1
|
Selicharová I, Fabre B, Soledad Garre Hernández M, Lubos M, Pícha J, Voburka Z, Mitrová K, Jiráček J. Combinatorial Libraries of Bipodal Binders of the Insulin Receptor. ChemMedChem 2024; 19:e202400145. [PMID: 38445366 DOI: 10.1002/cmdc.202400145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
The binding process of insulin to its transmembrane receptor entails a sophisticated interplay between two proteins, each possessing two binding sites. Given the difficulties associated with the use of insulin in the treatment of diabetes, despite its remarkable efficacy, there is interest in smaller and more stable compounds than the native hormone that would effectively activate the receptor. Our study adopts a strategy focused on synthesizing extensive combinatorial libraries of bipodal compounds consisting of two distinct peptides linked to a molecular scaffold. These constructs, evaluated in a resin bead-bound format, were designed to assess their binding to the insulin receptor. Despite notable nonspecific binding, our approach successfully generated and tested millions of compounds. Rigorous evaluations via flow cytometry and specific antibodies revealed peptide sequences with specific interactions at either receptor binding Site 1 or 2. Notably, these sequences bear similarity to peptides discovered through phage display by other researchers. This convergence of chemical and biological methods underscores nature's beauty, revealing general principles in peptide binding to the insulin receptor. Overall, our study deepens the understanding of molecular interactions in ligand binding to the insulin receptor, highlighting the challenges of targeting large proteins with small synthetic peptides.
Collapse
Affiliation(s)
- Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Benjamin Fabre
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - María Soledad Garre Hernández
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Marta Lubos
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Jan Pícha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Zdeněk Voburka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610, Praha 6, Czech Republic
| |
Collapse
|
2
|
Smith NA, Menting JG, Weiss MA, Lawrence MC, Smith BJ. Single-chain insulin analogs threaded by the insulin receptor αCT domain. Biophys J 2022; 121:4063-4077. [PMID: 36181268 PMCID: PMC9675026 DOI: 10.1016/j.bpj.2022.09.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 09/12/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022] Open
Abstract
Insulin is a mainstay of therapy for diabetes mellitus, yet its thermal stability complicates global transportation and storage. Cold-chain transport, coupled with optimized formulation and materials, prevents to some degree nucleation of amyloid and hence inactivation of hormonal activity. These issues hence motivate the design of analogs with increased stability, with a promising approach being single-chain insulins (SCIs), whose C domains (foreshortened relative to proinsulin) resemble those of the single-chain growth factors (IGFs). We have previously demonstrated that optimized SCIs can exhibit native-like hormonal activity with enhanced thermal stability and marked resistance to fibrillation. Here, we describe the crystal structure of an ultrastable SCI (C-domain length 6; sequence EEGPRR) bound to modules of the insulin receptor (IR) ectodomain (N-terminal α-subunit domains L1-CR and C-terminal αCT peptide; "microreceptor" [μIR]). The structure of the SCI-μIR complex, stabilized by an Fv module, was determined using diffraction data to a resolution of 2.6 Å. Remarkably, the αCT peptide (IR-A isoform) "threads" through a gap between the flexible C domain and the insulin core. To explore such threading, we undertook molecular dynamics simulations to 1) compare threaded with unthreaded binding modes and 2) evaluate effects of C-domain length on these alternate modes. The simulations (employing both conventional and enhanced sampling simulations) provide evidence that very short linkers (C-domain length of -1) would limit gap opening in the SCI and so impair threading. We envisage that analogous threading occurs in the intact SCI-IR complex-rationalizing why minimal C-domain lengths block complete activity-and might be exploited to design novel receptor-isoform-specific analogs.
Collapse
Affiliation(s)
- Nicholas A Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - John G Menting
- WEHI, Parkville, Victoria, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Michael C Lawrence
- WEHI, Parkville, Victoria, Australia; Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
3
|
Gorai B, Vashisth H. Progress in Simulation Studies of Insulin Structure and Function. Front Endocrinol (Lausanne) 2022; 13:908724. [PMID: 35795141 PMCID: PMC9252437 DOI: 10.3389/fendo.2022.908724] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/28/2022] [Indexed: 01/02/2023] Open
Abstract
Insulin is a peptide hormone known for chiefly regulating glucose level in blood among several other metabolic processes. Insulin remains the most effective drug for treating diabetes mellitus. Insulin is synthesized in the pancreatic β-cells where it exists in a compact hexameric architecture although its biologically active form is monomeric. Insulin exhibits a sequence of conformational variations during the transition from the hexamer state to its biologically-active monomer state. The structural transitions and the mechanism of action of insulin have been investigated using several experimental and computational methods. This review primarily highlights the contributions of molecular dynamics (MD) simulations in elucidating the atomic-level details of conformational dynamics in insulin, where the structure of the hormone has been probed as a monomer, dimer, and hexamer. The effect of solvent, pH, temperature, and pressure have been probed at the microscopic scale. Given the focus of this review on the structure of the hormone, simulation studies involving interactions between the hormone and its receptor are only briefly highlighted, and studies on other related peptides (e.g., insulin-like growth factors) are not discussed. However, the review highlights conformational dynamics underlying the activities of reported insulin analogs and mimetics. The future prospects for computational methods in developing promising synthetic insulin analogs are also briefly highlighted.
Collapse
Affiliation(s)
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
4
|
Xiong X, Blakely A, Kim JH, Menting JG, Schäfer IB, Schubert HL, Agrawal R, Gutmann T, Delaine C, Zhang YW, Artik GO, Merriman A, Eckert D, Lawrence MC, Coskun Ü, Fisher SJ, Forbes BE, Safavi-Hemami H, Hill CP, Chou DHC. Symmetric and asymmetric receptor conformation continuum induced by a new insulin. Nat Chem Biol 2022; 18:511-519. [PMID: 35289328 PMCID: PMC9248236 DOI: 10.1038/s41589-022-00981-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/24/2022] [Indexed: 02/02/2023]
Abstract
Cone snail venoms contain a wide variety of bioactive peptides, including insulin-like molecules with distinct structural features, binding modes and biochemical properties. Here, we report an active humanized cone snail venom insulin with an elongated A chain and a truncated B chain, and use cryo-electron microscopy (cryo-EM) and protein engineering to elucidate its interactions with the human insulin receptor (IR) ectodomain. We reveal how an extended A chain can compensate for deletion of B-chain residues, which are essential for activity of human insulin but also compromise therapeutic utility by delaying dissolution from the site of subcutaneous injection. This finding suggests approaches to developing improved therapeutic insulins. Curiously, the receptor displays a continuum of conformations from the symmetric state to a highly asymmetric low-abundance structure that displays coordination of a single humanized venom insulin using elements from both of the previously characterized site 1 and site 2 interactions.
Collapse
Affiliation(s)
- Xiaochun Xiong
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University, Stanford, CA, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Alan Blakely
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Jin Hwan Kim
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - John G Menting
- WEHI, Parkville, Victoria, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ingmar B Schäfer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
| | - Heidi L Schubert
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Rahul Agrawal
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA
| | - Theresia Gutmann
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Carlie Delaine
- Discipline of Medical Biochemistry and Cell Biology, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Yi Wolf Zhang
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University, Stanford, CA, USA.,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Gizem Olay Artik
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Membrane Biochemistry and Lipid Research, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Allanah Merriman
- Discipline of Medical Biochemistry and Cell Biology, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Debbie Eckert
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA
| | - Michael C Lawrence
- WEHI, Parkville, Victoria, Australia.,Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia
| | - Ünal Coskun
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Membrane Biochemistry and Lipid Research, University Clinic Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Simon J Fisher
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Department of Internal Medicine, University of Kentucky, Lexington, KY, USA
| | - Briony E Forbes
- Discipline of Medical Biochemistry and Cell Biology, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
| | - Helena Safavi-Hemami
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA. .,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christopher P Hill
- Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| | - Danny Hung-Chieh Chou
- Department of Pediatrics, Division of Endocrinology and Diabetes, Stanford University, Stanford, CA, USA. .,Department of Biochemistry, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
5
|
Busto-Moner L, Feng CJ, Antoszewski A, Tokmakoff A, Dinner AR. Structural Ensemble of the Insulin Monomer. Biochemistry 2021; 60:3125-3136. [PMID: 34637307 PMCID: PMC8552439 DOI: 10.1021/acs.biochem.1c00583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Indexed: 11/29/2022]
Abstract
Experimental evidence suggests that monomeric insulin exhibits significant conformational heterogeneity, and modifications of apparently disordered regions affect both biological activity and the longevity of pharmaceutical formulations, presumably through receptor binding and fibrillation/degradation, respectively. However, a microscopic understanding of conformational heterogeneity has been lacking. Here, we integrate all-atom molecular dynamics simulations with an analysis pipeline to investigate the structural ensemble of human insulin monomers. We find that 60% of the structures present at least one of the following elements of disorder: melting of the A-chain N-terminal helix, detachment of the B-chain N-terminus, and detachment of the B-chain C-terminus. We also observe partial melting and extension of the B-chain helix and significant conformational heterogeneity in the region containing the B-chain β-turn. We then estimate hydrogen-exchange protection factors for the sampled ensemble and find them in line with experimental results for KP-insulin, although the simulations underestimate the importance of unfolded states. Our results help explain the ready exchange of specific amide sites that appear to be protected in crystal structures. Finally, we discuss the implications for insulin function and stability.
Collapse
Affiliation(s)
- Luis Busto-Moner
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Chi-Jui Feng
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Adam Antoszewski
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
| | - Andrei Tokmakoff
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James
Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute
for Biophysical Dynamics, The University
of Chicago, Chicago, Illinois 60637, United
States
| | - Aaron R. Dinner
- Department
of Chemistry, The University of Chicago, Chicago, Illinois 60637, United States
- James
Franck Institute, The University of Chicago, Chicago, Illinois 60637, United States
- Institute
for Biophysical Dynamics, The University
of Chicago, Chicago, Illinois 60637, United
States
| |
Collapse
|
6
|
Páníková T, Mitrová K, Halamová T, Mrzílková K, Pícha J, Chrudinová M, Kurochka A, Selicharová I, Žáková L, Jiráček J. Insulin Analogues with Altered Insulin Receptor Isoform Binding Specificities and Enhanced Aggregation Stabilities. J Med Chem 2021; 64:14848-14859. [PMID: 34591477 DOI: 10.1021/acs.jmedchem.1c01388] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin is a lifesaver for millions of diabetic patients. There is a need for new insulin analogues with more physiological profiles and analogues that will be thermally more stable than human insulin. Here, we describe the chemical engineering of 48 insulin analogues that were designed to have changed binding specificities toward isoforms A and B of the insulin receptor (IR-A and IR-B). We systematically modified insulin at the C-terminus of the B-chain, at the N-terminus of the A-chain, and at A14 and A18 positions. We discovered an insulin analogue that has Cα-carboxyamidated Glu at B31 and Ala at B29 and that has a more than 3-fold-enhanced binding specificity in favor of the "metabolic" IR-B isoform. The analogue is more resistant to the formation of insulin fibrils at 37 °C and is also more efficient in mice than human insulin. Therefore, [AlaB29,GluB31,amideB31]-insulin may be interesting for further clinical evaluation.
Collapse
Affiliation(s)
- Terezie Páníková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 116 10 Prague 6, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 116 10 Prague 6, Czech Republic
| | - Tereza Halamová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 116 10 Prague 6, Czech Republic
| | - Karolína Mrzílková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 116 10 Prague 6, Czech Republic
| | - Jan Pícha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 116 10 Prague 6, Czech Republic
| | - Martina Chrudinová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 116 10 Prague 6, Czech Republic
| | - Andrii Kurochka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 116 10 Prague 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 116 10 Prague 6, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 116 10 Prague 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 116 10 Prague 6, Czech Republic
| |
Collapse
|
7
|
Sundaram V, Ramanan RN, Selvaraj M, Vijayaraghavan R, MacFarlane DR, Ooi CW. Structural stability of insulin aspart in aqueous cholinium aminoate ionic liquids based on molecular dynamics simulation studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
8
|
Salehi SM, Koner D, Meuwly M. Dynamics and Infrared Spectrocopy of Monomeric and Dimeric Wild Type and Mutant Insulin. J Phys Chem B 2020; 124:11882-11894. [PMID: 33245663 DOI: 10.1021/acs.jpcb.0c08048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The infrared spectroscopy and dynamics of -CO labels in wild type and mutant insulin monomer and dimer are characterized from molecular dynamics simulations using validated force fields. It is found that the spectroscopy of monomeric and dimeric forms in the region of the amide-I vibration differs for residues B24-B26 and D24-D26, which are involved in dimerization of the hormone. Also, the spectroscopic signatures change for mutations at position B24 from phenylalanine, which is conserved in many organisms and is known to play a central role in insulin aggregation, to alanine or glycine. Using three different methods to determine the frequency trajectories (solving the nuclear Schrödinger equation on an effective 1-dimensional potential energy curve, using instantaneous normal modes, and using parametrized frequency maps) leads to the same overall conclusions. The spectroscopic response of monomeric WT and mutant insulin differs from that of their respective dimers, and the spectroscopy of the two monomers in the dimer is also not identical. For the WT and F24A and F24G monomers, spectroscopic shifts are found to be ∼20 cm-1 for residues (B24-B26) located at the dimerization interface. Although the crystal structure of the dimer is that of a symmetric homodimer, dynamically the two monomers are not equivalent on the nanosecond time scale. Together with earlier work on the thermodynamic stability of the WT and the same mutants, it is concluded that combining computational and experimental infrared spectroscopy provides a potentially powerful way to characterize the aggregation state and dimerization energy of modified insulins.
Collapse
Affiliation(s)
- Seyedeh Maryam Salehi
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Debasish Koner
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
9
|
Jiráček J, Žáková L, Marek A. Radiolabeled hormones in insulin research, a minireview. J Labelled Comp Radiopharm 2020; 63:576-581. [PMID: 32909277 DOI: 10.1002/jlcr.3881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/23/2020] [Accepted: 08/30/2020] [Indexed: 11/05/2022]
Abstract
Preparation of both 125 I-labeled insulin and insulin-like growth factor 1 (IGF-1) was critical because it enabled a detailed characterization of binding properties of these important hormones towards their cognate transmembrane receptors. Binding modes of hundreds of hormone derivatives were analyzed using competition radioligand binding assays. This effort has resulted in development of six insulin analogs that are today clinically used for the treatment of diabetes. Here, we will briefly summarize a history of insulin research employing iodinated hormones.
Collapse
Affiliation(s)
- Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| | - Aleš Marek
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
10
|
Rege NK, Liu M, Dhayalan B, Chen YS, Smith NA, Rahimi L, Sun J, Guo H, Yang Y, Haataja L, Phillips NFB, Whittaker J, Smith BJ, Arvan P, Ismail-Beigi F, Weiss MA. "Register-shift" insulin analogs uncover constraints of proteotoxicity in protein evolution. J Biol Chem 2020; 295:3080-3098. [PMID: 32005662 DOI: 10.1074/jbc.ra119.011389] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Globular protein sequences encode not only functional structures (the native state) but also protein foldability, i.e. a conformational search that is both efficient and robustly minimizes misfolding. Studies of mutations associated with toxic misfolding have yielded insights into molecular determinants of protein foldability. Of particular interest are residues that are conserved yet dispensable in the native state. Here, we exploited the mutant proinsulin syndrome (a major cause of permanent neonatal-onset diabetes mellitus) to investigate whether toxic misfolding poses an evolutionary constraint. Our experiments focused on an invariant aromatic motif (PheB24-PheB25-TyrB26) with complementary roles in native self-assembly and receptor binding. A novel class of mutations provided evidence that insulin can bind to the insulin receptor (IR) in two different modes, distinguished by a "register shift" in this motif, as visualized by molecular dynamics (MD) simulations. Register-shift variants are active but defective in cellular foldability and exquisitely susceptible to fibrillation in vitro Indeed, expression of the corresponding proinsulin variant induced endoplasmic reticulum stress, a general feature of the mutant proinsulin syndrome. Although not present among vertebrate insulin and insulin-like sequences, a prototypical variant ([GlyB24]insulin) was as potent as WT insulin in a rat model of diabetes. Although in MD simulations the shifted register of receptor engagement is compatible with the structure and allosteric reorganization of the IR-signaling complex, our results suggest that this binding mode is associated with toxic misfolding and so is disallowed in evolution. The implicit threat of proteotoxicity limits sequence variation among vertebrate insulins and insulin-like growth factors.
Collapse
Affiliation(s)
- Nischay K Rege
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Ming Liu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia; Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, Heping District, 300052 China
| | - Balamurugan Dhayalan
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yen-Shan Chen
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Nicholas A Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Leili Rahimi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jinhong Sun
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia
| | - Huan Guo
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia
| | - Yanwu Yang
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Leena Haataja
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia
| | - Nelson F B Phillips
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Jonathan Whittaker
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106
| | - Brian J Smith
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Peter Arvan
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical Center, Ann Arbor, Michigan 48105, Australia
| | - Faramarz Ismail-Beigi
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio 44106; Department of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Michael A Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202.
| |
Collapse
|
11
|
Gong Q, Zhang H, Zhang H, Chen C. Calculating the absolute binding free energy of the insulin dimer in an explicit solvent. RSC Adv 2020; 10:790-800. [PMID: 35494470 PMCID: PMC9047981 DOI: 10.1039/c9ra08284k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/23/2019] [Indexed: 12/23/2022] Open
Abstract
Insulin is a significant hormone in the regulation of glucose level in the blood. Its monomers bind to each other to form dimers or hexamers through a complex process. To study the binding of the insulin dimer, we first calculate its absolute binding free energy by the steered molecular dynamics method and the confinement method based on a fictitious thermodynamic cycle. After considering some special correction terms, the final calculated binding free energy at 298 K is −8.97 ± 1.41 kcal mol−1, which is close to the experimental value of −7.2 ± 0.8 kcal mol−1. Furthermore, we discuss the important residue–residue interactions between the insulin monomers, including hydrophobic interactions, π–π interactions and hydrogen bond interactions. The analysis reveals five key residues, VlaB12, TyrB16, PheB24, PheB25, and TyrB26, for the dimerization of the insulin. We also perform MM-PBSA calculations for the wild-type dimer and some mutants and study the roles of the key residues by the change of the binding energy of the insulin dimer. In this paper, we calculate the absolute binding free energy of an insulin dimer by steered MD method. The result of −8.97 kcal mol−1 is close to the experimental value −7.2 kcal mol−1. We also analyze the residue–residue interactions.![]()
Collapse
Affiliation(s)
- Qiankun Gong
- Biomolecular Physics and Modeling Group
- School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Haomiao Zhang
- Biomolecular Physics and Modeling Group
- School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Haozhe Zhang
- Biomolecular Physics and Modeling Group
- School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| | - Changjun Chen
- Biomolecular Physics and Modeling Group
- School of Physics
- Huazhong University of Science and Technology
- Wuhan 430074
- China
| |
Collapse
|
12
|
Macháčková K, Mlčochová K, Potalitsyn P, Hanková K, Socha O, Buděšínský M, Muždalo A, Lepšík M, Černeková M, Radosavljević J, Fábry M, Mitrová K, Chrudinová M, Lin J, Yurenko Y, Hobza P, Selicharová I, Žáková L, Jiráček J. Mutations at hypothetical binding site 2 in insulin and insulin-like growth factors 1 and 2 result in receptor- and hormone-specific responses. J Biol Chem 2019; 294:17371-17382. [PMID: 31558604 PMCID: PMC6873181 DOI: 10.1074/jbc.ra119.010072] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/23/2019] [Indexed: 11/26/2022] Open
Abstract
Information on how insulin and insulin-like growth factors 1 and 2 (IGF-1 and -2) activate insulin receptors (IR-A and -B) and the IGF-1 receptor (IGF-1R) is crucial for understanding the difference in the biological activities of these peptide hormones. Cryo-EM studies have revealed that insulin uses its binding sites 1 and 2 to interact with IR-A and have identified several critical residues in binding site 2. However, mutagenesis studies suggest that Ile-A10, Ser-A12, Leu-A13, and Glu-A17 also belong to insulin's site 2. Here, to resolve this discrepancy, we mutated these insulin residues and the equivalent residues in IGFs. Our findings revealed that equivalent mutations in the hormones can result in differential biological effects and that these effects can be receptor-specific. We noted that the insulin positions A10 and A17 are important for its binding to IR-A and IR-B and IGF-1R and that A13 is important only for IR-A and IR-B binding. The IGF-1/IGF-2 positions 51/50 and 54/53 did not appear to play critical roles in receptor binding, but mutations at IGF-1 position 58 and IGF-2 position 57 affected the binding. We propose that IGF-1 Glu-58 interacts with IGF-1R Arg-704 and belongs to IGF-1 site 1, a finding supported by the NMR structure of the less active Asp-58–IGF-1 variant. Computational analyses indicated that the aforementioned mutations can affect internal insulin dynamics and inhibit adoption of a receptor-bound conformation, important for binding to receptor site 1. We provide a molecular model and alternative hypotheses for how the mutated insulin residues affect activity.
Collapse
Affiliation(s)
- Kateřina Macháčková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Květoslava Mlčochová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Pavlo Potalitsyn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Kateřina Hanková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Ondřej Socha
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Anja Muždalo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Michaela Černeková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Jelena Radosavljević
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Milan Fábry
- Institute of Molecular Genetics, Czech Academy of Sciences, 166 37 Prague 6, Czech Republic
| | - Katarína Mitrová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Martina Chrudinová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Jingjing Lin
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Yevgen Yurenko
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Pavel Hobza
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 166 10 Prague 6, Czech Republic
| |
Collapse
|
13
|
Soleymani H, Ghorbani M, Allahverdi A, Shojaeilangari S, Naderi-Manesh H. Activation of human insulin by vitamin E: A molecular dynamics simulation study. J Mol Graph Model 2019; 91:194-203. [PMID: 31265936 DOI: 10.1016/j.jmgm.2019.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 11/17/2022]
Abstract
Lack of perfect insulin signaling can lead to the insulin resistance, which is the hallmark of diabetes mellitus. Activation of insulin and its binding to the receptor for signaling process initiates via B-chain C-terminal hinge conformational change through an open structure to "wide-open" conformation. Observational studies and basic scientific evidence suggest that vitamin D and E directly and/or indirectly prevent diabetes through improving glucose secretion and tolerance, activating calcium dependent endopeptidases and thus improving insulin exocytosis, antioxidant effect and reducing insulin resistance. On the contrary, clinical trials have yielded inconsistent results about the efficacy of vitamin D supplementations for the control of glucose hemostasis. In this work, best binding modes of vitamin D3 and E on insulin obtained from AutoDock Vina were selected for Molecular Dynamic, MD, study. The binding energy obtained from Molecular Mechanics- Poisson Boltzman Surface Area, MM-PBSA method, revealed that Vitamins D3 and E have good affinity to bind to the insulin and vitamin E has higher binding energy (-46 kj/mol) by engaging more residues in binding site. Distance and angle calculation results illustrated that vitamin E changes the B-chain conformation and it causes the formation of wide-open/active form of insulin. Vitamin E increases the ValB12-TyrB26 distance to ∼15 Å and changes the hinge angle to ∼65°. Consequently, essential hydrophobic residues for binding to insulin receptor exposed to surface in the presence of vitamin E. However, our data illustrated that vitamin D3 cannot change B-chain conformation. Thus our MD simulations propose a model for insulin activation through vitamin E interaction for therapeutic approaches.
Collapse
Affiliation(s)
- Hossein Soleymani
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | - Mohammad Ghorbani
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | - Abdollah Allahverdi
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154, Tehran, Iran.
| | | | - Hossein Naderi-Manesh
- Biophysics Department, Faculty of Biological Sciences, Tarbiat Modares University, 14115-154, Tehran, Iran; School of Biological Science, Institute for Research in Fundamental Sciences (IPM), 19395-5746, Tehran, Iran.
| |
Collapse
|
14
|
Chrudinová M, Žáková L, Marek A, Socha O, Buděšínský M, Hubálek M, Pícha J, Macháčková K, Jiráček J, Selicharová I. A versatile insulin analog with high potency for both insulin and insulin-like growth factor 1 receptors: Structural implications for receptor binding. J Biol Chem 2018; 293:16818-16829. [PMID: 30213860 PMCID: PMC6204900 DOI: 10.1074/jbc.ra118.004852] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Indexed: 12/02/2022] Open
Abstract
Insulin and insulin-like growth factor 1 (IGF-1) are closely related hormones involved in the regulation of metabolism and growth. They elicit their functions through activation of tyrosine kinase–type receptors: insulin receptors (IR-A and IR-B) and IGF-1 receptor (IGF-1R). Despite similarity in primary and three-dimensional structures, insulin and IGF-1 bind the noncognate receptor with substantially reduced affinity. We prepared [d-HisB24, GlyB31, TyrB32]-insulin, which binds all three receptors with high affinity (251 or 338% binding affinity to IR-A respectively to IR-B relative to insulin and 12.4% binding affinity to IGF-1R relative to IGF-1). We prepared other modified insulins with the aim of explaining the versatility of [d-HisB24, GlyB31, TyrB32]-insulin. Through structural, activity, and kinetic studies of these insulin analogs, we concluded that the ability of [d-HisB24, GlyB31, TyrB32]-insulin to stimulate all three receptors is provided by structural changes caused by a reversed chirality at the B24 combined with the extension of the C terminus of the B chain by two extra residues. We assume that the structural changes allow the directing of the B chain C terminus to some extra interactions with the receptors. These unusual interactions lead to a decrease of dissociation rate from the IR and conversely enable easier association with IGF-1R. All of the structural changes were made at the hormones' Site 1, which is thought to interact with the Site 1 of the receptors. The results of the study suggest that merely modifications of Site 1 of the hormone are sufficient to change the receptor specificity of insulin.
Collapse
Affiliation(s)
- Martina Chrudinová
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Lenka Žáková
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Aleš Marek
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Ondřej Socha
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Miloš Buděšínský
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Martin Hubálek
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jan Pícha
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Kateřina Macháčková
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Jiří Jiráček
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| | - Irena Selicharová
- From the Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 166 10 Prague 6, Czech Republic
| |
Collapse
|
15
|
Fabre B, Pícha J, Selicharová I, Žáková L, Chrudinová M, Hajduch J, Jiráček J. Probing Tripodal Peptide Scaffolds as Insulin and IGF-1 Receptor Ligands. European J Org Chem 2018. [DOI: 10.1002/ejoc.201800606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Benjamin Fabre
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2, 16610 6 Praha Czech Republic
| | - Jan Pícha
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2, 16610 6 Praha Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2, 16610 6 Praha Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2, 16610 6 Praha Czech Republic
| | - Martina Chrudinová
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2, 16610 6 Praha Czech Republic
| | - Jan Hajduch
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2, 16610 6 Praha Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences, v.v.i.; Flemingovo n. 2, 16610 6 Praha Czech Republic
| |
Collapse
|
16
|
Weiss MA, Lawrence MC. A thing of beauty: Structure and function of insulin's "aromatic triplet". Diabetes Obes Metab 2018; 20 Suppl 2:51-63. [PMID: 30230175 PMCID: PMC6159917 DOI: 10.1111/dom.13402] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/25/2018] [Accepted: 05/31/2018] [Indexed: 12/30/2022]
Abstract
The classical crystal structure of insulin was determined in 1969 by D.C. Hodgkin et al. following a 35-year program of research. This structure depicted a hexamer remarkable for its self-assembly as a zinc-coordinated trimer of dimer. Prominent at the dimer interface was an "aromatic triplet" of conserved residues at consecutive positions in the B chain: PheB24 , PheB25 and TyrB26 . The elegance of this interface inspired the Oxford team to poetry: "A thing of beauty is a joy forever" (John Keats as quoted by Blundell, T.L., et al. Advances in Protein Chemistry 26:279-286 [1972]). Here, we revisit this aromatic triplet in light of recent advances in the structural biology of insulin bound as a monomer to fragments of the insulin receptor. Such co-crystal structures have defined how these side chains pack at the primary hormone-binding surface of the receptor ectodomain. On receptor binding, the B-chain β-strand (residues B24-B28) containing the aromatic triplet detaches from the α-helical core of the hormone. Whereas TyrB26 lies at the periphery of the receptor interface and may functionally be replaced by a diverse set of substitutions, PheB24 and PheB25 engage invariant elements of receptor domains L1 and αCT. These critical contacts were anticipated by the discovery of diabetes-associated mutations at these positions by Donald Steiner et al. at the University of Chicago. Conservation of PheB24 , PheB25 and TyrB26 among vertebrate insulins reflects the striking confluence of structure-based evolutionary constraints: foldability, protective self-assembly and hormonal activity.
Collapse
Affiliation(s)
- Michael A. Weiss
- Department of Biochemistry & Molecular Biology, Indiana University School of Medicine, 635 Barnhill Drive, Indianapolis, IN 46202 USA
| | - Michael C. Lawrence
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, AUSTRALIA
- Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, AUSTRALIA
| |
Collapse
|
17
|
Raghunathan S, El Hage K, Desmond JL, Zhang L, Meuwly M. The Role of Water in the Stability of Wild-type and Mutant Insulin Dimers. J Phys Chem B 2018; 122:7038-7048. [DOI: 10.1021/acs.jpcb.8b04448] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shampa Raghunathan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Krystel El Hage
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Jasmine L. Desmond
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Lixian Zhang
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
18
|
Gemperle J, Hexnerová R, Lepšík M, Tesina P, Dibus M, Novotný M, Brábek J, Veverka V, Rosel D. Structural characterization of CAS SH3 domain selectivity and regulation reveals new CAS interaction partners. Sci Rep 2017; 7:8057. [PMID: 28808245 PMCID: PMC5556061 DOI: 10.1038/s41598-017-08303-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
CAS is a docking protein downstream of the proto-oncogene Src with a role in invasion and metastasis of cancer cells. The CAS SH3 domain is indispensable for CAS-mediated signaling, but structural aspects of CAS SH3 ligand binding and regulation are not well understood. Here, we identified the consensus CAS SH3 binding motif and structurally characterized the CAS SH3 domain in complex with ligand. We revealed the requirement for an uncommon centrally localized lysine residue at position +2 of CAS SH3 ligands and two rather dissimilar optional anchoring residues, leucine and arginine, at position +5. We further expanded the knowledge of CAS SH3 ligand binding regulation by manipulating tyrosine 12 phosphorylation and confirmed the negative role of this phosphorylation on CAS SH3 ligand binding. Finally, by exploiting the newly identified binding requirements of the CAS SH3 domain, we predicted and experimentally verified two novel CAS SH3 binding partners, DOK7 and GLIS2.
Collapse
Affiliation(s)
- Jakub Gemperle
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Petr Tesina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic
| | - Michal Dibus
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, Prague, Czech Republic.
| | - Daniel Rosel
- Department of Cell Biology, Faculty of Science, Charles University, Vinicna 7, Prague, Czech Republic.
| |
Collapse
|
19
|
Computational study of the activity, dynamics, energetics and conformations of insulin analogues using molecular dynamics simulations: Application to hyperinsulinemia and the critical residue B26. Biochem Biophys Rep 2017; 11:182-190. [PMID: 28955783 PMCID: PMC5614686 DOI: 10.1016/j.bbrep.2017.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 04/13/2017] [Indexed: 12/15/2022] Open
Abstract
Due to the increasing prevalence of diabetes, finding therapeutic analogues for insulin has become an urgent issue. While many experimental studies have been performed towards this end, they have limited scope to examine all aspects of the effect of a mutation. Computational studies can help to overcome these limitations, however, relatively few studies that focus on insulin analogues have been performed to date. Here, we present a comprehensive computational study of insulin analogues-three mutant insulins that have been identified with hyperinsulinemia and three mutations on the critical B26 residue that exhibit similar binding affinity to the insulin receptor-using molecular dynamics simulations with the aim of predicting how mutations of insulin affect its activity, dynamics, energetics and conformations. The time evolution of the conformers is studied in long simulations. The probability density function and potential of mean force calculations are performed on each insulin analogue to unravel the effect of mutations on the dynamics and energetics of insulin activation. Our conformational study can decrypt the key features and molecular mechanisms that are responsible for an enhanced or reduced activity of an insulin analogue. We find two key results: 1) hyperinsulinemia may be due to the drastically reduced activity (and binding affinity) of the mutant insulins. 2) Y26BS and Y26BE are promising therapeutic candidates for insulin as they are more active than WT-insulin. The analysis in this work can be readily applied to any set of mutations on insulin to guide development of more effective therapeutic analogues.
Collapse
|
20
|
Machová I, Hubálek M, Lepšík M, Bednárová L, Pazderková M, Kopecký V, Snášel J, Dostál J, Pichová I. The Role of Cysteine Residues in Catalysis of Phosphoenolpyruvate Carboxykinase from Mycobacterium tuberculosis. PLoS One 2017; 12:e0170373. [PMID: 28135343 PMCID: PMC5279734 DOI: 10.1371/journal.pone.0170373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 01/04/2017] [Indexed: 11/25/2022] Open
Abstract
Mycobacterium tuberculosis (MTb), the causative agent of tuberculosis, can persist in macrophages for decades, maintaining its basic metabolic activities. Phosphoenolpyruvate carboxykinase (Pck; EC 4.1.1.32) is a key player in central carbon metabolism regulation. In replicating MTb, Pck is associated with gluconeogenesis, but in non-replicating MTb, it also catalyzes the reverse anaplerotic reaction. Here, we explored the role of selected cysteine residues in function of MTb Pck under different redox conditions. Using mass spectrometry analysis we confirmed formation of S–S bridge between cysteines C391 and C397 localized in the C-terminal subdomain. Molecular dynamics simulations of C391-C397 bridged model indicated local conformation changes needed for formation of the disulfide. Further, we used circular dichroism and Raman spectroscopy to analyze the influence of C391 and C397 mutations on Pck secondary and tertiary structures, and on enzyme activity and specificity. We demonstrate the regulatory role of C391 and C397 that form the S–S bridge and in the reduced form stabilize Pck tertiary structure and conformation for gluconeogenic and anaplerotic reactions.
Collapse
Affiliation(s)
- Iva Machová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Hubálek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Markéta Pazderková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Vladimír Kopecký
- Institute of Physics, Faculty of Mathematics and Physics, Charles University in Prague, Prague, Czech Republic
| | - Jan Snášel
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jiří Dostál
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
21
|
Fabre B, Pícha J, Vaněk V, Selicharová I, Chrudinová M, Collinsová M, Žáková L, Buděšínský M, Jiráček J. Synthesis and Evaluation of a Library of Trifunctional Scaffold-Derived Compounds as Modulators of the Insulin Receptor. ACS COMBINATORIAL SCIENCE 2016; 18:710-722. [PMID: 27936668 DOI: 10.1021/acscombsci.6b00132] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We designed a combinatorial library of trifunctional scaffold-derived compounds, which were derivatized with 30 different in-house-made azides. The compounds were proposed to mimic insulin receptor (IR)-binding epitopes in the insulin molecule and bind to and activate this receptor. This work has enabled us to test our synthetic and biological methodology and to prove its robustness and reliability for the solid-phase synthesis and testing of combinatorial libraries of the trifunctional scaffold-derived compounds. Our effort resulted in the discovery of two compounds, which were able to weakly induce the autophosphorylation of IR and weakly bind to this receptor at a 0.1 mM concentration. Despite these modest biological results, which well document the well-known difficulty in modulating protein-protein interactions, this study represents a unique example of targeting the IR with a set of nonpeptide compounds that were specifically designed and synthesized for this purpose. We believe that this work can open new perspectives for the development of next-generation insulin mimetics based on the scaffold structure.
Collapse
Affiliation(s)
- Benjamin Fabre
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Jan Pícha
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Václav Vaněk
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Martina Chrudinová
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Michaela Collinsová
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| | - Jiří Jiráček
- Institute of Organic Chemistry
and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha 6, Czech Republic
| |
Collapse
|
22
|
Mills BJ, Laurence Chadwick JS. Effects of localized interactions and surface properties on stability of protein-based therapeutics. ACTA ACUST UNITED AC 2016; 70:609-624. [PMID: 27861887 DOI: 10.1111/jphp.12658] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/04/2016] [Indexed: 11/30/2022]
Abstract
OBJECTIVES Protein-based therapeutics garner significant attention because of exquisite specificity and limited side effects and are now being used to accomplish targeted delivery of small-molecule drugs. This review identifies and highlights individual chemical attributes and categorizes how site-specific changes affect protein stability based on published high-resolution molecular analyses. KEY FINDINGS Because it is challenging to determine the mechanisms by which the stability of large, complex molecules is altered and data are sparse, smaller, therapeutic proteins (insulin, erythropoietin, interferons) are examined alongside antibody data. Integrating this large pool of information with the limited available studies on antibodies reveals common mechanisms by which specific alterations affect protein structure and stability. SUMMARY Physical and chemical stability of therapeutic proteins and antibody drug conjugates (ADCs) is of critical importance because insufficient stability prevents molecules from making it to market. Individual moieties on/near the surface of proteins have substantial influence on structure and stability. Seemingly small, superficial modification may have far-reaching consequences on structure, conformational dynamics, and solubility of the protein, and hence physical stability of the molecule. Chemical modifications, whether spontaneous (e.g. oxidation, deamidation) or intentional, as with ADCs, may adversely impact stability by disrupting local surface properties or higher order protein structure.
Collapse
Affiliation(s)
- Brittney J Mills
- Department of Chemistry, The University of Kansas, Lawrence, KS, USA
| | - Jennifer S Laurence Chadwick
- Department of Pharmaceutical Chemistry, The University of Kansas, Lawrence, KS, USA.,BioAnalytix Inc., Cambridge, MA, USA
| |
Collapse
|
23
|
Papaioannou A, Kuyucak S, Kuncic Z. Elucidating the Activation Mechanism of the Insulin-Family Proteins with Molecular Dynamics Simulations. PLoS One 2016; 11:e0161459. [PMID: 27548502 PMCID: PMC4993506 DOI: 10.1371/journal.pone.0161459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/05/2016] [Indexed: 12/27/2022] Open
Abstract
The insulin-family proteins bind to their own receptors, but insulin-like growth factor II (IGF-II) can also bind to the A isoform of the insulin receptor (IR-A), activating unique and alternative signaling pathways from those of insulin. Although extensive studies of insulin have revealed that its activation is associated with the opening of the B chain-C terminal (BC-CT), the activation mechanism of the insulin-like growth factors (IGFs) still remains unknown. Here, we present the first comprehensive study of the insulin-family proteins comparing their activation process and mechanism using molecular dynamics simulations to reveal new insights into their specificity to the insulin receptor. We have found that all the proteins appear to exhibit similar stochastic dynamics in their conformational change to an active state. For the IGFs, our simulations show that activation involves two opening locations: the opening of the BC-CT section away from the core, similar to insulin; and the additional opening of the BC-CT section away from the C domain. Furthermore, we have found that these two openings occur simultaneously in IGF-I, but not in IGF-II, where they can occur independently. This suggests that the BC-CT section and the C domain behave as a unified domain in IGF-I, but as two independent domains in IGF-II during the activation process, implying that the IGFs undergo different activation mechanisms for receptor binding. The probabilities of the active and inactive states of the proteins suggest that IGF-II is hyperactive compared to IGF-I. The hinge residue and the hydrophobic interactions in the core are found to play a critical role in the stability and activity of IGFs. Overall, our simulations have elucidated the crucial differences and similarities in the activation mechanisms of the insulin-family proteins, providing new insights into the molecular mechanisms responsible for the observed differences between IGF-I and IGF-II in receptor binding.
Collapse
Affiliation(s)
- Anastasios Papaioannou
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Physics, University of Sydney, Sydney, NSW, Australia
- * E-mail: (AP); (ZK)
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Zdenka Kuncic
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Physics, University of Sydney, Sydney, NSW, Australia
- * E-mail: (AP); (ZK)
| |
Collapse
|
24
|
Hexnerová R, Křížková K, Fábry M, Sieglová I, Kedrová K, Collinsová M, Ullrichová P, Srb P, Williams C, Crump MP, Tošner Z, Jiráček J, Veverka V, Žáková L. Probing Receptor Specificity by Sampling the Conformational Space of the Insulin-like Growth Factor II C-domain. J Biol Chem 2016; 291:21234-21245. [PMID: 27510031 PMCID: PMC5076530 DOI: 10.1074/jbc.m116.741041] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Indexed: 01/22/2023] Open
Abstract
Insulin and insulin-like growth factors I and II are closely related protein hormones. Their distinct evolution has resulted in different yet overlapping biological functions with insulin becoming a key regulator of metabolism, whereas insulin-like growth factors (IGF)-I/II are major growth factors. Insulin and IGFs cross-bind with different affinities to closely related insulin receptor isoforms A and B (IR-A and IR-B) and insulin-like growth factor type I receptor (IGF-1R). Identification of structural determinants in IGFs and insulin that trigger their specific signaling pathways is of increasing importance in designing receptor-specific analogs with potential therapeutic applications. Here, we developed a straightforward protocol for production of recombinant IGF-II and prepared six IGF-II analogs with IGF-I-like mutations. All modified molecules exhibit significantly reduced affinity toward IR-A, particularly the analogs with a Pro-Gln insertion in the C-domain. Moreover, one of the analogs has enhanced binding affinity for IGF-1R due to a synergistic effect of the Pro-Gln insertion and S29N point mutation. Consequently, this analog has almost a 10-fold higher IGF-1R/IR-A binding specificity in comparison with native IGF-II. The established IGF-II purification protocol allowed for cost-effective isotope labeling required for a detailed NMR structural characterization of IGF-II analogs that revealed a link between the altered binding behavior of selected analogs and conformational rearrangement of their C-domains.
Collapse
Affiliation(s)
- Rozálie Hexnerová
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic, Faculty of Science, Charles University in Prague, Albertov 6, Prague 128 43, Czech Republic
| | - Květoslava Křížková
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic, Faculty of Science, Charles University in Prague, Albertov 6, Prague 128 43, Czech Republic
| | - Milan Fábry
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, 142 20 Prague 4, Czech Republic, and
| | - Irena Sieglová
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Kateřina Kedrová
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic, Faculty of Science, Charles University in Prague, Albertov 6, Prague 128 43, Czech Republic
| | - Michaela Collinsová
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Pavlína Ullrichová
- Department of Analytical Chemistry, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Pavel Srb
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Christopher Williams
- Department of Organic and Biological Chemistry, School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Matthew P Crump
- Department of Organic and Biological Chemistry, School of Chemistry, Cantock's Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Zdeněk Tošner
- Faculty of Science, Charles University in Prague, Albertov 6, Prague 128 43, Czech Republic
| | - Jiří Jiráček
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | - Václav Veverka
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic,
| | - Lenka Žáková
- From the Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic,
| |
Collapse
|
25
|
Islam MA, Bhayye S, Adeniyi AA, Soliman ME, Pillay TS. Diabetes mellitus caused by mutations in human insulin: analysis of impaired receptor binding of insulins Wakayama, Los Angeles and Chicago using pharmacoinformatics. J Biomol Struct Dyn 2016; 35:724-737. [DOI: 10.1080/07391102.2016.1160258] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Md Ataul Islam
- Faculty of Health Sciences, Department of Chemical Pathology, & Institute of Cellular & Molecular Medicine, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa
| | - Sagar Bhayye
- Department of Chemical Technology, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India
| | - Adebayo A. Adeniyi
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Mahmoud E.S. Soliman
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Tahir S. Pillay
- Faculty of Health Sciences, Department of Chemical Pathology, & Institute of Cellular & Molecular Medicine, University of Pretoria and National Health Laboratory Service Tshwane Academic Division, Pretoria, South Africa
- Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
26
|
Viková J, Collinsová M, Kletvíková E, Buděšínský M, Kaplan V, Žáková L, Veverka V, Hexnerová R, Aviñó RJT, Straková J, Selicharová I, Vaněk V, Wright DW, Watson CJ, Turkenburg JP, Brzozowski AM, Jiráček J. Rational steering of insulin binding specificity by intra-chain chemical crosslinking. Sci Rep 2016; 6:19431. [PMID: 26792393 PMCID: PMC4726324 DOI: 10.1038/srep19431] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/11/2015] [Indexed: 12/14/2022] Open
Abstract
Insulin is a key hormone of human metabolism with major therapeutic importance for both types of diabetes. New insulin analogues with more physiological profiles and better glycemic control are needed, especially analogues that preferentially bind to the metabolic B-isoform of insulin receptor (IR-B). Here, we aimed to stabilize and modulate the receptor-compatible conformation of insulin by covalent intra-chain crosslinking within its B22-B30 segment, using the Cu(I)-catalyzed Huisgen 1,3-dipolar cycloaddition reaction of azides and alkynes. This approach resulted in 14 new, systematically crosslinked insulin analogues whose structures and functions were extensively characterized and correlated. One of the analogues, containing a B26-B29 triazole bridge, was highly active in binding to both IR isoforms, with a significant preference for IR-B. Our results demonstrate the potential of chemistry-driven modulation of insulin function, also shedding new light on the functional importance of hormone's B-chain C-terminus for its IR-B specificity.
Collapse
Affiliation(s)
- Jitka Viková
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Michaela Collinsová
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Emília Kletvíková
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Vojtěch Kaplan
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Roberto J. Tarazona Aviñó
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Jana Straková
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Irena Selicharová
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Václav Vaněk
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| | - Daniel W. Wright
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Christopher J. Watson
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Andrzej M. Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, the Czech Academy of Sciences, v.v.i., Flemingovo n. 2, 166 10 Praha 6, Czech Republic
| |
Collapse
|
27
|
Doležal M, Zábranský A, Dostál J, Vaněk O, Brynda J, Lepšík M, Hadravová R, Pichová I. Myristoylation drives dimerization of matrix protein from mouse mammary tumor virus. Retrovirology 2016; 13:2. [PMID: 26728401 PMCID: PMC4700671 DOI: 10.1186/s12977-015-0235-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/22/2015] [Indexed: 11/25/2022] Open
Abstract
Background Myristoylation of the matrix (MA) domain mediates the transport and binding of Gag polyproteins to the plasma membrane (PM) and is required for the assembly of most retroviruses. In betaretroviruses, which assemble immature particles in the cytoplasm, myristoylation is dispensable for assembly but is crucial for particle transport to the PM. Oligomerization of HIV-1 MA stimulates the transition of the myristoyl group from a sequestered to an exposed conformation, which is more accessible for membrane binding. However, for other retroviruses, the effect of MA oligomerization on myristoyl group exposure has not been thoroughly investigated. Results Here, we demonstrate that MA from the betaretrovirus mouse mammary tumor virus (MMTV) forms dimers in solution and that this process is stimulated by its myristoylation. The crystal structure of N-myristoylated MMTV MA, determined at 1.57 Å resolution, revealed that the myristoyl groups are buried in a hydrophobic pocket at the dimer interface and contribute to dimer formation. Interestingly, the myristoyl groups in the dimer are mutually swapped to achieve energetically stable binding, as documented by molecular dynamics modeling. Mutations within the myristoyl binding site resulted in reduced MA dimerization and extracellular particle release. Conclusions Based on our experimental, structural, and computational data, we propose a model for dimerization of MMTV MA in which myristoyl groups stimulate the interaction between MA molecules. Moreover, dimer-forming MA molecules adopt a sequestered conformation with their myristoyl groups entirely buried within the interaction interface. Although this differs from the current model proposed for lentiviruses, in which oligomerization of MA triggers exposure of myristoyl group, it appears convenient for intracellular assembly, which involves no apparent membrane interaction and allows the myristoyl group to be sequestered during oligomerization. Electronic supplementary material The online version of this article (doi:10.1186/s12977-015-0235-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michal Doležal
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic.
| | - Aleš Zábranský
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic.
| | - Jiří Dostál
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic.
| | - Ondřej Vaněk
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 40, Prague, Czech Republic.
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic.
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic.
| | - Romana Hadravová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic.
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10, Prague, Czech Republic.
| |
Collapse
|
28
|
Mishra NK, Krishna Deepak RNV, Sankararamakrishnan R, Verma S. Controlling in Vitro Insulin Amyloidosis with Stable Peptide Conjugates: A Combined Experimental and Computational Study. J Phys Chem B 2015; 119:15395-406. [DOI: 10.1021/acs.jpcb.5b08215] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Narendra Kumar Mishra
- Department of Chemistry, DST Thematic
Unit of Excellence on Soft
Nanofabrication and ‡Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
| | - R. N. V. Krishna Deepak
- Department of Chemistry, DST Thematic
Unit of Excellence on Soft
Nanofabrication and ‡Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
| | - Ramasubbu Sankararamakrishnan
- Department of Chemistry, DST Thematic
Unit of Excellence on Soft
Nanofabrication and ‡Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
| | - Sandeep Verma
- Department of Chemistry, DST Thematic
Unit of Excellence on Soft
Nanofabrication and ‡Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
| |
Collapse
|
29
|
Papaioannou A, Kuyucak S, Kuncic Z. Molecular Dynamics Simulations of Insulin: Elucidating the Conformational Changes that Enable Its Binding. PLoS One 2015; 10:e0144058. [PMID: 26629689 PMCID: PMC4668001 DOI: 10.1371/journal.pone.0144058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/12/2015] [Indexed: 01/30/2023] Open
Abstract
A sequence of complex conformational changes is required for insulin to bind to the insulin receptor. Recent experimental evidence points to the B chain C-terminal (BC-CT) as the location of these changes in insulin. Here, we present molecular dynamics simulations of insulin that reveal new insights into the structural changes occurring in the BC-CT. We find three key results: 1) The opening of the BC-CT is inherently stochastic and progresses through an open and then a “wide-open” conformation—the wide-open conformation is essential for receptor binding, but occurs only rarely. 2) The BC-CT opens with a zipper-like mechanism, with a hinge at the Phe24 residue, and is maintained in the dominant closed/inactive state by hydrophobic interactions of the neighboring Tyr26, the critical residue where opening of the BC-CT (activation of insulin) is initiated. 3) The mutation Y26N is a potential candidate as a therapeutic insulin analogue. Overall, our results suggest that the binding of insulin to its receptor is a highly dynamic and stochastic process, where initial docking occurs in an open conformation and full binding is facilitated through interactions of insulin receptor residues with insulin in its wide-open conformation.
Collapse
Affiliation(s)
- Anastasios Papaioannou
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Physics, University of Sydney, Sydney, NSW, Australia
- * E-mail:
| | - Serdar Kuyucak
- School of Physics, University of Sydney, Sydney, NSW, Australia
| | - Zdenka Kuncic
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Physics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
30
|
Affiliation(s)
- Pierre De Meyts
- Department of Diabetes Biology; Novo Nordisk A/S; Måløv Denmark
- De Meyts R&D Consulting; Kraainem; Belgium
| |
Collapse
|
31
|
Křížková K, Veverka V, Maletínská L, Hexnerová R, Brzozowski AM, Jiráček J, Žáková L. Structural and functional study of the GlnB22-insulin mutant responsible for maturity-onset diabetes of the young. PLoS One 2014; 9:e112883. [PMID: 25423173 PMCID: PMC4244080 DOI: 10.1371/journal.pone.0112883] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/21/2014] [Indexed: 12/04/2022] Open
Abstract
The insulin gene mutation c.137G>A (R46Q), which changes an arginine at the B22 position of the mature hormone to glutamine, causes the monogenic diabetes variant maturity-onset diabetes of the young (MODY). In MODY patients, this mutation is heterozygous, and both mutant and wild-type (WT) human insulin are produced simultaneously. However, the patients often depend on administration of exogenous insulin. In this study, we chemically synthesized the MODY mutant [GlnB22]-insulin and characterized its biological and structural properties. The chemical synthesis of this insulin analogue revealed that its folding ability is severely impaired. In vitro and in vivo tests showed that its binding affinity and biological activity are reduced (both approximately 20% that of human insulin). Comparison of the solution structure of [GlnB22]-insulin with the solution structure of native human insulin revealed that the most significant structural effect of the mutation is distortion of the B20-B23 β-turn, leading to liberation of the B chain C-terminus from the protein core. The distortion of the B20-B23 β-turn is caused by the extended conformational freedom of the GlnB22 side chain, which is no longer anchored in a hydrogen bonding network like the native ArgB22. The partially disordered [GlnB22]-insulin structure appears to be one reason for the reduced binding potency of this mutant and may also be responsible for its low folding efficiency in vivo. The altered orientation and flexibility of the B20-B23 β-turn may interfere with the formation of disulfide bonds in proinsulin bearing the R46Q (GlnB22) mutation. This may also have a negative effect on the WT proinsulin simultaneously biosynthesized in β-cells and therefore play a major role in the development of MODY in patients producing [GlnB22]-insulin.
Collapse
Affiliation(s)
- Květoslava Křížková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Rozálie Hexnerová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Andrzej M. Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- * E-mail:
| |
Collapse
|
32
|
Pandyarajan V, Smith BJ, Phillips NB, Whittaker L, Cox GP, Wickramasinghe N, Menting JG, Wan ZL, Whittaker J, Ismail-Beigi F, Lawrence MC, Weiss MA. Aromatic anchor at an invariant hormone-receptor interface: function of insulin residue B24 with application to protein design. J Biol Chem 2014; 289:34709-27. [PMID: 25305014 DOI: 10.1074/jbc.m114.608562] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Crystallographic studies of insulin bound to fragments of the insulin receptor have recently defined the topography of the primary hormone-receptor interface. Here, we have investigated the role of Phe(B24), an invariant aromatic anchor at this interface and site of a human mutation causing diabetes mellitus. An extensive set of B24 substitutions has been constructed and tested for effects on receptor binding. Although aromaticity has long been considered a key requirement at this position, Met(B24) was found to confer essentially native affinity and bioactivity. Molecular modeling suggests that this linear side chain can serve as an alternative hydrophobic anchor at the hormone-receptor interface. These findings motivated further substitution of Phe(B24) by cyclohexanylalanine (Cha), which contains a nonplanar aliphatic ring. Contrary to expectations, [Cha(B24)]insulin likewise exhibited high activity. Furthermore, its resistance to fibrillation and the rapid rate of hexamer disassembly, properties of potential therapeutic advantage, were enhanced. The crystal structure of the Cha(B24) analog, determined as an R6 zinc-stabilized hexamer at a resolution of 1.5 Å, closely resembles that of wild-type insulin. The nonplanar aliphatic ring exhibits two chair conformations with partial occupancies, each recapitulating the role of Phe(B24) at the dimer interface. Together, these studies have defined structural requirements of an anchor residue within the B24-binding pocket of the insulin receptor; similar molecular principles are likely to pertain to insulin-related growth factors. Our results highlight in particular the utility of nonaromatic side chains as probes of the B24 pocket and suggest that the nonstandard Cha side chain may have therapeutic utility.
Collapse
Affiliation(s)
| | - Brian J Smith
- the La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | | | | | | | | | - John G Menting
- the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, and
| | | | | | | | - Michael C Lawrence
- the Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia, and the Department of Medical Biology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael A Weiss
- From the Departments of Biochemistry, Medicine, and Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106,
| |
Collapse
|
33
|
Žáková L, Kletvíková E, Lepšík M, Collinsová M, Watson CJ, Turkenburg JP, Jiráček J, Brzozowski AM. Human insulin analogues modified at the B26 site reveal a hormone conformation that is undetected in the receptor complex. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2014; 70:2765-74. [PMID: 25286859 PMCID: PMC4188015 DOI: 10.1107/s1399004714017775] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/01/2014] [Indexed: 11/10/2022]
Abstract
The structural characterization of the insulin-insulin receptor (IR) interaction still lacks the conformation of the crucial B21-B30 insulin region, which must be different from that in its storage forms to ensure effective receptor binding. Here, it is shown that insulin analogues modified by natural amino acids at the TyrB26 site can represent an active form of this hormone. In particular, [AsnB26]-insulin and [GlyB26]-insulin attain a B26-turn-like conformation that differs from that in all known structures of the native hormone. It also matches the receptor interface, avoiding substantial steric clashes. This indicates that insulin may attain a B26-turn-like conformation upon IR binding. Moreover, there is an unexpected, but significant, binding specificity of the AsnB26 mutant for predominantly the metabolic B isoform of the receptor. As it is correlated with the B26 bend of the B-chain of the hormone, the structures of AsnB26 analogues may provide the first structural insight into the structural origins of differential insulin signalling through insulin receptor A and B isoforms.
Collapse
Affiliation(s)
- Lenka Žáková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Emília Kletvíková
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Michaela Collinsová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Christopher J. Watson
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, England
| | - Johan P. Turkenburg
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, England
| | - Jiří Jiráček
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, v.v.i., Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Andrzej M. Brzozowski
- York Structural Biology Laboratory, Department of Chemistry, The University of York, Heslington, York YO10 5DD, England
| |
Collapse
|
34
|
Abstract
Insulin provides a classical model of a globular protein, yet how the hormone changes conformation to engage its receptor has long been enigmatic. Interest has focused on the C-terminal B-chain segment, critical for protective self-assembly in β cells and receptor binding at target tissues. Insight may be obtained from truncated "microreceptors" that reconstitute the primary hormone-binding site (α-subunit domains L1 and αCT). We demonstrate that, on microreceptor binding, this segment undergoes concerted hinge-like rotation at its B20-B23 β-turn, coupling reorientation of Phe(B24) to a 60° rotation of the B25-B28 β-strand away from the hormone core to lie antiparallel to the receptor's L1-β2 sheet. Opening of this hinge enables conserved nonpolar side chains (Ile(A2), Val(A3), Val(B12), Phe(B24), and Phe(B25)) to engage the receptor. Restraining the hinge by nonstandard mutagenesis preserves native folding but blocks receptor binding, whereas its engineered opening maintains activity at the price of protein instability and nonnative aggregation. Our findings rationalize properties of clinical mutations in the insulin family and provide a previously unidentified foundation for designing therapeutic analogs. We envisage that a switch between free and receptor-bound conformations of insulin evolved as a solution to conflicting structural determinants of biosynthesis and function.
Collapse
|
35
|
Kosinová L, Veverka V, Novotná P, Collinsová M, Urbanová M, Moody NR, Turkenburg JP, Jiráček J, Brzozowski AM, Žáková L. Insight into the structural and biological relevance of the T/R transition of the N-terminus of the B-chain in human insulin. Biochemistry 2014; 53:3392-402. [PMID: 24819248 PMCID: PMC4047818 DOI: 10.1021/bi500073z] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
The N-terminus of the B-chain of
insulin may adopt two alternative
conformations designated as the T- and R-states. Despite the recent
structural insight into insulin–insulin receptor (IR) complexes,
the physiological relevance of the T/R transition is still unclear.
Hence, this study focused on the rational design, synthesis, and characterization
of human insulin analogues structurally locked in expected R- or T-states.
Sites B3, B5, and B8, capable of affecting the conformation of the
N-terminus of the B-chain, were subjects of rational substitutions
with amino acids with specific allowed and disallowed dihedral φ
and ψ main-chain angles. α-Aminoisobutyric acid was systematically
incorporated into positions B3, B5, and B8 for stabilization of the
R-state, and N-methylalanine and d-proline
amino acids were introduced at position B8 for stabilization of the
T-state. IR affinities of the analogues were compared and correlated
with their T/R transition ability and analyzed against their crystal
and nuclear magnetic resonance structures. Our data revealed that
(i) the T-like state is indeed important for the folding efficiency
of (pro)insulin, (ii) the R-state is most probably incompatible with
an active form of insulin, (iii) the R-state cannot be induced or
stabilized by a single substitution at a specific site, and (iv) the
B1–B8 segment is capable of folding into a variety of low-affinity
T-like states. Therefore, we conclude that the active conformation
of the N-terminus of the B-chain must be different from the “classical”
T-state and that a substantial flexibility of the B1–B8 segment,
where GlyB8 plays a key role, is a crucial prerequisite for an efficient
insulin–IR interaction.
Collapse
Affiliation(s)
- Lucie Kosinová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic , v.v.i., Flemingovo nám 2, 166 10 Prague 6, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Monincová L, Veverka V, Slaninová J, Buděšínský M, Fučík V, Bednárová L, Straka J, Čeřovský V. Structure-activity study of macropin, a novel antimicrobial peptide from the venom of solitary bee Macropis fulvipes
(Hymenoptera: Melittidae). J Pept Sci 2014; 20:375-84. [DOI: 10.1002/psc.2625] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 02/03/2014] [Accepted: 02/14/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Lenka Monincová
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Václav Veverka
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Jiřina Slaninová
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Vladimír Fučík
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Lucie Bednárová
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| | - Jakub Straka
- Faculty of Science, Department of Zoology; Charles University in Prague; Viničná 7 12844 Prague 2 Czech Republic
| | - Václav Čeřovský
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague 6 Czech Republic
| |
Collapse
|
37
|
Monincová L, Buděšínský M, Čujová S, Čeřovský V, Veverka V. Structural basis for antimicrobial activity of lasiocepsin. Chembiochem 2013; 15:301-8. [PMID: 24339323 DOI: 10.1002/cbic.201300509] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Indexed: 11/06/2022]
Abstract
Lasiocepsin is a unique 27-residue antimicrobial peptide, isolated from Lasioglossum laticeps (wild bee) venom, with substantial antibacterial and antifungal activity. It adopts a well-defined structure consisting of two α-helices linked by a structured loop. Its basic residues form two distinct positively charged regions on the surface whereas aliphatic side chains contribute to solvent-accessible hydrophobic areas, thus emphasising the amphipathic character of the molecule. Lasiocepsin structurally belongs to the ShK family and shows a strong preference for anionic phospholipids; this is further augmented by increasing concentrations of cardiolipin, such as those found at the poles of bacterial cells. The membrane-permeabilising activity of the peptide is not limited to outer membranes of Gram-negative bacteria. The peptide interacts with phospholipids initially through its N terminus, and its degree of penetration is strongly dependent on the presence of cardiolipin.
Collapse
Affiliation(s)
- Lenka Monincová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nam. 2, 16610 Prague 6 (Czech Republic)
| | | | | | | | | |
Collapse
|