1
|
Boedtkjer E, Ara T. Strengthening the basics: acids and bases influence vascular structure and function, tissue perfusion, blood pressure, and human cardiovascular disease. Pflugers Arch 2024; 476:623-637. [PMID: 38383822 DOI: 10.1007/s00424-024-02926-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Acids and their conjugate bases accumulate in or dissipate from the interstitial space when tissue perfusion does not match the metabolic demand. Extracellular acidosis dilates most arterial beds, but associated acid-base disturbances-e.g., intracellular acidification and decreases in HCO3- concentration-can also elicit pro-contractile influences that diminish vasodilation and even dominate in some vascular beds to cause vasoconstriction. The ensemble activities of the acid-base-sensitive reactions in vascular smooth muscle and endothelial cells optimize vascular resistance for blood pressure control and direct the perfusion towards active tissue. In this review, we describe the mechanisms of intracellular pH regulation in the vascular wall and discuss how vascular smooth muscle and endothelial cells sense acid-base disturbances. We further deliberate on the functional effects of local acid-base disturbances and their integrated cardiovascular consequences under physiological and pathophysiological conditions. Finally, we address how mutations and polymorphisms in the molecular machinery that regulates pH locally and senses acid-base disturbances in the vascular wall can result in cardiovascular disease. Based on the emerging molecular insight, we propose that targeting local pH-dependent effectors-rather than systemic acid-base disturbances-has therapeutic potential to interfere with the progression and reduce the severity of cardiovascular disease.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, DK-8000, Aarhus, Denmark.
| | - Tarannum Ara
- Department of Biomedicine, Aarhus University, Hoegh-Guldbergs Gade 10, DK-8000, Aarhus, Denmark
| |
Collapse
|
2
|
Holmberg SR, Sakamoto Y, Kato A, Romero MF. The role of Na +-coupled bicarbonate transporters (NCBT) in health and disease. Pflugers Arch 2024; 476:479-503. [PMID: 38536494 PMCID: PMC11338471 DOI: 10.1007/s00424-024-02937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/11/2024]
Abstract
Cellular and organism survival depends upon the regulation of pH, which is regulated by highly specialized cell membrane transporters, the solute carriers (SLC) (For a comprehensive list of the solute carrier family members, see: https://www.bioparadigms.org/slc/ ). The SLC4 family of bicarbonate (HCO3-) transporters consists of ten members, sorted by their coupling to either sodium (NBCe1, NBCe2, NBCn1, NBCn2, NDCBE), chloride (AE1, AE2, AE3), or borate (BTR1). The ionic coupling of SLC4A9 (AE4) remains controversial. These SLC4 bicarbonate transporters may be controlled by cellular ionic gradients, cellular membrane voltage, and signaling molecules to maintain critical cellular and systemic pH (acid-base) balance. There are profound consequences when blood pH deviates even a small amount outside the normal range (7.35-7.45). Chiefly, Na+-coupled bicarbonate transporters (NCBT) control intracellular pH in nearly every living cell, maintaining the biological pH required for life. Additionally, NCBTs have important roles to regulate cell volume and maintain salt balance as well as absorption and secretion of acid-base equivalents. Due to their varied tissue expression, NCBTs have roles in pathophysiology, which become apparent in physiologic responses when their expression is reduced or genetically deleted. Variations in physiological pH are seen in a wide variety of conditions, from canonically acid-base related conditions to pathologies not necessarily associated with acid-base dysfunction such as cancer, glaucoma, or various neurological diseases. The membranous location of the SLC4 transporters as well as recent advances in discovering their structural biology makes them accessible and attractive as a druggable target in a disease context. The role of sodium-coupled bicarbonate transporters in such a large array of conditions illustrates the potential of treating a wide range of disease states by modifying function of these transporters, whether that be through inhibition or enhancement.
Collapse
Affiliation(s)
- Shannon R Holmberg
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA
- Biochemistry & Molecular Biology, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA
| | - Yohei Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Akira Kato
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-Ku, Yokohama, 226-8501, Japan
| | - Michael F Romero
- Physiology & Biomedical Engineering, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN 55905, USA.
- Nephrology & Hypertension, Mayo Clinic College of Medicine & Science, 200 1st Street SW, Rochester, MN, USA.
| |
Collapse
|
3
|
Nolze A, Matern S, Grossmann C. Calcineurin Is a Universal Regulator of Vessel Function-Focus on Vascular Smooth Muscle Cells. Cells 2023; 12:2269. [PMID: 37759492 PMCID: PMC10528183 DOI: 10.3390/cells12182269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Calcineurin, a serine/threonine phosphatase regulating transcription factors like NFaT and CREB, is well known for its immune modulatory effects and role in cardiac hypertrophy. Results from experiments with calcineurin knockout animals and calcineurin inhibitors indicate that calcineurin also plays a crucial role in vascular function, especially in vascular smooth muscle cells (VSMCs). In the aorta, calcineurin stimulates the proliferation and migration of VSMCs in response to vascular injury or angiotensin II administration, leading to pathological vessel wall thickening. In the heart, calcineurin mediates coronary artery formation and VSMC differentiation, which are crucial for proper heart development. In pulmonary VSMCs, calcineurin/NFaT signaling regulates the release of Ca2+, resulting in increased vascular tone followed by pulmonary arterial hypertension. In renal VSMCs, calcineurin regulates extracellular matrix secretion promoting fibrosis development. In the mesenteric and cerebral arteries, calcineurin mediates a phenotypic switch of VSMCs leading to altered cell function. Gaining deeper insights into the underlying mechanisms of calcineurin signaling will help researchers to understand developmental and pathogenetical aspects of the vasculature. In this review, we provide an overview of the physiological function and pathophysiology of calcineurin in the vascular system with a focus on vascular smooth muscle cells in different organs. Overall, there are indications that under certain pathological settings reduced calcineurin activity seems to be beneficial for cardiovascular health.
Collapse
Affiliation(s)
| | | | - Claudia Grossmann
- Julius Bernstein Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
4
|
Wang J, Zahra A, Wang Y, Wu J. Understanding the Physiological Role of Electroneutral Na+-Coupled HCO3− Cotransporter and Its Therapeutic Implications. Pharmaceuticals (Basel) 2022; 15:ph15091082. [PMID: 36145304 PMCID: PMC9505461 DOI: 10.3390/ph15091082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Acid–base homeostasis is critical for proper physiological function and pathology. The SLC4 family of HCO3− transmembrane cotransporters is one of the HCO3− transmembrane transport carriers responsible for cellular pH regulation and the uptake or secretion of HCO3− in epithelial cells. NBCn1 (SLC4A7), an electroneutral Na+/HCO3− cotransporter, is extensively expressed in several tissues and functions as a cotransporter for net acid extrusion after cellular acidification. However, the expression and activity level of NBCn1 remain elusive. In addition, NBCn1 has been involved in numerous other cellular processes such as cell volume, cell death/survival balance, transepithelial transport, as well as regulation of cell viability. This review aims to give an inclusive overview of the most recent advances in the research of NBCn1, emphasizing the basic features, regulation, and tissue-specific physiology as well as the development and application of potent inhibitors of NBCn1 transporter in cancer therapy. Research and development of targeted therapies should be carried out for NBCn1 and its associated pathways.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Aqeela Zahra
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - YunFu Wang
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
| | - Jianping Wu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan 442000, China
- Correspondence:
| |
Collapse
|
5
|
Ion Channels, Transporters, and Sensors Interact with the Acidic Tumor Microenvironment to Modify Cancer Progression. Rev Physiol Biochem Pharmacol 2021; 182:39-84. [PMID: 34291319 DOI: 10.1007/112_2021_63] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Solid tumors, including breast carcinomas, are heterogeneous but typically characterized by elevated cellular turnover and metabolism, diffusion limitations based on the complex tumor architecture, and abnormal intra- and extracellular ion compositions particularly as regards acid-base equivalents. Carcinogenesis-related alterations in expression and function of ion channels and transporters, cellular energy levels, and organellar H+ sequestration further modify the acid-base composition within tumors and influence cancer cell functions, including cell proliferation, migration, and survival. Cancer cells defend their cytosolic pH and HCO3- concentrations better than normal cells when challenged with the marked deviations in extracellular H+, HCO3-, and lactate concentrations typical of the tumor microenvironment. Ionic gradients determine the driving forces for ion transporters and channels and influence the membrane potential. Cancer and stromal cells also sense abnormal ion concentrations via intra- and extracellular receptors that modify cancer progression and prognosis. With emphasis on breast cancer, the current review first addresses the altered ion composition and the changes in expression and functional activity of ion channels and transporters in solid cancer tissue. It then discusses how ion channels, transporters, and cellular sensors under influence of the acidic tumor microenvironment shape cancer development and progression and affect the potential of cancer therapies.
Collapse
|
6
|
Toft NJ, Axelsen TV, Pedersen HL, Mele M, Burton M, Balling E, Johansen T, Thomassen M, Christiansen PM, Boedtkjer E. Acid-base transporters and pH dynamics in human breast carcinomas predict proliferative activity, metastasis, and survival. eLife 2021; 10:68447. [PMID: 34219652 PMCID: PMC8282339 DOI: 10.7554/elife.68447] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/02/2021] [Indexed: 12/13/2022] Open
Abstract
Breast cancer heterogeneity in histology and molecular subtype influences metabolic and proliferative activity and hence the acid load on cancer cells. We hypothesized that acid-base transporters and intracellular pH (pHi) dynamics contribute inter-individual variability in breast cancer aggressiveness and prognosis. We show that Na+,HCO3- cotransport and Na+/H+ exchange dominate cellular net acid extrusion in human breast carcinomas. Na+/H+ exchange elevates pHi preferentially in estrogen receptor-negative breast carcinomas, whereas Na+,HCO3- cotransport raises pHi more in invasive lobular than ductal breast carcinomas and in higher malignancy grade breast cancer. HER2-positive breast carcinomas have elevated protein expression of Na+/H+ exchanger NHE1/SLC9A1 and Na+,HCO3- cotransporter NBCn1/SLC4A7. Increased dependency on Na+,HCO3- cotransport associates with severe breast cancer: enlarged CO2/HCO3--dependent rises in pHi predict accelerated cell proliferation, whereas enhanced CO2/HCO3--dependent net acid extrusion, elevated NBCn1 protein expression, and reduced NHE1 protein expression predict lymph node metastasis. Accordingly, we observe reduced survival for patients suffering from luminal A or basal-like/triple-negative breast cancer with high SLC4A7 and/or low SLC9A1 mRNA expression. We conclude that the molecular mechanisms of acid-base regulation depend on clinicopathological characteristics of breast cancer patients. NBCn1 expression and dependency on Na+,HCO3- cotransport for pHi regulation, measured in biopsies of human primary breast carcinomas, independently predict proliferative activity, lymph node metastasis, and patient survival.
Collapse
Affiliation(s)
- Nicolai J Toft
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Trine V Axelsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Helene L Pedersen
- Department of Pathology, Regionshospitalet Randers, Randers, Denmark
| | - Marco Mele
- Department of Surgery, Regionshospitalet Randers, Randers, Denmark
| | - Mark Burton
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark.,Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark
| | - Eva Balling
- Department of Surgery, Regionshospitalet Randers, Randers, Denmark
| | - Tonje Johansen
- Department of Pathology, Regionshospitalet Randers, Randers, Denmark
| | - Mads Thomassen
- Department of Clinical Genetics, University of Southern Denmark, Odense, Denmark.,Clinical Genome Center, University and Region of Southern Denmark, Odense, Denmark
| | - Peer M Christiansen
- Department of Surgery, Regionshospitalet Randers, Randers, Denmark.,Department of Plastic and Breast Surgery, Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Olsen JSM, Svendsen S, Berg P, Dam VS, Sorensen MV, Matchkov VV, Leipziger J, Boedtkjer E. NBCn1 Increases NH 4 + Reabsorption Across Thick Ascending Limbs, the Capacity for Urinary NH 4 + Excretion, and Early Recovery from Metabolic Acidosis. J Am Soc Nephrol 2021; 32:852-865. [PMID: 33414245 PMCID: PMC8017549 DOI: 10.1681/asn.2019060613] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/23/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The electroneutral Na+/HCO3 - cotransporter NBCn1 (Slc4a7) is expressed in basolateral membranes of renal medullary thick ascending limbs (mTALs). However, direct evidence that NBCn1 contributes to acid-base handling in mTALs, urinary net acid excretion, and systemic acid-base homeostasis has been lacking. METHODS Metabolic acidosis was induced in wild-type and NBCn1 knockout mice. Fluorescence-based intracellular pH recordings were performed and NH4 + transport measured in isolated perfused mTALs. Quantitative RT-PCR and immunoblotting were used to evaluate NBCn1 expression. Tissue [NH4 +] was measured in renal biopsies, NH4 + excretion and titratable acid quantified in spot urine, and arterial blood gasses evaluated in normoventilated mice. RESULTS Basolateral Na+/HCO3 - cotransport activity was similar in isolated perfused mTALs from wild-type and NBCn1 knockout mice under control conditions. During metabolic acidosis, basolateral Na+/HCO3 - cotransport activity increased four-fold in mTALs from wild-type mice, but remained unchanged in mTALs from NBCn1 knockout mice. Correspondingly, NBCn1 protein expression in wild-type mice increased ten-fold in the inner stripe of renal outer medulla during metabolic acidosis. During systemic acid loading, knockout of NBCn1 inhibited the net NH4 + reabsorption across mTALs by approximately 60%, abolished the renal corticomedullary NH4 + gradient, reduced the capacity for urinary NH4 + excretion by approximately 50%, and delayed recovery of arterial blood pH and standard [HCO3 -] from their initial decline. CONCLUSIONS During metabolic acidosis, NBCn1 is required for the upregulated basolateral HCO3 - uptake and transepithelial NH4 + reabsorption in mTALs, renal medullary NH4 + accumulation, urinary NH4 + excretion, and early recovery of arterial blood pH and standard [HCO3 -]. These findings support that NBCn1 facilitates urinary net acid excretion by neutralizing intracellular H+ released during NH4 + reabsorption across mTALs.
Collapse
Affiliation(s)
| | - Samuel Svendsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Peder Berg
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Vibeke S. Dam
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | | - Jens Leipziger
- Department of Biomedicine, Aarhus University, Aarhus, Denmark,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
8
|
Hansen KB, Staehr C, Rohde PD, Homilius C, Kim S, Nyegaard M, Matchkov VV, Boedtkjer E. PTPRG is an ischemia risk locus essential for HCO 3--dependent regulation of endothelial function and tissue perfusion. eLife 2020; 9:e57553. [PMID: 32955439 PMCID: PMC7541084 DOI: 10.7554/elife.57553] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Acid-base conditions modify artery tone and tissue perfusion but the involved vascular-sensing mechanisms and disease consequences remain unclear. We experimentally investigated transgenic mice and performed genetic studies in a UK-based human cohort. We show that endothelial cells express the putative HCO3--sensor receptor-type tyrosine-protein phosphatase RPTPγ, which enhances endothelial intracellular Ca2+-responses in resistance arteries and facilitates endothelium-dependent vasorelaxation only when CO2/HCO3- is present. Consistent with waning RPTPγ-dependent vasorelaxation at low [HCO3-], RPTPγ limits increases in cerebral perfusion during neuronal activity and augments decreases in cerebral perfusion during hyperventilation. RPTPγ does not influence resting blood pressure but amplifies hyperventilation-induced blood pressure elevations. Loss-of-function variants in PTPRG, encoding RPTPγ, are associated with increased risk of cerebral infarction, heart attack, and reduced cardiac ejection fraction. We conclude that PTPRG is an ischemia susceptibility locus; and RPTPγ-dependent sensing of HCO3- adjusts endothelium-mediated vasorelaxation, microvascular perfusion, and blood pressure during acid-base disturbances and altered tissue metabolism.
Collapse
Affiliation(s)
| | | | - Palle D Rohde
- Department of Chemistry and Bioscience, Aalborg UniversityAalborgDenmark
| | | | - Sukhan Kim
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
| | | | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus UniversityAarhusDenmark
| |
Collapse
|
9
|
Lee D, Hong JH. The Fundamental Role of Bicarbonate Transporters and Associated Carbonic Anhydrase Enzymes in Maintaining Ion and pH Homeostasis in Non-Secretory Organs. Int J Mol Sci 2020; 21:ijms21010339. [PMID: 31947992 PMCID: PMC6981687 DOI: 10.3390/ijms21010339] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
The bicarbonate ion has a fundamental role in vital systems. Impaired bicarbonate transport leads to various diseases, including immune disorders, cystic fibrosis, tumorigenesis, kidney diseases, brain dysfunction, tooth fracture, ischemic reperfusion injury, hypertension, impaired reproductive system, and systemic acidosis. Carbonic anhydrases are involved in the mechanism of bicarbonate movement and consist of complex of bicarbonate transport systems including bicarbonate transporters. This review focused on the convergent regulation of ion homeostasis through various ion transporters including bicarbonate transporters, their regulatory enzymes, such as carbonic anhydrases, pH regulatory role, and the expression pattern of ion transporters in non-secretory systems throughout the body. Understanding the correlation between these systems will be helpful in order to obtain new insights and design potential therapeutic strategies for the treatment of pH-related disorders. In this review, we have discussed the broad prospects and challenges that remain in elucidation of bicarbonate-transport-related biological and developmental systems.
Collapse
Affiliation(s)
| | - Jeong Hee Hong
- Correspondence: ; Tel.: +82-32-899-6682; Fax: +82-32-899-6039
| |
Collapse
|
10
|
Boedtkjer E. Acid-base regulation and sensing: Accelerators and brakes in metabolic regulation of cerebrovascular tone. J Cereb Blood Flow Metab 2018; 38:588-602. [PMID: 28984162 PMCID: PMC5888856 DOI: 10.1177/0271678x17733868] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/10/2017] [Accepted: 09/06/2017] [Indexed: 12/29/2022]
Abstract
Metabolic regulation of cerebrovascular tone directs blood flow to areas of increased neuronal activity and during disease states partially compensates for insufficient perfusion by enhancing blood flow in collateral blood vessels. Acid-base disturbances frequently occur as result of enhanced metabolism or insufficient blood supply, but despite definitive evidence that acid-base disturbances alter arterial tone, effects of individual acid-base equivalents and the underlying signaling mechanisms are still being debated. H+ is an important intra- and extracellular messenger that modifies cerebrovascular tone. In addition, low extracellular [HCO3-] promotes cerebrovascular contraction through an endothelium-dependent mechanism. CO2 alters arterial tone development via changes in intra- and extracellular pH but it is still controversial whether CO2 also has direct vasomotor effects. Vasocontractile responses to low extracellular [HCO3-] and acute CO2-induced decreases in intracellular pH can counteract H+-mediated vasorelaxation during metabolic and respiratory acidosis, respectively, and may thereby reduce the risk of capillary damage and cerebral edema that could be consequences of unopposed vasodilation. In this review, the signaling mechanisms for acid-base equivalents in cerebral arteries and the mechanisms of intracellular pH control in the arterial wall are discussed in the context of metabolic regulation of cerebrovascular tone and local perfusion.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
Jung WH, Son YE, Oh SH, Fu C, Kim HS, Kwak JH, Cardenas ME, Heitman J, Park HS. Had1 Is Required for Cell Wall Integrity and Fungal Virulence in Cryptococcus neoformans. G3 (BETHESDA, MD.) 2018; 8:643-652. [PMID: 29233914 PMCID: PMC5919746 DOI: 10.1534/g3.117.300444] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/07/2017] [Indexed: 12/16/2022]
Abstract
Calcineurin modulates environmental stress survival and virulence of the human fungal pathogen Cryptococcus neoformans Previously, we identified 44 putative calcineurin substrates, and proposed that the calcineurin pathway is branched to regulate targets including Crz1, Pbp1, and Puf4 in C. neoformans In this study, we characterized Had1, which is one of the putative calcineurin substrates belonging to the ubiquitously conserved haloacid dehalogenase β-phosphoglucomutase protein superfamily. Growth of the had1∆ mutant was found to be compromised at 38° or higher. In addition, the had1∆ mutant exhibited increased sensitivity to cell wall perturbing agents, including Congo Red and Calcofluor White, and to an endoplasmic reticulum stress inducer dithiothreitol. Virulence studies revealed that the had1 mutation results in attenuated virulence compared to the wild-type strain in a murine inhalation infection model. Genetic epistasis analysis revealed that Had1 and the zinc finger transcription factor Crz1 play roles in parallel pathways that orchestrate stress survival and fungal virulence. Overall, our results demonstrate that Had1 is a key regulator of thermotolerance, cell wall integrity, and virulence of C. neoformans.
Collapse
Affiliation(s)
- Won-Hee Jung
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ye-Eun Son
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sang-Hun Oh
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Ci Fu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Hye Shin Kim
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Jin-Hwan Kwak
- School of Life Science, Handong Global University, Pohang 37554, Republic of Korea
| | - Maria E Cardenas
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710
| | - Hee-Soo Park
- School of Food Science and Biotechnology, Institute of Agricultural Science and Technology, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
12
|
Bonde L, Boedtkjer E. Extracellular acidosis and very low [Na + ] inhibit NBCn1- and NHE1-mediated net acid extrusion from mouse vascular smooth muscle cells. Acta Physiol (Oxf) 2017; 221:129-141. [PMID: 28319329 DOI: 10.1111/apha.12877] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/20/2017] [Accepted: 03/14/2017] [Indexed: 12/28/2022]
Abstract
AIM The electroneutral Na+ , HCO3- cotransporter NBCn1 and Na+ /H+ exchanger NHE1 regulate acid-base balance in vascular smooth muscle cells (VSMCs) and modify artery function and structure. Pathological conditions - notably ischaemia - can dramatically perturb intracellular (i) and extracellular (o) pH and [Na+ ]. We examined effects of low [Na+ ]o and pHo on NBCn1 and NHE1 activity in VSMCs of small arteries. METHODS We measured pHi by 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-based fluorescence microscopy of mouse mesenteric arteries and induced intracellular acidification by NH4+ prepulse technique. RESULTS NBCn1 activity - defined as Na+ -dependent, amiloride-insensitive net base uptake with CO2 /HCO3- present - was inhibited equally when pHo decreased from 7.4 (22 mm HCO3-/5% CO2 ) by metabolic (pHo 7.1/11 mm HCO3-: 22 ± 8%; pHo 6.8/5.5 mm HCO3-: 61 ± 7%) or respiratory (pHo 7.1/10% CO2 : 35 ± 11%; pHo 6.8/20% CO2 : 56 ± 7%) acidosis. Extracellular acidosis more prominently inhibited NHE1 activity - defined as Na+ -dependent net acid extrusion without CO2 /HCO3- present - at both pHo 7.1 (45 ± 9%) and 6.8 (85 ± 5%). Independently of pHo , lowering [Na+ ]o from 140 to 70 mm reduced NBCn1 and NHE1 activity <20% whereas transport activities declined markedly (25-50%) when [Na+ ]o was reduced to 35 mm. Steady-state pHi decreased more during respiratory (ΔpHi /ΔpHo = 71 ± 4%) than metabolic (ΔpHi /ΔpHo = 30 ± 7%) acidosis. CONCLUSION Extracellular acidification inhibits NBCn1 and NHE1 activity in VSMCs. NBCn1 is equivalently inhibited when pCO2 is raised or [HCO3-]o decreased. Lowering [Na+ ]o inhibits NBCn1 and NHE1 markedly only below the typical physiological and pathophysiological range. We propose that inhibition of Na+ -dependent net acid extrusion at low pHo protects against cellular Na+ overload at the cost of intracellular acidification.
Collapse
Affiliation(s)
- L. Bonde
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| | - E. Boedtkjer
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| |
Collapse
|
13
|
Kjaergaard M, Kragelund BB. Functions of intrinsic disorder in transmembrane proteins. Cell Mol Life Sci 2017; 74:3205-3224. [PMID: 28601983 PMCID: PMC11107515 DOI: 10.1007/s00018-017-2562-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 06/01/2017] [Indexed: 12/19/2022]
Abstract
Intrinsic disorder is common in integral membrane proteins, particularly in the intracellular domains. Despite this observation, these domains are not always recognized as being disordered. In this review, we will discuss the biological functions of intrinsically disordered regions of membrane proteins, and address why the flexibility afforded by disorder is mechanistically important. Intrinsically disordered regions are present in many common classes of membrane proteins including ion channels and transporters; G-protein coupled receptors (GPCRs), receptor tyrosine kinases and cytokine receptors. The functions of the disordered regions are many and varied. We will discuss selected examples including: (1) Organization of receptors, kinases, phosphatases and second messenger sources into signaling complexes. (2) Modulation of the membrane-embedded domain function by ball-and-chain like mechanisms. (3) Trafficking of membrane proteins. (4) Transient membrane associations. (5) Post-translational modifications most notably phosphorylation and (6) disorder-linked isoform dependent function. We finish the review by discussing the future challenges facing the membrane protein community regarding protein disorder.
Collapse
Affiliation(s)
- Magnus Kjaergaard
- Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark.
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark.
- The Danish Research Institute of Translational Neuroscience (DANDRITE), Aarhus, Denmark.
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
14
|
Ng FL, Boedtkjer E, Witkowska K, Ren M, Zhang R, Tucker A, Aalkjær C, Caulfield MJ, Ye S. Increased NBCn1 expression, Na+/HCO3- co-transport and intracellular pH in human vascular smooth muscle cells with a risk allele for hypertension. Hum Mol Genet 2017; 26:989-1002. [PMID: 28087731 PMCID: PMC5409084 DOI: 10.1093/hmg/ddx015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 12/21/2016] [Accepted: 12/30/2016] [Indexed: 02/05/2023] Open
Abstract
Genome-wide association studies have revealed an association between variation at the SLC4A7 locus and blood pressure. SLC4A7 encodes the electroneutral Na+/HCO3- co-transporter NBCn1 which regulates intracellular pH (pHi). We conducted a functional study of variants at this locus in primary cultures of vascular smooth muscle and endothelial cells. In both cell types, we found genotype-dependent differences for rs13082711 in DNA-nuclear protein interactions, where the risk allele is associated with increased SLC4A7 expression level, NBCn1 availability and function as reflected in elevated steady-state pHi and accelerated recovery from intracellular acidosis. However, in the presence of Na+/H+ exchange activity, the SLC4A7 genotypic effect on net base uptake and steady-state pHi persisted only in vascular smooth muscle cells but not endothelial cells. We found no discernable effect of the missense polymorphism resulting in the amino acid substitution Glu326Lys. The finding of a genotypic influence on SLC4A7 expression and pHi regulation in vascular smooth muscle cells provides an insight into the molecular mechanism underlying the association of variation at the SLC4A7 locus with blood pressure.
Collapse
Affiliation(s)
- Fu Liang Ng
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Kate Witkowska
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Meixia Ren
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ruoxin Zhang
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Arthur Tucker
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Christian Aalkjær
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Biomedicine, University of Copenhagen, Copenhagen, Denmark
| | - Mark J. Caulfield
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
- To whom correspondence should be addressed at: Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK. Tel: +44 2078823403; Fax: +44 2078823408; (M.J.C.); Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester LE3 9QP, UK. Tel: +44 1162044754; Fax: +44 1162875792; (S.Y.)
| | - Shu Ye
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Biomedical Research Centre in Cardiovascular Disease, Leicester, UK
- Shantou University Medical College, Shantou, China
- To whom correspondence should be addressed at: Heart Centre, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Charterhouse Square, London EC1M 6BQ, UK. Tel: +44 2078823403; Fax: +44 2078823408; (M.J.C.); Department of Cardiovascular Sciences, University of Leicester, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester LE3 9QP, UK. Tel: +44 1162044754; Fax: +44 1162875792; (S.Y.)
| |
Collapse
|
15
|
Park HJ, Lee S, Ju E, Jones JA, Choi I. Alternative transcription of sodium/bicarbonate transporter SLC4A7 gene enhanced by single nucleotide polymorphisms. Physiol Genomics 2017; 49:167-176. [PMID: 28087757 PMCID: PMC5374452 DOI: 10.1152/physiolgenomics.00112.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 01/11/2017] [Accepted: 01/11/2017] [Indexed: 12/31/2022] Open
Abstract
Genome-wide association studies have identified the single nucleotide polymorphism (SNP) rs3278 in the human SLC4A7 gene as one of the marker loci for addiction vulnerability. This marker is located in an intron of the gene, and its genomic role has been unknown. In this study, we examined rs3278 and three adjacent SNPs prevalent in alcoholics for their effects on an alternative promoter that would lead to the production of the NH2-terminally truncated protein NBCn1ΔN450, missing the first 450 amino acids. Analysis of the transcription start site database and a promoter prediction algorithm identified a cluster of three promoters in intron 7 and two short CpG-rich sites in intron 6. The promoter closest to rs3278 showed strong transcription activity in luciferase reporter gene assays. Major-to-minor allele substitution at rs3278 resulted in increased transcription activity. Equivalent substitutions at adjacent rs3772723 (intron 7) and rs13077400 (exon 8) had negligible effect; however, the substitution at nonsynonymous rs3755652 (exon 8) increased the activity by more than twofold. The concomitant substitution at rs3278/rs3755652 produced an additive effect. The rs3755652 had more profound effects on the promoter than the upstream regulatory CpG sites. The amino acid change E326K caused by rs3755652 had negligible effect on transporter function. In HEK 293 cells, NBCn1ΔN450 was expressed in plasma membranes, but at significantly lower levels than the nontruncated NBCn1-E. The pH change mediated by NBCn1ΔN450 was also low. We conclude that rs3278 and rs3755652 stimulate an alternative transcription of the SLC4A7 gene, increasing the production of a defective transporter.
Collapse
Affiliation(s)
- Hae Jeong Park
- Department of Pharmacology, Kyung Hee University School of Medicine, Seoul, South Korea; and
| | - Soojung Lee
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Eunji Ju
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Jayre A Jones
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| | - Inyeong Choi
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
16
|
Eiam-Ong S, Chaipipat M, Manotham K, Eiam-Ong S. Rapid Action of Aldosterone on Protein Levels of Sodium-Hydrogen Exchangers and Protein Kinase C Beta Isoforms in Rat Kidney. Int J Endocrinol 2017; 2017:2975853. [PMID: 29201052 PMCID: PMC5671724 DOI: 10.1155/2017/2975853] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/23/2017] [Accepted: 08/06/2017] [Indexed: 12/22/2022] Open
Abstract
Previous in vitro studies demonstrated that aldosterone rapidly activates sodium-hydrogen exchangers 1 and 3 (NHE 1 and 3). In vitro investigations revealed that protein kinase C (PKC) regulates NHE properties. We previously demonstrated that aldosterone rapidly enhances PKCα protein abundance in the rat kidney. There are no reports of renal PKCβ (I and II) protein levels related to the regulation by aldosterone. There are also no in vivo data regarding the rapid effects of aldosterone on renal protein levels of NHE (1 and 3) and PKCβ (I and II), simultaneously. In the current study, rats received normal saline solution or aldosterone (150 μg/kg BW, i.p.). After 30 minutes, abundance and immunoreactivity of these proteins were determined by Western blot analysis and immunohistochemistry, respectively. Aldosterone increased NHE1 and NHE3 protein abundance to 152% and 134%, respectively (P < 0.05). PKCβI protein level was enhanced by 30%, whereas PKCβII declined slightly. Aldosterone increased NHE protein expression mostly in the medulla. PKCβI immunostaining intensity was increased in the glomeruli, renal vasculature, and thin limb of the loop of Henle, while PKCβII was reduced. This is the first in vivo study to simultaneously demonstrate that aldosterone rapidly elevates PKCβI and NHE (1 and 3) protein abundance in the rat kidney. Aldosterone-induced NHE (1 and 3) protein levels may be related to PKCβI activation.
Collapse
Affiliation(s)
- Somchit Eiam-Ong
- Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mookda Chaipipat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Somchai Eiam-Ong
- Department of Medicine (Division of Nephrology), Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
17
|
Boedtkjer E, Matchkov VV, Boedtkjer DMB, Aalkjaer C. Negative News: Cl− and HCO3− in the Vascular Wall. Physiology (Bethesda) 2016; 31:370-83. [DOI: 10.1152/physiol.00001.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Cl− and HCO3− are the most prevalent membrane-permeable anions in the intra- and extracellular spaces of the vascular wall. Outwardly directed electrochemical gradients for Cl− and HCO3− permit anion channel opening to depolarize vascular smooth muscle and endothelial cells. Transporters and channels for Cl− and HCO3− also modify vascular contractility and structure independently of membrane potential. Transport of HCO3− regulates intracellular pH and thereby modifies the activity of enzymes, ion channels, and receptors. There is also evidence that Cl− and HCO3− transport proteins affect gene expression and protein trafficking. Considering the extensive implications of Cl− and HCO3− in the vascular wall, it is critical to understand how these ions are transported under physiological conditions and how disturbances in their transport can contribute to disease development. Recently, sensing mechanisms for Cl− and HCO3− have been identified in the vascular wall where they modify ion transport and vasomotor function, for instance, during metabolic disturbances. This review discusses current evidence that transport (e.g., via NKCC1, NBCn1, Ca2+-activated Cl− channels, volume-regulated anion channels, and CFTR) and sensing (e.g., via WNK and RPTPγ) of Cl− and HCO3− influence cardiovascular health and disease.
Collapse
Affiliation(s)
| | | | - Donna M. B. Boedtkjer
- Department of Biomedicine, Aarhus University, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark; and
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
18
|
Boedtkjer E, Hansen KB, Boedtkjer DMB, Aalkjaer C, Boron WF. Extracellular HCO3- is sensed by mouse cerebral arteries: Regulation of tone by receptor protein tyrosine phosphatase γ. J Cereb Blood Flow Metab 2016; 36:965-80. [PMID: 26661205 PMCID: PMC4853837 DOI: 10.1177/0271678x15610787] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/15/2015] [Indexed: 11/15/2022]
Abstract
We investigate sensing and signaling mechanisms for H(+), [Formula: see text] and CO2 in basilar arteries using out-of-equilibrium solutions. Selectively varying pHo, [[Formula: see text]]o, or pCO2, we find: (a) lowering pHo attenuates vasoconstriction and vascular smooth muscle cell (VSMC) Ca(2+)-responses whereas raising pHo augments vasoconstriction independently of VSMC [Ca(2+)]i, (b) lowering [[Formula: see text]]o increases arterial agonist-sensitivity of tone development without affecting VSMC [Ca(2+)]i but c) no evidence that CO2 has direct net vasomotor effects. Receptor protein tyrosine phosphatase (RPTP)γ is transcribed in endothelial cells, and direct vasomotor effects of [Formula: see text] are absent in arteries from RPTPγ-knockout mice. At pHo 7.4, selective changes in [[Formula: see text]]o or pCO2 have little effect on pHi At pHo 7.1, decreased [[Formula: see text]]o or increased pCO2 causes intracellular acidification, which attenuates vasoconstriction. Under equilibrated conditions, anti-contractile effects of CO2/[Formula: see text] are endothelium-dependent and absent in arteries from RPTPγ-knockout mice. With CO2/[Formula: see text] present, contractile responses to agonist-stimulation are potentiated in arteries from RPTPγ-knockout compared to wild-type mice, and this difference is larger for respiratory than metabolic acidosis. In conclusion, decreased pHo and pHi inhibit vasoconstriction, whereas decreased [[Formula: see text]]o promotes vasoconstriction through RPTPγ-dependent changes in VSMC Ca(2+)-sensitivity. [Formula: see text] serves dual roles, providing substrate for pHi-regulating membrane transporters and modulating arterial responses to acid-base disturbances.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | | | - Donna M B Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | | | - Walter F Boron
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
19
|
Boedtkjer E, Bentzon JF, Dam VS, Aalkjaer C. Na+, HCO3--cotransporter NBCn1 increases pHi gradients, filopodia, and migration of smooth muscle cells and promotes arterial remodelling. Cardiovasc Res 2016; 111:227-39. [PMID: 27076468 DOI: 10.1093/cvr/cvw079] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 03/17/2016] [Indexed: 12/19/2022] Open
Abstract
AIMS Arterial remodelling can cause luminal narrowing and obstruct blood flow. We tested the hypothesis that cellular acid-base transport facilitates proliferation and migration of vascular smooth muscle cells (VSMCs) and enhances remodelling of conduit arteries. METHODS AND RESULTS [Formula: see text]-cotransport via NBCn1 (Slc4a7) mediates net acid extrusion and controls steady-state intracellular pH (pHi) in VSMCs of mouse carotid arteries and primary aortic explants. Carotid arteries undergo hypertrophic inward remodelling in response to partial or complete ligation in vivo, but the increase in media area and thickness and reduction in lumen diameter are attenuated in arteries from NBCn1 knock-out compared with wild-type mice. With [Formula: see text] present, gradients for pHi (∼0.2 units magnitude) exist along the axis of VSMC migration in primary explants from wild-type but not NBCn1 knock-out mice. Knock-out or pharmacological inhibition of NBCn1 also reduces filopodia and lowers initial rates of VSMC migration after scratch-wound infliction. Interventions to reduce H(+)-buffer mobility (omission of [Formula: see text] or inhibition of carbonic anhydrases) re-establish axial pHi gradients, filopodia, and migration rates in explants from NBCn1 knock-out mice. The omission of [Formula: see text] also lowers global pHi and inhibits proliferation in primary explants. CONCLUSION Under physiological conditions (i.e. with [Formula: see text] present), NBCn1-mediated [Formula: see text] uptake raises VSMC pHi and promotes filopodia, VSMC migration, and hypertrophic inward remodelling. We propose that axial pHi gradients enhance VSMC migration whereas global acidification inhibits VSMC proliferation and media hypertrophy after carotid artery ligation. These findings support a key role of acid-base transport, particularly via NBCn1, for development of occlusive artery disease.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Building 1170, DK-8000 Aarhus C, Denmark
| | - Jacob F Bentzon
- Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark
| | - Vibeke S Dam
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Building 1170, DK-8000 Aarhus C, Denmark
| | - Christian Aalkjaer
- Department of Biomedicine, Aarhus University, Ole Worms Allé 3, Building 1170, DK-8000 Aarhus C, Denmark
| |
Collapse
|
20
|
Liu Y, Yang J, Chen LM. Structure and Function of SLC4 Family [Formula: see text] Transporters. Front Physiol 2015; 6:355. [PMID: 26648873 PMCID: PMC4664831 DOI: 10.3389/fphys.2015.00355] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
The solute carrier SLC4 family consists of 10 members, nine of which are [Formula: see text] transporters, including three Na(+)-independent Cl(-)/[Formula: see text] exchangers AE1, AE2, and AE3, five Na(+)-coupled [Formula: see text] transporters NBCe1, NBCe2, NBCn1, NBCn2, and NDCBE, as well as "AE4" whose Na(+)-dependence remains controversial. The SLC4 [Formula: see text] transporters play critical roles in pH regulation and transepithelial movement of electrolytes with a broad range of demonstrated physiological relevances. Dysfunctions of these transporters are associated with a series of human diseases. During the past decades, tremendous amount of effort has been undertaken to investigate the topological organization of the SLC4 transporters in the plasma membrane. Based upon the proposed topology models, mutational and functional studies have identified important structural elements likely involved in the ion translocation by the SLC4 transporters. In the present article, we review the advances during the past decades in understanding the structure and function of the SLC4 transporters.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science CenterBeijing, China
| | - Li-Ming Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Department of Biophysics and Molecular Physiology, School of Life Science and Technology, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
21
|
Abstract
Cation-coupled HCO3(-) transport was initially identified in the mid-1970s when pioneering studies showed that acid extrusion from cells is stimulated by CO2/HCO3(-) and associated with Na(+) and Cl(-) movement. The first Na(+)-coupled bicarbonate transporter (NCBT) was expression-cloned in the late 1990s. There are currently five mammalian NCBTs in the SLC4-family: the electrogenic Na,HCO3-cotransporters NBCe1 and NBCe2 (SLC4A4 and SLC4A5 gene products); the electroneutral Na,HCO3-cotransporter NBCn1 (SLC4A7 gene product); the Na(+)-driven Cl,HCO3-exchanger NDCBE (SLC4A8 gene product); and NBCn2/NCBE (SLC4A10 gene product), which has been characterized as an electroneutral Na,HCO3-cotransporter or a Na(+)-driven Cl,HCO3-exchanger. Despite the similarity in amino acid sequence and predicted structure among the NCBTs of the SLC4-family, they exhibit distinct differences in ion dependency, transport function, pharmacological properties, and interactions with other proteins. In epithelia, NCBTs are involved in transcellular movement of acid-base equivalents and intracellular pH control. In nonepithelial tissues, NCBTs contribute to intracellular pH regulation; and hence, they are crucial for diverse tissue functions including neuronal discharge, sensory neuron development, performance of the heart, and vascular tone regulation. The function and expression levels of the NCBTs are generally sensitive to intracellular and systemic pH. Animal models have revealed pathophysiological roles of the transporters in disease states including metabolic acidosis, hypertension, visual defects, and epileptic seizures. Studies are being conducted to understand the physiological consequences of genetic polymorphisms in the SLC4-members, which are associated with cancer, hypertension, and drug addiction. Here, we describe the current knowledge regarding the function, structure, and regulation of the mammalian cation-coupled HCO3(-) transporters of the SLC4-family.
Collapse
Affiliation(s)
- Christian Aalkjaer
- Department of Biomedicine, and the Water and Salt Research Center, Aarhus University, Aarhus, Denmark; Department of Physiology, Emory University School of Medicine, Atlanta, USA
| | | | | | | |
Collapse
|
22
|
Effects of Nt-truncation and coexpression of isolated Nt domains on the membrane trafficking of electroneutral Na+/HCO3- cotransporters. Sci Rep 2015; 5:12241. [PMID: 26192895 PMCID: PMC4507446 DOI: 10.1038/srep12241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022] Open
Abstract
The SLC4 genes are all capable of producing multiple variants by alternative splicing or using alternative promoters. The physiological consequences of such diversity are of great interest to investigators. Here, we identified two novel variants of the electroneutral Na+/ cotransporter NBCn1, one full-length starting with “MIPL” and the other Nt-truncated starting with “MDEL”. Moreover, we identified a new promoter of Slc4a10 encoding NBCn2 and a novel type of Nt-truncated NBCn2 starting with “MHAN”. When heterologously expressed, the new NBCn1 variants were well localized to the plasma membrane and exhibited characteristic NBCn1 activity. However, MHAN-NBCn2 was poorly localized on the plasma membrane. By deletion mutations, we identified the Nt regions important for the surface localization of NBCn2. Interestingly, coexpressing the full-length NBCn2 greatly enhances the surface abundance of the Nt-truncated NBCn2. Co-immunoprecipitation and bimolecular fluorescence complementation studies showed that the full-length and Nt-truncated NBCn2 interact with each other to form heterodimers in neuro-2A cells. Finally, we showed that the isolated Nt domain interacts with and enhances the surface abundance of the Nt-truncated NBCn2. The present study expands our knowledge of the NBCn1 and NBCn2 transcriptome, and provides insights into how the Nt domain could affect transporter function by regulating its membrane trafficking.
Collapse
|
23
|
Thornell IM, Bevensee MO. Regulators of Slc4 bicarbonate transporter activity. Front Physiol 2015; 6:166. [PMID: 26124722 PMCID: PMC4464172 DOI: 10.3389/fphys.2015.00166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
The Slc4 family of transporters is comprised of anion exchangers (AE1-4), Na+-coupled bicarbonate transporters (NCBTs) including electrogenic Na/bicarbonate cotransporters (NBCe1 and NBCe2), electroneutral Na/bicarbonate cotransporters (NBCn1 and NBCn2), and the electroneutral Na-driven Cl-bicarbonate exchanger (NDCBE), as well as a borate transporter (BTR1). These transporters regulate intracellular pH (pHi) and contribute to steady-state pHi, but are also involved in other physiological processes including CO2 carriage by red blood cells and solute secretion/reabsorption across epithelia. Acid-base transporters function as either acid extruders or acid loaders, with the Slc4 proteins moving HCO−3 either into or out of cells. According to results from both molecular and functional studies, multiple Slc4 proteins and/or associated splice variants with similar expected effects on pHi are often found in the same tissue or cell. Such apparent redundancy is likely to be physiologically important. In addition to regulating pHi, a HCO−3 transporter contributes to a cell's ability to fine tune the intracellular regulation of the cotransported/exchanged ion(s) (e.g., Na+ or Cl−). In addition, functionally similar transporters or splice variants with different regulatory profiles will optimize pH physiology and solute transport under various conditions or within subcellular domains. Such optimization will depend on activated signaling pathways and transporter expression profiles. In this review, we will summarize and discuss both well-known and more recently identified regulators of the Slc4 proteins. Some of these regulators include traditional second messengers, lipids, binding proteins, autoregulatory domains, and less conventional regulators. The material presented will provide insight into the diversity and physiological significance of multiple members within the Slc4 gene family.
Collapse
Affiliation(s)
- Ian M Thornell
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Mark O Bevensee
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA ; Nephrology Research and Training Center, University of Alabama at Birmingham Birmingham, AL, USA ; Center of Glial Biology in Medicine, University of Alabama at Birmingham Birmingham, AL, USA ; Civitan International Research Center, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
24
|
Kawano K. [Stoichiometric analysis of oligomerization of membrane proteins using coiled-coil labeling and in-cell spectroscopy]. YAKUGAKU ZASSHI 2014; 134:931-7. [PMID: 25174363 DOI: 10.1248/yakushi.14-00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many membrane proteins are responsible for signaling and ionic transport necessary to maintain biological functions in vivo. Recently, not only conformational changes but also oligomerization have been proposed to regulate protein activation. Thus, the study of membrane protein oligomerization is crucial for new drug development. The existing destructive methodologies such as immunoprecipitation, however, are not suitable to determine oligomeric states precisely because of the artificial aggregation of proteins after detergent solubilization. In the present study, the coiled-coil tag-probe labeling method and spectral imaging were first combined to establish a new methodology based on fluorescence resonance energy transfer (FRET) for stoichiometric analysis of the oligomeric states of membrane proteins on living cells. After validating the method for mono-, di-, and tetrameric standard membrane proteins, the oligomeric state of β₂-adrenergic receptors (β₂ARs) was examined to clarify its functional significance. It was found that β2ARs could transduce cyclic adenosine 5'-monophosphate (cAMP) signals and internalize them upon treatment with ligands without showing any FRET signals. Thus, β₂ARs do not form constitutive homooligomers, and homooligomerization is not necessary for the receptor function of β₂ARs. Finally, the oligomeric state of full-length M2 proton-selective channels of influenza A virus was investigated. Although the results of X-ray crystallography and NMR studies using fragment peptides suggested that M2 stably forms a tetrameric channel, the full-length M2 proteins formed proton-conducting dimers at neutral pH and these dimers were converted to tetramers at acidic pH, indicating that the minimal functional unit of the M2 channel is a dimer.
Collapse
Affiliation(s)
- Kenichi Kawano
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
25
|
Gill HS, Roush ED, Dutcher L, Patel S. Direct evidence for calcineurin binding to the exon-7 loop of the sodium-bicarbonate cotransporter NBCn1. Int J Biol Sci 2014; 10:771-6. [PMID: 25076853 PMCID: PMC4115197 DOI: 10.7150/ijbs.9539] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/12/2014] [Indexed: 11/20/2022] Open
Abstract
The NaHCO3 cotransporter NBCn1 plays a role in neutralizing intracellular acid loads at the basolateral membrane in cells of the medullary thick ascending limb (mTAL). Calcineurin inhibitors (Cn-Is) are known to both downregulate NBCn1 expression in the distal nephron and cause renal tubular acidosis (RTA), a risk factor for nephrocalcinosis and nephrolithiasis. In this report, we provide a new perspective on concurrent studies of NBCn1 in various tissues by using cell-free binding assays to investigate the interaction of NBCn1 with the calcineurin (Cn) isoform PPP3CA. Surface plasmon resonance (SPR) analyses show that the protein domain Exon 7 (translated from cassette II of NBCn1) binds Cn with an equilibrium dissociation constant (KD) of 30 +/- 15 nm. Linked-reaction tests suggest that the binding involves a conformational change. Nested PCR reactions were used to show that NBCn1-Exon 7 splice variants with alternative N-termini regions are expressed in the kidney, as well as other tissues. Additionally, we discuss NBCn1-Exon 7 implication in acid-base balance and calcium crystallization in the kidney.
Collapse
Affiliation(s)
- Harindarpal S Gill
- 1. Department of Medicine, The George Washington University, Washington, DC 20052 ; 2. Division of Renal Diseases and Hypertension, The George Washington Medical Faculty Associates, Washington, DC 20037
| | | | - Lauren Dutcher
- 4. Hospital of University of Pennsylvania, Philadelphia, PA 19104
| | - Samir Patel
- 2. Division of Renal Diseases and Hypertension, The George Washington Medical Faculty Associates, Washington, DC 20037
| |
Collapse
|
26
|
Kawano K, Yano Y, Matsuzaki K. A dimer is the minimal proton-conducting unit of the influenza a virus M2 channel. J Mol Biol 2014; 426:2679-91. [PMID: 24816000 DOI: 10.1016/j.jmb.2014.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 04/30/2014] [Accepted: 05/01/2014] [Indexed: 12/16/2022]
Abstract
When influenza A virus infects host cells, its integral matrix protein M2 forms a proton-selective channel in the viral envelope. Although X-ray crystallography and NMR studies using fragment peptides have suggested that M2 stably forms a tetrameric channel irrespective of pH, the oligomeric states of the full-length protein in the living cells have not yet been assessed directly. In the present study, we utilized recently developed stoichiometric analytical methods based on fluorescence resonance energy transfer using coiled-coil labeling technique and spectral imaging, and we examined the relationship between the oligomeric states of full-length M2 and its channel activities in living cells. In contrast to previous models, M2 formed proton-conducting dimers at neutral pH and these dimers were converted to tetramers at acidic pH. The antiviral drug amantadine hydrochloride inhibited both tetramerization and channel activity. The removal of cholesterol resulted in a significant decrease in the activity of the dimer. These results indicate that the minimum functional unit of the M2 protein is a dimer, which forms a complex with cholesterol for its function.
Collapse
Affiliation(s)
- Kenichi Kawano
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Katsumi Matsuzaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida-Shimoadachicho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
27
|
Intracellular acidification alters myogenic responsiveness and vasomotion of mouse middle cerebral arteries. J Cereb Blood Flow Metab 2014; 34:161-8. [PMID: 24192638 PMCID: PMC3887363 DOI: 10.1038/jcbfm.2013.192] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/24/2013] [Accepted: 10/06/2013] [Indexed: 11/08/2022]
Abstract
Intracellular pH (pHi) in the vascular wall modulates agonist-induced vasocontractile and vasorelaxant responses in mesenteric arteries, whereas effects on myogenic tone have been unsettled. We studied the role of Na(+),HCO3(-) cotransporter NBCn1 in mouse isolated middle cerebral arteries and the influence of pHi disturbances on myogenic tone. Na(+),HCO3(-) cotransport was abolished in arteries from NBCn1 knockout mice and steady-state pHi ∼0.3 units reduced compared with wild-type mice. Myogenic tone development was low under control conditions but increased on treatment with the NO-synthase inhibitor N-nitro-L-arginine methyl ester (L-NAME). This effect of L-NAME was smaller in arteries from NBCn1 knockout than wild-type mice. Myogenic tone with L-NAME present was significantly lower in arteries from NBCn1 knockout than wild-type mice and was abolished by rho-kinase inhibitor Y-27632. The arteries displayed vasomotion, and this rhythmic contractile pattern was also attenuated in arteries from NBCn1 knockout mice. No differences in membrane potential or intracellular [Ca(2+)] were seen between arteries from NBCn1 knockout and wild-type mice. We propose that NO production and rho-kinase-dependent Ca(2+) sensitivity are reduced at low pHi in pressurized mouse middle cerebral arteries. This likely impedes the ability to adjust to changes in perfusion pressure and regulate cerebral blood flow.
Collapse
|
28
|
Boedtkjer E, Aalkjaer C. Disturbed acid-base transport: an emerging cause of hypertension. Front Physiol 2013; 4:388. [PMID: 24399970 PMCID: PMC3870919 DOI: 10.3389/fphys.2013.00388] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/09/2013] [Indexed: 11/26/2022] Open
Abstract
Genome-wide association studies and physiological investigations have linked alterations in acid-base transporters to hypertension. Accordingly, Na+-coupled HCO−3-transporters, Na+/H+-exchangers, and anion-exchangers have emerged as putative mechanistic components in blood pressure disturbances. Even though hypertension has been studied extensively over the last several decades, the cause of the high blood pressure has in most cases not been identified. Renal, cardiovascular, and neuronal dysfunctions all seem to play a role in hypertension development but their relative importance and mutual interdependency are still being debated. Multiple functional and structural alterations have been described in patients and animals with hypertension but it is typically unclear whether they are causes or consequences of hypertension or represent mechanistically unrelated associations. Perturbed blood pressure regulation has been demonstrated in several animal models with disrupted expression of acid-base transporters; and reciprocally, disturbed acid-base transport function has been described in hypertensive individuals. In addition to regulating intracellular and extracellular pH, Na+-coupled HCO−3-transport, Na+/H+-exchange, and anion-exchange also contribute to water and electrolyte balance in cells and systemically. Since acid-base transporters are widely expressed, alterations in transport activities likely affect multiple cell and organ functions, and it is a significant challenge to determine the mechanisms linking perturbed acid-base transport function to hypertension. It is the purpose of this review to evaluate the current evidence for involvement of acid-base transporters in hypertension development and discuss the cellular and integrative mechanisms, which may link changes in acid-base transport to blood pressure disturbances.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University Aarhus, Denmark
| | | |
Collapse
|
29
|
Liu Y, Qin X, Wang DK, Guo YM, Gill HS, Morris N, Parker MD, Chen LM, Boron WF. Effects of optional structural elements, including two alternative amino termini and a new splicing cassette IV, on the function of the sodium-bicarbonate cotransporter NBCn1 (SLC4A7). J Physiol 2013; 591:4983-5004. [PMID: 23959679 DOI: 10.1113/jphysiol.2013.258673] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The SLC4A7 gene encodes the electroneutral sodium/HCO3 cotransporter NBCn1, which plays important physiological and pathophysiological roles in many cell types. Previous work identified six NBCn1 variants differing in the sequence of the extreme N terminus--MEAD in rat only, MERF in human only--as well as in the optional inclusion of cassettes I, II, and III. Earlier work also left open the question of whether optional structural elements (OSEs) affect surface abundance or intrinsic (per-molecule) transport activity. Here, we demonstrate for the first time that SLC4A7 from one species can express both MEAD- and MERF-NBCn1. We also identify a novel cassette IV of 20 aa, and extend by 10 the number of full-length NBCn1 variants. The alternative N termini and four cassettes could theoretically produce 32 major variants. Moreover, we identify a group of cDNAs predicted to encode just the cytosolic N-terminal domain (Nt) of NBCn1. A combination of electrophysiology and biotinylation shows that the OSEs can affect surface abundance and intrinsic HCO3(-) transport activity of NBCn1, as expressed in Xenopus oocytes. Specifically, MEAD tends to increase whereas novel cassette IV reduces surface abundance. Cassettes II, III and novel cassette IV all appear to increase the intrinsic activity of NBCn1.
Collapse
Affiliation(s)
- Ying Liu
- L.-M. Chen: Department of Biophysics and Molecular Physiology, Key Laboratory of Molecular Biophysics of Ministry of Education, Huazhong University of Science & Technology School of Life Science and Technology, 1037 Luoyu Rd, Wuhan, Hubei, China 430074.
| | | | | | | | | | | | | | | | | |
Collapse
|