a potential therapeutic option for HNSCC. In our study, it was revealed that neferine inhibited the growth and induced the apoptosis of HNSCC cells both in vitro and in vivo. Furthermore, the results revealed that neferine activated the ASK1/JNK pathway by increasing reactive oxygen species production, resulting in the subsequent induction of apoptosis and the regulation of canonical autophagy in HNSCC cells. Moreover, a novel pro‑apoptotic mechanism was described for neferine via the activation of caspase‑8 following the accumulation of p62, which was caused by autophagic flux inhibition. These findings provided insights into the mechanisms responsible for the anticancer effect of neferine, specifically highlighting the crosstalk that occured between apoptosis and autophagy, which was mediated by p62 in HNSCC. Hence, the neferine‑induced inhibition of autophagic flux may serve as the basis for a potential adjuvant therapy for HNSCC.
Collapse
Affiliation(s)
- Fengshuo Zhu
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Xiaoguang Li
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Xiao Tang
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Junjian Jiang
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Yu Han
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Yinuo Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Chunyue Ma
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Zhonglong Liu
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| | - Yue He
- Department of Oral Maxillofacial‑Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Disease, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
6
|
Sun H, Zong H, Wu G. 2‑Hydroxypropyl‑β‑cyclodextrin blocks autophagy flux and triggers caspase‑8‑mediated apoptotic cascades in HepG2 cells. Mol Med Rep 2020; 22:1901-1909. [PMID: 32705246 PMCID: PMC7413020 DOI: 10.3892/mmr.2020.11282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 04/15/2020] [Indexed: 01/07/2023] Open
Abstract
The cyclodextrin derivative, 2‑Hydroxypropyl-β‑cyclodextrin (HPβCD), from the cyclodextrin family is widely used as a drug carrier and offers promising strategies for treating neurodegenerative diseases and atherosclerosis regression. However, its side effects are not fully understood. Therefore, the aim of the present study was to investigate the possible adverse effects of relatively high concentrations of HPβCD on hepatocytes. It was found that a high dose (20 mM) of HPβCD treatment significantly inhibited the AKT/mTOR pathway and disrupted infusion of autophagosomes and lysosomes, which rapidly led to massive autophagosome accumulation in HepG2 cells. The autophagosomal membrane serves as a platform for caspase‑8 oligomerization, which is considered as the key step for its self‑activation. Using flow cytometry and TUNEL assay, increased apoptosis of HepG2 cells treated with a high dose HPβCD (20 mM) for 48 h was observed. In addition, western blotting results demonstrated that the expression of cleaved‑caspase‑8 was positively associated with microtubule‑associated protein 1 light chain 3 BII expression, which is an indicator of autophagosome level in the cytoplasm. Therefore, the present study provided novel evidence that HPβCD might be a potential risk contributing to the pathophysiological process of hepatic diseases, especially in an autophagy‑deficient state.
Collapse
Affiliation(s)
- Haidong Sun
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Huajie Zong
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China,Correspondence to: Dr Huajie Zong or Professor Gang Wu, Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, P.R. China, E-mail: , E-mail:
| | - Gang Wu
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, P.R. China,Correspondence to: Dr Huajie Zong or Professor Gang Wu, Department of General Surgery, Huashan Hospital, Fudan University, 12 Wulumuqi Road, Shanghai 200040, P.R. China, E-mail: , E-mail:
| |
Collapse
|
7
|
Chu CW, Ko HJ, Chou CH, Cheng TS, Cheng HW, Liang YH, Lai YL, Lin CY, Wang C, Loh JK, Cheng JT, Chiou SJ, Su CL, Huang CYF, Hong YR. Thioridazine Enhances P62-Mediated Autophagy and Apoptosis Through Wnt/β-Catenin Signaling Pathway in Glioma Cells. Int J Mol Sci 2019; 20:ijms20030473. [PMID: 30678307 PMCID: PMC6386927 DOI: 10.3390/ijms20030473] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/18/2019] [Indexed: 12/12/2022] Open
Abstract
Thioridazine (THD) is a common phenothiazine antipsychotic drug reported to suppress growth in several types of cancer cells. We previously showed that THD acts as an antiglioblastoma and anticancer stem-like cell agent. However, the signaling pathway underlying autophagy and apoptosis induction remains unclear. THD treatment significantly induced autophagy with upregulated AMPK activity and engendered cell death with increased sub-G1 in glioblastoma multiform (GBM) cell lines. Notably, through whole gene expression screening with THD treatment, frizzled (Fzd) proteins, a family of G-protein-coupled receptors, were found, suggesting the participation of Wnt/β-catenin signaling. After THD treatment, Fzd-1 and GSK3β-S9 phosphorylation (inactivated form) was reduced to promote β-catenin degradation, which attenuated P62 inhibition. The autophagy marker LC3-II markedly increased when P62 was released from β-catenin inhibition. Additionally, the P62-dependent caspase-8 activation that induced P53-independent apoptosis was confirmed by inhibiting T-cell factor/β-catenin and autophagy flux. Moreover, treatment with THD combined with temozolomide (TMZ) engendered increased LC3-II expression and caspase-3 activity, indicating promising drug synergism. In conclusion, THD induces autophagy in GBM cells by not only upregulating AMPK activity, but also enhancing P62-mediated autophagy and apoptosis through Wnt/β-catenin signaling. Therefore, THD is a potential alternative therapeutic agent for drug repositioning in GBM.
Collapse
Affiliation(s)
- Cheng-Wei Chu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-W.C.); (H.-J.K.); (C.-H.C.); (Y.-L.L.); (C.-Y.L.); (J.-K.L.); (S.-J.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 801, Taiwan
| | - Huey-Jiun Ko
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-W.C.); (H.-J.K.); (C.-H.C.); (Y.-L.L.); (C.-Y.L.); (J.-K.L.); (S.-J.C.)
| | - Chia-Hua Chou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-W.C.); (H.-J.K.); (C.-H.C.); (Y.-L.L.); (C.-Y.L.); (J.-K.L.); (S.-J.C.)
| | - Tai-Shan Cheng
- Department of Biotechnology and Laboratory Science in Medicine, Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan; (T.-S.C.); (H.-W.C.); (Y.-H.L.)
| | - Hui-Wen Cheng
- Department of Biotechnology and Laboratory Science in Medicine, Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan; (T.-S.C.); (H.-W.C.); (Y.-H.L.)
| | - Yu-Hsin Liang
- Department of Biotechnology and Laboratory Science in Medicine, Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan; (T.-S.C.); (H.-W.C.); (Y.-H.L.)
| | - Yun-Ling Lai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-W.C.); (H.-J.K.); (C.-H.C.); (Y.-L.L.); (C.-Y.L.); (J.-K.L.); (S.-J.C.)
| | - Chen-Yen Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-W.C.); (H.-J.K.); (C.-H.C.); (Y.-L.L.); (C.-Y.L.); (J.-K.L.); (S.-J.C.)
| | - Chihuei Wang
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Joon-Khim Loh
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-W.C.); (H.-J.K.); (C.-H.C.); (Y.-L.L.); (C.-Y.L.); (J.-K.L.); (S.-J.C.)
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Jiin-Tsuey Cheng
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
| | - Shean-Jaw Chiou
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-W.C.); (H.-J.K.); (C.-H.C.); (Y.-L.L.); (C.-Y.L.); (J.-K.L.); (S.-J.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Biochemistry & Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chun-Li Su
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan;
| | - Chi-Ying F. Huang
- Department of Biotechnology and Laboratory Science in Medicine, Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan; (T.-S.C.); (H.-W.C.); (Y.-H.L.)
- Department of Biochemistry & Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (C.-Y.F.H.); (Y.-R.H.)
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (C.-W.C.); (H.-J.K.); (C.-H.C.); (Y.-L.L.); (C.-Y.L.); (J.-K.L.); (S.-J.C.)
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan;
- Department of Biochemistry & Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (C.-Y.F.H.); (Y.-R.H.)
| |
Collapse
|
8
|
Bíliková P, Švandová E, Veselá B, Doubek J, Poliard A, Matalová E. Coupling Activation of Pro-Apoptotic Caspases With Autophagy in the
Meckel´s Cartilage. Physiol Res 2018; 68:135-140. [DOI: 10.33549/physiolres.933947] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mammalian Meckel´s cartilage is a temporary structure associated with mandible development. Notably, its elimination is not executed by apoptosis, and autophagy was suggested as the major mechanism. Simultaneous reports point to pro-apoptotic caspases as novel participants in autophagic pathways in general. The aim of this research was to find out whether activation of pro-apoptotic caspases (-2, -3, -6, -7, -8 and -9) was associated with autophagy of the Meckel´s cartilage chondrocytes. Active caspases were examined in serial histological sections of mouse mandible using immunodetection and were correlated with incidence of autophagy based on Beclin-1 expression. Caspase-2 and caspase-8 were found in Beclin-1 positive regions, whereas caspase-3, -6, -7 and -9 were not present. Caspase-8 was further correlated with Fas/FasL and HIF-1alpha, potential triggers for its activation. Some Fas and FasL positivity was observed in the chondrocytes but caspase-8 activation was found also in FasL deficient cartilage. HIF-1alpha was abundantly present in the hypertrophic chondrocytes. Taken together, caspase-8 activation in the Meckel´s cartilage was demonstrated for the first time. Caspase-8 and caspase-2 were the only pro-apoptotic caspases detected in the Beclin-1 positive segment of the cartilage. Activation of caspase-8 appears FasL/Fas independent but may be switched on by HIF-1alpha.
Collapse
Affiliation(s)
- P. Bíliková
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - E. Švandová
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - B. Veselá
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - J. Doubek
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - A. Poliard
- Laboratory of Orofacial Pathologies, Imaging and Biotherapies, Université Paris Descartes, France
| | - E Matalová
- Department of Physiology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| |
Collapse
|
9
|
Abstract
Mucociliary clearance is critically important in protecting the airways from infection and from the harmful effects of smoke and various inspired substances known to induce oxidative stress and persistent inflammation. An essential feature of the clearance mechanism involves regulation of the periciliary liquid layer on the surface of the airway epithelium, which is necessary for normal ciliary beating and maintenance of mucus hydration. The underlying ion transport processes associated with airway surface hydration include epithelial Na+ channel-dependent Na+ absorption occurring in parallel with CFTR and Ca2+-activated Cl- channel-dependent anion secretion, which are coordinately regulated to control the depth of the periciliary liquid layer. Oxidative stress is known to cause both acute and chronic effects on airway ion transport function, and an increasing number of studies in the past few years have identified an important role for autophagy as part of the physiological response to the damaging effects of oxidation. In this review, recent studies addressing the influence of oxidative stress and autophagy on airway ion transport pathways, along with results showing the potential of autophagy modulators in restoring the function of ion channels involved in transepithelial electrolyte transport necessary for effective mucociliary clearance, are presented.
Collapse
Affiliation(s)
- Scott M O'Grady
- Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota , St. Paul, Minnesota
| |
Collapse
|
10
|
Sodium Ferulate Attenuates Lidocaine-Induced Corneal Endothelial Impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:4967318. [PMID: 30116483 PMCID: PMC6079406 DOI: 10.1155/2018/4967318] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/03/2018] [Indexed: 11/23/2022]
Abstract
The introduction of intracameral anaesthesia by injection of lidocaine has become popular in cataract surgery for its inherent potency, rapid onset, tissue penetration, and efficiency. However, intracameral lidocaine causes corneal thickening, opacification, and corneal endothelial cell loss. Herein, we investigated the effects of lidocaine combined with sodium ferulate, an antioxidant with antiapoptotic and anti-inflammatory properties, on lidocaine-induced damage of corneal endothelia with in vitro experiment of morphological changes and cell viability of cultured human corneal endothelial cells and in vivo investigation of corneal endothelial cell density and central corneal thickness of cat eyes. Our finding indicates that sodium ferulate from 25 to 200 mg/L significantly reduced 2 g/L lidocaine-induced toxicity to human corneal endothelial cells, and 50 mg/L sodium ferulate recovered the damaged human corneal endothelial cells to normal growth status. Furthermore, 100 mg/L sodium ferulate significantly inhibited lidocaine-induced corneal endothelial cell loss and corneal thickening in cat eyes. In conclusion, sodium ferulate protects human corneal endothelial cells from lidocaine-induced cytotoxicity and attenuates corneal endothelial cell loss and central corneal thickening of cat eyes after intracameral injection with lidocaine. It is likely that the antioxidant effect of sodium ferulate reduces the cytotoxic and inflammatory corneal reaction during intracameral anaesthesia.
Collapse
|
11
|
Pesakhov S, Nachliely M, Barvish Z, Aqaqe N, Schwartzman B, Voronov E, Sharoni Y, Studzinski GP, Fishman D, Danilenko M. Cancer-selective cytotoxic Ca2+ overload in acute myeloid leukemia cells and attenuation of disease progression in mice by synergistically acting polyphenols curcumin and carnosic acid. Oncotarget 2017; 7:31847-61. [PMID: 26870993 PMCID: PMC5077981 DOI: 10.18632/oncotarget.7240] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/19/2016] [Indexed: 12/20/2022] Open
Abstract
Acute myeloid leukemia (AML) is an aggressive hematologic malignancy characterized by extremely heterogeneous molecular and biologic abnormalities that hamper the development of effective targeted treatment modalities. While AML cells are highly sensitive to cytotoxic Ca2+ overload, the feasibility of Ca2+- targeted therapy of this disease remains unclear. Here, we show that apoptotic response of AML cells to the synergistically acting polyphenols curcumin (CUR) and carnosic acid (CA), combined at low, non-cytotoxic doses of each compound was mediated solely by disruption of cellular Ca2+ homeostasis. Specifically, activation of caspase cascade in CUR+CA-treated AML cells resulted from sustained elevation of cytosolic Ca2+ (Ca2+cyt) and was not preceded by endoplasmic reticulum stress or mitochondrial damage. The CUR+CA-induced Ca2+cyt rise did not involve excessive influx of extracellular Ca2+ but, rather, occurred due to massive Ca2+ release from intracellular stores concomitant with inhibition of Ca2+cyt extrusion through the plasma membrane. Notably, the CUR+CA combination did not alter Ca2+ homeostasis and viability in non-neoplastic hematopoietic cells, suggesting its cancer-selective action. Most importantly, co-administration of CUR and CA to AML-bearing mice markedly attenuated disease progression in two animal models. Collectively, our results provide the mechanistic and translational basis for further characterization of this combination as a prototype of novel Ca2+-targeted pharmacological tools for the treatment of AML.
Collapse
Affiliation(s)
- Stella Pesakhov
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Matan Nachliely
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Zeev Barvish
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.,Permanent address: Blood Bank Institute, Soroka University Medical Center, Beer Sheva 85025, Israel
| | - Nasma Aqaqe
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.,Permanent address: Department of Pathology, Sackler Faculty of Medicine Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Bar Schwartzman
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Elena Voronov
- The Shraga Segal Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Yoav Sharoni
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - George P Studzinski
- Department of Pathology and Laboratory Medicine, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA
| | - Daniel Fishman
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Michael Danilenko
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
12
|
Zhou ZH, Song JW, Li W, Liu X, Cao L, Wan LM, Tan YX, Ji SP, Liang YM, Gong F. The acid-sensing ion channel, ASIC2, promotes invasion and metastasis of colorectal cancer under acidosis by activating the calcineurin/NFAT1 axis. J Exp Clin Cancer Res 2017; 36:130. [PMID: 28927426 PMCID: PMC5606037 DOI: 10.1186/s13046-017-0599-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/12/2017] [Indexed: 11/15/2022] Open
Abstract
Background The tumor acidic microenvironment, a common biochemical event in solid tumors, offers evolutional advantage for tumors cells and even enhances their aggressive phenotype. However, little is known about the molecular mechanism underlying the acidic microenvironment-induced invasion and metastasis. Methods We examined the expression of the acid-sending ion channel (ASIC) family members after acidic exposure using RT-PCR and immunofluoresence. Gene manipulation was applied to reveal the potential of ASIC2 on invasion, proliferation, colony formation of colorectal cancer (CRC). We assessed the in vivo tumor growth by subcutaneous transplantation and metastasis by spleen xenografts. Chromatin immunoprecipitation-sequencing was used to uncover the binding sites of NFAT1. Finally, we examined the expression of ASIC2 in CRC tissues using immunohistochemistry. Results Acidic exposure led to up-regulation of the acid-sensing ion channel, ASIC2, in colorectal cancer (CRC) cells. ASIC2 overexpression in CRC cell lines, SW480 and HCT116, significantly enhanced cell proliferation in vitro and in vivo, while ASIC2 knockdown had the reverse effect. Importantly, ASIC2 promoted CRC cell invasion under acidosis in vitro and liver metastasis in vivo. Mechanistically, ASIC2 activated the calcineurin/NFAT1 signaling pathway under acidosis. Inhibition of the calcineurin/NFAT pathway by cyclosporine A (CsA) profoundly attenuated ASIC2-induced invasion under acidosis. ChIP-seq assay revealed that the nuclear factor, NFAT1, binds to genes clustered in pathways involved in Rho GTPase signaling and calcium signaling. Furthermore, immunohistochemistry showed that ASIC2 expression is increased in CRC samples compared to that in adjacent tissues, and ASIC2 expression correlates with T-stage, distant metastasis, recurrence, and poor prognosis. Conclusion ASIC2 promotes metastasis of CRC cells by activating the calcineurin/NFAT1 pathway under acidosis and high expression of ASIC2 predicts poor outcomes of patients with CRC. Electronic supplementary material The online version of this article (10.1186/s13046-017-0599-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhi-Hang Zhou
- Department of Pathology, the 309th hospital of PLA, Beijing, China
| | - Jin-Wen Song
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Wen Li
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Xue Liu
- Department of Pathology, Basic Science School, Jining Medical University, Jining, Shandong, China
| | - Liu Cao
- Department of Surgery, the 15th hospital of PLA, Xinjiang, China
| | - Lu-Ming Wan
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Ying-Xia Tan
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Shou-Ping Ji
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Yu-Mei Liang
- Department of Pathology, the 309th hospital of PLA, Beijing, China.
| | - Feng Gong
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China.
| |
Collapse
|
13
|
Tsapras P, Nezis IP. Caspase involvement in autophagy. Cell Death Differ 2017; 24:1369-1379. [PMID: 28574508 DOI: 10.1038/cdd.2017.43] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 12/26/2022] Open
Abstract
Caspases are a family of cysteine proteases widely known as the principal mediators of the apoptotic cell death response, but considerably less so as the contributors to the regulation of pathways outside cellular demise. In regards to autophagy, the modulatory roles of caspases have only recently begun to be adequately described. In contrast to apoptosis, autophagy promotes cell survival by providing energy and nutrients through the lysosomal degradation of cytoplasmic constituents. Under basal conditions autophagy and apoptosis cross-regulate each other through an elaborate network of interconnections which also includes the interplay between autophagy-related proteins (ATGs) and caspases. In this review we focus on the effects of this crosstalk at the cellular level, as we aim to concentrate the main observations from research conducted so far on the fine-tuning of autophagy by caspases. Several members of this protease-family have been found to directly interact with key ATGs involved in different tiers across the autophagic cascade. Therefore, we firstly outline the core mechanism of macroautophagy in brief. In an effort to emphasize the importance of the intricate cross-regulation of ATGs and caspases, we also present examples of autophagy's contribution to apoptotic cell death during development.
Collapse
Affiliation(s)
| | - Ioannis P Nezis
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
14
|
Park S, Han S, Choi I, Kim B, Park SP, Joe EH, Suh YH. Interplay between Leucine-Rich Repeat Kinase 2 (LRRK2) and p62/SQSTM-1 in Selective Autophagy. PLoS One 2016; 11:e0163029. [PMID: 27631370 PMCID: PMC5025236 DOI: 10.1371/journal.pone.0163029] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/01/2016] [Indexed: 01/23/2023] Open
Abstract
The deposit of polyubiquitinated aggregates has been implicated in the pathophysiology of Parkinson’s disease (PD), and growing evidence indicates that selective autophagy plays a critical role in the clearance of ubiquitin-positive protein aggregates by autophagosomes. The selective autophagic receptor p62/SQSTM-1, which associates directly with both ubiquitin and LC3, transports ubiquitin conjugates to autophagosomes for degradation. Leucine-rich repeat kinase 2 (LRRK2), a PD-associated protein kinase, is tightly controlled by autophagy-lysosome degradation as well as by the ubiquitin-proteasome pathway. However, little is known about the degradation of ubiquitinated LRRK2 via selective autophagy. In the present study, we found that p62/SQSTM-1 physically interacts with LRRK2 as a selective autophagic receptor. The overexpression of p62 leads to the robust degradation of LRRK2 through the autophagy-lysosome pathway. In addition, LRRK2 indirectly regulates Ser351 and Ser403 phosphorylation of p62. Of particular interest, the interaction between phosphorylated p62 and Keap1 is reduced by LRRK2 overexpression. Therefore, we propose that the interplay between LRRK2 and p62 may contribute to the pathophysiological function and homeostasis of LRRK2 protein.
Collapse
Affiliation(s)
- Sangwook Park
- Department of Biomedical Laboratory Science, College of Health, Kyungwoon University, Gumi, 39160, South Korea
- * E-mail: (YHS); (SP)
| | - Seulki Han
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Insup Choi
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Beomsue Kim
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Seung Pyo Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
| | - Eun-Hye Joe
- Department of Pharmacology and Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Young Ho Suh
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, South Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, 03080, South Korea
- * E-mail: (YHS); (SP)
| |
Collapse
|
15
|
Li XM, Wang H, Zhu LL, Zhao RZ, Ji HL. Genes Regulating Epithelial Polarity Are Critical Suppressors of Esophageal Oncogenesis. J Cancer 2015; 6:694-700. [PMID: 26185530 PMCID: PMC4504104 DOI: 10.7150/jca.11709] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer is an aggressive disease featured by early lymphatic and hematogenous dissemination, and is the sixth leading cause of cancer-related deaths worldwide. The proper formation of apicobasal polarity is essential for normal epithelium physiology and tissue homeostasis, while loss of polarity is a hallmark of cancer development including esophageal oncogenesis. In this review, we summarized the stages of esophageal cancer development associated with the loss or deregulation of epithelial cell apicobasal polarity. Loss of epithelial apicobasal polarity exerts an indispensable role in the initiation of esophageal oncogenesis, tumor progression, and the advancement of tumors from benign to malignant. In particular, we reviewed the involvement of several critical genes, including Lkb1, claudin-4, claudin-7, Par3, Lgl1, E-cadherin, and the Scnn1 gene family. Understanding the role of apicobasal regulators may lead to new paradigms for treatment of esophageal tumors, including improvement of prognostication, early diagnosis, and individually tailored therapeutic interventions in esophageal oncology.
Collapse
Affiliation(s)
- Xiu-Min Li
- 1. Center for Cancer Research, Xinxiang Medical University, Xinxiang Henan, 453003, China
| | - Hui Wang
- 2. Ontario Cancer Institute, Campbell Family Institute for Breast Cancer Research, University of Toronto, Toronto, Ontario, M5G 2M9, Canada
| | - Li-Li Zhu
- 1. Center for Cancer Research, Xinxiang Medical University, Xinxiang Henan, 453003, China
| | - Run-Zhen Zhao
- 3. Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, USA
| | - Hong-Long Ji
- 3. Department of Cellular and Molecular Biology, University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, USA ; 4. Texas Lung Injury Institute, University of Texas Health Science Center at Tyler, Tyler, Texas, 75708, USA
| |
Collapse
|
16
|
Chen H, Wan D, Wang L, Peng A, Xiao H, Petersen RB, Liu C, Zheng L, Huang K. Apelin protects against acute renal injury by inhibiting TGF-β1. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1278-87. [PMID: 25748499 DOI: 10.1016/j.bbadis.2015.02.013] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 02/12/2015] [Accepted: 02/27/2015] [Indexed: 12/29/2022]
Abstract
Renal ischemia/reperfusion (I/R) injury is the most common cause of acute kidney injury, having a high rate of mortality and no effective therapy currently available. Apelin-13, a bioactive peptide, has been shown to inhibit the early lesions of diabetic nephropathy in several mouse models by us and others. To test whether apelin-13 protects against renal I/R induced injury, male rats were exposed to renal I/R injury with or without apelin-13 treatment for 3 days. Apelin-13 treatment markedly reduced the injury-induced tubular lesions, renal cell apoptosis, and normalized the injury induced renal dysfunction. Apelin-13 treatment inhibited the injury-induced elevation of inflammatory factors and Tgf-β1, as well as apoptosis. Apelin-13 treatment also inhibited the injury-induced elevation of histone methylation and Kmt2d, a histone methyltransferase of H3K4me2, following renal I/R injury. Furthermore, in cultured renal mesangial and tubular cells, apelin-13 suppressed the injury-induced elevation of Tgf-β1, apoptosis, H3K4me2 and Kmt2d under the in vitro hypoxia/reperfusion (H/R) conditions. Consistently, over-expression of apelin significantly inhibited H/R-induced elevation of TGF-β1, apoptosis, H3K4me2 and Kmt2d. The present study therefore suggests apelin-13 may be a therapeutic candidate for treating acute kidney injury.
Collapse
Affiliation(s)
- Hong Chen
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030; Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, China, 430074
| | - Danyang Wan
- College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Lin Wang
- College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Anlin Peng
- Wuhan the Third Hospital, Wuhan, China, 430060
| | - Hongdou Xiao
- College of Life Sciences, Wuhan University, Wuhan, China, 430072
| | - Robert B Petersen
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA, 44106; Department of Neuroscience, Case Western Reserve University, Cleveland, OH, USA, 44106; Department of Neurology, Case Western Reserve University, Cleveland, OH, USA, 44106
| | - Chengyu Liu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030; Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, China, 430074
| | - Ling Zheng
- College of Life Sciences, Wuhan University, Wuhan, China, 430072.
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, China, 430030; Centre for Biomedicine Research, Wuhan Institute of Biotechnology, Wuhan, China, 430074.
| |
Collapse
|
17
|
Mechanism of 2′,3′-dimethoxyflavanone-induced apoptosis in breast cancer stem cells: Role of ubiquitination of caspase-8 and LC3. Arch Biochem Biophys 2014; 562:92-102. [DOI: 10.1016/j.abb.2014.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 08/06/2014] [Indexed: 12/15/2022]
|
18
|
Wu H, Che X, Zheng Q, Wu A, Pan K, Shao A, Wu Q, Zhang J, Hong Y. Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. Int J Biol Sci 2014; 10:1072-83. [PMID: 25285039 PMCID: PMC4183927 DOI: 10.7150/ijbs.9719] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/20/2014] [Indexed: 12/16/2022] Open
Abstract
Autophagy and apoptosis are two important catabolic processes contributing to the maintenance of cellular and tissue homeostasis. Autophagy controls the turnover of protein aggregates and damaged organelles within cells, while apoptosis is the principal mechanism by which unwanted cells are dismantled and eliminated from organisms. Despite marked differences between these two pathways, they are highly interconnected in determining the fate of cells. Intriguingly, caspases, the primary drivers of apoptotic cell death, play a critical role in mediating the complex crosstalk between autophagy and apoptosis. Pro-apoptotic signals can converge to activate caspases to execute apoptotic cell death. In addition, activated caspases can degrade autophagy proteins (i.e., Beclin-1, Atg5, and Atg7) to shut down the autophagic response. Moreover, caspases can convert pro-autophagic proteins into pro-apoptotic proteints to trigger apoptotic cell death instead. It is clear that caspases are important in both apoptosis and autophagy, thus a detailed deciphering of the role of caspases in these two processes is still required to clarify the functional relationship between them. In this article, we provide a current overview of caspases in its interplay between autophagy and apoptosis. We emphasized that defining the role of caspases in autophagy-apoptosis crosstalk will provide a framework for more precise manipulation of these two processes during cell death.
Collapse
Affiliation(s)
- Haijian Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoru Che
- 2. Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Qiaoli Zheng
- 3. Clinical Research Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - An Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kun Pan
- 4. Department of Neurological Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Anwen Shao
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qun Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Hong
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
19
|
Abstract
This article presents a pilot study to determine the value of hyperbaric oxygenation (HBO₂) in the acute management of neonatal hypoxia (hypoxic ischemic encephalopathy) and necrotizing enterocolitis. Neonates with hypoxic-ischemic encephalopathy and NE were treated in a Sechrist monoplace chamber. Electroencephalogram, evoked potential, ophthalmic evaluation, ultrasonograph, laboratory exams, and radiographs were obtained before and after HBO₂. Treatment protocol was 2.0 atm abs/45 minutes. Preventive myringotomies were conducted in all patients. A follow-up was done at 3 and 6 months. All patients (n = 8) were ventilator-dependent and required bag-valve-mask ventilation by a neonatologist during the treatment. All showed a resolution after HBO₂. There was also a dramatic improvement (P < .05) in hemoglobin, hematocrit, total proteins, serum sodium, triglycerides, and pH. There were favorable changes in all other studies although they did not meet statistical significance. There was a marked reduction of the morbidity and mortality. There were no adverse effects on the ophthalmologic or Central Nervous System. When used promptly, HBO₂ can modify the local and systemic inflammatory response caused by intestinal inflammation or cerebral or systemic hypoxia. It helps to preserve the marginal tissue and recover the ischemic and metabolic penumbra. This pilot study suggests that HBO₂ could be a safe and effective treatment in the acute management of neonatal necrotizing enterocolitis or hypoxic ischemic encephalopathy. There is a need for a prospective, randomized, controlled, and double-blinded study to determine the real use of HBO₂ in these cases.
Collapse
|
20
|
Abstract
This article outlines the therapeutic mechanisms of hyperbaric oxygenation in acute stroke, based on information obtained from peer-reviewed medical literature. Hyperbaric oxygen is an approved treatment modality for ischemia-reperfusion injury in several conditions. It maintains the viability of the marginal tissue, reduces the mitochondrial dysfunction, metabolic penumbra, and blocks inflammatory cascades observed in acute stroke. Basic and clinical data suggest that hyperbaric oxygen could be a safe and effective treatment option in the management of acute stroke. Further work is needed to clarify its clinical utility when applied within the treatment window of "gold standard" treatments (<3-5 hours).
Collapse
|
21
|
Zhang YB, Zhao W, Zeng RX. Autophagic degradation of caspase-8 protects U87MG cells against H2O2-induced oxidative stress. Asian Pac J Cancer Prev 2014; 14:4095-9. [PMID: 23991959 DOI: 10.7314/apjcp.2013.14.7.4095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Oxidative stress induces apoptosis in many cellular systems including glioblastoma cells, with caspase-8 activation was regarded as a major contribution to H2O2-induced cell death. This study focused on the role of the autophagic protein p62 in H2O2-induced apoptosis in U87MG cells. Oxidative stress was applied with H2O2, and cell apoptosis and viability were measured with use of caspase inhibitors or autophagic mediators or siRNA p62, GFP-p62 and GFP-p62-UBA (del) transfection. We found that H2O2 -induced U87MG cell death was correlated with caspase-8. To understand the role of p62 in MG132-induced cell death, the levels of p62/SQSTM1 or autophagy in U87MG cells were modulated with biochemical or genetic methods. The results showed that the over-expression of wild type p62/SQSTM1 significantly reduced H2O2 induced cell death, but knockdown of p62 aggravated the process. In addition, inhibition of autophagy promoted p62 and active caspase-8 increasing H2O2 -induced apoptosis while induction of autophagy manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 required its C-terminus UBA domain to attenuate H2O2 cytotoxity by inhibition of caspase-8 activity. Our results indicated that p62/SQSTM1 was a potential contributor to mediate caspase-8 activation by autophagy in oxidative stress process.
Collapse
Affiliation(s)
- Yi-Bo Zhang
- Department of Pathogen Biology, School of Basic Medical Sciences, Liaoning Medical University, Jinzhou, China.
| | | | | |
Collapse
|
22
|
Wang YR, Qin S, Han R, Wu JC, Liang ZQ, Qin ZH, Wang Y. Cathepsin L plays a role in quinolinic acid-induced NF-Κb activation and excitotoxicity in rat striatal neurons. PLoS One 2013; 8:e75702. [PMID: 24073275 PMCID: PMC3779166 DOI: 10.1371/journal.pone.0075702] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 08/20/2013] [Indexed: 01/28/2023] Open
Abstract
The present study seeks to investigate the role of cathepsin L in glutamate receptor-induced transcription factor nuclear factor-kappa B (NF-κB) activation and excitotoxicity in rats striatal neurons. Stereotaxic administration of the N-methyl-d-aspartate (NMDA) receptor agonist Quinolinic acid (QA) into the unilateral striatum was used to produce the in vivo excitotoxic model. Co-administration of QA and the cathepsin L inhibitor Z-FF-FMK or 1-Naphthalenesulfonyl-IW-CHO (NaphthaCHO) was used to assess the contribution of cathepsin L to QA-induced striatal neuron death. Western blot analysis and cathepsin L activity assay were used to assess the changes in the levels of cathepsin L after QA treatment. Western blot analysis was used to assess the changes in the protein levels of inhibitor of NF-κB alpha isoform (IκB-α) and phospho-IκB alpha (p-IκBα) after QA treatment. Immunohistochemical analysis was used to detect the effects of Z-FF-FMK or NaphthaCHO on QA-induced NF-κB. Western blot analysis was used to detect the effects of Z-FF-FMK or NaphthaCHO on QA-induced IκB-α phosphorylation and degradation, changes in the levels of IKKα, p-IKKα, TP53, caspase-3, beclin1, p62, and LC3II/LC3I. The results show that QA-induced loss of striatal neurons were strongly inhibited by Z-FF-FMK or NaphthaCHO. QA-induced degradation of IκB-α, NF-κB nuclear translocation, up-regulation of NF-κB responsive gene TP53, and activation of caspase-3 was strongly inhibited by Z-FF-FMK or NaphthaCHO. QA-induced increases in beclin 1, LC3II/LC3I, and down-regulation of p62 were reduced by Z-FF-FMK or NaphthaCHO. These results suggest that cathepsin L is involved in glutamate receptor-induced NF-κB activation. Cathepsin L inhibitors have neuroprotective effects by inhibiting glutamate receptor-induced IκB-α degradation and NF-κB activation.
Collapse
Affiliation(s)
- Yan-Ru Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Wen Jing Road, Suzhou, China
| | - Shu Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Wen Jing Road, Suzhou, China
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Wen Jing Road, Suzhou, China
| | - Jun-Chao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Wen Jing Road, Suzhou, China
| | - Zhong-Qin Liang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Wen Jing Road, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Wen Jing Road, Suzhou, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases (SZS0703), Soochow University School of Pharmaceutical Science, Wen Jing Road, Suzhou, China
- E-mail:
| |
Collapse
|
23
|
Lanju X, Jing X, Shichang L, Zhuo Y. Induction of apoptosis by antimycin A in differentiated PC12 cell line. J Appl Toxicol 2013; 34:651-7. [PMID: 23868660 DOI: 10.1002/jat.2890] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 03/26/2013] [Accepted: 03/26/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Xu Lanju
- College of Medicine; Tianjin 300060 China
- CSPC The Institute of Pharmaceutical Research Shijiazhuang; Hebei 050051 China
| | - Xu Jing
- College of Medicine; Tianjin 300060 China
| | - Liu Shichang
- College of Medicine; Tianjin 300060 China
- Tianjin Medical University Cancer Institute and Hospital; Tianjin 300070 China
| | - Yang Zhuo
- College of Medicine; Tianjin 300060 China
| |
Collapse
|
24
|
Zhang YB, Gong JL, Xing TY, Zheng SP, Ding W. Autophagy protein p62/SQSTM1 is involved in HAMLET-induced cell death by modulating apotosis in U87MG cells. Cell Death Dis 2013; 4:e550. [PMID: 23519119 PMCID: PMC3615731 DOI: 10.1038/cddis.2013.77] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
HAMLET is a complex of oleic acids and decalcified α-lactalbumin that was discovered to selectively kill tumor cells both in vitro and in vivo. Autophagy is an important cellular process involved in drug-induced cell death of glioma cells. We treated U87MG human glioma cells with HAMLET and found that the cell viability was significantly decreased and accompanied with the activation of autophagy. Interestingly, we observed an increase in p62/SQSTM1, an important substrate of autophagosome enzymes, at the protein level upon HAMLET treatment for short periods. To better understand the functionality of autophagy and p62/SQSTM1 in HAMLET-induced cell death, we modulated the level of autophagy or p62/SQSTM1 with biochemical or genetic methods. The results showed that inhibition of autophagy aggravated HAMLET-induced cell death, whereas activation of authophagy attenuated this process. Meanwhile, we found that overexpression of wild-type p62/SQSTM1 was able to activate caspase-8, and then promote HAMLET-induced apoptosis, whereas knockdown of p62/SQSTM1 manifested the opposite effect. We further demonstrated that the function of p62/SQSTM1 following HAMLET treatment required its C-terminus UBA domain. Our results indicated that in addition to being a marker of autophagy activation in HAMLET-treated glioma cells, p62/SQSTM1 could also function as an important mediator for the activation of caspase-8-dependent cell death.
Collapse
Affiliation(s)
- Y-B Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|