1
|
Kowaltowski AJ, Abdulkader F. How and when to measure mitochondrial inner membrane potentials. Biophys J 2024; 123:4150-4157. [PMID: 38454598 PMCID: PMC11700358 DOI: 10.1016/j.bpj.2024.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 03/09/2024] Open
Abstract
The scientific literature on mitochondria has increased significantly over the years due to findings that these organelles have widespread roles in the onset and progression of pathological conditions such as metabolic disorders, neurodegenerative and cardiovascular diseases, inflammation, and cancer. Researchers have extensively explored how mitochondrial properties and functions are modified in different models, often using fluorescent inner mitochondrial membrane potential (ΔΨm) probes to assess functional mitochondrial aspects such as protonmotive force and oxidative phosphorylation. This review provides an overview of existing techniques to measure ΔpH and ΔΨm, highlighting their advantages, limitations, and applications. It discusses drawbacks of ΔΨm probes, especially when used without calibration, and conditions where alternative methods should replace ΔΨm measurements for the benefit of the specific scientific objectives entailed. Studies investigating mitochondria and their vast biological roles would be significantly advanced by the understanding of the correct applications as well as limitations of protonmotive force measurements and use of fluorescent ΔΨm probes, adopting more precise, artifact-free, sensitive, and quantitative measurements of mitochondrial functionality.
Collapse
Affiliation(s)
- Alicia J Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Fernando Abdulkader
- Departmento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
2
|
Rappe A, Vihinen HA, Suomi F, Hassinen AJ, Ehsan H, Jokitalo ES, McWilliams TG. Longitudinal autophagy profiling of the mammalian brain reveals sustained mitophagy throughout healthy aging. EMBO J 2024; 43:6199-6231. [PMID: 39367235 PMCID: PMC11612485 DOI: 10.1038/s44318-024-00241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024] Open
Abstract
Mitophagy neutralizes mitochondrial damage, thereby preventing cellular dysfunction and apoptosis. Defects in mitophagy have been strongly implicated in age-related neurodegenerative disorders such as Parkinson's and Alzheimer's disease. While mitophagy decreases throughout the lifespan of short-lived model organisms, it remains unknown whether such a decline occurs in the aging mammalian brain-a question of fundamental importance for understanding cell type- and region-specific susceptibility to neurodegeneration. Here, we define the longitudinal dynamics of basal mitophagy and macroautophagy across neuronal and non-neuronal cell types within the intact aging mouse brain in vivo. Quantitative profiling of reporter mouse cohorts from young to geriatric ages reveals cell- and tissue-specific alterations in mitophagy and macroautophagy between distinct subregions and cell populations, including dopaminergic neurons, cerebellar Purkinje cells, astrocytes, microglia and interneurons. We also find that healthy aging is hallmarked by the dynamic accumulation of differentially acidified lysosomes in several neural cell subsets. Our findings argue against any widespread age-related decline in mitophagic activity, instead demonstrating dynamic fluctuations in mitophagy across the aging trajectory, with strong implications for ongoing theragnostic development.
Collapse
Affiliation(s)
- Anna Rappe
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Helena A Vihinen
- Electron Microscopy Unit (EMBI), Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Fumi Suomi
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Antti J Hassinen
- High Content Imaging and Analysis Unit (FIMM-HCA), Institute for Molecular Medicine, Helsinki Institute of Life Science, University of Helsinki, Tukholmankatu 8, Helsinki, 00290, Finland
| | - Homa Ehsan
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Eija S Jokitalo
- Electron Microscopy Unit (EMBI), Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Thomas G McWilliams
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
| |
Collapse
|
3
|
Kruglov AG, Nikiforova AB. The Switching of the Type of a ROS Signal from Mitochondria: The Role of Respiratory Substrates and Permeability Transition. Antioxidants (Basel) 2024; 13:1317. [PMID: 39594458 PMCID: PMC11591497 DOI: 10.3390/antiox13111317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Flashes of superoxide anion (O2-) in mitochondria are generated spontaneously or during the opening of the permeability transition pore (mPTP) and a sudden change in the metabolic state of a cell. Under certain conditions, O2- can leave the mitochondrial matrix and perform signaling functions beyond mitochondria. In this work, we studied the kinetics of the release of O2- and H2O2 from isolated mitochondria upon mPTP opening and the modulation of the metabolic state of mitochondria by the substrates of respiration and oxidative phosphorylation. It was found that mPTP opening leads to suppression of H2O2 emission and activation of the O2- burst. When the induction of mPTP was blocked by its antagonists (cyclosporine A, ruthenium red, EGTA), the level of substrates of respiration and oxidative phosphorylation and the selective inhibitors of complexes I and V determined the type of reactive oxygen species (ROS) emitted by mitochondria. It was concluded that upon complete and partial reduction and complete oxidation of redox centers of the respiratory chain, mitochondria emit H2O2, O2-, and nothing, respectively. The results indicate that the mPTP- and substrate-dependent switching of the type of ROS leaving mitochondria may be the basis for O2-- and H2O2-selective redox signaling in a cell.
Collapse
Affiliation(s)
- Alexey G. Kruglov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino 142290, Moscow Region, Russia;
| | | |
Collapse
|
4
|
Yu M, Wang S, Gu G, Shi TL, Zhang J, Jia Y, Ma Q, Porth I, Mao JF, Wang R. Integration of Mitoflash and Time-Series Transcriptomics Facilitates Energy Dynamics Tracking and Substrate Supply Analysis of Floral Thermogenesis in Lotus. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39360569 DOI: 10.1111/pce.15185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
The high biosynthetic and energetic demands of floral thermogenesis render thermogenic plants the ideal systems to characterize energy metabolism in plants, but real-time tracking of energy metabolism in plant cells remains challenging. In this study, a new method was developed for tracking the mitochondrial energy metabolism at the single mitochondria level by real-time imaging of mitochondrial superoxide production (i.e., mitoflash). Using this method, we observed the increased mitoflash frequencies in the receptacles of Nelumbo nucifera Gaertn. at the thermogenic stages. This increase, combined with the higher expression of antioxidant response-related genes identified through time-series transcriptomics at the same stages, shows us a new regulatory mechanism for plant redox balance. Furthermore, we found that the upregulation of respiratory metabolism-related genes during the thermogenic stages not only correlates with changes in mitoflash frequency but also underscores the critical roles of these pathways in ensuring adequate substrate supply for thermogenesis. Metabolite analysis revealed that sugars are likely one of the substrates for thermogenesis and may be transported over long distances by sugar transporters. Taken together, our findings demonstrate that mitoflash is a reliable tool for tracking energy metabolism in thermogenic plants and contributes to our understanding of the regulatory mechanisms underlying floral thermogenesis.
Collapse
Affiliation(s)
- Miao Yu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Siqin Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Ge Gu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Tian-Le Shi
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Jin Zhang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Yaping Jia
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| | - Qi Ma
- College of Future Technology, Peking University, Beijing, People's Republic of China
| | - Ilga Porth
- Départment des Sciences du Bois et de la Forêt, Faculté de Foresterie, de Géographie et Géomatique, Université Laval, Quebec City, Quebec, Canada
| | - Jian-Feng Mao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umea, Sweden
| | - Ruohan Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory for Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
5
|
Qi X, Rusch NJ, Fan J, Mora CJ, Xie L, Mu S, Rabinovitch PS, Zhang H. Mitochondrial proton leak in cardiac aging. GeroScience 2023; 45:2135-2143. [PMID: 36856945 PMCID: PMC10651624 DOI: 10.1007/s11357-023-00757-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
Age-associated diseases are becoming progressively more prevalent, reflecting the increased lifespan of the world's population. However, the fundamental mechanisms of physiologic aging are poorly understood, and in particular, the molecular pathways that mediate cardiac aging and its associated dysfunction are unclear. Here, we focus on certain ion flux abnormalities of the mitochondria that may contribute to cardiac aging and age-related heart failure. Using oxidative phosphorylation, mitochondria pump protons from the matrix to the intermembrane space to generate a proton gradient across the inner membrane. The protons are returned to the matrix by the ATPase complex within the membrane to generate ATP. However, a portion of protons leak back to the matrix and do not drive ATP production, and this event is called proton leak or uncoupling. Accumulating evidence suggests that mitochondrial proton leak is increased in the cardiac myocytes of aged hearts. In this mini-review, we discuss the measurement methods and major sites of mitochondrial proton leak with an emphasis on the adenine nucleotide transporter 1 (ANT1), and explore the possibility of inhibiting augmented mitochondrial proton leak as a therapeutic intervention to mitigate cardiac aging.
Collapse
Affiliation(s)
- Xingyun Qi
- Department of Biology, Rutgers University, Camden, USA
| | - Nancy J Rusch
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Jiaojiao Fan
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Christoph J Mora
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Lixin Xie
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Shengyu Mu
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA.
| | - Huiliang Zhang
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, USA.
| |
Collapse
|
6
|
Duarte FV, Ciampi D, Duarte CB. Mitochondria as central hubs in synaptic modulation. Cell Mol Life Sci 2023; 80:173. [PMID: 37266732 DOI: 10.1007/s00018-023-04814-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/10/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
Mitochondria are present in the pre- and post-synaptic regions, providing the energy required for the activity of these very specialized neuronal compartments. Biogenesis of synaptic mitochondria takes place in the cell body, and these organelles are then transported to the synapse by motor proteins that carry their cargo along microtubule tracks. The transport of mitochondria along neurites is a highly regulated process, being modulated by the pattern of neuronal activity and by extracellular cues that interact with surface receptors. These signals act by controlling the distribution of mitochondria and by regulating their activity. Therefore, mitochondria activity at the synapse allows the integration of different signals and the organelles are important players in the response to synaptic stimulation. Herein we review the available evidence regarding the regulation of mitochondrial dynamics by neuronal activity and by neuromodulators, and how these changes in the activity of mitochondria affect synaptic communication.
Collapse
Affiliation(s)
- Filipe V Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- III - Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Daniele Ciampi
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Carlos B Duarte
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
7
|
Serrat R, Oliveira-Pinto A, Marsicano G, Pouvreau S. Imaging mitochondrial calcium dynamics in the central nervous system. J Neurosci Methods 2022; 373:109560. [PMID: 35320763 DOI: 10.1016/j.jneumeth.2022.109560] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 12/28/2022]
Abstract
Mitochondrial calcium handling is a particularly active research area in the neuroscience field, as it plays key roles in the regulation of several functions of the central nervous system, such as synaptic transmission and plasticity, astrocyte calcium signaling, neuronal activity… In the last few decades, a panel of techniques have been developed to measure mitochondrial calcium dynamics, relying mostly on photonic microscopy, and including synthetic sensors, hybrid sensors and genetically encoded calcium sensors. The goal of this review is to endow the reader with a deep knowledge of the historical and latest tools to monitor mitochondrial calcium events in the brain, as well as a comprehensive overview of the current state of the art in brain mitochondrial calcium signaling. We will discuss the main calcium probes used in the field, their mitochondrial targeting strategies, their key properties and major drawbacks. In addition, we will detail the main roles of mitochondrial calcium handling in neuronal tissues through an extended report of the recent studies using mitochondrial targeted calcium sensors in neuronal and astroglial cells, in vitro and in vivo.
Collapse
Affiliation(s)
- Roman Serrat
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Alexandre Oliveira-Pinto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Giovanni Marsicano
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France
| | - Sandrine Pouvreau
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1215 NeuroCentre Magendie, France; University of Bordeaux, Bordeaux 33077, France.
| |
Collapse
|
8
|
Yapici N, Gao X, Yan X, Hou S, Jockusch S, Lesniak L, Gibson KM, Bi L. Novel Dual-Organelle-Targeting Probe (RCPP) for Simultaneous Measurement of Organellar Acidity and Alkalinity in Living Cells. ACS OMEGA 2021; 6:31447-31456. [PMID: 34869971 PMCID: PMC8637586 DOI: 10.1021/acsomega.1c03087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 11/01/2021] [Indexed: 05/06/2023]
Abstract
Many organelles, such as lysosomes and mitochondria, maintain a pH that is different from the cytoplasmic pH. These pH differences have important functional ramifications for those organelles. Many cellular events depend upon a well-compartmentalized distribution of H+ ions spanning the membrane for the optimal function. Cells have developed a variety of mechanisms that enable the regulation of organelle pH. However, the measurement of organellar acidity/alkalinity in living cells has remained a challenge. Currently, most existing probes for the estimation of intracellular pH show a single -organelle targeting capacity. Such probes provide data that fails to comprehensively reveal the pathological and physiological roles and connections between mitochondria and lysosomes in different species. Mitochondrial and lysosomal functions are closely related and important for regulating cellular homeostasis. Accordingly, the design of a single fluorescent probe that can simultaneously target mitochondria and lysosomes is highly desirable, enabling a better understanding of the crosstalk between these organelles. We report the development of a novel fluorescent sensor, rhodamine-coumarin pH probe (RCPP), for detection of organellar acidity/alkalinity. RCPP simultaneously moves between mitochondrion and lysosome subcellular locations, facilitating the simultaneous monitoring of pH alterations in mitochondria and lysosomes.
Collapse
Affiliation(s)
- Nazmiye
B. Yapici
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xiang Gao
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Xin Yan
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Shanshan Hou
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Steffen Jockusch
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Lillian Lesniak
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - K. Michael Gibson
- Department
of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Lanrong Bi
- Department
of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
9
|
Aklima J, Onojima T, Kimura S, Umiuchi K, Shibata T, Kuraoka Y, Oie Y, Suganuma Y, Ohta Y. Effects of Matrix pH on Spontaneous Transient Depolarization and Reactive Oxygen Species Production in Mitochondria. Front Cell Dev Biol 2021; 9:692776. [PMID: 34277637 PMCID: PMC8278022 DOI: 10.3389/fcell.2021.692776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/26/2021] [Indexed: 01/28/2023] Open
Abstract
Reactive oxygen species (ROS) oxidize surrounding molecules and thus impair their functions. Since mitochondria are a major source of ROS, suppression of ROS overproduction in the mitochondria is important for cells. Spontaneous transient depolarization of individual mitochondria is a physiological phenomenon widely observed from plants to mammals. Mitochondrial uncoupling can reduce ROS production; therefore, it is conceivable that transient depolarization could reduce ROS production. However, transient depolarization has been observed with increased ROS production. Therefore, the exact contribution of transient depolarization to ROS production has not been elucidated. In this study, we examined how the spontaneous transient depolarization occurring in individual mitochondria affected ROS production. When the matrix pH increased after the addition of malate or exposure of the isolated mitochondria to a high-pH buffer, transient depolarization was stimulated. Similar stimulation by an increased matrix pH was also observed in the mitochondria in intact H9c2 cells. Modifying the mitochondrial membrane potential and matrix pH by adding K+ in the presence of valinomycin, a K+ ionophore, clarified that an increase in the matrix pH is a major cause of ROS generation. When we added ADP in the presence of oligomycin to suppress the transient depolarization without decreasing the matrix pH, we observed the suppression of mitochondrial respiration, increased matrix pH, and enhanced ROS production. Based on these results, we propose a model where spontaneous transient depolarization occurs during increased proton influx through proton channels opened by increased matrix pH, leading to the suppression of ROS production. This study improves our understanding of mitochondrial behavior.
Collapse
Affiliation(s)
- Jannatul Aklima
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan.,Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong, Bangladesh
| | - Takumi Onojima
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Sawako Kimura
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Kanji Umiuchi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Takahiro Shibata
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Yusho Kuraoka
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Yoshiki Oie
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Yoshiki Suganuma
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Yoshihiro Ohta
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| |
Collapse
|
10
|
Gao M, Qin Y, Li A, Liu H, Chen L, Liu B, Zhang Y, Gao Y, Gong G. Calibration and measurement of mitochondrial pH in intact adult rat cardiomyocytes. STAR Protoc 2021; 2:100543. [PMID: 34036286 PMCID: PMC8138862 DOI: 10.1016/j.xpro.2021.100543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Mitochondrial pH is a vital parameter of the mitochondrial environment, which determines the rate of many mitochondrial functions, including metabolism, membrane potential, fate, etc. Abnormal mitochondrial pH is always closely related to the health status of cells. Analyzing mitochondrial pH can serve as a proxy for mitochondrial and cellular function. This protocol describes the use of SNARF-1 AM, a pH-sensitive fluorophore, to measure mitochondrial pH. This protocol details the steps to evaluate mitochondrial pH in live adult cardiomyocytes using confocal microscopy. The protocol can be adapted to other adherent cell types. For complete details on the use and execution of this protocol, please refer to Wei-LaPierre et al. (2013).
Collapse
Affiliation(s)
- Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hanyu Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Lei Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ying Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yufei Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
11
|
Wu D, Qi W, Nie W, Lu Z, Ye Y, Li J, Sun T, Zhu Y, Cheng H, Wang X. BacFlash signals acid-resistance gene expression in bacteria. Cell Res 2021; 31:703-712. [PMID: 33159153 PMCID: PMC8169942 DOI: 10.1038/s41422-020-00431-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 10/14/2020] [Indexed: 11/08/2022] Open
Abstract
Intracellular pH (pHi) homeostasis is crucial for cellular functions and signal transduction across all kingdoms of life. In particular, bacterial pHi homeostasis is important for physiology, ecology, and pathogenesis. Here we report an exquisite bacterial acid-resistance (AR) mechanism in which proton leak elicits a pre-emptive AR response. A single bacterial cell undergoes quantal electrochemical excitation, termed "BacFlash", which consists of membrane depolarization, transient pHi rise, and bursting production of reactive oxygen species. BacFlash ignition is dictated by acid stress in the form of proton leak across the plasma membrane and the rate of BacFlash occurrence is reversely correlated with the pHi buffering capacity. Through genome-wide screening, we further identify the ATP synthase Fo complex subunit a as the putative proton sensor for BacFlash biogenesis. Importantly, persistent BacFlash hyperactivity activates transcription of a panel of key AR genes and predisposes the cells to survive imminent extreme acid stress. These findings demonstrate a prototypical coupling between electrochemical excitation and nucleoid gene expression in prokaryotes.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Wenfeng Qi
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Wei Nie
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China
| | - Zhengyuan Lu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yongxin Ye
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Jinghang Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Tao Sun
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Yufei Zhu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China.
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
12
|
Gao M, Qin Y, Li A, Wei S, Liu B, Tian X, Gong G. Mitoflash generated at the Qo site of mitochondrial Complex III. J Cell Physiol 2021; 236:2920-2933. [PMID: 32930405 DOI: 10.1002/jcp.30059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 01/13/2023]
Abstract
The previous research has shown that mitochondrial flash (mitoflash) genesis are functionally and mechanistically integrated with mitochondrial electron transport chain (ETC) energy metabolism. However, the response of mitoflash to superoxide is not entirely consistent with the response of MitoSOX Red. The generation mechanism of mitoflash is still unclear. Here, we investigated mitoflash activities, using the different combinations of ETC substrates and inhibitors, in permeabilized cardiomyocytes or hearts. We found that blocking the complete electron flow, from Complex I to IV, with any one of ETC inhibitors including rotenone (Rot), antimycin A (AntA), myxothiazol (Myxo), stigmatellin, and sodium cyanide, will lead to the abolishment of mitoflashes triggered by substrates in adult permeabilized cardiomyocytes. However, Myxo boosted mitoflashes triggered by the reverse electron of N,N,N',N'-tetramethyl-p-phenylenediamine/ascorbate. Moreover, Rot and AntA furtherly enhanced mitoflash activity rather than depressed it, suggesting that mitoflashes generated at the Complex III Qo site. Meanwhile, the inhibition of Complex III protein expression resulted in the activity of Complex III decrease, which decreased mitoflash frequency. The function defect (no change of protein level) of the Qo site of Complex III in aging hearts augmented mitoflash generation confirmed the Qo site function was critical to mitoflash genesis. Thus, our results indicate that mitoflash detected by circularly permuted yellow fluorescent protein is generated at the Qo site of Complex III.
Collapse
Affiliation(s)
- Meng Gao
- Institute for Regenerative Medicine, Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Anqi Li
- Institute for Regenerative Medicine, Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Sailei Wei
- Institute for Regenerative Medicine, Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiangang Tian
- Institute for Regenerative Medicine, Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical Center of PLA, Chongqing, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
13
|
Zhang H, Alder NN, Wang W, Szeto H, Marcinek DJ, Rabinovitch PS. Reduction of elevated proton leak rejuvenates mitochondria in the aged cardiomyocyte. eLife 2020; 9:e60827. [PMID: 33319746 PMCID: PMC7738186 DOI: 10.7554/elife.60827] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Aging-associated diseases, including cardiac dysfunction, are increasingly common in the population. However, the mechanisms of physiologic aging in general, and cardiac aging in particular, remain poorly understood. Age-related heart impairment is lacking a clinically effective treatment. Using the model of naturally aging mice and rats, we show direct evidence of increased proton leak in the aged heart mitochondria. Moreover, our data suggested ANT1 as the most likely site of mediating increased mitochondrial proton permeability in old cardiomyocytes. Most importantly, the tetra-peptide SS-31 prevents age-related excess proton entry, decreases the mitochondrial flash activity and mitochondrial permeability transition pore opening, rejuvenates mitochondrial function by direct association with ANT1 and the mitochondrial ATP synthasome, and leads to substantial reversal of diastolic dysfunction. Our results uncover the excessive proton leak as a novel mechanism of age-related cardiac dysfunction and elucidate how SS-31 can reverse this clinically important complication of cardiac aging.
Collapse
Affiliation(s)
- Huiliang Zhang
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| | - Nathan N Alder
- Department of Molecular and Cell Biology, University of ConnecticutStorrsUnited States
| | - Wang Wang
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of WashingtonSeattleUnited States
| | - Hazel Szeto
- Social Profit Network Research Lab, Alexandria LaunchLabsNew YorkUnited States
| | - David J Marcinek
- Department of Radiology, University of WashingtonSeattleUnited States
| | - Peter S Rabinovitch
- Department of Laboratory Medicine and Pathology, University of WashingtonSeattleUnited States
| |
Collapse
|
14
|
Li A, Yi J, Li X, Zhou J. Physiological Ca 2+ Transients Versus Pathological Steady-State Ca 2+ Elevation, Who Flips the ROS Coin in Skeletal Muscle Mitochondria. Front Physiol 2020; 11:595800. [PMID: 33192612 PMCID: PMC7642813 DOI: 10.3389/fphys.2020.595800] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria are both the primary provider of ATP and the pivotal regulator of cell death, which are essential for physiological muscle activities. Ca2+ plays a multifaceted role in mitochondrial function. During muscle contraction, Ca2+ influx into mitochondria activates multiple enzymes related to tricarboxylic acid (TCA) cycle and oxidative phosphorylation, resulting in increased ATP synthesis to meet the energy demand. Pathophysiological conditions such as skeletal muscle denervation or unloading also lead to elevated Ca2+ levels inside mitochondria. However, the outcomes of this steady-state elevation of mitochondrial Ca2+ level include exacerbated reactive oxygen species (ROS) generation, sensitized opening of mitochondrial permeability transition pore (mPTP), induction of programmed cell death, and ultimately muscle atrophy. Previously, both acute and long-term endurance exercises have been reported to activate certain signaling pathways to counteract ROS production. Meanwhile, electrical stimulation is known to help prevent apoptosis and alleviate muscle atrophy in denervated animal models and patients with motor impairment. There are various mechanistic studies that focus on the excitation-transcription coupling framework to understand the beneficial role of exercise and electrical stimulation. Interestingly, a recent study has revealed an unexpected role of rapid mitochondrial Ca2+ transients in keeping mPTP at a closed state with reduced mitochondrial ROS production. This discovery motivated us to contribute this review article to inspire further discussion about the potential mechanisms underlying differential outcomes of physiological mitochondrial Ca2+ transients and pathological mitochondrial Ca2+ elevation in skeletal muscle ROS production.
Collapse
Affiliation(s)
- Ang Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Jianxun Yi
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Xuejun Li
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| | - Jingsong Zhou
- Department of Kinesiology, College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
15
|
Van Wijk R, Van Wijk EP, Pang J, Yang M, Yan Y, Han J. Integrating Ultra-Weak Photon Emission Analysis in Mitochondrial Research. Front Physiol 2020; 11:717. [PMID: 32733265 PMCID: PMC7360823 DOI: 10.3389/fphys.2020.00717] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/29/2020] [Indexed: 12/11/2022] Open
Abstract
Once regarded solely as the energy source of the cell, nowadays mitochondria are recognized to perform multiple essential functions in addition to energy production. Since the discovery of pathogenic mitochondrial DNA defects in the 1980s, research advances have revealed an increasing number of common human diseases, which share an underlying pathogenesis involving mitochondrial dysfunction. A major factor in this dysfunction is reactive oxygen species (ROS), which influence the mitochondrial-nuclear crosstalk and the link with the epigenome, an influence that provides explanations for pathogenic mechanisms. Regarding these mechanisms, we should take into account that mitochondria produce the majority of ultra-weak photon emission (UPE), an aspect that is often ignored - this type of emission may serve as assay for ROS, thus providing new opportunities for a non-invasive diagnosis of mitochondrial dysfunction. In this article, we overviewed three relevant areas of mitochondria-related research over the period 1960-2020: (a) respiration and energy production, (b) respiration-related production of free radicals and other ROS species, and (c) ultra-weak photon emission in relation to ROS and stress. First, we have outlined how these research areas initially developed independently of each other - following that, our review aims to show their stepwise integration during later stages of development. It is suggested that a further stimulation of research on UPE may have the potential to enhance the progress of modern mitochondrial research and its integration in medicine.
Collapse
Affiliation(s)
- Roeland Van Wijk
- Meluna Research, Department of Biophotonics, Geldermalsen, Netherlands
| | | | - Jingxiang Pang
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| | - Meina Yang
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Yan
- Meluna Research, Department of Biophotonics, Geldermalsen, Netherlands
| | - Jinxiang Han
- Key Laboratory for Biotech-Drugs of National Health Commission, Shandong Medicinal Biotechnology Center, Jinan, China
- Shandong First Medical University, Jinan, China
- Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
16
|
McMurray F, MacFarlane M, Kim K, Patten DA, Wei-LaPierre L, Fullerton MD, Harper ME. Maternal diet–induced obesity alters muscle mitochondrial function in offspring without changing insulin sensitivity. FASEB J 2019; 33:13515-13526. [DOI: 10.1096/fj.201901150r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Fiona McMurray
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Megan MacFarlane
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Kijoo Kim
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - David A. Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Morgan D. Fullerton
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| |
Collapse
|
17
|
Liu B, Li A, Qin Y, Tian X, Gao M, Jiang W, Gong G. Comparative study on isolation and mitochondrial function of adult mouse and rat cardiomyocytes. J Mol Cell Cardiol 2019; 136:64-71. [PMID: 31521710 DOI: 10.1016/j.yjmcc.2019.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/27/2019] [Accepted: 09/11/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cultured adult mouse and rat cardiomyocytes are the best and low-cost cell model for cardiac cellular physiology, pathology, drug toxicity screening, and intervention. The functions of mouse cardiomyocytes decline faster than rat cardiomyocytes in culture conditions. However, little is known about the difference of mitochondrial function between cultured mouse and rat myocytes. METHODS AND RESULTS A large number of adult mouse and rat cardiomyocytes were comparative isolated using a simple perfusion system. Cardiomyocytes mitochondrial functions were measured after 2 h, 1 day, 2 days, 3 days, and 4 days culture by monitoring mitoflashes. We found that the mitochondrial function of mouse myocytes was remarkedly declined on the third day. Then, we focused on the third day cultured mouse and rat myocytes, comparatively analyzing the respiration function and superoxide generation stimulated by pyruvate/malate/ADP and the mitochondrial permeability transition pore (mPTP) opening induction. Mouse myocytes showed lower respiration and mitoflash activity, but without the change of maximum uncoupled respiration when compared with rat myocytes. Although the response to superoxide production stimulated by respiration substrates was slower than rat myocytes, the basal superoxide generation is faster than the rat. The faster mitochondrial reactive oxygen species (ROS) generation of mouse myocytes upon laser stimulation triggered the faster mPTP opening compared with the rat. Finally, antioxidant MitoTEMPO pretreatment preserved the mitochondrial function of mouse myocytes on the third day. CONCLUSIONS The mitochondrial function and stability are different between cultured mouse and rat cardiac myocytes beyond 3 days even though they both belong to Muridae. Mitochondrial ROS impairs the mitochondrial functions of mouse cardiomyocytes on the third day. Suppressing superoxide maintained the mitochondrial function of mouse myocytes on the third day.
Collapse
Affiliation(s)
- Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yuan Qin
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai 200120, China
| | - Xiangang Tian
- Daping Hospital, Third Military Medical University, Chongqing 400037, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wenting Jiang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
18
|
Yu P, Qi W, Huwatibieke B, Li J, Wang X, Cheng H. Temperature dependence of mitoflash biogenesis in cardiac mitochondria. Arch Biochem Biophys 2019; 666:8-15. [PMID: 30898545 DOI: 10.1016/j.abb.2019.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 11/30/2022]
Abstract
Mitochondrial flashes (mitoflashes) represent fundamental biochemical and biophysical dynamics of the organelle, involving sudden depolarization of mitochondrial membrane potential (ΔΨm), bursting production of reactive oxygen species (ROS), and accelerated extrusion of matrix protons. Here we investigated temperature dependence of mitoflash biogenesis as well as ΔΨm oscillations, a subset of which overlapping with mitoflashes, in both cardiac myocytes and isolated respiring cardiac mitochondria. Unexpectedly, we found that mitoflash biogenesis was essentially temperature-independent in intact cardiac myocytes, evidenced by the constancy of frequency as well as amplitude and rise speed over 5 °C-40 °C. Moderate temperature dependence was found in single mitochondria charged by respiratory substrates, where mitoflash frequency was decreased over 5 °C-20 °C with Q10 of 0.74 for Complex I substrates and 0.83 for Complex II substrate. In contrast, ΔΨm oscillation frequency displayed a negative temperature dependence at 5 °C-20 °C with Q10 of 0.82 in intact cells, but a positive temperature dependence at 25 °C - 40 °C with Q10 of 1.62 in isolated mitochondria charged with either Complex I or Complex II substrates. Moreover, the recovery speed of individual mitoflashes exhibited mild temperature dependence (Q10 = 1.14-1.22). These results suggest a temperature compensation of mitoflash frequency at both the mitochondrial and extra-organelle levels, and underscore that mitoflashes and ΔΨm oscillations are related but distinctly different mitochondrial functional dynamics.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Wenfeng Qi
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Bahetiyaer Huwatibieke
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jinghang Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
19
|
Wei-LaPierre L, Dirksen RT. Isolating a reverse-mode ATP synthase-dependent mechanism of mitoflash activation. J Gen Physiol 2019; 151:708-713. [PMID: 31010808 PMCID: PMC6571996 DOI: 10.1085/jgp.201912358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Wei-LaPierre and Dirksen discuss new work investigating the molecular events underlying mitoflash biogenesis.
Collapse
Affiliation(s)
- Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
20
|
Wei-LaPierre L, Ainbinder A, Tylock KM, Dirksen RT. Substrate-dependent and cyclophilin D-independent regulation of mitochondrial flashes in skeletal and cardiac muscle. Arch Biochem Biophys 2019; 665:122-131. [PMID: 30872061 PMCID: PMC6499064 DOI: 10.1016/j.abb.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 01/20/2023]
Abstract
Mitochondrial flashes (mitoflashes) are stochastic events in the mitochondrial matrix detected by mitochondrial-targeted cpYFP (mt-cpYFP). Mitoflashes are quantal bursts of reactive oxygen species (ROS) production accompanied by modest matrix alkalinization and depolarization of the mitochondrial membrane potential. Mitoflashes are fundamental events present in a wide range of cell types. To date, the precise mechanisms for mitoflash generation and termination remain elusive. Transient opening of the mitochondrial membrane permeability transition pore (mPTP) during a mitoflash is proposed to account for the mitochondrial membrane potential depolarization. Here, we set out to compare the tissue-specific effects of cyclophilin D (CypD)-deficiency and mitochondrial substrates on mitoflash activity in skeletal and cardiac muscle. In contrast to previous reports, we found that CypD knockout did not alter the mitoflash frequency or other mitoflash properties in acutely isolated cardiac myocytes, skeletal muscle fibers, or isolated mitochondria from skeletal muscle and the heart. However, in skeletal muscle fibers, CypD deficiency resulted in a parallel increase in both activity-dependent mitochondrial Ca2+ uptake and activity-dependent mitoflash activity. Increases in both mitochondrial Ca2+ uptake and mitoflash activity following electrical stimulation were abolished by inhibition of mitochondrial Ca2+ uptake. We also found that mitoflash frequency and amplitude differ greatly between intact skeletal muscle fibers and cardiac myocytes, but that this difference is absent in isolated mitochondria. We propose that this difference may be due, in part, to differences in substrate availability in intact skeletal muscle fibers (primarily glycolytic) and cardiac myocytes (largely oxidative). Overall, we find that CypD does not contribute significantly in mitoflash biogenesis under basal conditions in skeletal and cardiac muscle, but does regulate mitoflash events during muscle activity. In addition, tissue-dependent differences in mitoflash frequency are strongly regulated by mitochondrial substrate availability.
Collapse
Affiliation(s)
- Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA.
| | - Alina Ainbinder
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Kevin M Tylock
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| |
Collapse
|
21
|
Feng G, Liu B, Li J, Cheng T, Huang Z, Wang X, Cheng HP. Mitoflash biogenesis and its role in the autoregulation of mitochondrial proton electrochemical potential. J Gen Physiol 2019; 151:727-737. [PMID: 30877142 PMCID: PMC6571995 DOI: 10.1085/jgp.201812176] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/29/2018] [Accepted: 02/19/2019] [Indexed: 01/11/2023] Open
Abstract
Individual mitochondria undergo an intermittent, all-or-none electrochemical excitation termed “mitoflash.” Feng et al. show that mitoflash occurs following build-up of mitochondrial electrochemical potential and may serve to autoregulate mitochondrial proton electrochemical potential. Respiring mitochondria undergo an intermittent electrical and chemical excitation called mitochondrial flash (mitoflash), which transiently uncouples mitochondrial respiration from ATP production. How a mitoflash is generated and what specific role it plays in bioenergetics remain incompletely understood. Here, we investigate mitoflash biogenesis in isolated cardiac mitochondria by varying the respiratory states and substrate supply and by dissecting the involvement of different electron transfer chain (ETC) complexes. We find that robust mitoflash activity occurs once mitochondria are electrochemically charged by state II/IV respiration (i.e., no ATP synthesis at Complex V), regardless of the substrate entry site (Complex I, Complex II, or Complex IV). Inhibiting forward electron transfer abolishes, while blocking reverse electron transfer generally augments, mitoflash production. Switching from state II/IV to state III respiration, to allow for ATP synthesis at Complex V, markedly diminishes mitoflash activity. Intriguingly, when mitochondria are electrochemically charged by the ATPase activity of Complex V, mitoflashes are generated independently of ETC activity. These findings suggest that mitoflash biogenesis is mechanistically linked to the build up of mitochondrial electrochemical potential rather than ETC activity alone, and may functionally counteract overcharging of the mitochondria and hence serve as an autoregulator of mitochondrial proton electrochemical potential.
Collapse
Affiliation(s)
- Gaomin Feng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Beibei Liu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jinghang Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Tianlei Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhanglong Huang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Heping Peace Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
22
|
Zhou J, Li A, Li X, Yi J. Dysregulated mitochondrial Ca 2+ and ROS signaling in skeletal muscle of ALS mouse model. Arch Biochem Biophys 2019; 663:249-258. [PMID: 30682329 PMCID: PMC6506190 DOI: 10.1016/j.abb.2019.01.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/24/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neuromuscular disease characterized by motor neuron loss and prominent skeletal muscle wasting. Despite more than one hundred years of research efforts, the pathogenic mechanisms underlying neuromuscular degeneration in ALS remain elusive. While the death of motor neuron is a defining hallmark of ALS, accumulated evidences suggested that in addition to being a victim of motor neuron axonal withdrawal, the intrinsic skeletal muscle degeneration may also actively contribute to ALS disease pathogenesis and progression. Examination of spinal cord and muscle autopsy/biopsy samples of ALS patients revealed similar mitochondrial abnormalities in morphology, quantity and disposition, which are accompanied by defective mitochondrial respiratory chain complex and elevated oxidative stress. Detailing the molecular/cellular mechanisms and the role of mitochondrial dysfunction in ALS relies on ALS animal model studies. This review article discusses the dysregulated mitochondrial Ca2+ and reactive oxygen species (ROS) signaling revealed in live skeletal muscle derived from ALS mouse models, and a potential role of the vicious cycle formed between the dysregulated mitochondrial Ca2+ signaling and excessive ROS production in promoting muscle wasting during ALS progression.
Collapse
Affiliation(s)
- Jingsong Zhou
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA.
| | - Ang Li
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Xuejun Li
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Jianxun Yi
- Kansas City University of Medicine and Bioscience, Kansas City, MO 64106, USA; College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
23
|
McBride S, Wei-LaPierre L, McMurray F, MacFarlane M, Qiu X, Patten DA, Dirksen RT, Harper ME. Skeletal muscle mitoflashes, pH, and the role of uncoupling protein-3. Arch Biochem Biophys 2019; 663:239-248. [PMID: 30659802 DOI: 10.1016/j.abb.2019.01.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/28/2018] [Accepted: 01/15/2019] [Indexed: 01/03/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) are important cellular signaling molecules, but can cause oxidative damage if not kept within tolerable limits. An important proximal form of ROS in mitochondria is superoxide. Its production is thought to occur in regulated stochastic bursts, but current methods using mitochondrial targeted cpYFP to assess superoxide flashes are confounded by changes in pH. Accordingly, these flashes are generally referred to as 'mitoflashes'. Here we provide regulatory insights into mitoflashes and pH fluctuations in skeletal muscle, and the role of uncoupling protein-3 (UCP3). Using quantitative confocal microscopy of mitoflashes in intact muscle fibers, we show that the mitoflash magnitude significantly correlates with the degree of mitochondrial inner membrane depolarization and ablation of UCP3 did not affect this correlation. We assessed the effects of the absence of UCP3 on mitoflash activity in intact skeletal muscle fibers, and found no effects on mitoflash frequency, amplitude or duration, with a slight reduction in the average size of mitoflashes. We further investigated the regulation of pH flashes (pHlashes, presumably a component of mitoflash) by UCP3 using mitochondrial targeted SypHer (mt-SypHer) in skeletal muscle fibers. The frequency of pHlashes was significantly reduced in the absence of UCP3, without changes in other flash properties. ROS scavenger, tiron, did not alter pHlash frequency in either WT or UCP3KO mice. High resolution respirometry revealed that in the absence of UCP3 there is impaired proton leak and Complex I-driven respiration and maximal coupled respiration. Total cellular production of hydrogen peroxide (H2O2) as detected by Amplex-UltraRed was unaffected. Altogether, we demonstrate a correlation between mitochondrial membrane potential and mitoflash magnitude in skeletal muscle fibers that is independent of UCP3, and a role for UCP3 in the control of pHlash frequency and of proton leak- and Complex I coupled-respiration in skeletal muscle fibers. The differential regulation of mitoflashes and pHlashes by UCP3 and tiron also indicate that the two events, though may be related, are not identical events.
Collapse
Affiliation(s)
- S McBride
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada
| | - L Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642-8711, USA
| | - F McMurray
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada
| | - M MacFarlane
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada
| | - X Qiu
- Department of Biostatistics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642-8711, USA
| | - D A Patten
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada
| | - R T Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY, 14642-8711, USA
| | - M-E Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Rd., Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
24
|
Xiao Y, Karam C, Yi J, Zhang L, Li X, Yoon D, Wang H, Dhakal K, Ramlow P, Yu T, Mo Z, Ma J, Zhou J. ROS-related mitochondrial dysfunction in skeletal muscle of an ALS mouse model during the disease progression. Pharmacol Res 2018; 138:25-36. [PMID: 30236524 PMCID: PMC6263743 DOI: 10.1016/j.phrs.2018.09.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 09/07/2018] [Accepted: 09/07/2018] [Indexed: 02/06/2023]
Abstract
In amyotrophic lateral sclerosis (ALS), mitochondrial dysfunction and oxidative stress form a vicious cycle that promotes neurodegeneration and muscle wasting. To quantify the disease-stage-dependent changes of mitochondrial function and their relationship to the generation of reactive oxygen species (ROS), we generated double transgenic mice (G93A/cpYFP) that carry human ALS mutation SOD1G93A and mt-cpYFP transgenes, in which mt-cpYFP detects dynamic changes of ROS-related mitoflash events at individual mitochondria level. Compared with wild type mice, mitoflash activity in the SOD1G93A (G93A) mouse muscle showed an increased flashing frequency prior to the onset of ALS symptom (at the age of 2 months), whereas the onset of ALS symptoms (at the age of 4 months) is associated with drastic changes in the kinetics property of mitoflash signal with prolonged full duration at half maximum (FDHM). Elevated levels of cytosolic ROS in skeletal muscle derived from the SOD1G93A mice were confirmed with fluorescent probes, MitoSOX™ Red and ROS Brite™570. Immunoblotting analysis of subcellular mitochondrial fractionation of G93A muscle revealed an increased expression level of cyclophilin D (CypD), a regulatory component of the mitochondrial permeability transition pore (mPTP), at the age of 4 months but not at the age of 2 months. Transient overexpressing of SOD1G93A in skeletal muscle of wild type mice directly promoted mitochondrial ROS production with an enhanced mitoflash activity in the absence of motor neuron axonal withdrawal. Remarkably, the SOD1G93A-induced mitoflash activity was attenuated by the application of cyclosporine A (CsA), an inhibitor of CypD. Similar to the observation with the SOD1G93A transgenic mice, an increased expression level of CypD was also detected in skeletal muscle following transient overexpression of SOD1G93A. Overall, this study reveals a disease-stage-dependent change in mitochondrial function that is associated with CypD-dependent mPTP opening; and the ALS mutation SOD1G93A directly contributes to mitochondrial dysfunction in the absence of motor neuron axonal withdrawal.
Collapse
Affiliation(s)
- Yajuan Xiao
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Rush University School of Medicine, Chicago, IL, USA
| | - Chehade Karam
- Rush University School of Medicine, Chicago, IL, USA
| | - Jianxun Yi
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Rush University School of Medicine, Chicago, IL, USA
| | - Lin Zhang
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Zunyi Medical College, Zunyi, China
| | - Xuejun Li
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Dosuk Yoon
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Huan Wang
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Kamal Dhakal
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Paul Ramlow
- Kansas City University of Medicine and Bioscience, Kansas City, USA
| | - Tian Yu
- Zunyi Medical College, Zunyi, China
| | - Zhaohui Mo
- 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jianjie Ma
- Wexner Medical Center, The Ohio State University, Columbus, OH, USA
| | - Jingsong Zhou
- Kansas City University of Medicine and Bioscience, Kansas City, USA; Rush University School of Medicine, Chicago, IL, USA.
| |
Collapse
|
25
|
Qin Y, Gao M, Li A, Sun J, Liu B, Gong G. Mitoflash lights single mitochondrial dynamics events in mature cardiomyocytes. Biochem Biophys Res Commun 2018; 503:729-736. [PMID: 29928879 DOI: 10.1016/j.bbrc.2018.06.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/13/2018] [Indexed: 11/29/2022]
Abstract
Mitochondria, the powerhouse of eukaryotic cells, are highly dynamic organelle. Mitochondrial fission, fusion, kissing and contraction have been reported over and over again in non-static cells, such as fibroblast, with tubular mitochondrial networks. Even though the fluorescence propagation among mitochondria of mature cardiomyocytes had been captured using mitochondrial matrix targeted photoactivatable GFP (PAGFP) or MitoDendra proteins, there are no direct evidence that single real time mitochondrial dynamics events exist in mature cardiomyocytes with ball-like mitochondria. Here we first time revealed the visualizable single mitochondrial dynamics events in adult mature cardiomyocytes by the mitochondrial flash (mitoflash). We found fission, fusion, contraction and kissing were accompanied by a mitoflash event. Metabolism could increase mitochondrial contraction. Fusion and Kissing mediated inter-mitochondrial communication with higher frequency than fission. These results demonstrate that mitochondria of static mature cardiomyocytes are undergoing the rare, but real dynamics change.
Collapse
Affiliation(s)
- Yuan Qin
- Department of Pharmacy, Shanghai East Hospital, Tongji University, Shanghai, 200120, China
| | - Meng Gao
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Anqi Li
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jia Sun
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Bilin Liu
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Guohua Gong
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
26
|
Wang S, Hu M, He H. Quantitative analysis of mitoflash excited by femtosecond laser. JOURNAL OF BIOMEDICAL OPTICS 2018; 23:1-6. [PMID: 29952149 DOI: 10.1117/1.jbo.23.6.065005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
Mitochondrial oxidative flashes (mitoflashes) are oxidative burst events in mitochondria. It is crosslinked with numerous mitochondrial molecular processes and related with pivotal cell functions such as apoptosis and respiration. In previous research, mitoflashes were found as spontaneous occasional events. It would be observed more frequently if cells were treated with proapoptotic chemicals. We show that multiple mitoflashes can be initiated by a single femtosecond-laser stimulation that was tightly focused on a diffraction-limited spot in the mitochondrial tubular structure. The mitoflash events triggered by different photostimulations are quantified and analyzed. The width and amplitude of mitoflashes are found very sensitive to stimulation parameters including laser power, exposure duration, and total incident laser energy. This study provides a quantitative investigation on the photostimulated mitoflashes. It may thus demonstrate such optical method to be a promising technique in future mitochondrial research.
Collapse
Affiliation(s)
| | | | - Hao He
- Tianjin Univ., China
- Shanghai Jiao Tong Univ., China
| |
Collapse
|
27
|
Chen W, Luo S, Xie P, Hou T, Yu T, Fu X. Overexpressed UCP2 regulates mitochondrial flashes and reverses lipopolysaccharide-induced cardiomyocytes injury. Am J Transl Res 2018; 10:1347-1356. [PMID: 29887950 PMCID: PMC5992536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Background: Mitochondrial flashes (mitoflashes) are transient signals from transient bursts of reactive oxygen species (ROS) and changes in pH that occur in certain physiological or pathological conditions. Mitoflashes are closely related to metabolism, cell differentiation, stress response, diseases, and aging. Sepsis can trigger mitochondrial dysfunction in myocardial cells, which leads to ROS overproduction, while uncoupling protein 2 (UCP2) can reduce ROS production. This study aims to observe whether UCP2 overexpression can regulate the frequency of mitoflashes in cardiomyocytes during sepsis and thereby play a protective role. Methods: A cell model for sepsis-induced myocardial damage was established using lipopolysaccharide (LPS). UCP2 overexpression in cardiomyocytes was achieved by adenovirus transfection. Creatinine kinase (CK), lactate dehydrogenase (LDH), tumor necrosis factor (TNF-α), and interleukin (IL-6) activities were detected, and mitochondrial membrane potentials (MMP) were measured. The frequency of mitoflashes in cardiomyocytes was observed. Results: With LPS stimulation, mitoflashes in cardiomyocytes increased significantly, and the MMP was damaged. Additionally, significant increases in CK, LDH, TNF-α, and IL-6 expression levels were observed. UCP2 overexpression can significantly reverse myocardial cell injuries that result from LPS stimulation. Compared with the LPS group, the LPS+UCP2 overexpression group showed a decrease in mitoflash frequency, an improved MMP, and decreases in CK, LDH, TNF-α, and IL-6 expression levels. Conclusion: This study is the first to demonstrate the function of UCP2 overexpression in protecting the myocardium by regulating mitoflash frequency and reversing sepsis-induced myocardial injuries.
Collapse
Affiliation(s)
- Wenbo Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Shiyu Luo
- Department of Critical Care Medicine, The First Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Peng Xie
- Department of Critical Care Medicine, The First Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| | - Tingting Hou
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking UniversityBeijing 100871, China
| | - Tian Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical UniversityZunyi, Guizhou, China
| | - Xiaoyun Fu
- Department of Critical Care Medicine, The First Affiliated Hospital of Zunyi Medical UniversityZunyi, Guizhou, China
| |
Collapse
|
28
|
Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018; 9:50. [PMID: 29491838 PMCID: PMC5817353 DOI: 10.3389/fphys.2018.00050] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/16/2018] [Indexed: 12/20/2022] Open
Abstract
Iron sulfur (Fe-S) clusters and the molybdenum cofactor (Moco) are present at enzyme sites, where the active metal facilitates electron transfer. Such enzyme systems are soluble in the mitochondrial matrix, cytosol and nucleus, or embedded in the inner mitochondrial membrane, but virtually absent from the cell secretory pathway. They are of ancient evolutionary origin supporting respiration, DNA replication, transcription, translation, the biosynthesis of steroids, heme, catabolism of purines, hydroxylation of xenobiotics, and cellular sulfur metabolism. Here, Fe-S cluster and Moco biosynthesis in Drosophila melanogaster is reviewed and the multiple biochemical and physiological functions of known Fe-S and Moco enzymes are described. We show that RNA interference of Mocs3 disrupts Moco biosynthesis and the circadian clock. Fe-S-dependent mitochondrial respiration is discussed in the context of germ line and somatic development, stem cell differentiation and aging. The subcellular compartmentalization of the Fe-S and Moco assembly machinery components and their connections to iron sensing mechanisms and intermediary metabolism are emphasized. A biochemically active Fe-S core complex of heterologously expressed fly Nfs1, Isd11, IscU, and human frataxin is presented. Based on the recent demonstration that copper displaces the Fe-S cluster of yeast and human ferredoxin, an explanation for why high dietary copper leads to cytoplasmic iron deficiency in flies is proposed. Another proposal that exosomes contribute to the transport of xanthine dehydrogenase from peripheral tissues to the eye pigment cells is put forward, where the Vps16a subunit of the HOPS complex may have a specialized role in concentrating this enzyme within pigment granules. Finally, we formulate a hypothesis that (i) mitochondrial superoxide mobilizes iron from the Fe-S clusters in aconitase and succinate dehydrogenase; (ii) increased iron transiently displaces manganese on superoxide dismutase, which may function as a mitochondrial iron sensor since it is inactivated by iron; (iii) with the Krebs cycle thus disrupted, citrate is exported to the cytosol for fatty acid synthesis, while succinyl-CoA and the iron are used for heme biosynthesis; (iv) as iron is used for heme biosynthesis its concentration in the matrix drops allowing for manganese to reactivate superoxide dismutase and Fe-S cluster biosynthesis to reestablish the Krebs cycle.
Collapse
Affiliation(s)
- Zvonimir Marelja
- Imagine Institute, Université Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Silke Leimkühler
- Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| |
Collapse
|
29
|
Fu ZX, Tan X, Fang H, Lau PM, Wang X, Cheng H, Bi GQ. Dendritic mitoflash as a putative signal for stabilizing long-term synaptic plasticity. Nat Commun 2017; 8:31. [PMID: 28652625 PMCID: PMC5484698 DOI: 10.1038/s41467-017-00043-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 04/28/2017] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial flashes (mitoflashes) are recently discovered excitable mitochondrial events in many cell types. Here we investigate their occurrence in the context of structural long-term potentiation (sLTP) at hippocampal synapses. At dendritic spines stimulated by electric pulses, glycine, or targeted glutamate uncaging, induction of sLTP is associated with a phasic occurrence of local, quantized mitochondrial activity in the form of one or a few mitoflashes, over a 30-min window. Low-dose nigericin or photoactivation that elicits mitoflashes stabilizes otherwise short-term spine enlargement into sLTP. Meanwhile, scavengers of reactive oxygen species suppress mitoflashes while blocking sLTP. With targeted photoactivation of mitoflashes, we further show that the stabilization of sLTP is effective within the critical 30-min time-window and a spatial extent of ~2 μm, similar to that of local diffusive reactive oxygen species. These findings indicate a potential signaling role of dendritic mitochondria in synaptic plasticity, and provide new insights into the cellular function of mitoflashes. Mitoflashes are dynamic events in mitochondria, associated with depolarization and release of reactive oxygen species, and have been associated with several cellular functions. The authors now show that in neurons, dendritic mitoflashes are involved in structural postsynaptic changes during LTP.
Collapse
Affiliation(s)
- Zhong-Xiao Fu
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China.,School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xiao Tan
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230027, China
| | - Huaqiang Fang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Pak-Ming Lau
- School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China.,CAS Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, 230027, China
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| | - Guo-Qiang Bi
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230027, China. .,School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China. .,CAS Center for Excellence in Brain Science and Intelligence Technology, University of Science and Technology of China, Hefei, 230027, China. .,Innovation Center for Cell Signaling Network, University of Science and Technology of China, Hefei, 230027, China.
| |
Collapse
|
30
|
Wang X, Zhang X, Huang Z, Wu D, Liu B, Zhang R, Yin R, Hou T, Jian C, Xu J, Zhao Y, Wang Y, Gao F, Cheng H. Protons Trigger Mitochondrial Flashes. Biophys J 2017; 111:386-394. [PMID: 27463140 DOI: 10.1016/j.bpj.2016.05.052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 05/06/2016] [Accepted: 05/31/2016] [Indexed: 12/22/2022] Open
Abstract
Emerging evidence indicates that mitochondrial flashes (mitoflashes) are highly conserved elemental mitochondrial signaling events. However, which signal controls their ignition and how they are integrated with other mitochondrial signals and functions remain elusive. In this study, we aimed to further delineate the signal components of the mitoflash and determine the mitoflash trigger mechanism. Using multiple biosensors and chemical probes as well as label-free autofluorescence, we found that the mitoflash reflects chemical and electrical excitation at the single-organelle level, comprising bursting superoxide production, oxidative redox shift, and matrix alkalinization as well as transient membrane depolarization. Both electroneutral H(+)/K(+) or H(+)/Na(+) antiport and matrix proton uncaging elicited immediate and robust mitoflash responses over a broad dynamic range in cardiomyocytes and HeLa cells. However, charge-uncompensated proton transport, which depolarizes mitochondria, caused the opposite effect, and steady matrix acidification mildly inhibited mitoflashes. Based on a numerical simulation, we estimated a mean proton lifetime of 1.42 ns and diffusion distance of 2.06 nm in the matrix. We conclude that nanodomain protons act as a novel, to our knowledge, trigger of mitoflashes in energized mitochondria. This finding suggests that mitoflash genesis is functionally and mechanistically integrated with mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Xianhua Wang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China.
| | - Xing Zhang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Zhanglong Huang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Di Wu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Beibei Liu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Rufeng Zhang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Rongkang Yin
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Tingting Hou
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Chongshu Jian
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jiejia Xu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yan Zhao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Yanru Wang
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Feng Gao
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China.
| |
Collapse
|
31
|
Jian C, Xu F, Hou T, Sun T, Li J, Cheng H, Wang X. Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes. J Cell Sci 2017. [PMID: 28630166 DOI: 10.1242/jcs.198523] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Prohibitins (PHBs; prohibitin 1, PHB1 or PHB, and prohibitin 2, PHB2) are evolutionarily conserved and ubiquitously expressed mitochondrial proteins. PHBs form multimeric ring complexes acting as scaffolds in the inner mitochondrial membrane. Mitochondrial flashes (mitoflashes) are newly discovered mitochondrial signaling events that reflect electrical and chemical excitations of the organelle. Here, we investigate the possible roles of PHBs in the regulation of mitoflash signaling. Downregulation of PHBs increases mitoflash frequency by up to 5.4-fold due to elevated basal reactive oxygen species (ROS) production in the mitochondria. Mechanistically, PHB deficiency impairs the formation of mitochondrial respiratory supercomplexes (RSCs) without altering the abundance of individual respiratory complex subunits. These impairments induced by PHB deficiency are effectively rescued by co-expression of PHB1 and PHB2, indicating that the multimeric PHB complex acts as the functional unit. Furthermore, downregulating other RSC assembly factors, including SCAFI (also known as COX7A2L), RCF1a (HIGD1A), RCF1b (HIGD2A), UQCC3 and SLP2 (STOML2), all activate mitoflashes through elevating mitochondrial ROS production. Our findings identify the PHB complex as a new regulator of RSC formation and mitoflash signaling, and delineate a general relationship among RSC formation, basal ROS production and mitoflash biogenesis.
Collapse
Affiliation(s)
- Chongshu Jian
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Fengli Xu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Tingting Hou
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Tao Sun
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jinghang Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Karam C, Yi J, Xiao Y, Dhakal K, Zhang L, Li X, Manno C, Xu J, Li K, Cheng H, Ma J, Zhou J. Absence of physiological Ca 2+ transients is an initial trigger for mitochondrial dysfunction in skeletal muscle following denervation. Skelet Muscle 2017; 7:6. [PMID: 28395670 PMCID: PMC5387329 DOI: 10.1186/s13395-017-0123-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/08/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Motor neurons control muscle contraction by initiating action potentials in muscle. Denervation of muscle from motor neurons leads to muscle atrophy, which is linked to mitochondrial dysfunction. It is known that denervation promotes mitochondrial reactive oxygen species (ROS) production in muscle, whereas the initial cause of mitochondrial ROS production in denervated muscle remains elusive. Since denervation isolates muscle from motor neurons and deprives it from any electric stimulation, no action potentials are initiated, and therefore, no physiological Ca2+ transients are generated inside denervated muscle fibers. We tested whether loss of physiological Ca2+ transients is an initial cause leading to mitochondrial dysfunction in denervated skeletal muscle. METHODS A transgenic mouse model expressing a mitochondrial targeted biosensor (mt-cpYFP) allowed a real-time measurement of the ROS-related mitochondrial metabolic function following denervation, termed "mitoflash." Using live cell imaging, electrophysiological, pharmacological, and biochemical studies, we examined a potential molecular mechanism that initiates ROS-related mitochondrial dysfunction following denervation. RESULTS We found that muscle fibers showed a fourfold increase in mitoflash activity 24 h after denervation. The denervation-induced mitoflash activity was likely associated with an increased activity of mitochondrial permeability transition pore (mPTP), as the mitoflash activity was attenuated by application of cyclosporine A. Electrical stimulation rapidly reduced mitoflash activity in both sham and denervated muscle fibers. We further demonstrated that the Ca2+ level inside mitochondria follows the time course of the cytosolic Ca2+ transient and that inhibition of mitochondrial Ca2+ uptake by Ru360 blocks the effect of electric stimulation on mitoflash activity. CONCLUSIONS The loss of cytosolic Ca2+ transients due to denervation results in the downstream absence of mitochondrial Ca2+ uptake. Our studies suggest that this could be an initial trigger for enhanced mPTP-related mitochondrial ROS generation in skeletal muscle.
Collapse
Affiliation(s)
- Chehade Karam
- Rush University School of Medicine, Chicago, IL, USA
| | - Jianxun Yi
- Rush University School of Medicine, Chicago, IL, USA.,Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Yajuan Xiao
- Rush University School of Medicine, Chicago, IL, USA.,Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Kamal Dhakal
- Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Lin Zhang
- Rush University School of Medicine, Chicago, IL, USA.,Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Xuejun Li
- Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Carlo Manno
- Rush University School of Medicine, Chicago, IL, USA
| | - Jiejia Xu
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Kaitao Li
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Jianjie Ma
- Wexner Medical Center, The Ohio State University, 460 West 12th Avenue, Columbus, OH, USA.
| | - Jingsong Zhou
- Rush University School of Medicine, Chicago, IL, USA. .,Kansas City University of Medicine and Bioscience, 1750 Independence Ave, Kansas City, MO, 64106, USA.
| |
Collapse
|
33
|
Rosselin M, Santo-Domingo J, Bermont F, Giacomello M, Demaurex N. L-OPA1 regulates mitoflash biogenesis independently from membrane fusion. EMBO Rep 2017; 18:451-463. [PMID: 28174208 PMCID: PMC5331265 DOI: 10.15252/embr.201642931] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 11/09/2022] Open
Abstract
Mitochondrial flashes mediated by optic atrophy 1 (OPA1) fusion protein are bioenergetic responses to stochastic drops in mitochondrial membrane potential (Δψm) whose origin is unclear. Using structurally distinct genetically encoded pH‐sensitive probes, we confirm that flashes are matrix alkalinization transients, thereby establishing the pH nature of these events, which we renamed “mitopHlashes”. Probes located in cristae or intermembrane space as verified by electron microscopy do not report pH changes during Δψm drops or respiratory chain inhibition. Opa1 ablation does not alter Δψm fluctuations but drastically decreases the efficiency of mitopHlash/Δψm coupling, which is restored by re‐expressing fusion‐deficient OPA1K301A and preserved in cells lacking the outer‐membrane fusion proteins MFN1/2 or the OPA1 proteases OMA1 and YME1L, indicating that mitochondrial membrane fusion and OPA1 proteolytic processing are dispensable. pH/Δψm uncoupling occurs early during staurosporine‐induced apoptosis and is mitigated by OPA1 overexpression, suggesting that OPA1 maintains mitopHlash competence during stress conditions. We propose that OPA1 stabilizes respiratory chain supercomplexes in a conformation that enables respiring mitochondria to compensate a drop in Δψm by an explosive matrix pH flash.
Collapse
Affiliation(s)
- Manon Rosselin
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Jaime Santo-Domingo
- Nestlé Institute of Health Sciences SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Flavien Bermont
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | | | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Zhang Y, Avalos JL. Traditional and novel tools to probe the mitochondrial metabolism in health and disease. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 9. [PMID: 28067471 DOI: 10.1002/wsbm.1373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 02/06/2023]
Abstract
Mitochondrial metabolism links energy production to other essential cellular processes such as signaling, cellular differentiation, and apoptosis. In addition to producing adenosine triphosphate (ATP) as an energy source, mitochondria are responsible for the synthesis of a myriad of important metabolites and cofactors such as tetrahydrofolate, α-ketoacids, steroids, aminolevulinic acid, biotin, lipoic acid, acetyl-CoA, iron-sulfur clusters, heme, and ubiquinone. Furthermore, mitochondria and their metabolism have been implicated in aging and several human diseases, including inherited mitochondrial disorders, cardiac dysfunction, heart failure, neurodegenerative diseases, diabetes, and cancer. Therefore, there is great interest in understanding mitochondrial metabolism and the complex relationship it has with other cellular processes. A large number of studies on mitochondrial metabolism have been conducted in the last 50 years, taking a broad range of approaches. In this review, we summarize and discuss the most commonly used tools that have been used to study different aspects of the metabolism of mitochondria: ranging from dyes that monitor changes in the mitochondrial membrane potential and pharmacological tools to study respiration or ATP synthesis, to more modern tools such as genetically encoded biosensors and trans-omic approaches enabled by recent advances in mass spectrometry, computation, and other technologies. These tools have allowed the large number of studies that have shaped our current understanding of mitochondrial metabolism. WIREs Syst Biol Med 2017, 9:e1373. doi: 10.1002/wsbm.1373 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Yanfei Zhang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA.,Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
35
|
Feng G, Liu B, Hou T, Wang X, Cheng H. Mitochondrial Flashes: Elemental Signaling Events in Eukaryotic Cells. Handb Exp Pharmacol 2017; 240:403-422. [PMID: 28233181 DOI: 10.1007/164_2016_129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mitochondrial flashes (mitoflashes) are recently discovered mitochondrial activity which reflects chemical and electrical excitation of the organelle. Emerging evidence indicates that mitoflashes represent highly regulated, elementary signaling events that play important roles in physiological and pathophysiological processes in eukaryotes. Furthermore, they are regulated by mitochondrial ROS, Ca2+, and protons, and are intertwined with mitochondrial metabolic processes. As such, targeting mitoflash activity may provide a novel means for the control of mitochondrial metabolism and signaling in health and disease. In this brief review, we summarize salient features and mechanisms of biogenesis of mitoflashes, and synthesize data on mitoflash biology in the context of metabolism, cell differentiation, stress response, disease, and ageing.
Collapse
Affiliation(s)
- Gaomin Feng
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Beibei Liu
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Tingting Hou
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xianhua Wang
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
| |
Collapse
|
36
|
Wang W, Zhang H, Cheng H. Mitochondrial flashes: From indicator characterization to in vivo imaging. Methods 2016; 109:12-20. [PMID: 27288722 PMCID: PMC5075495 DOI: 10.1016/j.ymeth.2016.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 06/03/2016] [Accepted: 06/07/2016] [Indexed: 12/15/2022] Open
Abstract
Mitochondrion is an organelle critically responsible for energy production and intracellular signaling in eukaryotic cells and its dysfunction often accompanies and contributes to human disease. Superoxide is the primary reactive oxygen species (ROS) produced in mitochondria. In vivo detection of superoxide has been a challenge in biomedical research. Here we describe the methods used to characterize a circularly permuted yellow fluorescent protein (cpYFP) as a biosensor for mitochondrial superoxide and pH dynamics. In vitro characterization reveals the high selectivity of cpYFP to superoxide over other ROS species and its dual sensitivity to pH. Confocal and two-photon imaging in conjunction with transgenic expression of the biosensor cpYFP targeted to the mitochondrial matrix detects mitochondrial flash events in living cells, perfused intact hearts, and live animals. The mitochondrial flashes are discrete and stochastic single mitochondrial events triggered by transient mitochondrial permeability transition (tMPT) and composed of a bursting superoxide signal and a transient alkalization signal. The real-time monitoring of single mitochondrial flashes provides a unique tool to study the integrated dynamism of mitochondrial respiration, ROS production, pH regulation and tMPT kinetics under diverse physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| | - Huiliang Zhang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
37
|
Wang W, Gong G, Wang X, Wei-LaPierre L, Cheng H, Dirksen R, Sheu SS. Mitochondrial Flash: Integrative Reactive Oxygen Species and pH Signals in Cell and Organelle Biology. Antioxid Redox Signal 2016; 25:534-549. [PMID: 27245241 PMCID: PMC5035371 DOI: 10.1089/ars.2016.6739] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/27/2016] [Indexed: 01/09/2023]
Abstract
SIGNIFICANCE Recent breakthroughs in mitochondrial research have advanced, reshaped, and revolutionized our view of the role of mitochondria in health and disease. These discoveries include the development of novel tools to probe mitochondrial biology, the molecular identification of mitochondrial functional proteins, and the emergence of new concepts and mechanisms in mitochondrial function regulation. The discovery of "mitochondrial flash" activity has provided unique insights not only into real-time visualization of individual mitochondrial redox and pH dynamics in live cells but has also advanced understanding of the excitability, autonomy, and integration of mitochondrial function in vivo. RECENT ADVANCES The mitochondrial flash is a transient and stochastic event confined within an individual mitochondrion and is observed in a wide range of organisms from plants to Caenorhabditis elegans to mammals. As flash events involve multiple transient concurrent changes within the mitochondrion (e.g., superoxide, pH, and membrane potential), a number of different mitochondrial targeted fluorescent indicators can detect flash activity. Accumulating evidence indicates that flash events reflect integrated snapshots of an intermittent mitochondrial process arising from mitochondrial respiration chain activity associated with the transient opening of the mitochondrial permeability transition pore. CRITICAL ISSUES We review the history of flash discovery, summarize current understanding of flash biology, highlight controversies regarding the relative roles of superoxide and pH signals during a flash event, and bring forth the integration of both signals in flash genesis. FUTURE DIRECTIONS Investigations using flash as a biomarker and establishing its role in cell signaling pathway will move the field forward. Antioxid. Redox Signal. 25, 534-549.
Collapse
Affiliation(s)
- Wang Wang
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, Washington
| | - Guohua Gong
- Department of Anesthesiology and Pain Medicine, Mitochondria and Metabolism Center, University of Washington, Seattle, Washington
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Lan Wei-LaPierre
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Robert Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York
| | - Shey-Shing Sheu
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
38
|
Li W, Sun T, Liu B, Wu D, Qi W, Wang X, Ma Q, Cheng H. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics. Sci Rep 2016; 6:32933. [PMID: 27623243 PMCID: PMC5020656 DOI: 10.1038/srep32933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/17/2016] [Indexed: 12/30/2022] Open
Abstract
Mitochondria are highly dynamic organelles undergoing constant network reorganization and exhibiting stochastic signaling events in the form of mitochondrial flashes (mitoflashes). Here we investigate whether and how mitochondrial network dynamics regulate mitoflash biogenesis and signaling. We found that mitoflash frequency was largely invariant when network fragmentized or redistributed in the absence of mitofusin (Mfn) 1, Mfn2, or Kif5b. However, Opa1 deficiency decreased spontaneous mitoflash frequency due to superimposing changes in respiratory function, whereas mitoflash response to non-metabolic stimulation was unchanged despite network fragmentation. In Drp1- or Mff-deficient cells whose mitochondria hyperfused into a single whole-cell reticulum, the frequency of mitoflashes of regular amplitude and duration was again unaltered, although brief and low-amplitude “miniflashes” emerged because of improved detection ability. As the network reorganized, however, the signal mass of mitoflash signaling was dynamically regulated in accordance with the degree of network connectivity. These findings demonstrate a novel functional role of mitochondrial network dynamics and uncover a magnitude- rather than frequency-modulatory mechanism in the regulation of mitoflash signaling. In addition, our data support a stochastic trigger model for the ignition of mitoflashes.
Collapse
Affiliation(s)
- Wenwen Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Tao Sun
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Beibei Liu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Di Wu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Wenfeng Qi
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qi Ma
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, China
| |
Collapse
|
39
|
The effect of chronic alcohol consumption on mitochondrial calcium handling in hepatocytes. Biochem J 2016; 473:3903-3921. [PMID: 27582500 DOI: 10.1042/bcj20160255] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 08/31/2016] [Indexed: 01/08/2023]
Abstract
The damage to liver mitochondria is universally observed in both humans and animal models after excessive alcohol consumption. Acute alcohol treatment has been shown to stimulate calcium (Ca2+) release from internal stores in hepatocytes. The resultant increase in cytosolic Ca2+ is expected to be accumulated by neighboring mitochondria, which could potentially lead to mitochondrial Ca2+ overload and injury. Our data indicate that total and free mitochondrial matrix Ca2+ levels are, indeed, elevated in hepatocytes isolated from alcohol-fed rats compared with their pair-fed control littermates. In permeabilized hepatocytes, the rates of mitochondrial Ca2+ uptake were substantially increased after chronic alcohol feeding, whereas those of mitochondrial Ca2+ efflux were decreased. The changes in mitochondrial Ca2+ handling could be explained by an up-regulation of the mitochondrial Ca2+ uniporter and loss of a cyclosporin A-sensitive Ca2+ transport pathway. In intact cells, hormone-induced increases in mitochondrial Ca2+ declined at slower rates leading to more prolonged elevations of matrix Ca2+ in the alcohol-fed group compared with controls. Moreover, treatment with submaximal concentrations of Ca2+-mobilizing hormones markedly increased the levels of mitochondrial reactive oxygen species (ROS) in hepatocytes from alcohol-fed rats, but did not affect ROS levels in controls. The changes in mitochondrial Ca2+ handling are expected to buffer and attenuate cytosolic Ca2+ increases induced by acute alcohol exposure or hormone stimulation. However, these alterations in mitochondrial Ca2+ handling may also lead to Ca2+ overload during cytosolic Ca2+ increases, which may stimulate the production of mitochondrial ROS, and thus contribute to alcohol-induced liver injury.
Collapse
|
40
|
Hou T, Jian C, Xu J, Huang AY, Xi J, Hu K, Wei L, Cheng H, Wang X. Identification of EFHD1 as a novel Ca(2+) sensor for mitoflash activation. Cell Calcium 2016; 59:262-70. [PMID: 26975899 DOI: 10.1016/j.ceca.2016.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/23/2016] [Accepted: 03/02/2016] [Indexed: 01/16/2023]
Abstract
Mitochondrial flashes (mitoflashes) represent stochastic and discrete mitochondrial events that each comprises a burst of superoxide production accompanied by transient depolarization and matrix alkalinization in a respiratory mitochondrion. While mitochondrial Ca(2+) is shown to be an important regulator of mitoflash activity, little is known about its specific mechanism of action. Here we sought to determine possible molecular players that mediate the Ca(2+) regulation of mitoflashes by screening mitochondrial proteins containing the Ca(2+)-binding motifs. In silico analysis and targeted siRNA screening identified four mitoflash activators (MICU1, EFHD1, SLC25A23, SLC25A25) and one mitoflash inhibitor (LETM1) in terms of their ability to modulate mitoflash response to hyperosmotic stress. In particular, overexpression or down-regulation of EFHD1 enhanced or depressed mitoflash activation, respectively, under various conditions of mitochondrial Ca(2+) elevations. Yet, it did not alter mitochondrial Ca(2+) handling, mitochondrial respiration, or ROS-induced mitoflash production. Further, disruption of the two EF-hand motifs of EFHD1 abolished its potentiating effect on the mitoflash responses. These results indicate that EFHD1 functions as a novel mitochondrial Ca(2+) sensor underlying Ca(2+)-dependent activation of mitoflashes.
Collapse
Affiliation(s)
- Tingting Hou
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chongshu Jian
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jiejia Xu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - August Yue Huang
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Jianzhong Xi
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China; Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Keping Hu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liping Wei
- Center for Bioinformatics, State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
41
|
Shang W, Gao H, Lu F, Ma Q, Fang H, Sun T, Xu J, Ding Y, Lin Y, Wang Y, Wang X, Cheng H, Zheng M. Cyclophilin D regulates mitochondrial flashes and metabolism in cardiac myocytes. J Mol Cell Cardiol 2016; 91:63-71. [PMID: 26746144 DOI: 10.1016/j.yjmcc.2015.10.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 09/01/2015] [Accepted: 10/06/2015] [Indexed: 01/24/2023]
Abstract
Cyclophilin D (CyP-D) is the mitochondrial-specific member of the evolutionally conserved cyclophilin family, and plays an important role in the regulation of mitochondrial permeability transition (MPT) under stress. Recently we have demonstrated that respiratory mitochondria undergo mitochondrial flash ("mitoflash") activity which is coupled with transient MPT under physiological conditions. However, whether and how CyP-D regulates mitoflashes remain incompletely understood. By using both loss- and gain-of-function approaches in isolated cardiomyocytes, beating hearts, and skeletal muscles in living mice, we revisited the role of CyP-D in the regulation of mitoflashes. Overexpression of CyP-D increased, and knockout of it halved, cardiac mitoflash frequency, while mitoflash amplitude and kinetics remained unaffected. However, CyP-D ablation did not alter mitoflash frequency, with mitoflash amplitude increased, in gastrocnemius muscles. This disparity was accompanied by 4-fold higher CyP-D expression in mouse cardiac than skeletal muscles. The mitochondrial maximal respiration rate and reserved capacity were reduced in CyP-D-null cardiomyocytes. These data indicate that CyP-D is a significant regulator of mitoflash ignition and mitochondrial metabolism in heart. In addition, tissue-specific CyP-D expression may partly explain the differential regulation of mitoflashes in the two types of striated muscles.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/genetics
- Bacterial Proteins/metabolism
- Peptidyl-Prolyl Isomerase F
- Cyclophilins/genetics
- Cyclophilins/metabolism
- Female
- Gene Expression Regulation
- Genes, Reporter
- Luminescent Proteins/genetics
- Luminescent Proteins/metabolism
- Male
- Membrane Potential, Mitochondrial
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitochondria/metabolism
- Mitochondria/ultrastructure
- Mitochondrial Membrane Transport Proteins/genetics
- Mitochondrial Membrane Transport Proteins/metabolism
- Mitochondrial Permeability Transition Pore
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Muscle, Striated/metabolism
- Muscle, Striated/ultrastructure
- Myocardium/metabolism
- Myocardium/ultrastructure
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/ultrastructure
- Organ Culture Techniques
- Organ Specificity
- Primary Cell Culture
- Reactive Oxygen Species/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Wei Shang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Han Gao
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing 100191, China
| | - Fujian Lu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Qi Ma
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Huaqiang Fang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Tao Sun
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jiejia Xu
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yi Ding
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yuan Lin
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yanru Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Ming Zheng
- Department of Physiology and Pathophysiology, Health Science Center, Peking University, Beijing 100191, China.
| |
Collapse
|
42
|
Bernardi P, Rasola A, Forte M, Lippe G. The Mitochondrial Permeability Transition Pore: Channel Formation by F-ATP Synthase, Integration in Signal Transduction, and Role in Pathophysiology. Physiol Rev 2015; 95:1111-55. [PMID: 26269524 DOI: 10.1152/physrev.00001.2015] [Citation(s) in RCA: 439] [Impact Index Per Article: 43.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The mitochondrial permeability transition (PT) is a permeability increase of the inner mitochondrial membrane mediated by a channel, the permeability transition pore (PTP). After a brief historical introduction, we cover the key regulatory features of the PTP and provide a critical assessment of putative protein components that have been tested by genetic analysis. The discovery that under conditions of oxidative stress the F-ATP synthases of mammals, yeast, and Drosophila can be turned into Ca(2+)-dependent channels, whose electrophysiological properties match those of the corresponding PTPs, opens new perspectives to the field. We discuss structural and functional features of F-ATP synthases that may provide clues to its transition from an energy-conserving into an energy-dissipating device as well as recent advances on signal transduction to the PTP and on its role in cellular pathophysiology.
Collapse
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Andrea Rasola
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Michael Forte
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| | - Giovanna Lippe
- Department of Biomedical Sciences and Consiglio Nazionale delle Ricerche Neuroscience Institute, University of Padova, Padova, Italy; Vollum Institute, Oregon Health and Sciences University, Portland, Oregon; and Department of Food Science, University of Udine, Udine, Italy
| |
Collapse
|
43
|
Gong G, Liu X, Zhang H, Sheu SS, Wang W. Mitochondrial flash as a novel biomarker of mitochondrial respiration in the heart. Am J Physiol Heart Circ Physiol 2015; 309:H1166-H1177. [PMID: 26276820 PMCID: PMC4666927 DOI: 10.1152/ajpheart.00462.2015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/13/2015] [Indexed: 11/22/2022]
Abstract
Mitochondrial respiration through electron transport chain (ETC) activity generates ATP and reactive oxygen species in eukaryotic cells. The modulation of mitochondrial respiration in vivo or under physiological conditions remains elusive largely due to the lack of appropriate approach to monitor ETC activity in a real-time manner. Here, we show that ETC-coupled mitochondrial flash is a novel biomarker for monitoring mitochondrial respiration under pathophysiological conditions in cultured adult cardiac myocyte and perfused beating heart. Through real-time confocal imaging, we follow the frequency of a transient bursting fluorescent signal, named mitochondrial flash, from individual mitochondria within intact cells expressing a mitochondrial matrix-targeted probe, mt-cpYFP (mitochondrial-circularly permuted yellow fluorescent protein). This mt-cpYFP recorded mitochondrial flash has been shown to be composed of a major superoxide signal with a minor alkalization signal within the mitochondrial matrix. Through manipulating physiological substrates for mitochondrial respiration, we find a close coupling between flash frequency and the ETC electron flow, as measured by oxygen consumption rate in cardiac myocyte. Stimulating electron flow under physiological conditions increases flash frequency. On the other hand, partially block or slowdown electron flow by inhibiting the F0F1 ATPase, which represents a pathological condition, transiently increases then decreases flash frequency. Limiting electron entrance at complex I by knocking out Ndufs4, an assembling subunit of complex I, suppresses mitochondrial flash activity. These results suggest that mitochondrial electron flow can be monitored by real-time imaging of mitochondrial flash. The mitochondrial flash frequency could be used as a novel biomarker for mitochondrial respiration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Guohua Gong
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington; and
| | - Xiaoyun Liu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington; and
| | - Huiliang Zhang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington; and
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Philadelphia
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington; and
| |
Collapse
|
44
|
Ni R, Zheng D, Wang Q, Yu Y, Chen R, Sun T, Wang W, Fan GC, Greer PA, Gardiner RB, Peng T. Deletion of capn4 Protects the Heart Against Endotoxemic Injury by Preventing ATP Synthase Disruption and Inhibiting Mitochondrial Superoxide Generation. Circ Heart Fail 2015; 8:988-96. [PMID: 26246018 DOI: 10.1161/circheartfailure.115.002383] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 08/05/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Our recent study has demonstrated that inhibition of calpain by transgenic overexpression of calpastatin reduces myocardial proinflammatory response and dysfunction in endotoxemia. However, the underlying mechanisms remain to be determined. In this study, we used cardiomyocyte-specific capn4 knockout mice to investigate whether and how calpain disrupts ATP synthase and induces mitochondrial superoxide generation during endotoxemia. METHODS AND RESULTS Cardiomyocyte-specific capn4 knockout mice and their wild-type littermates were injected with lipopolysaccharides. Four hours later, calpain-1 protein and activity were increased in mitochondria of endotoxemic mouse hearts. Mitochondrial calpain-1 colocalized with and cleaved ATP synthase-α (ATP5A1), leading to ATP synthase disruption and a concomitant increase in mitochondrial reactive oxygen species generation during lipopolysaccharide stimulation. Deletion of capn4 or upregulation of ATP5A1 increased ATP synthase activity, prevented mitochondrial reactive oxygen species generation, and reduced proinflammatory response and myocardial dysfunction in endotoxemic mice. In cultured cardiomyocytes, lipopolysaccharide induced mitochondrial superoxide generation that was prevented by overexpression of mitochondria-targeted calpastatin or ATP5A1. Upregulation of calpain-1 specifically in mitochondria sufficiently induced superoxide generation and proinflammatory response, both of which were attenuated by ATP5A1 overexpression or mitochondria-targeted superoxide dismutase mimetics. CONCLUSIONS Cardiomyocyte-specific capn4 knockout protects the heart against lipopolysaccharide-induced injury in endotoxemic mice. Lipopolysaccharides induce calpain-1 accumulation in mitochondria. Mitochondrial calpain-1 disrupts ATP synthase, leading to mitochondrial reactive oxygen species generation, which promotes proinflammatory response and myocardial dysfunction during endotoxemia. These findings uncover a novel mechanism by which calpain mediates myocardial dysfunction in sepsis.
Collapse
Affiliation(s)
- Rui Ni
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Dong Zheng
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Qiang Wang
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Yong Yu
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Ruizhen Chen
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Tao Sun
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Wang Wang
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Guo-Chang Fan
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Peter A Greer
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Richard B Gardiner
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.)
| | - Tianqing Peng
- From the Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China (R.N., D.Z., T.P.); Lawson Health Research Institute, Departments of Medicine (R.N., D.Z., T.S., T.P.), Pathology (R.N., D.Z., T.P.) and Biology (R.B.G.), University of Western Ontario, London, Ontario, Canada; Department of Dermatology (Q.W.) and Institute of Cardiovascular Diseases (Y.Y., R.C.), Zhongshan Hospital, Fudan University, Shanghai, China; Mitochondria and Metabolism Center, Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle (W.W.); Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, OH (G.-C.F.); and Division of Cancer Biology and Genetics, Queen's University Cancer Research Institute, Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada (P.A.G.).
| |
Collapse
|
45
|
Senutovitch N, Vernetti L, Boltz R, DeBiasio R, Gough A, Taylor DL. Fluorescent protein biosensors applied to microphysiological systems. Exp Biol Med (Maywood) 2015; 240:795-808. [PMID: 25990438 PMCID: PMC4464952 DOI: 10.1177/1535370215584934] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
This mini-review discusses the evolution of fluorescence as a tool to study living cells and tissues in vitro and the present role of fluorescent protein biosensors (FPBs) in microphysiological systems (MPSs). FPBs allow the measurement of temporal and spatial dynamics of targeted cellular events involved in normal and perturbed cellular assay systems and MPSs in real time. FPBs evolved from fluorescent analog cytochemistry (FAC) that permitted the measurement of the dynamics of purified proteins covalently labeled with environmentally insensitive fluorescent dyes and then incorporated into living cells, as well as a large list of diffusible fluorescent probes engineered to measure environmental changes in living cells. In parallel, a wide range of fluorescence microscopy methods were developed to measure the chemical and molecular activities of the labeled cells, including ratio imaging, fluorescence lifetime, total internal reflection, 3D imaging, including super-resolution, as well as high-content screening. FPBs evolved from FAC by combining environmentally sensitive fluorescent dyes with proteins in order to monitor specific physiological events such as post-translational modifications, production of metabolites, changes in various ion concentrations, and the dynamic interaction of proteins with defined macromolecules in time and space within cells. Original FPBs involved the engineering of fluorescent dyes to sense specific activities when covalently attached to particular domains of the targeted protein. The subsequent development of fluorescent proteins (FPs), such as the green fluorescent protein, dramatically accelerated the adoption of studying living cells, since the genetic "labeling" of proteins became a relatively simple method that permitted the analysis of temporal-spatial dynamics of a wide range of proteins. Investigators subsequently engineered the fluorescence properties of the FPs for environmental sensitivity that, when combined with targeted proteins/peptides, created a new generation of FPBs. Examples of FPBs that are useful in MPS are presented, including the design, testing, and application in a liver MPS.
Collapse
Affiliation(s)
- Nina Senutovitch
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - Lawrence Vernetti
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - Robert Boltz
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, Pittsburgh, PA 15260, USA University of Pittsburgh Department of Computational & Systems Biology, Pittsburgh, PA 15260, USA
| |
Collapse
|
46
|
Liu X, Xu S, Wang P, Wang W. Transient mitochondrial permeability transition mediates excitotoxicity in glutamate-sensitive NSC34D motor neuron-like cells. Exp Neurol 2015; 271:122-30. [PMID: 26024861 DOI: 10.1016/j.expneurol.2015.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 03/16/2015] [Accepted: 05/07/2015] [Indexed: 12/11/2022]
Abstract
Excitotoxicity plays a critical role in neurodegenerative disease. Cytosolic calcium overload and mitochondrial dysfunction are among the major mediators of high level glutamate-induced neuron death. Here, we show that the transient opening of mitochondrial permeability transition pore (tMPT) bridges cytosolic calcium signaling and mitochondrial dysfunction and mediates glutamate-induced neuron death. Incubation of the differentiated motor neuron-like NSC34D cells with glutamate (1mM) acutely induces cytosolic calcium transient (30% increase). Glutamate also stimulates tMPT opening, as reflected by a 2-fold increase in the frequency of superoxide flash, a bursting superoxide production event in individual mitochondria coupled to tMPT opening. The glutamate-induced tMPT opening is attenuated by suppressing cytosolic calcium influx and abolished by inhibiting mitochondrial calcium uniporter (MCU) with Ru360 (100 μM) or MCU shRNA. Further, increased cytosolic calcium is sufficient to induce tMPT in a mitochondrial calcium dependent manner. Finally, chronic glutamate incubation (24h) persistently elevates the probability of tMPT opening, promotes oxidative stress and induces neuron death. Attenuating tMPT activity or inhibiting MCU protects NSC34D cells from glutamate-induced cell death. These results indicate that high level glutamate-induced neuron toxicity is mediated by tMPT, which connects increased cytosolic calcium signal to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Xiaoyun Liu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Shangcheng Xu
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Pei Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
47
|
Ding Y, Fang H, Shang W, Xiao Y, Sun T, Hou N, Pan L, Sun X, Ma Q, Zhou J, Wang X, Zhang X, Cheng H. Mitoflash altered by metabolic stress in insulin-resistant skeletal muscle. J Mol Med (Berl) 2015; 93:1119-30. [PMID: 25908643 PMCID: PMC4589561 DOI: 10.1007/s00109-015-1278-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/19/2015] [Accepted: 03/23/2015] [Indexed: 12/20/2022]
Abstract
Abstract Central to bioenergetics and reactive oxygen species (ROS) signaling, the mitochondrion plays pivotal roles in the pathogenesis of metabolic diseases. Recent advances have shown that mitochondrial flash (“mitoflash”) visualized by the biosensor mt-cpYFP affords a frequency-coded, optical readout linked to mitochondrial ROS production and energy metabolism, at the resolution of a single mitochondrion. To investigate possible mitoflash responses to metabolic stress in insulin resistance (IR), we generated an mt-cpYFP-expressing db/db mouse model with the obesity and IR phenotypes unaltered. In conjunction with in vivo imaging of skeletal muscles, we uncovered a progressive increase of mitoflash frequency along with its morphological changes. Interestingly, enhanced mitochondrial networking occurred at 12 weeks of age, and this was followed by mitochondrial fragmentation at 34 weeks. Pioglitazone treatment normalized mitoflash frequency and morphology while restored mitochondrial respiratory function and insulin sensitivity in 12 weeks mt-cpYFP db/db mice. Mechanistic study revealed that the mitoflash remodeling was associated with altered expression of proteins involved in mitochondrial dynamics and quality control. These findings indicate that mitoflash activity may serve as an optical functional readout of the mitochondria, a robust and sensitive biomarker to gauge IR stresses and their amelioration by therapeutic interventions. Key message In vivo detection of mitochondrial flashes in mt-cpYFP-expressing db/db mouse. Mitoflash frequency increased progressively with disease development. Mitoflash morphology revealed a biphasic change in mitochondrial networking. Mitoflash abnormalities and mitochondrial defects are restored by pioglitazone. Mitoflash may serve as a unique biomarker to gauge metabolic stress in insulin resistance.
Electronic supplementary material The online version of this article (doi:10.1007/s00109-015-1278-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Ding
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Huaqiang Fang
- Institute of Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Wei Shang
- Institute of Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Yao Xiao
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Tao Sun
- Institute of Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Ning Hou
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Lin Pan
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Xueting Sun
- Institute of Molecular Medicine, Peking University, Beijing, China
| | - Qi Ma
- Institute of Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Jingsong Zhou
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, USA
| | - Xianhua Wang
- Institute of Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Xiuqin Zhang
- Institute of Molecular Medicine, Peking University, Beijing, China.
| | - Heping Cheng
- Institute of Molecular Medicine, Peking University, Beijing, China.,State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, Beijing, China
| |
Collapse
|
48
|
Zhang X, Gao F. Imaging mitochondrial reactive oxygen species with fluorescent probes: current applications and challenges. Free Radic Res 2015; 49:374-82. [PMID: 25789762 DOI: 10.3109/10715762.2015.1014813] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mitochondrial reactive oxygen species (ROS) is a key element in the regulation of several physiological functions and in the development or progression of multiple pathological events. A key task in the study of mitochondrial ROS is to establish reliable methods for measuring the ROS level in mitochondria with high selectivity, sensitivity, and spatiotemporal resolution. Over the last decade, imaging tools with fluorescent indicators from either small-molecule dyes or genetically encoded probes that can be targeted to mitochondria have been developed, which provide a powerful method to visualize and even quantify mitochondrial ROS level not only in live cells, but also in live animals. These innovative tools that have bestowed exciting new insights in mitochondrial ROS biology have been further promoted with the invention of new techniques in indicator design and fluorescent detection. However, these probes present some limitations in terms of specificity, sensitivity, and kinetics; failure to recognize these limitations often results in inappropriate interpretations of data. This review evaluates the recent advances in mitochondrial ROS imaging approaches with emphasis on their proper application and limitations, and highlights the future perspectives in the development of novel fluorescent probes for visualizing all species of ROS.
Collapse
Affiliation(s)
- X Zhang
- Department of Aerospace Medicine, Fourth Military Medical University , Xi'an , P. R. China
| | | |
Collapse
|
49
|
Ivan B, Lajdova D, Abelovska L, Balazova M, Nosek J, Tomaska L. Mdm31 protein mediates sensitivity to potassium ionophores but does not regulate mitochondrial morphology or phospholipid trafficking inSchizosaccharomyces pombe. Yeast 2015; 32:345-54. [DOI: 10.1002/yea.3062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 11/20/2014] [Accepted: 11/28/2014] [Indexed: 01/31/2023] Open
Affiliation(s)
- Branislav Ivan
- Departments of Biochemistry and Genetics; Comenius University, Faculty of Natural Sciences; Bratislava Slovakia
| | - Dana Lajdova
- Departments of Biochemistry and Genetics; Comenius University, Faculty of Natural Sciences; Bratislava Slovakia
| | - Lenka Abelovska
- Departments of Biochemistry and Genetics; Comenius University, Faculty of Natural Sciences; Bratislava Slovakia
| | - Maria Balazova
- Institute of Animal Biochemistry and Genetics; Slovak Academy of Sciences; Ivanka pri Dunaji Slovakia
| | - Jozef Nosek
- Departments of Biochemistry and Genetics; Comenius University, Faculty of Natural Sciences; Bratislava Slovakia
| | - Lubomir Tomaska
- Departments of Biochemistry and Genetics; Comenius University, Faculty of Natural Sciences; Bratislava Slovakia
| |
Collapse
|
50
|
Xu S, Chisholm AD. C. elegans epidermal wounding induces a mitochondrial ROS burst that promotes wound repair. Dev Cell 2015; 31:48-60. [PMID: 25313960 DOI: 10.1016/j.devcel.2014.08.002] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 06/10/2014] [Accepted: 08/04/2014] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) such as hydrogen peroxide are generated at wound sites and act as long-range signals in wound healing. The roles of other ROS in wound repair are little explored. Here, we reveal a cytoprotective role for mitochondrial ROS (mtROS) in Caenorhabditis elegans skin wound healing. We show that skin wounding causes local production of mtROS superoxide at the wound site. Inhibition of mtROS levels by mitochondrial superoxide-specific antioxidants blocks actin-based wound closure, whereas elevation of mtROS promotes wound closure and enhances survival of mutant animals defective in wound healing. mtROS act downstream of wound-triggered Ca(2+) influx. We find that the mitochondrial calcium uniporter MCU-1 is essential for rapid mitochondrial Ca(2+) uptake and mtROS production after wounding. mtROS can promote wound closure by local inhibition of Rho GTPase activity via a redox-sensitive motif. These findings delineate a pathway acting via mtROS that promotes cytoskeletal responses in wound healing.
Collapse
Affiliation(s)
- Suhong Xu
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|