1
|
Shukla S, Patel H, Chen S, Sun R, Wei L, Chen ZS. Dostarlimab in the treatment of mismatch repair deficient recurrent or advanced endometrial cancer. CANCER PATHOGENESIS AND THERAPY 2024; 2:135-141. [PMID: 39027143 PMCID: PMC11252537 DOI: 10.1016/j.cpt.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 07/20/2024]
Abstract
Dostarlimab, a programmed death receptor-1 (PD-1)-blocking IgG4 humanized monoclonal antibody, gained accelerated approval from the US Food and Drug Administration (FDA) in April 2021, and received a full approval in February 2023. Dostarlimab was approved for treating adult patients with mismatch repair deficient (dMMR) recurrent or advanced endometrial cancer (EC) that progressed during or after prior treatment who have no other suitable treatment options. Herein, we review the structure-based mechanism of action of dostarlimab and the results of a clinical study (GARNET; NCT02715284) to comprehensively clarify the efficacy and toxicity of the drug. The efficacy and safety of dostarlimab as monotherapy was assessed in a non-randomized, multicenter, open-label, multi-cohort trial that included 209 patients with dMMR recurrent or advanced solid tumors after receiving systemic therapy. Patients received 500 mg of dostarlimab intravenously every three weeks until they were given four doses. Then, patients received 1000 mg dostarlimab intravenously every six weeks until disease progression or unacceptable toxicity. The overall response rate, as determined by shrinkage in tumor size, was 41.6% (95% confidence interval [CI]; 34.9, 48.6), with 34.7 months as the median response duration. In conclusion, dostarlimab is an immunotherapy-based drug that has shown promising results in adult patients with recurrent or advanced dMMR EC. However, its efficacy in other cancer subtypes, the development of resistance to monotherapy, and efficacy and safety in combination with other immunotherapeutic drugs have not yet been studied.
Collapse
Affiliation(s)
- Siddhant Shukla
- Institute for Biotechnology, St. John's University, New York, New York 11439, United States
| | - Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, New York 11439, United States
| | - Shuzhen Chen
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, China
| | - Rainie Sun
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, New York 11439, United States
- Stuyvesant High School, New York, New York 10282, United States
| | - Liuya Wei
- School of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, China
| | - Zhe-Sheng Chen
- Institute for Biotechnology, St. John's University, New York, New York 11439, United States
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, New York 11439, United States
| |
Collapse
|
2
|
Zhang C, Chang F, Miao H, Fu Y, Tong X, Feng Y, Zheng W, Ma X. Construction and application of a multifunctional CHO cell platform utilizing Cre/ lox and Dre/ rox site-specific recombination systems. Front Bioeng Biotechnol 2023; 11:1320841. [PMID: 38173869 PMCID: PMC10761530 DOI: 10.3389/fbioe.2023.1320841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
During the development of traditional Chinese hamster ovary (CHO) cell lines, target genes randomly integrate into the genome upon entering the nucleus, resulting in unpredictable productivity of cell clones. The characterization and screening of high-yielding cell lines is a time-consuming and expensive process. Site-specific integration is recognized as an effective approach for overcoming random integration and improving production stability. We have designed a multifunctional expression cassette, called CDbox, which can be manipulated by the site-specific recombination systems Cre/lox and Dre/rox. The CDbox expression cassette was inserted at the Hipp11(H11) locus hotspot in the CHO-K1 genome using CRISPR/Cas9 technology, and a compliant CHO-CDbox cell platform was screened and obtained. The CHO-CDbox cell platform was transformed into a pool of EGFP-expressing cells using Cre/lox recombinase-mediated cassette exchange (RMCE) in only 2 weeks, and this expression remained stable for at least 75 generations without the need for drug stress. Subsequently, we used the Dre/rox system to directly eliminate the EGFP gene. In addition, two practical applications of the CHO-CDbox cell platform were presented. The first was the quick construction of the Pembrolizumab antibody stable expression strain, while the second was a protocol for the integration of surface-displayed and secreted antibodies on CHO cells. The previous research on site-specific integration of CHO cells has always focused on the single functionality of insertion of target genes. This newly developed CHO cell platform is expected to offer expanded applicability for protein production and gene function studies.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Feng Chang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hui Miao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yunhui Fu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xikui Tong
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yu Feng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Chocarro L, Blanco E, Arasanz H, Fernández-Rubio L, Bocanegra A, Echaide M, Garnica M, Ramos P, Fernández-Hinojal G, Vera R, Kochan G, Escors D. Clinical landscape of LAG-3-targeted therapy. IMMUNO-ONCOLOGY TECHNOLOGY 2022; 14:100079. [PMID: 35755891 PMCID: PMC9216443 DOI: 10.1016/j.iotech.2022.100079] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lymphocyte-activated gene 3 (LAG-3) is a cell surface inhibitory receptor and a key regulator of immune homeostasis with multiple biological activities related to T-cell functions. LAG-3 is considered a next-generation immune checkpoint of clinical importance, right next to programmed cell death protein 1 (PD-1) and cytotoxic T-cell lymphocyte antigen-4 (CTLA-4). Indeed, it is the third inhibitory receptor to be exploited in human anticancer immunotherapies. Several LAG-3-antagonistic immunotherapies are being evaluated at various stages of preclinical and clinical development. In addition, combination therapies blocking LAG-3 together with other immune checkpoints are also being evaluated at preclinical and clinical levels. Indeed, the co-blockade of LAG-3 with PD-1 is demonstrating encouraging results. A new generation of bispecific PD-1/LAG-3-blocking agents have also shown strong capacities to specifically target PD-1+ LAG-3+ highly dysfunctional T cells and enhance their proliferation and effector activities. Here we identify and classify preclinical and clinical trials conducted involving LAG-3 as a target through an extensive bibliographic research. The current understanding of LAG-3 clinical applications is summarized, and most of the publically available data up to date regarding LAG-3-targeted therapy preclinical and clinical research and development are reviewed and discussed.
Collapse
Affiliation(s)
- L. Chocarro
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - E. Blanco
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - H. Arasanz
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - L. Fernández-Rubio
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - A. Bocanegra
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - M. Echaide
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - M. Garnica
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - P. Ramos
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - G. Fernández-Hinojal
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - R. Vera
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - G. Kochan
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - D. Escors
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
4
|
Kumar S, Ghosh S, Sharma G, Wang Z, Kehry MR, Marino MH, Neben TY, Lu S, Luo S, Roberts S, Ramaswamy S, Danaee H, Jenkins D. Preclinical characterization of dostarlimab, a therapeutic anti-PD-1 antibody with potent activity to enhance immune function in in vitro cellular assays and in vivo animal models. MAbs 2021; 13:1954136. [PMID: 34313545 PMCID: PMC8317941 DOI: 10.1080/19420862.2021.1954136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Inhibitors of programmed cell death protein 1 (PD-1) and its ligand (PD-L1) have dramatically changed the treatment landscape for patients with cancer. Clinical activity of anti-PD-(L)1 antibodies has resulted in increased median overall survival and durable responses in patients across selected tumor types. To date, 6 PD-1 and PD-L1, here collectively referred to as PD-(L)1, pathway inhibitors are approved by the US Food and Drug Administration for clinical use. The availability of multiple anti-PD-(L)1 antibodies provides treatment and dosing regimen choice for patients with cancer. Here, we describe the nonclinical characterization of dostarlimab (TSR-042), a humanized anti-PD-1 antibody, which binds with high affinity to human PD-1 and effectively inhibits its interaction with its ligands, PD-L1 and PD-L2. Dostarlimab enhanced effector T-cell functions, including cytokine production, in vitro. Since dostarlimab does not bind mouse PD-1, its single-agent antitumor activity was evaluated using humanized mouse models. In this model system, dostarlimab demonstrated antitumor activity as assessed by tumor growth inhibition, which was associated with increased infiltration of immune cells. Single-dose and 4-week repeat-dose toxicology studies in cynomolgus monkeys indicated that dostarlimab was well tolerated. In a clinical setting, based on data from the GARNET trial, dostarlimab (Jemperli) was approved for the treatment of adult patients with mismatch repair–deficient recurrent or advanced endometrial cancer that had progressed on or following prior treatment with a platinum-containing regimen. Taken together, these data demonstrate that dostarlimab is a potent anti-PD-1 receptor antagonist, with properties that support its continued clinical investigation in patients with cancer.
Collapse
Affiliation(s)
- Sujatha Kumar
- Translational Research, Immuno-Oncology, Checkmate Pharmaceuticals, Cambridge, MA, USA
| | - Srimoyee Ghosh
- Oncology Experimental Medicine Unit, GlaxoSmithKline, Waltham, MA, USA
| | - Geeta Sharma
- Synthetic Lethal Research Unit, Oncolog, GlaxoSmithKline, Waltham, MA, USA
| | - Zebin Wang
- Translational Strategy & Research, GlaxoSmithKline,Waltham, MA, USA
| | | | | | | | - Sharon Lu
- Clinical Pharmacology, Scholar Rock, Cambridge, MA, USA
| | - Shouqi Luo
- Toxicology, Atea Pharmaceuticals, Boston, MA, USA
| | - Simon Roberts
- Nonclinical Development, Research In Vivo/In Vitro Translation, GlaxoSmithKline, Waltham, MA, USA
| | | | - Hadi Danaee
- Translational Medicine, Blue Print Medicines, Cambridge, MA, USA
| | | |
Collapse
|
5
|
Affinity maturation: highlights in the application of in vitro strategies for the directed evolution of antibodies. Emerg Top Life Sci 2021; 5:601-608. [PMID: 33660765 PMCID: PMC8726058 DOI: 10.1042/etls20200331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023]
Abstract
Affinity maturation is a key technique in protein engineering which is used to improve affinity and binding interactions in vitro, a process often required to fulfil the therapeutic potential of antibodies. There are many available display technologies and maturation methods developed over the years, which have been instrumental in the production of therapeutic antibodies. However, due to the inherent limitations in display capacity of these technologies, accommodation of expansive and complex library builds is still a challenge. In this article, we discuss our recent efforts in the affinity maturation of a difficult antibody lineage using an unbiased approach, which sought to explore a larger sequence space through the application of DNA recombination and shuffling techniques across the entire antibody region and selections using ribosome display. We also highlight the key features of several display technologies and diversification methods, and discuss the strategies devised by different groups in response to different challenges. Particular attention is drawn to examples which are aimed at the expansion of sequence, structural or experimental diversity through different means and approaches. Here, we provide our perspectives on these methodologies and the considerations involved in the design of effective strategies for the directed evolution of antibodies.
Collapse
|
6
|
Aebischer-Gumy C, Moretti P, Ollier R, Ries Fecourt C, Rousseau F, Bertschinger M. SPLICELECT™: an adaptable cell surface display technology based on alternative splicing allowing the qualitative and quantitative prediction of secreted product at a single-cell level. MAbs 2021; 12:1709333. [PMID: 31955651 PMCID: PMC6973322 DOI: 10.1080/19420862.2019.1709333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We describe a mammalian expression construct (SPLICELECT™) that allows the redirection of a proportion of a secreted protein onto the cell surface using alternative splicing: whereas the majority of the RNA is spliced into a transcript encoding a secreted protein, a weak splice donor site yields a secondary transcript encoding, in addition, a C-terminal transmembrane domain. The different sequence elements can be modified in order to modulate the level of cell surface display and of secretion in an independent manner. In this work, we demonstrated that the cell surface display of stable cell lines is correlated with the level of the secreted protein of interest, but also with the level of heterodimerization in the case of a bispecific antibody. It was also shown that this construct may be useful for rapid screening of multiple antibody candidates in binding assays following transient transfection. Thus, the correlation of product quantity and quality of the secreted and of membrane-displayed product in combination with the flexibility of the construct with regards to cell surface display/secretion levels make SPLICELECT™ a valuable tool with many potential applications, not limited to industrial cell line development or antibody engineering.
Collapse
Affiliation(s)
- Christel Aebischer-Gumy
- Cell Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Pierre Moretti
- Cell Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Romain Ollier
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Christelle Ries Fecourt
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - François Rousseau
- Antibody Engineering, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| | - Martin Bertschinger
- Cell Sciences, Ichnos Sciences SA (formerly Glenmark Pharmaceuticals SA), La Chaux-de-Fonds, Switzerland
| |
Collapse
|
7
|
Simultaneous Soluble Secretion and Surface Display of Proteins in Saccharomyces cerevisiae Using Inefficient Ribosomal Skipping. Methods Mol Biol 2020; 2070:321-334. [PMID: 31625104 DOI: 10.1007/978-1-4939-9853-1_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Combinatorial library screening platforms, such as yeast surface display, typically identify several candidate proteins that need further characterization and validation using soluble recombinant protein. However, recombinant production of these candidate proteins involves tedious and time-consuming subcloning steps. This, in turn, limits the number of candidate proteins that can be characterized. To address this bottleneck, we have developed a platform that exploits inefficient ribosomal skipping by the F2A peptide for simultaneous soluble secretion and cell surface display of protein in the yeast Saccharomyces cerevisiae. Here we provide detailed protocols utilizing this F2A-based yeast display system. We discuss specific recommendations for the purification of the secreted protein. Additionally, we provide suggestions for testing the functionality and binding specificity of the soluble secreted proteins using flow cytometry analysis.
Collapse
|
8
|
Abstract
Advances in reading, writing, and editing DNA are providing unprecedented insights into the complexity of immunological systems. This combination of systems and synthetic biology methods is enabling the quantitative and precise understanding of molecular recognition in adaptive immunity, thus providing a framework for reprogramming immune responses for translational medicine. In this review, we will highlight state-of-the-art methods such as immune repertoire sequencing, immunoinformatics, and immunogenomic engineering and their application toward adaptive immunity. We showcase novel and interdisciplinary approaches that have the promise of transforming the design and breadth of molecular and cellular immunotherapies.
Collapse
Affiliation(s)
- Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Roy A. Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
9
|
Abstract
While antibody libraries are traditionally screened in phage, bacterial, or yeast display formats, they are produced in large scale for pharmaceutical and commercial use in mammalian cell lines. The simpler organisms used for screening have significantly different folding and glycosylation machinery than mammalian cells; consequently, clones resulting from these libraries may require further optimization for mammalian cell expression. To streamline the antibody discovery process, we developed a Chinese hamster ovary (CHO) cell-based selection system that allows for long-term display of antibody Fab fragments. This system is facilitated by a semi-stable Epi-CHO episomal platform to maintain antibody expression for up to 2 months and is compatible with standard PCR-based mutagenesis strategies. This protocol describes the simple and accessible use of CHO display coupled with flow cytometry to enrich for antibody variants with increased ligand-binding affinity from large libraries of ~106 variants, using HER2-binding antibodies as an example.
Collapse
Affiliation(s)
- Annalee W Nguyen
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Kevin Le
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
10
|
Chakrabarti L, Zhuang L, Roy G, Bowen MA, Dall’Acqua WF, Hawley‐Nelson P, Marelli M. Amber suppression coupled with inducible surface display identifies cells with high recombinant protein productivity. Biotechnol Bioeng 2019; 116:793-804. [PMID: 30536645 PMCID: PMC6590230 DOI: 10.1002/bit.26892] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/06/2018] [Indexed: 12/19/2022]
Abstract
Cell line development (CLD) for biotherapeutics is a time- and resource-intensive process requiring the isolation and screening of large numbers of clones to identify high producers. Novel methods aimed at enhancing cell line screening efficiency using markers predictive of productivity early in the CLD process are needed to reliably generate high-yielding cell lines. To enable efficient and selective isolation of antibody expressing Chinese hamster ovary cells by fluorescence-activated cell sorting, we developed a strategy for the expression of antibodies containing a switchable membrane-associated domain to anchor an antibody to the membrane of the expressing cell. The switchable nature of the membrane domain is governed by the function of an orthogonal aminoacyl transfer RNA synthetase/tRNApyl pair, which directs a nonnatural amino acid (nnAA) to an amber codon encoded between the antibody and the membrane anchor. The process is "switchable" in response to nnAA in the medium, enabling a rapid transition between the surface display and secretion. We demonstrate that the level of cell surface display correlates with productivity and provides a method for enriching phenotypically stable high-producer cells. The strategy provides a means for selecting high-producing cells with potential applications to multiple biotherapeutic protein formats.
Collapse
Affiliation(s)
- Lina Chakrabarti
- Cell Culture and Fermentation Science, MedImmuneGaithersburgMaryland
| | - Li Zhuang
- Antibody Discovery and Protein Engineering, MedImmuneGaithersburgMaryland
| | - Gargi Roy
- Antibody Discovery and Protein Engineering, MedImmuneGaithersburgMaryland
| | - Michael A. Bowen
- Antibody Discovery and Protein Engineering, MedImmuneGaithersburgMaryland
| | | | - Pam Hawley‐Nelson
- Cell Culture and Fermentation Science, MedImmuneGaithersburgMaryland
| | - Marcello Marelli
- Antibody Discovery and Protein Engineering, MedImmuneGaithersburgMaryland
| |
Collapse
|
11
|
Nguyen AW, Le KC, Maynard JA. Identification of high affinity HER2 binding antibodies using CHO Fab surface display. Protein Eng Des Sel 2019; 31:91-101. [PMID: 29566240 DOI: 10.1093/protein/gzy004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 02/02/2018] [Indexed: 12/27/2022] Open
Abstract
Discovery of monoclonal antibodies is most commonly performed using phage or yeast display but mammalian cells are used for production because of the complex antibody structure, including the multiple disulfide bonds and glycosylation, required for function. As this transition between host organisms is often accompanied by impaired binding, folding or expression, development pipelines include laborious plate-based screening or engineering strategies to adapt an antibody to mammalian expression. To circumvent these problems, we developed a plasmid-based Fab screening platform on Chinese hamster ovary (CHO) cells which allows for antibody selection in the production host and in the presence of the same post-translational modifications as the manufactured product. A hu4D5 variant with low affinity for the human epidermal growth factor receptor (HER2) growth factor receptor was mutagenized and this library of ~10(6) unique clones was screened to identify variants with up to 400-fold enhanced HER2 binding. After two rounds of fluorescence activated cell sorting (FACS), four unique clones exhibited improved antigen binding when expressed on the CHO surface or as purified human IgG. Three of the four clones contained free cysteines in third complementarity determining region of the antibody heavy chain, which did not impair expression or cause aggregation. The improved clones had similar yields and stabilities as hu4D5 and similar sub-nanomolar affinities as measured by equilibrium binding to target cells. The limited size of mammalian libraries restricts the utility of this approach for naïve antibody library screening, but it is a powerful approach for antibody affinity maturation or specificity enhancement and is readily generalizable to engineering other surface receptors, including T-cell receptors and chimeric antigen receptors.
Collapse
Affiliation(s)
- Annalee W Nguyen
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Kevin C Le
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
12
|
Ghosh S, Sharma G, Travers J, Kumar S, Choi J, Jun HT, Kehry M, Ramaswamy S, Jenkins D. TSR-033, a Novel Therapeutic Antibody Targeting LAG-3, Enhances T-Cell Function and the Activity of PD-1 Blockade In Vitro and In Vivo. Mol Cancer Ther 2018; 18:632-641. [PMID: 30587557 DOI: 10.1158/1535-7163.mct-18-0836] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/25/2018] [Accepted: 12/18/2018] [Indexed: 11/16/2022]
Abstract
Progressive upregulation of checkpoints on tumor-infiltrating lymphocytes promotes an immunosuppressive tumor microenvironment, severely compromising tumor immunity. Lymphocyte activation gene-3 (LAG-3) is a coinhibitory receptor associated with impaired T-cell function and is frequently coexpressed with programmed cell death protein-1 (PD-1) in the context of human cancers. Targeting LAG-3 in conjunction with PD-1 thus represents a strategy to amplify and broaden the therapeutic impact of PD-1 blockade alone. We have generated a high affinity and selective humanized monoclonal IgG4 antibody, TSR-033, which binds human LAG-3 and serves as a functional antagonist, enhancing in vitro T-cell activation both in mixed lymphocyte reactions and staphylococcal enterotoxin B-driven stimulation assays. In a humanized mouse non-small cell lung carcinoma model, TSR-033 boosted the antitumor efficacy of PD-1 monotherapy, with a concomitant increase in immune activation. Analogous studies in a murine syngeneic tumor model using surrogate antibodies demonstrated significant synergy between LAG-3 and PD-1 blockade-combination treatment led to a marked improvement in therapeutic efficacy, increased T-cell proliferation, IFNγ production, and elicited durable immunologic memory upon tumor rechallenge. Taken together, the pharmacologic activity of TSR-033 demonstrates that it is a potent anti-LAG-3 therapeutic antibody and supports its clinical investigation in cancer patients.
Collapse
|
13
|
Enhancers Improve the AID-Induced Hypermutation in Episomal Vector for Antibody Affinity Maturation in Mammalian Cell Display. Antibodies (Basel) 2018; 7:antib7040042. [PMID: 31544892 PMCID: PMC6698961 DOI: 10.3390/antib7040042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/03/2022] Open
Abstract
The induction of somatic hypermutation (SHM) in various cell lines by activation-induced cytidine deaminase (AID) has been used in protein-directed selection, especially in antibody affinity maturation. Several antibody affinity maturation systems based on mammalian cells have been developed in recent years, i.e., 293T, H1299, Raji and CHO cells. However, the efficiency of in vitro AID-induced hypermutation is low, restricting the application of such systems. In this study, we examined the role of Ig and Ek enhancers in enhancing SHM in the episomal vector pCEP4 that expresses an anti-high mobility group box 1 (HMGB1) full-length antibody. The plasmid containing the two enhancers exhibited two-fold improvement of mutation rate over pCEP4 in an AID expression H1299 cell line (H1299-AID). With the engineered episomal vector, we improved the affinity of this antibody in H1299-AID cells by 20-fold.
Collapse
|
14
|
Homma K, Anbo H, Noguchi T, Fukuchi S. Both Intrinsically Disordered Regions and Structural Domains Evolve Rapidly in Immune-Related Mammalian Proteins. Int J Mol Sci 2018; 19:ijms19123860. [PMID: 30518031 PMCID: PMC6321239 DOI: 10.3390/ijms19123860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/01/2018] [Accepted: 12/02/2018] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic proteins consist of structural domains (SDs) and intrinsically disordered regions (IDRs), i.e., regions that by themselves do not assume unique three-dimensional structures. IDRs are generally subject to less constraint and evolve more rapidly than SDs. Proteins with a lower number of protein-to-protein interactions (PPIs) are also less constrained and tend to evolve fast. Extracellular proteins of mammals, especially immune-related extracellular proteins, on average have relatively high evolution rates. This article aims to examine if a high evolution rate in IDRs or that in SDs accounts for the rapid evolution of extracellular proteins. To this end, we classified eukaryotic proteins based on their cellular localizations and analyzed them. Moreover, we divided proteins into SDs and IDRs and calculated the respective evolution rate. Fractional IDR content is positively correlated with evolution rate. For their fractional IDR content, immune-related extracellular proteins show an aberrantly high evolution rate. IDRs evolve more rapidly than SDs in most subcellular localizations. In extracellular proteins, however, the difference is diminished. For immune-related proteins in mammals in particular, the evolution rates in SDs come close to those in IDRs. Thus high evolution rates in both IDRs and SDs account for the rapid evolution of immune-related proteins.
Collapse
Affiliation(s)
- Keiichi Homma
- Department of Life Science and Informatics, Maebashi Institute of Technology, 460-1 Kamisadori-machi, Maebashi-shi 371-0816, Japan.
| | - Hiroto Anbo
- Department of Life Science and Informatics, Maebashi Institute of Technology, 460-1 Kamisadori-machi, Maebashi-shi 371-0816, Japan.
| | - Tamotsu Noguchi
- Pharmaceutical Education Research Center, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose-shi, Tokyo 204-8588, Japan.
| | - Satoshi Fukuchi
- Department of Life Science and Informatics, Maebashi Institute of Technology, 460-1 Kamisadori-machi, Maebashi-shi 371-0816, Japan.
| |
Collapse
|
15
|
Transient AID expression for in situ mutagenesis with improved cellular fitness. Sci Rep 2018; 8:9413. [PMID: 29925928 PMCID: PMC6010430 DOI: 10.1038/s41598-018-27717-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/07/2018] [Indexed: 12/13/2022] Open
Abstract
Activation induced cytidine deaminase (AID) in germinal center B cells introduces somatic DNA mutations in transcribed immunoglobulin genes to increase antibody diversity. Ectopic expression of AID coupled with selection has been successfully employed to develop proteins with desirable properties. However, this process is laborious and time consuming because many rounds of selection are typically required to isolate the target proteins. AID expression can also adversely affect cell viability due to off target mutagenesis. Here we compared stable and transient expression of AID mutants with different catalytic activities to determine conditions for maximum accumulation of mutations with minimal toxicity. We find that transient (3–5 days) expression of an AID upmutant in the presence of selection pressure could induce a high rate of mutagenesis in reporter genes without affecting cells growth and expansion. Our findings may help improve protein evolution by ectopic expression of AID and other enzymes that can induce DNA mutations.
Collapse
|
16
|
Cruz-Teran CA, Tiruthani K, Mischler A, Rao BM. Inefficient Ribosomal Skipping Enables Simultaneous Secretion and Display of Proteins in Saccharomyces cerevisiae. ACS Synth Biol 2017; 6:2096-2107. [PMID: 28805373 PMCID: PMC5905331 DOI: 10.1021/acssynbio.7b00144] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The need for recombinant expression of soluble protein slows the validation of engineered proteins isolated from combinatorial libraries and limits the number of protein variants evaluated. To overcome this bottleneck, we describe a system for simultaneous cell surface display and soluble secretion of proteins in Saccharomyces cerevisiae based on inefficient ribosomal skipping. Ribosomal skipping mediated by "self-cleaving" 2A peptides produces two proteins from a single open reading frame. Incorporation of the F2A peptide sequence-with ∼50% efficiency of ribosomal skipping-between the protein of interest and the yeast cell wall protein Aga2 results in simultaneous expression of both the solubly secreted protein and the protein-Aga2 fusion that is tethered to the yeast cell surface. We show that binding proteins derived from the Sso7d scaffold and the homodimeric enzyme glucose oxidase can be simultaneously secreted solubly and expressed as yeast cell surface fusions using the F2A-based system. Furthermore, a combinatorial library of Sso7d mutants can be screened to isolate binders with higher affinity for a model target (lysozyme), and the pool of higher affinity binders can be characterized in soluble form. Significantly, we show that both N- and C-terminal fusions to Aga2 can be simultaneously secreted solubly and displayed on the cell surface; this is particularly advantageous because protein functionality can be affected by the specific position of Aga2 in the protein fusion. We expect that the F2A-based yeast surface display and secretion system will be a useful tool for protein engineering and enable efficient characterization of individual clones isolated from combinatorial libraries.
Collapse
Affiliation(s)
| | | | - Adam Mischler
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC
| | - Balaji M. Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC
| |
Collapse
|
17
|
Klose D, Woitok M, Niesen J, Beerli RR, Grawunder U, Fischer R, Barth S, Fendel R, Nachreiner T. Generation of an artificial human B cell line test system using Transpo-mAbTM technology to evaluate the therapeutic efficacy of novel antigen-specific fusion proteins. PLoS One 2017; 12:e0180305. [PMID: 28704435 PMCID: PMC5509223 DOI: 10.1371/journal.pone.0180305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Accepted: 06/13/2017] [Indexed: 12/21/2022] Open
Abstract
The antigen-specific targeting of autoreactive B cells via their unique B cell receptors (BCRs) is a novel and promising alternative to the systemic suppression of humoral immunity. We generated and characterized cytolytic fusion proteins based on an existing immunotoxin comprising tetanus toxoid fragment C (TTC) as the targeting component and the modified Pseudomonas aeruginosa exotoxin A (ETA') as the cytotoxic component. The immunotoxin was reconfigured to replace ETA' with either the granzyme B mutant R201K or MAPTau as human effector domains. The novel cytolytic fusion proteins were characterized with a recombinant human lymphocytic cell line developed using Transpo-mAb™ technology. Genes encoding a chimeric TTC-reactive immunoglobulin G were successfully integrated into the genome of the precursor B cell line REH so that the cells could present TTC-reactive BCRs on their surface. These cells were used to investigate the specific cytotoxicity of GrB(R201K)-TTC and TTC-MAPTau, revealing that the serpin proteinase inhibitor 9-resistant granzyme B R201K mutant induced apoptosis specifically in the lymphocytic cell line. Our data confirm that antigen-based fusion proteins containing granzyme B (R201K) are suitable candidates for the depletion of autoreactive B cells.
Collapse
Affiliation(s)
- Diana Klose
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| | - Mira Woitok
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Judith Niesen
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | | | | | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute of Molecular Biotechnology (Biology VII), RWTH Aachen University, Aachen, Germany
| | - Stefan Barth
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
- South African Research Chair in Cancer Biotechnology, Institute of Infectious Disease and Molecular Medicine (IDM), Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- * E-mail:
| | - Thomas Nachreiner
- Department of Experimental Medicine and Immunotherapy, Institute for Applied Medical Engineering, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
18
|
Immunogenomic engineering of a plug-and-(dis)play hybridoma platform. Nat Commun 2016; 7:12535. [PMID: 27531490 PMCID: PMC4992066 DOI: 10.1038/ncomms12535] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 07/11/2016] [Indexed: 12/22/2022] Open
Abstract
Hybridomas, fusions of primary mouse B cells and myelomas, are stable, rapidly-proliferating cell lines widely utilized for antibody screening and production. Antibody specificity of a hybridoma clone is determined by the immunoglobulin sequence of the primary B cell. Here we report a platform for rapid reprogramming of hybridoma antibody specificity by immunogenomic engineering. Here we use CRISPR-Cas9 to generate double-stranded breaks in immunoglobulin loci, enabling deletion of the native variable light chain and replacement of the endogenous variable heavy chain with a fluorescent reporter protein (mRuby). New antibody genes are introduced by Cas9-targeting of mRuby for replacement with a donor construct encoding a light chain and a variable heavy chain, resulting in full-length antibody expression. Since hybridomas surface express and secrete antibodies, reprogrammed cells are isolated using flow cytometry and cell culture supernatant is used for antibody production. Plug-and-(dis)play hybridomas can be reprogrammed with only a single transfection and screening step.
Collapse
|
19
|
Waldmeier L, Hellmann I, Gutknecht CK, Wolter FI, Cook SC, Reddy ST, Grawunder U, Beerli RR. Transpo-mAb display: Transposition-mediated B cell display and functional screening of full-length IgG antibody libraries. MAbs 2016; 8:726-40. [PMID: 26986818 DOI: 10.1080/19420862.2016.1160990] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
In vitro antibody display and screening technologies geared toward the discovery and engineering of clinically applicable antibodies have evolved from screening artificial antibody formats, powered by microbial display technologies, to screening of natural, full-IgG molecules expressed in mammalian cells to readily yield lead antibodies with favorable properties in production and clinical applications. Here, we report the development and characterization of a novel, next-generation mammalian cell-based antibody display and screening platform called Transpo-mAb Display, offering straightforward and efficient generation of cellular libraries by using non-viral transposition technology to obtain stable antibody expression. Because Transpo-mAb Display uses DNA-transposable vectors with substantial cargo capacity, genomic antibody heavy chain expression constructs can be utilized that undergo the natural switch from membrane bound to secreted antibody expression in B cells by way of alternative splicing of Ig-heavy chain transcripts from the same genomic expression cassette. We demonstrate that stably transposed cells co-express transmembrane and secreted antibodies at levels comparable to those provided by dedicated constructs for secreted and membrane-associated IgGs. This unique feature expedites the screening and antibody characterization process by obviating the need for intermediate sequencing and re-cloning of individual antibody clones into separate expression vectors for functional screening purposes. In a series of proof-of-concept experiments, we demonstrate the seamless integration of antibody discovery with functional screening for various antibody properties, including binding affinity and suitability for preparation of antibody-drug conjugates.
Collapse
Affiliation(s)
| | | | | | | | - Skylar C Cook
- b Department of Biosystems Science and Engineering , ETH Zurich , Basel , Switzerland
| | - Sai T Reddy
- b Department of Biosystems Science and Engineering , ETH Zurich , Basel , Switzerland
| | | | | |
Collapse
|
20
|
Van Deventer JA, Kelly RL, Rajan S, Wittrup KD, Sidhu SS. A switchable yeast display/secretion system. Protein Eng Des Sel 2015; 28:317-25. [PMID: 26333274 PMCID: PMC4596280 DOI: 10.1093/protein/gzv043] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 11/13/2022] Open
Abstract
Display technologies such as yeast and phage display offer powerful alternatives to traditional immunization-based antibody discovery, but require conversion of displayed proteins into soluble form prior to downstream characterization. Here we utilize amber suppression to implement a yeast-based switchable display/secretion system that enables the immediate production of soluble, antibody-like reagents at the end of screening efforts. Model selections in the switchable format remain efficient, and library screening in the switchable format yields renewable sources of affinity reagents exhibiting nanomolar binding affinities. These results confirm that this system provides a seamless link between display-based screening and the production and evaluation of soluble forms of candidate binding proteins. Switchable display/secretion libraries provide a cloning-free, accessible approach to affinity reagent generation.
Collapse
Affiliation(s)
- James A Van Deventer
- Koch Institute for Integrative Cancer Research Department of Chemical Engineering
| | - Ryan L Kelly
- Koch Institute for Integrative Cancer Research Department of Biological Engineering, Massachusetts Institute of Technology, 500 Main Street, Building 76 Room 289, Cambridge, MA 02139, USA
| | - Saravanan Rajan
- Department of Molecular Genetics, The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, Canada M5S 3E1
| | - K Dane Wittrup
- Koch Institute for Integrative Cancer Research Department of Chemical Engineering Department of Biological Engineering, Massachusetts Institute of Technology, 500 Main Street, Building 76 Room 289, Cambridge, MA 02139, USA
| | - Sachdev S Sidhu
- Department of Molecular Genetics, The Donnelly Centre, University of Toronto, 160 College Street, Toronto, ON, Canada M5S 3E1
| |
Collapse
|
21
|
Fusil F, Calattini S, Amirache F, Mancip J, Costa C, Robbins JB, Douam F, Lavillette D, Law M, Defrance T, Verhoeyen E, Cosset FL. A Lentiviral Vector Allowing Physiologically Regulated Membrane-anchored and Secreted Antibody Expression Depending on B-cell Maturation Status. Mol Ther 2015; 23:1734-1747. [PMID: 26281898 DOI: 10.1038/mt.2015.148] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 08/07/2015] [Indexed: 12/24/2022] Open
Abstract
The development of lentiviral vectors (LVs) for expression of a specific antibody can be achieved through the transduction of mature B-cells. This approach would provide a versatile tool for active immunotherapy strategies for infectious diseases or cancer, as well as for protein engineering. Here, we created a lentiviral expression system mimicking the natural production of these two distinct immunoglobulin isoforms. We designed a LV (FAM2-LV) expressing an anti-HCV-E2 surface glycoprotein antibody (AR3A) as a membrane-anchored Ig form or a soluble Ig form, depending on the B-cell maturation status. FAM2-LV induced high-level and functional membrane expression of the transgenic antibody in a nonsecretory B-cell line. In contrast, a plasma cell (PC) line transduced with FAM2-LV preferentially produced the secreted transgenic antibody. Similar results were obtained with primary B-cells transduced ex vivo. Most importantly, FAM2-LV transduced primary B-cells efficiently differentiated into PCs, which secreted the neutralizing anti-HCV E2 antibody upon adoptive transfer into immunodeficient NSG (NOD/SCIDγc(-/-)) recipient mice. Altogether, these results demonstrate that the conditional FAM2-LV allows preferential expression of the membrane-anchored form of an antiviral neutralizing antibody in B-cells and permits secretion of a soluble antibody following B-cell maturation into PCs in vivo.
Collapse
Affiliation(s)
- Floriane Fusil
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France; CNRS, UMR5308, Lyon, France; LabEx Ecofect, Université de Lyon, Lyon, France
| | - Sara Calattini
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France; CNRS, UMR5308, Lyon, France; LabEx Ecofect, Université de Lyon, Lyon, France
| | - Fouzia Amirache
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France; CNRS, UMR5308, Lyon, France; LabEx Ecofect, Université de Lyon, Lyon, France
| | - Jimmy Mancip
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France; CNRS, UMR5308, Lyon, France; LabEx Ecofect, Université de Lyon, Lyon, France
| | - Caroline Costa
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France; CNRS, UMR5308, Lyon, France; LabEx Ecofect, Université de Lyon, Lyon, France
| | - Justin B Robbins
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA; Present address: Organovo Holdings, Inc., San Diego, California, USA
| | - Florian Douam
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France; CNRS, UMR5308, Lyon, France; LabEx Ecofect, Université de Lyon, Lyon, France; Present address: Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Dimitri Lavillette
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France; CNRS, UMR5308, Lyon, France; LabEx Ecofect, Université de Lyon, Lyon, France; Present address: Institut Pasteur Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Mansun Law
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, USA
| | - Thierry Defrance
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France; CNRS, UMR5308, Lyon, France
| | - Els Verhoeyen
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France; CNRS, UMR5308, Lyon, France; LabEx Ecofect, Université de Lyon, Lyon, France; Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), équipe "contrôle métabolique des morts cellulaires", Nice, France
| | - François-Loïc Cosset
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France; Inserm, U1111, Lyon, France; Ecole Normale Supérieure de Lyon, Lyon, France; Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France; CNRS, UMR5308, Lyon, France; LabEx Ecofect, Université de Lyon, Lyon, France.
| |
Collapse
|
22
|
Genetic methods of antibody generation and their use in immunohistochemistry. Methods 2014; 70:20-7. [DOI: 10.1016/j.ymeth.2014.02.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 01/22/2014] [Accepted: 02/21/2014] [Indexed: 12/18/2022] Open
|
23
|
Bowers PM, Verdino P, Wang Z, da Silva Correia J, Chhoa M, Macondray G, Do M, Neben TY, Horlick RA, Stanfield RL, Wilson IA, King DJ. Nucleotide insertions and deletions complement point mutations to massively expand the diversity created by somatic hypermutation of antibodies. J Biol Chem 2014; 289:33557-67. [PMID: 25320089 DOI: 10.1074/jbc.m114.607176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
During somatic hypermutation (SHM), deamination of cytidine by activation-induced cytidine deaminase and subsequent DNA repair generates mutations within immunoglobulin V-regions. Nucleotide insertions and deletions (indels) have recently been shown to be critical for the evolution of antibody binding. Affinity maturation of 53 antibodies using in vitro SHM in a non-B cell context was compared with mutation patterns observed for SHM in vivo. The origin and frequency of indels seen during in vitro maturation were similar to that in vivo. Indels are localized to CDRs, and secondary mutations within insertions further optimize antigen binding. Structural determination of an antibody matured in vitro and comparison with human-derived antibodies containing insertions reveal conserved patterns of antibody maturation. These findings indicate that activation-induced cytidine deaminase acting on V-region sequences is sufficient to initiate authentic formation of indels in vitro and in vivo and that point mutations, indel formation, and clonal selection form a robust tripartite system for antibody evolution.
Collapse
Affiliation(s)
| | - Petra Verdino
- From Anaptysbio Inc., San Diego, California 92121 and
| | | | | | - Mark Chhoa
- From Anaptysbio Inc., San Diego, California 92121 and
| | | | - Minjee Do
- From Anaptysbio Inc., San Diego, California 92121 and
| | | | | | - Robyn L Stanfield
- the Department of Integrative Structural and Computational Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Ian A Wilson
- the Department of Integrative Structural and Computational Molecular Biology and Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California 92037
| | - David J King
- From Anaptysbio Inc., San Diego, California 92121 and
| |
Collapse
|
24
|
Lane MD, Seelig B. Advances in the directed evolution of proteins. Curr Opin Chem Biol 2014; 22:129-36. [PMID: 25309990 DOI: 10.1016/j.cbpa.2014.09.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/13/2014] [Indexed: 12/21/2022]
Abstract
Natural evolution has produced a great diversity of proteins that can be harnessed for numerous applications in biotechnology and pharmaceutical science. Commonly, specific applications require proteins to be tailored by protein engineering. Directed evolution is a type of protein engineering that yields proteins with the desired properties under well-defined conditions and in a practical time frame. While directed evolution has been employed for decades, recent creative developments enable the generation of proteins with previously inaccessible properties. Novel selection strategies, faster techniques, the inclusion of unnatural amino acids or modifications, and the symbiosis of rational design approaches and directed evolution continue to advance protein engineering.
Collapse
Affiliation(s)
- Michael D Lane
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Burckhard Seelig
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA; BioTechnology Institute, University of Minnesota, St. Paul, MN, USA.
| |
Collapse
|
25
|
Adams JJ, Sidhu SS. Synthetic antibody technologies. Curr Opin Struct Biol 2013; 24:1-9. [PMID: 24721448 DOI: 10.1016/j.sbi.2013.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 11/10/2013] [Indexed: 11/19/2022]
Abstract
Synthetic antibody technologies enable the rapid production of affinity reagents through in vitro selections. The production of synthetic antibodies relies on sophisticated design strategies to produce combinatorial diversity libraries that encode antibody populations optimized for molecular recognition. The technology takes advantage of display technologies that enable amplification, selection and manipulation of antibodies in vitro. The rapid yet highly controlled nature of these methods has opened new avenues in basic and clinical research. Here we review recent advances in structural biology facilitated by synthetic antibodies, as well as advances in library designs and selection methods.
Collapse
Affiliation(s)
- Jarrett J Adams
- Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Donnelly CCBR, 160 College Street, Toronto, Ontario M5S 3E1, Canada
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research and Department of Molecular Genetics, University of Toronto, Donnelly CCBR, 160 College Street, Toronto, Ontario M5S 3E1, Canada.
| |
Collapse
|
26
|
Tomimatsu K, Matsumoto SE, Tanaka H, Yamashita M, Nakanishi H, Teruya K, Kazuno S, Kinjo T, Hamasaki T, Kusumoto KI, Kabayama S, Katakura Y, Shirahata S. A rapid screening and production method using a novel mammalian cell display to isolate human monoclonal antibodies. Biochem Biophys Res Commun 2013; 441:59-64. [DOI: 10.1016/j.bbrc.2013.10.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 10/04/2013] [Indexed: 11/29/2022]
|
27
|
Xu Y, Roach W, Sun T, Jain T, Prinz B, Yu TY, Torrey J, Thomas J, Bobrowicz P, Vasquez M, Wittrup KD, Krauland E. Addressing polyspecificity of antibodies selected from an in vitro yeast presentation system: a FACS-based, high-throughput selection and analytical tool. Protein Eng Des Sel 2013; 26:663-70. [DOI: 10.1093/protein/gzt047] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
28
|
Shaheen HH, Prinz B, Chen MT, Pavoor T, Lin S, Houston-Cummings NR, Moore R, Stadheim TA, Zha D. A dual-mode surface display system for the maturation and production of monoclonal antibodies in glyco-engineered Pichia pastoris. PLoS One 2013; 8:e70190. [PMID: 23875020 PMCID: PMC3707868 DOI: 10.1371/journal.pone.0070190] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/14/2013] [Indexed: 11/22/2022] Open
Abstract
State-of-the-art monoclonal antibody (mAb) discovery methods that utilize surface display techniques in prokaryotic and eukaryotic cells require multiple steps of reformatting and switching of hosts to transition from display to expression. This results in a separation between antibody affinity maturation and full-length mAb production platforms. Here, we report for the first time, a method in Glyco-engineered Pichiapastoris that enables simultaneous surface display and secretion of full-length mAb molecules with human-like N-glycans using the same yeast cell. This paradigm takes advantage of homo-dimerization of the Fc portion of an IgG molecule to a surface-anchored "bait" Fc, which results in targeting functional “half” IgGs to the cell wall of Pichiapastoris without interfering with the secretion of full length mAb. We show the utility of this method in isolating high affinity, well-expressed anti-PCSK9 leads from a designed library that was created by mating yeasts containing either light chain or heavy chain IgG libraries. Coupled with Glyco-engineered Pichiapastoris, this method provides a powerful tool for the discovery and production of therapeutic human mAbs in the same host thus improving drug developability and potentially shortening the discovery time cycle.
Collapse
Affiliation(s)
- Hussam H. Shaheen
- GlycoFi, Biologics Discovery, Merck Research Laboratories, Merck & Co., Inc., Lebanon, New Hampshire, United States of America
- * E-mail: (HS); (DZ)
| | - Bianka Prinz
- GlycoFi, Biologics Discovery, Merck Research Laboratories, Merck & Co., Inc., Lebanon, New Hampshire, United States of America
| | - Ming-Tang Chen
- GlycoFi, Biologics Discovery, Merck Research Laboratories, Merck & Co., Inc., Lebanon, New Hampshire, United States of America
| | - Tej Pavoor
- GlycoFi, Biologics Discovery, Merck Research Laboratories, Merck & Co., Inc., Lebanon, New Hampshire, United States of America
| | - Song Lin
- GlycoFi, Biologics Discovery, Merck Research Laboratories, Merck & Co., Inc., Lebanon, New Hampshire, United States of America
| | - Nga Rewa Houston-Cummings
- GlycoFi, Biologics Discovery, Merck Research Laboratories, Merck & Co., Inc., Lebanon, New Hampshire, United States of America
| | - Renee Moore
- GlycoFi, Biologics Discovery, Merck Research Laboratories, Merck & Co., Inc., Lebanon, New Hampshire, United States of America
| | - Terrance A. Stadheim
- GlycoFi, Biologics Discovery, Merck Research Laboratories, Merck & Co., Inc., Lebanon, New Hampshire, United States of America
| | - Dongxing Zha
- GlycoFi, Biologics Discovery, Merck Research Laboratories, Merck & Co., Inc., Lebanon, New Hampshire, United States of America
- * E-mail: (HS); (DZ)
| |
Collapse
|