1
|
Takahashi K, Kiso H, Mihara E, Takagi J, Tokita Y, Murashima-Suginami A. Development of a new antibody drug to treat congenital tooth agenesis. J Oral Biosci 2024:S1349-0079(24)00204-4. [PMID: 39389160 DOI: 10.1016/j.job.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND This study aimed to develop a therapeutic agent promoting teeth regeneration from autologous tissues for congenital tooth agenesis, specifically for hypodontia (≤ 5 missing congenital teeth, 10% prevalence) and oligodontia (≥ 6 missing congenital teeth, 0.1% prevalence). HIGHLIGHT We studied mice genetically deficient in the USAG-1 protein, an antagonist of BMP/Wnt which forms excessive teeth. We identified USAG-1 as a target molecule for increasing the number of teeth. Crossing USAG-1-deficient mice with a congenital tooth agenesis model restored tooth formation. We produced anti-USAG-1 neutralizing antibodies as potential therapeutic agents for the treatment of congenital tooth agenesis. Mice anti-USAG-1 neutralizing antibodies can potentially rescue the developmentally arrested tooth germ programmed to a certain tooth type. A humanized anti-USAG-1 antibody was developed as the final candidate. CONCLUSION Targeting USAG-1 shows promise for treating missing congenital tooth. Anti-USAG-1 neutralizing antibodies have been developed and will progress towards clinical trials, which may regenerate missing congenital teeth in conditions, such as hypodontia and oligodontia. The protocol framework for a phase 1 study has been finalized, and preparation for future studies is underway.
Collapse
Affiliation(s)
- K Takahashi
- Dentistry & Oral Surgery, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-kofukai, Osaka, Japan; Toregem Toregem BioPharma, Co.,Ltd, Kyoto, Japan.
| | - H Kiso
- Toregem Toregem BioPharma, Co.,Ltd, Kyoto, Japan
| | - E Mihara
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - J Takagi
- Laboratory of Protein Synthesis and Expression, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Y Tokita
- Department of Disease model, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - A Murashima-Suginami
- Dentistry & Oral Surgery, Medical Research Institute KITANO HOSPITAL, PIIF Tazuke-kofukai, Osaka, Japan; Toregem Toregem BioPharma, Co.,Ltd, Kyoto, Japan
| |
Collapse
|
2
|
Zhu S, Huo S, Wang Z, Huang C, Li C, Song H, Yang X, He R, Ding C, Qiu M, Zhu XJ. Follistatin controls the number of murine teeth by limiting TGF-β signaling. iScience 2024; 27:110785. [PMID: 39286503 PMCID: PMC11403059 DOI: 10.1016/j.isci.2024.110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/24/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Supernumerary teeth are common developmental anomalies of dentition. However, the factors and mechanisms driving their formation remain largely unknown. Here, we report that conditional knockout of Fst, encoding an antagonist for the transforming growth factor β (TGF-β) signaling pathway, in both oral epithelium and mesenchyme of mice (Fst CKO ) led to supernumerary upper incisor teeth, arising from the lingual dental epithelium of the native teeth and preceded by an enlarged and split lingual cervical loop. Fst-deficiency greatly activated TGF-β signaling in developing maxillary incisor teeth, associated with increased epithelium cell proliferation. Moreover, Fst CKO teeth exhibited increased expression of Tbx1, Sp6, and Sox2, which were identified as direct targets of TGF-β/SMAD2 signaling. Finally, we show that upregulation of Tbx1 in response to Fst-deficiency was largely responsible for the formation of extra teeth in Fst CKO mice. Taken together, our investigation indicates a novel role for Fst in controlling murine tooth number by restricting TGF-β signaling.
Collapse
Affiliation(s)
- Shicheng Zhu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Suman Huo
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhongzheng Wang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Caiyan Huang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Chuanxu Li
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hanjing Song
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xueqin Yang
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Rui He
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Cheng Ding
- The Affiliated Hospital, Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| | - Mengsheng Qiu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xiao-Jing Zhu
- College of Life and Environmental Sciences, Zhejiang Key Laboratory of Organ Development and Regeneration, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
3
|
Xu X, Gong X, Zhang L, Zhang H, Sun Y. PRX1-positive mesenchymal stem cells drive molar morphogenesis. Int J Oral Sci 2024; 16:15. [PMID: 38369512 PMCID: PMC10874978 DOI: 10.1038/s41368-024-00277-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 02/20/2024] Open
Abstract
Mammalian teeth, developing inseparable from epithelial-mesenchymal interaction, come in many shapes and the key factors governing tooth morphology deserve to be answered. By merging single-cell RNA sequencing analysis with lineage tracing models, we have unearthed a captivating correlation between the contrasting morphology of mouse molars and the specific presence of PRX1+ cells within M1. These PRX1+ cells assume a profound responsibility in shaping tooth morphology through a remarkable divergence in dental mesenchymal cell proliferation. Deeper into the mechanisms, we have discovered that Wnt5a, bestowed by mesenchymal PRX1+ cells, stimulates mesenchymal cell proliferation while orchestrating molar morphogenesis through WNT signaling pathway. The loss of Wnt5a exhibits a defect phenotype similar to that of siPrx1. Exogenous addition of WNT5A can successfully reverse the inhibited cell proliferation and consequent deviant appearance exhibited in Prx1-deficient tooth germs. These findings bestow compelling evidence of PRX1-positive mesenchymal cells to be potential target in regulating tooth morphology.
Collapse
Affiliation(s)
- Xiaoqiao Xu
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xuyan Gong
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Lei Zhang
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Han Zhang
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
4
|
Semjid D, Ahn H, Bayarmagnai S, Gantumur M, Kim S, Lee JH. Identification of novel candidate genes associated with non-syndromic tooth agenesis in Mongolian families. Clin Oral Investig 2023; 28:56. [PMID: 38157055 PMCID: PMC10756872 DOI: 10.1007/s00784-023-05415-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES This study aimed to identify genetic variants associated with non-syndromic tooth agenesis (TA) in nine families from Mongolia using whole-exome sequencing (WES) and bioinformatics analysis. MATERIAL AND METHODS The study enrolled 41 participants, including three inherited and six non-inherited families. WES analysis was performed on 14 saliva samples from individuals with non-syndromic TA. The potential candidate genes were identified through variant filtering and segregation analysis. The filtered variants were then analyzed in silico mutation impact analysis. RESULTS WES analysis identified 21 variants associated with TA, and 5 of these variants met all filtering criteria. These variants were located in the exome region of MAST4, ITGA6, PITX2, CACNA1S, and CDON genes. The variant in PITX2 was found in eight participants from inherited and non-inherited families, while the MAST4 variant was identified in 6 participants from inherited families. CONCLUSIONS The study identified various genetic variant candidates associated with TA in different family groups, with PITX2 being the most commonly identified. Our findings suggest that MAST4 may also be a novel candidate gene for TA due to its association with the Wnt signaling pathway. Additionally, we found that five candidate genes related to focal adhesion and calcium channel complex were significant and essential in tooth development. CLINICAL RELEVANCE Identifying new pathogenic genes associated with TA can improve our understanding of the molecular mechanisms underlying the disease, leading to better diagnosis, prevention, and treatment. Early detection of TA based on biomarkers can improve dental management and facilitate orthodontic and prosthetic treatment.
Collapse
Affiliation(s)
- Dejidnorov Semjid
- Department of Prosthodontics, College of Dentistry at Yonsei University, 50-1 Yonsei-Ro, Seodaemoon-Gu, Seoul, 120-752, Republic of Korea
| | - Hyunsoo Ahn
- Department of Life Sciences, Pohang University of Science and Technology, 80 Jigok-Ro, Nam-Gu, Pohang, 790-784, Republic of Korea
| | - Sapaar Bayarmagnai
- Department of Prosthodontics, School of Dentistry, Mongolian National University of Medical Sciences, Chingeltei District, Nuuriin 2-21, Ulaanbaatar, Mongolia
| | - Munkhjargal Gantumur
- Department of Prosthodontics, School of Dentistry, Mongolian National University of Medical Sciences, Chingeltei District, Nuuriin 2-21, Ulaanbaatar, Mongolia
| | - Sanguk Kim
- Department of Life Sciences, Pohang University of Science and Technology, 80 Jigok-Ro, Nam-Gu, Pohang, 790-784, Republic of Korea.
| | - Jae Hoon Lee
- Department of Prosthodontics, College of Dentistry at Yonsei University, 50-1 Yonsei-Ro, Seodaemoon-Gu, Seoul, 120-752, Republic of Korea.
| |
Collapse
|
5
|
Guirado E, Villani C, Petho A, Chen Y, Maienschein-Cline M, Lei Z, Los N, George A. Wnt pathway inhibitors are upregulated in XLH dental pulp cells in response to odontogenic differentiation. Int J Oral Sci 2023; 15:13. [PMID: 36849506 PMCID: PMC9971210 DOI: 10.1038/s41368-022-00214-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/01/2022] [Accepted: 12/01/2022] [Indexed: 03/01/2023] Open
Abstract
X-linked hypophosphatemia (XLH) represents the most common form of familial hypophosphatemia. Although significant advances have been made in the treatment of bone pathology, patients undergoing therapy continue to experience significantly decreased oral health-related quality of life. The following study addresses this persistent oral disease by further investigating the effect of DMP1 expression on the differentiation of XLH dental pulp cells. Dental pulp cells were isolated from the third molars of XLH and healthy controls and stable transduction of full-length human DMP1 were achieved. RNA sequencing was performed to evaluate the genetic changes following the induction of odontogenic differentiation. RNAseq data shows the upregulation of inhibitors of the canonical Wnt pathway in XLH cells, while constitutive expression of full-length DMP1 in XLH cells reversed this effect during odontogenic differentiation. These results imply that inhibition of the canonical Wnt pathway may contribute to the pathophysiology of XLH and suggest a new therapeutic strategy for the management of oral disease.
Collapse
Affiliation(s)
- Elizabeth Guirado
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Cassandra Villani
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Adrienn Petho
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | - Yinghua Chen
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Zhengdeng Lei
- Bioinformatics Scientist III, Ambry Genetics, Aliso, CA, USA
| | - Nina Los
- Genome Research Core, University of Illinois at Chicago, Chicago, IL, USA
| | - Anne George
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
6
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
7
|
Zhang H, Gong X, Xu X, Wang X, Sun Y. Tooth number abnormality: from bench to bedside. Int J Oral Sci 2023; 15:5. [PMID: 36604408 PMCID: PMC9816303 DOI: 10.1038/s41368-022-00208-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/24/2022] [Accepted: 11/01/2022] [Indexed: 01/07/2023] Open
Abstract
Tooth number abnormality is one of the most common dental developmental diseases, which includes both tooth agenesis and supernumerary teeth. Tooth development is regulated by numerous developmental signals, such as the well-known Wnt, BMP, FGF, Shh and Eda pathways, which mediate the ongoing complex interactions between epithelium and mesenchyme. Abnormal expression of these crutial signalling during this process may eventually lead to the development of anomalies in tooth number; however, the underlying mechanisms remain elusive. In this review, we summarized the major process of tooth development, the latest progress of mechanism studies and newly reported clinical investigations of tooth number abnormality. In addition, potential treatment approaches for tooth number abnormality based on developmental biology are also discussed. This review not only provides a reference for the diagnosis and treatment of tooth number abnormality in clinical practice but also facilitates the translation of basic research to the clinical application.
Collapse
Affiliation(s)
- Han Zhang
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xuyan Gong
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaoqiao Xu
- grid.24516.340000000123704535Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xiaogang Wang
- grid.64939.310000 0000 9999 1211Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing, China
| | - Yao Sun
- Department of Implantology, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.
| |
Collapse
|
8
|
Woodruff ED, Kircher BK, Armfield BA, Levy JK, Bloch JI, Cohn MJ. Domestic cat embryos reveal unique transcriptomes of developing incisor, canine, and premolar teeth. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:516-531. [PMID: 35816012 DOI: 10.1002/jez.b.23168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 04/26/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Division of the dentition into morphologically distinct classes of teeth (incisors, canines, premolars, and molars) and the acquisition of tribosphenic molars facilitated precise occlusion between the teeth early in mammal evolution. Despite the evolutionary and ecological importance of distinct classes of teeth with unique cusp, crest, and basin morphologies, relatively little is known about the genetic basis for the development of different tooth classes within the embryo. Here we investigated genetic differences between developing deciduous incisor, canine, and premolar teeth in the domestic cat (Felis catus), which we propose to be a new model for tooth development. We examined differences in both developmental timing and crown morphology between the three tooth classes. Using RNA sequencing of early bell stage tooth germs, we showed that each of the three deciduous tooth classes possess a unique transcriptional profile. Three notable groups of genes emerged from our differential expression analysis; genes involved in the extracellular matrix (ECM), Wnt pathway signaling, and members of multiple homeobox gene families (Lhx, Dlx, Alx, and Nkx). Our results suggest that ECM genes may play a previously under-appreciated role in shaping the surface of the tooth crown during development. Differential regulation of these genes likely underlies differences in tooth crown shape and size, although subtle temporal differences in development between the tooth germs could also be responsible. This study provides foundational data for future experiments to examine the function of these candidate genes in tooth development to directly test their potential effects on crown morphology.
Collapse
Affiliation(s)
- Emily D Woodruff
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Bonnie K Kircher
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Brooke A Armfield
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| | - Julie K Levy
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Jonathan I Bloch
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Martin J Cohn
- Department of Biology, University of Florida, Gainesville, Florida, USA
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
9
|
Kantaputra P, Tripuwabhrut K, Jatooratthawichot P, Adisornkanj P, Hatsadaloi A, Porntrakoolsaree N, Kaewgaya M, Olsen B, Tongsima S, Ngamphiw C, Ketudat Cairns JR. Mutations in the WLS are associated with dental anomalies, torus palatinus, and torus mandibularis. Eur J Orthod 2022; 45:317-323. [DOI: 10.1093/ejo/cjac068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Summary
Background
Canonical and non-canonical WNT signaling are important for odontogenesis. WNT ligand secretion mediator (WLS; MIM611514) is required to transport lipid-modified WNT proteins from the Golgi to the cell membrane, where canonical and non-canonical WNT proteins are released into the extracellular milieu. Biallelic pathogenic variants in WLS are implicated in autosomal recessive Zaki syndrome (ZKS; MIM 619648), the only genetic condition known to be caused by pathogenic variants in WLS.
Objective
To investigate molecular etiology of dental anomalies in 250 patients with or without oral exostoses.
Patients and methods
Clinical and radiographic examination, and whole exome sequencing, were performed in the case of 250 patients with dental anomalies with or without oral exostoses.
Results
Four extremely rare heterozygous missense variants (p.Ile20Thr, p.Met46Leu, p.Ser453Ile and p.Leu516Phe) in WLS were identified in 11 patients with dental anomalies. In five of these patients, a torus palatinus or a torus mandibularis was observed.
Conclusion
We report for the first time the heterozygous WLS variants in patients with dental anomalies. Root maldevelopments in patients with WLS variants supports the role of canonical and non-canonical WNT signaling in root development. We also show that variants in WLS were implicated in torus palatinus and torus mandibularis. In addition, this is the first time that heterozygous carriers of WLS variants were found to manifest phenotypes. WLS variants were likely to have adverse effects on the concentration of WNT ligands delivered to the cell membrane, resulting in aberrant canonical and non-canonical WNT signaling, and subsequent phenotypes.
Limitations of the study
Patient’s positioning during the acquisition of panoramic radiography might have affected the appearance of the tooth structures. If we had all family members of each patient to study co-segregation between genotype and phenotype, it would have strengthened the association of WLS variants and the phenotypes.
Collapse
Affiliation(s)
- Piranit Kantaputra
- Center of Excellence in Medical Genetics Research, Chiang Mai University , Chiang Mai , Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University , Chiang Mai , Thailand
| | - Kanich Tripuwabhrut
- Division of Orthodontics, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University , Chiang Mai , Thailand
| | - Peeranat Jatooratthawichot
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology , Nakhon Ratchasima , Thailand
| | - Ploy Adisornkanj
- Center of Excellence in Medical Genetics Research, Chiang Mai University , Chiang Mai , Thailand
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Faculty of Dentistry, Chiang Mai University , Chiang Mai , Thailand
- Dental Department, Sawang Daen Din Crown Prince Hospital , Sakon Nakhon , Thailand
| | | | | | - Massupa Kaewgaya
- Center of Excellence in Medical Genetics Research, Chiang Mai University , Chiang Mai , Thailand
| | - Bjorn Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University , Boston, MA , USA
| | - Sissades Tongsima
- National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), Thailand Science Park , Pathum Thani , Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Science and Technology Development Agency (NSTDA), Thailand Science Park , Pathum Thani , Thailand
| | - James R Ketudat Cairns
- School of Chemistry, Institute of Science, and Center for Biomolecular Structure, Function and Application, Suranaree University of Technology , Nakhon Ratchasima , Thailand
- Laboratory of Biochemistry, Chulabhorn Research Institute , Bangkok , Thailand
| |
Collapse
|
10
|
Pincha N, Marangoni P, Haque A, Klein OD. Parallels in signaling between development and regeneration in ectodermal organs. Curr Top Dev Biol 2022; 149:373-419. [PMID: 35606061 PMCID: PMC10049776 DOI: 10.1016/bs.ctdb.2022.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Ectodermal organs originate from the outermost germ layer of the developing embryo and include the skin, hair, tooth, nails, and exocrine glands. These organs develop through tightly regulated, sequential and reciprocal epithelial-mesenchymal crosstalk, and they eventually assume various morphologies and functions while retaining the ability to regenerate. As with many other tissues in the body, the development and morphogenesis of these organs are regulated by a set of common signaling pathways, such as Shh, Wnt, Bmp, Notch, Tgf-β, and Eda. However, subtle differences in the temporal activation, the multiple possible combinations of ligand-receptor activation, the various cofactors, as well as the underlying epigenetic modulation determine how each organ develops into its adult form. Although each organ has been studied separately in considerable detail, the mechanisms underlying the parallels and differences in signaling that regulate their development have rarely been investigated. First, we will use the tooth, the hair follicle, and the mammary gland as representative ectodermal organs to explore how the development of signaling centers and establishment of stem cell populations influence overall growth and morphogenesis. Then we will compare how some of the major signaling pathways (Shh, Wnt, Notch and Yap/Taz) differentially regulate developmental events. Finally, we will discuss how signaling regulates regenerative processes in all three.
Collapse
Affiliation(s)
- Neha Pincha
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Pauline Marangoni
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Ameera Haque
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States
| | - Ophir D Klein
- Program in Craniofacial Biology and Department of Orofacial Sciences, University of California, San Francisco, CA, United States; Department of Pediatrics and Institute for Human Genetics, University of California, San Francisco, CA, United States.
| |
Collapse
|
11
|
Kornsuthisopon C, Photichailert S, Nowwarote N, Tompkins KA, Osathanon T. Wnt signaling in dental pulp homeostasis and dentin regeneration. Arch Oral Biol 2021; 134:105322. [PMID: 34844087 DOI: 10.1016/j.archoralbio.2021.105322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Wnt signaling is crucial in the physiological and pathological processes of dental pulp tissues. The present study described the effects of Wnt signaling in dental pulp homeostasis and regeneration. DESIGN Publications in Pubmed and Scopus database were searched, and a narrative review was performed. The roles of Wnt signaling in dental pulp tissue were reviewed and discussed. RESULT In vitro and in vivo evidence have confirmed the involvement of Wnt signaling in tooth development, dental pulp homeostasis, and physiological processes in dental pulp responses. Manipulating Wnt signaling components generates beneficial effects on pulp healing, dentin repair, and epigenetic regulation related to stemness maintenance, implying that Wnt signaling is a potential therapeutic target for future clinical dental applications. Additionally, an overview of the epigenetic control of dental pulp stem cells by Wnt signaling is provided. CONCLUSION This review provides basic knowledge on Wnt signaling and outlines its functions in dental pulp tissues, focusing on their potential as therapeutic treatments by targeting the Wnt signaling pathway.
Collapse
Affiliation(s)
- Chatvadee Kornsuthisopon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suphalak Photichailert
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nunthawan Nowwarote
- Centre de Recherche des Cordeliers, Universite de Paris, Sorbonne Universite, INSERM UMRS 1138, Molecular Oral Pathophysiology and Universite de Paris, Dental Faculty Garanciere, Oral Biology Department, Paris F-75006, France
| | - Kevin A Tompkins
- Office of Research Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand; Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
12
|
Tokavanich N, Wein MN, English JD, Ono N, Ono W. The Role of Wnt Signaling in Postnatal Tooth Root Development. FRONTIERS IN DENTAL MEDICINE 2021; 2:769134. [PMID: 35782525 PMCID: PMC9248717 DOI: 10.3389/fdmed.2021.769134] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Appropriate tooth root formation and tooth eruption are critical for achieving and maintaining good oral health and quality of life. Tooth eruption is the process through which teeth emerge from their intraosseous position to their functional position in the oral cavity. This temporospatial process occurs simultaneously with tooth root formation through a cascade of interactions between the epithelial and adjoining mesenchymal cells. Here, we will review the role of the Wnt system in postnatal tooth root development. This signaling pathway orchestrates the process of tooth root formation and tooth eruption in conjunction with several other major signaling pathways. The Wnt signaling pathway is comprised of the canonical, or Wnt/β-catenin, and the non-Canonical signaling pathway. The expression of multiple Wnt ligands and their downstream transcription factors including β-catenin is found in the cells in the epithelia and mesenchyme starting from the initiation stage of tooth development. The inhibition of canonical Wnt signaling in an early stage arrests odontogenesis. Wnt transcription factors continue to be present in dental follicle cells, the progenitor cells responsible for differentiation into cells constituting the tooth root and the periodontal tissue apparatus. This expression occurs concurrently with osteogenesis and cementogenesis. The conditional ablation of β-catenin in osteoblast and odontoblast causes the malformation of the root dentin and cementum. On the contrary, the overexpression of β-catenin led to shorter molar roots with thin and hypo-mineralized dentin, along with the failure of tooth eruption. Therefore, the proper expression of Wnt signaling during dental development is crucial for regulating the proliferation, differentiation, as well as epithelial-mesenchymal interaction essential for tooth root formation and tooth eruption.
Collapse
Affiliation(s)
- Nicha Tokavanich
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, United States
| | - Marc N. Wein
- Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Jeryl D. English
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Noriaki Ono
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| | - Wanida Ono
- Department of Orthodontics, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, United States
| |
Collapse
|
13
|
The concurrent stimulation of Wnt and FGF8 signaling induce differentiation of dental mesenchymal cells into odontoblast-like cells. Med Mol Morphol 2021; 55:8-19. [PMID: 34739612 PMCID: PMC8885561 DOI: 10.1007/s00795-021-00297-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/13/2021] [Indexed: 11/05/2022]
Abstract
Fibroblast growth factor 8 (FGF8) is known to be a potent stimulator of canonical Wnt/β-catenin activity, an essential factor for tooth development. In this study, we analyzed the effects of co-administration of FGF8 and a CHIR99021 (GSK3β inhibitor) on differentiation of dental mesenchymal cells into odontoblasts. Utilizing Cre-mediated EGFP reporter mice, dentin matrix protein 1 (Dmp1) expression was examined in mouse neonatal molar tooth germs. At birth, expression of Dmp1-EGFP was not found in mesenchymal cells but rather epithelial cells, after which Dmp1-positive cells gradually emerged in the mesenchymal area along with disappearance in the epithelial area. Primary cultured mesenchymal cells from neonatal tooth germ specimens showed loss of Dmp1-EGFP positive signals, whereas addition of Wnt3a or the CHIR99021 significantly regained Dmp1 positivity within approximately 2 weeks. Other odontoblast markers such as dentin sialophosphoprotein (Dspp) could not be clearly detected. Concurrent stimulation of primary cultured mesenchymal cells with the CHIR99021 and FGF8 resulted in significant upregulation of odonto/osteoblast proteins. Furthermore, increased expression levels of runt-related transcription factor 2 (Runx2), osterix, and osteocalcin were also observed. The present findings indicate that coordinated action of canonical Wnt/β-catenin and FGF8 signals is essential for odontoblast differentiation of tooth germs in mice.
Collapse
|
14
|
Lu X, Yang J, Zhao S, Liu S. Advances of Wnt signalling pathway in dental development and potential clinical application. Organogenesis 2019; 15:101-110. [PMID: 31482738 DOI: 10.1080/15476278.2019.1656996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Wnt signalling pathway is widely studied in many processes of biological development, like embryogenesis, tissue homeostasis and wound repair. It is universally known that Wnt signalling pathway plays an important role in tooth development. Here, we summarized the function of Wnt signalling pathway during tooth initiation, crown morphogenesis, root formation, and discussed the therapeutic potential of Wnt modulators.
Collapse
Affiliation(s)
- Xi Lu
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Jun Yang
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Shouliang Zhao
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| | - Shangfeng Liu
- Department of Stomatology, Huashan Hospital, Fudan University , Shanghai , P. R. China
| |
Collapse
|
15
|
Xiong Y, Fang Y, Qian Y, Liu Y, Yang X, Huang H, Huang H, Li Y, Zhang X, Zhang Z, Dong M, Qiu M, Zhu XJ, Zhang Z. Wnt Production in Dental Epithelium Is Crucial for Tooth Differentiation. J Dent Res 2019; 98:580-588. [PMID: 30894046 DOI: 10.1177/0022034519835194] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Wnt ligands display varied spatiotemporal expression in the epithelium and mesenchyme in the developing tooth. Thus far, the actions of these differentially expressed Wnt ligands on tooth development are not clear. Shh expression specifies the odontogenic epithelium during initiation and is consistently restricted to the dental epithelium during tooth development. In this study, we inactivate Wntless ( Wls), the key regulator for Wnt trafficking, by Shh-Cre to investigate how the Wnt ligands produced in the dental epithelium lineage act on tooth development. We find that conditional knockout of Wls by Shh-Cre leads to defective ameloblast and odontoblast differentiation. WlsShh-Cre teeth display reduced canonical Wnt signaling activity in the inner enamel epithelium and the underlying mesenchyme at the early bell stage, as exhibited by target gene expression and BAT-gal staining. The expression of Wnt5a and Wnt10b is not changed in WlsShh-Cre teeth. By contrast, Wnt10a expression is significantly increased in response to epithelial Wls deficiency. In addition, the expression of Hedgehog signaling pathway components Shh, Gli1, and Patched1 was greatly decreased in WlsShh-Cre teeth. Epithelial Wls loss of function in Shh lineage also leads to aberrant cell proliferation in dental epithelium and mesenchyme at embryonic day 16.5; however, the cell apoptosis is unaffected. Moreover, we find that Decorin and Col1a1, the key markers for odontoblast differentiation that are downregulated in WlsShh-Cre teeth, act as direct downstream targets of the canonical Wnt signaling pathway by chromatin immunoprecipitation analysis. Additionally, Decorin and Col1a1 expression can be increased by lithium chloride (LiCl) treatment in the in vitro tooth explants. Taken together, our results suggest that the spatial expression of Wnt ligands within the dental epithelial lineage regulates the differentiation of tooth structures in later stages.
Collapse
Affiliation(s)
- Y Xiong
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Y Fang
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Y Qian
- 2 Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Y Liu
- 3 The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - X Yang
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - H Huang
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - H Huang
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Y Li
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - X Zhang
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Z Zhang
- 4 Department of Ophthalmology, Tulane Medical Center, Tulane University, New Orleans, LA, USA
| | - M Dong
- 2 Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - M Qiu
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - X J Zhu
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Z Zhang
- 1 Institute of Life Sciences, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| |
Collapse
|
16
|
Zhao K, Lian M, Zou D, Huang W, Zhou W, Shen Y, Wang F, Wu Y. Novel mutations identified in patients with tooth agenesis by whole-exome sequencing. Oral Dis 2018; 25:523-534. [PMID: 30417976 DOI: 10.1111/odi.13002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/27/2018] [Accepted: 11/05/2018] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To identify potentially pathogenic mutations for tooth agenesis by whole-exome sequencing. SUBJECTS AND METHODS Ten Chinese families including five families with ectodermal dysplasia (syndromic tooth agenesis) and five families with selective tooth agenesis were included. Whole-exome sequencing was performed using genomic DNA. Potentially pathogenic mutations were identified after data filtering and screening. The pathogenicity of novel variants was investigated by segregation analysis, in silico analysis, and functional studies. RESULTS One novel mutation (c.441_442insACTCT) and three reported mutations (c.252delT, c.463C>T, and c.1013C>T) in EDA were identified in families with ectodermal dysplasia. The novel EDA mutation was co-segregated with phenotype. A functional study revealed that NF-κB activation was compromised by the identified mutations. The secretion of active EDA was also compromised detection by western blotting. Novel Wnt10A mutations (c.521T>C and c.653T>G) and EVC2 mutation (c.1472C>T) were identified in families with selective tooth agenesis. The Wnt10A c.521T>C mutation and the EVC2 c.1472C>T mutation were considered as pathogenic for affecting highly conserved amino acids, co-segregated with phenotype and predicted to be disease-causing by SIFT and PolyPhen2. Moreover, several reported mutations in PAX9, Wnt10A, and FGFR3 were also detected. CONCLUSIONS Our study expanded our knowledge on tooth agenesis spectrum by identifying novel variants.
Collapse
Affiliation(s)
- Kai Zhao
- Second Dental Clinic, Department of Oral Implantology, Ninth People's Hospital, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Meifei Lian
- Department of Prosthodontics, Shanghai Ninth People's Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duohong Zou
- Department of Oral Surgery, Ninth People's Hospital, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Huang
- Department of Oral Implantology, Ninth People's Hospital, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjie Zhou
- Second Dental Clinic, Ninth People's Hospital, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yihan Shen
- Second Dental Clinic, Ninth People's Hospital, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Wang
- Department of Oral Implantology, Ninth People's Hospital, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiqun Wu
- Second Dental Clinic, Department of Oral Implantology, Ninth People's Hospital, School of Medicine, Shanghai Key Laboratory of Stomatology, National Clinical Research Center of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
17
|
Dai ZM, Xiong Y, He W, Fang Y, Qian YQ, Zhu XJ. Wntless, a conserved Wnt-transport protein, is involved in the innate immune response of Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2018; 80:437-442. [PMID: 29933109 DOI: 10.1016/j.fsi.2018.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 06/13/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Wnt signaling plays important roles in a variety of developmental and pathological processes. Here we show that Wntless, the main regulator for Wnt secretion, is involved in the innate immune response of the giant freshwater prawn, Macrobrachium rosenbergii. The full-length cDNA of the prawn Wntless (named MrWntless) is 2173 bp in length and contains a 1602-bp open reading frame (ORF), which is conceptually translated into a 533-amino acids sequence. MrWntless protein contains a highly conserved Wnt-binding domain which is required for secretion of Wnt ligands, and exhibits 57-67% identity with known Wntless proteins of other animals. MrWntless was found to be expressed in a variety of prawn tissues including heart, gill, muscle, gut, hepatopancreas and ovary. Moreover, MrWntless expression was significantly increased in the hepatopancreas and gill of the prawns challenged by the bacterial pathogen Aeromonas hydrophila and Vibrio parahaemolyticus. Knockdown of MrWntless by RNA interference in prawns led to dramatically decreased MrWntless expression of approximately 70%. Furthermore, the cumulative mortality rate of the prawn injected with MrWntless dsRNA was greatly increased in response to A. hydrophila challenge compared with the control prawns. Taken together, we provide evidence that prawn Wntless is important for their innate immune response against bacterial pathogens.
Collapse
Affiliation(s)
- Zhong-Min Dai
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Yanan Xiong
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Weiran He
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Yukun Fang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China
| | - Ye-Qing Qian
- Women's Hospital, School of Medicine, Zhejiang University, 310006, Hangzhou, Zhejiang, China.
| | - Xiao-Jing Zhu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, 310036, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Fan L, Deng S, Sui X, Liu M, Cheng S, Wang Y, Gao Y, Chu CH, Zhang Q. Constitutive activation of β-catenin in ameloblasts leads to incisor enamel hypomineralization. J Mol Histol 2018; 49:499-507. [PMID: 30066216 DOI: 10.1007/s10735-018-9788-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022]
Abstract
Enamel is the hardest tissue with the highest degree of mineralization protecting the dental pulp from injury in vertebrates. The ameloblasts differentiated from ectoderm-derived epithelial cells are a single cell layer and are important for the enamel formation and mineralization. Wnt/β-catenin signaling has been proven to exert an important role in the mineralization of bone, dentin and cementum. Little was known about the regulatory mechanism of Wnt/β-catenin signaling pathway in ameloblasts during amelogenesis, especially in the mineralization of enamel. To investigate the role of β-catenin in ameloblasts, we established Amelx-Cre; β-catenin∆ex3fl/fl (CA-β-catenin) mice, which could constitutive activate β-catenin in ameloblasts. It showed the delayed mineralization and eventual hypomineralization in the incisor enamel of CA-β-catenin mice. Meanwhile, the amelogenesis-related proteinases Mmp20 and Klk4 were decreased in the incisors of CA-β-catenin mice. These data indicated that β-catenin plays an essential role in differentiation and function of ameloblasts during amelogenesis.
Collapse
Affiliation(s)
- Linlin Fan
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Shijian Deng
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Xin Sui
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Mengmeng Liu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Shuhua Cheng
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yunfei Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuguang Gao
- Department of Stomatology, Hospital Affiliated to Binzhou Medical University, Binzhou, Shandong, China
| | - Chun-Hung Chu
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Qi Zhang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China. .,Department of Endodontics, School of Stomatology, Tongji University, Shanghai, China.
| |
Collapse
|
19
|
Williams MA, Letra A. The Changing Landscape in the Genetic Etiology of Human Tooth Agenesis. Genes (Basel) 2018; 9:genes9050255. [PMID: 29772684 PMCID: PMC5977195 DOI: 10.3390/genes9050255] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Despite much progress in understanding the genetics of syndromic tooth agenesis (TA), the causes of the most common, isolated TA remain elusive. Recent studies have identified novel genes and variants contributing to the etiology of TA, and revealed new pathways in which tooth development genes belong. Further, the use of new research approaches including next-generation sequencing has provided increased evidence supporting an oligogenic inheritance model for TA, and may explain the phenotypic variability of the condition. In this review, we present current knowledge about the genetic mechanisms underlying syndromic and isolated TA in humans, and highlight the value of incorporating next-generation sequencing approaches to identify causative and/or modifier genes that contribute to the etiology of TA.
Collapse
Affiliation(s)
- Meredith A Williams
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Zhu XJ, Fang Y, Xiong Y, Wang M, Yang X, Li Y, Zhang X, Dai ZM, Qiu M, Zhang Z, Zhang Z. Disruption of Wnt production in Shh
lineage causes bone malformation in mice, mimicking human Malik-Percin-type syndactyly. FEBS Lett 2018; 592:356-368. [DOI: 10.1002/1873-3468.12963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Accepted: 12/22/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Xiao-Jing Zhu
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Yukun Fang
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Yanan Xiong
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Min Wang
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Xueqin Yang
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Yan Li
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Xiaoyun Zhang
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Zhong-Min Dai
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Mengsheng Qiu
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| | - Ze Zhang
- Department of Ophthalmology; Tulane Medical Center; Tulane University; New Orleans LA USA
| | - Zunyi Zhang
- Institute of Life Sciences; College of Life and Environmental Science; Key Laboratory of Mammalian Organogenesis and Regeneration; Hangzhou Normal University; Zhejiang China
| |
Collapse
|
21
|
Haddaji Mastouri M, De Coster P, Zaghabani A, Jammali F, Raouahi N, Ben Salem A, Saad A, Coucke P, H'mida Ben Brahim D. Genetic study of non-syndromic tooth agenesis through the screening of paired box 9, msh homeobox 1, axin 2, and Wnt family member 10A genes: a case-series. Eur J Oral Sci 2017; 126:24-32. [PMID: 29114927 DOI: 10.1111/eos.12391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2017] [Indexed: 02/04/2023]
Abstract
Non-syndromic tooth agenesis (NSTA) is the most common developmental anomaly in humans. Several studies have been conducted on dental agenesis and numerous genes have been identified. However, the pathogenic mechanisms responsible for NSTA are not clearly understood. We studied a group of 28 patients with sporadic NSTA and nine patients with a family history of tooth agenesis. We focused on four genes - paired box 9 (PAX9), Wnt family member 10A (WNT10A), msh homeobox 1 (MSX1), and axin 2 (AXIN2) - using direct Sanger sequencing of the exons and intron-exon boundaries. The most prevalent variants identified in PAX9 and AXIN2 genes were analyzed using the chi-square test. The sequencing results revealed a number of variants in the AXIN2 gene, including one novel missense mutation in one patient with agenesis of a single second premolar. We also identified one variant in the AXIN2 gene as being a putative risk factor for tooth agenesis. Only one missense mutation was identified in the WNT10A gene and this mutation was found in two patients. Interestingly, WNT10A is reported as the most prevalent gene mutated in the European population with NSTA.
Collapse
Affiliation(s)
- Marwa Haddaji Mastouri
- Department of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Peter De Coster
- Department of Restorative Dentistry, Endodontology and Oral Biology, Ghent University Hospital, Ghent University, Ghent, Belgium
| | | | - Frej Jammali
- Department of Orthodontics, Farhat Hached University Hospital, Sousse, Tunisia
| | - Nabiha Raouahi
- Department of Orthodontics, Farhat Hached University Hospital, Sousse, Tunisia
| | | | - Ali Saad
- Department of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| | - Paul Coucke
- Center for Medical Genetics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Dorra H'mida Ben Brahim
- Department of Human Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, Sousse, Tunisia
| |
Collapse
|
22
|
Zeng B, Zhao Q, Li S, Lu H, Lu J, Ma L, Zhao W, Yu D. Novel EDA or EDAR Mutations Identified in Patients with X-Linked Hypohidrotic Ectodermal Dysplasia or Non-Syndromic Tooth Agenesis. Genes (Basel) 2017; 8:genes8100259. [PMID: 28981473 PMCID: PMC5664109 DOI: 10.3390/genes8100259] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 09/21/2017] [Accepted: 09/29/2017] [Indexed: 01/02/2023] Open
Abstract
Both X-linked hypohidrotic ectodermal dysplasia (XLHED) and non-syndromic tooth agenesis (NSTA) result in symptoms of congenital tooth loss. This study investigated genetic causes in two families with XLHED and four families with NSTA. We screened for mutations of WNT10A, EDA, EDAR, EDARADD, PAX9, MSX1, AXIN2, LRP6, and WNT10B through Sanger sequencing. Whole exome sequencing was performed for the proband of NSTA Family 4. Novel mutation c.1051G>T (p.Val351Phe) and the known mutation c.467G>A (p.Arg156His) of Ectodysplasin A (EDA) were identified in families with XLHED. Novel EDA receptor (EDAR) mutation c.73C>T (p.Arg25*), known EDA mutation c.491A>C (p.Glu164Ala), and known Wnt family member 10A (WNT10A) mutations c.511C>T (p.Arg171Cys) and c.742C>T (p.Arg248*) were identified in families with NSTA. The novel EDA and EDAR mutations were predicted as being pathogenic through bioinformatics analyses and structural modeling. Two variants of WNT10A, c.374G>A (p.Arg125Lys) and c.125A>G (p.Asn42Ser), were found in patients with NSTA. The two WNT10A variants were predicted to affect the splicing of message RNA, but minigene experiments showed normal splicing of mutated minigenes. This study uncovered the genetic foundations with respect to six families with XLHED or NSTA. We identified six mutations, of which two were novel mutations of EDA and EDAR. This is the first report of a nonsense EDAR mutation leading to NSTA.
Collapse
Affiliation(s)
- Binghui Zeng
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Qi Zhao
- Department of Oncology, Xianning Central Hospital, The First Affiliated Hospital of Hubei University of Science and Technology, Xianning 437100, China.
| | - Sijie Li
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Hui Lu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Jiaxuan Lu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Lan Ma
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Wei Zhao
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| | - Dongsheng Yu
- Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055, China.
| |
Collapse
|
23
|
Ramanathan A, Srijaya TC, Sukumaran P, Zain RB, Abu Kasim NH. Homeobox genes and tooth development: Understanding the biological pathways and applications in regenerative dental science. Arch Oral Biol 2017; 85:23-39. [PMID: 29031235 DOI: 10.1016/j.archoralbio.2017.09.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/27/2017] [Accepted: 09/30/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Homeobox genes are a group of conserved class of transcription factors that function as key regulators during the embryonic developmental processes. They act as master regulator for developmental genes, which involves coordinated actions of various auto and cross-regulatory mechanisms. In this review, we summarize the expression pattern of homeobox genes in relation to the tooth development and various signaling pathways or molecules contributing to the specific actions of these genes in the regulation of odontogenesis. MATERIALS AND METHODS An electronic search was undertaken using combination of keywords e.g. Homeobox genes, tooth development, dental diseases, stem cells, induced pluripotent stem cells, gene control region was used as search terms in PubMed and Web of Science and relevant full text articles and abstract were retrieved that were written in English. A manual hand search in text books were also carried out. Articles related to homeobox genes in dentistry and tissue engineering and regenerative medicine of odontogenesis were selected. RESULTS The possible perspective of stem cells technology in odontogenesis and subsequent analysis of gene correction pertaining to dental disorders through the possibility of induced pluripotent stem cells technology is also inferred. CONCLUSIONS We demonstrate the promising role of tissue engineering and regenerative medicine on odontogenesis, which can generate a new ray of hope in the field of dental science.
Collapse
Affiliation(s)
- Anand Ramanathan
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | | | - Prema Sukumaran
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| | - Rosnah Binti Zain
- Oral Cancer Research and Coordinating Center, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Department of Oral & Maxillofacial Clinical Science, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia; Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia.
| | - Noor Hayaty Abu Kasim
- Department of Restorative Dentistry, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Dinckan N, Du R, Petty LE, Coban-Akdemir Z, Jhangiani SN, Paine I, Baugh EH, Erdem AP, Kayserili H, Doddapaneni H, Hu J, Muzny DM, Boerwinkle E, Gibbs RA, Lupski JR, Uyguner ZO, Below JE, Letra A. Whole-Exome Sequencing Identifies Novel Variants for Tooth Agenesis. J Dent Res 2017; 97:49-59. [PMID: 28813618 DOI: 10.1177/0022034517724149] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tooth agenesis is a common craniofacial abnormality in humans and represents failure to develop 1 or more permanent teeth. Tooth agenesis is complex, and variations in about a dozen genes have been reported as contributing to the etiology. Here, we combined whole-exome sequencing, array-based genotyping, and linkage analysis to identify putative pathogenic variants in candidate disease genes for tooth agenesis in 10 multiplex Turkish families. Novel homozygous and heterozygous variants in LRP6, DKK1, LAMA3, and COL17A1 genes, as well as known variants in WNT10A, were identified as likely pathogenic in isolated tooth agenesis. Novel variants in KREMEN1 were identified as likely pathogenic in 2 families with suspected syndromic tooth agenesis. Variants in more than 1 gene were identified segregating with tooth agenesis in 2 families, suggesting oligogenic inheritance. Structural modeling of missense variants suggests deleterious effects to the encoded proteins. Functional analysis of an indel variant (c.3607+3_6del) in LRP6 suggested that the predicted resulting mRNA is subject to nonsense-mediated decay. Our results support a major role for WNT pathways genes in the etiology of tooth agenesis while revealing new candidate genes. Moreover, oligogenic cosegregation was suggestive for complex inheritance and potentially complex gene product interactions during development, contributing to improved understanding of the genetic etiology of familial tooth agenesis.
Collapse
Affiliation(s)
- N Dinckan
- 1 Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.,2 Department of Diagnostic and Biomedical Sciences and Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA
| | - R Du
- 3 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - L E Petty
- 4 Human Genetics Center, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - Z Coban-Akdemir
- 3 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - S N Jhangiani
- 5 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - I Paine
- 3 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - E H Baugh
- 6 Department of Biology, New York University, New York, NY, USA
| | - A P Erdem
- 7 Department of Pedodontics, Faculty of Dentistry, Istanbul University, Capa, Istanbul, Turkey
| | - H Kayserili
- 8 Department of Medical Genetics, Koc University, School of Medicine (KUSOM), Istanbul, Turkey
| | - H Doddapaneni
- 5 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - J Hu
- 5 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - D M Muzny
- 5 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - E Boerwinkle
- 4 Human Genetics Center, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA.,5 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - R A Gibbs
- 3 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,5 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - J R Lupski
- 3 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,5 Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,9 Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,10 Texas Children's Hospital, Houston, TX, USA
| | - Z O Uyguner
- 1 Department of Medical Genetics, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - J E Below
- 4 Human Genetics Center, University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA
| | - A Letra
- 2 Department of Diagnostic and Biomedical Sciences and Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, USA.,11 Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| |
Collapse
|
25
|
Li J, Cui Y, Xu J, Wang Q, Yang X, Li Y, Zhang X, Qiu M, Zhang Z, Zhang Z. Suppressor of Fused restraint of Hedgehog activity level is critical for osteogenic proliferation and differentiation during calvarial bone development. J Biol Chem 2017; 292:15814-15825. [PMID: 28794157 DOI: 10.1074/jbc.m117.777532] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/04/2017] [Indexed: 12/31/2022] Open
Abstract
Hedgehog signaling plays crucial roles in the development of calvarial bone, relying on the activation of Gli transcription factors. However, the molecular mechanism of the role of regulated Gli protein level in osteogenic specification of mesenchyme still remains elusive. Here, we show by conditionally inactivating Suppressor of Fused (Sufu), a critical repressor of Hedgehog signaling, in Wnt1-Cre-mediated cranial neural crest (CNC) or Dermo1-Cre-mediated mesodermal lineages that Sufu restraint of Hedgehog activity level is critical for differentiation of preosteogenic mesenchyme. Ablation of Sufu results in failure of calvarial bone formation, including CNC-derived bones and mesoderm-derived bones, depending on the Cre line being used. Although mesenchymal cells populate to frontonasal destinations, where they are then condensed, Sufu deletion significantly inhibits the proliferation of osteoprogenitor cells, and these cells no longer differentiate into osteoblasts. We show that there is suppression of Runx2 and Osterix, the osteogenic regulators, in calvarial mesenchyme in the Sufu mutant. We show that down-regulation of several genes upstream to Runx2 and Osterix is manifested within the calvarial primordia, including Bmp2 and its downstream genes Msx1/2 and Dlx5 By contrast, we find that Gli1, the Hedgehog activity readout gene, is excessively activated in mesenchyme. Deletion of Sufu in CNC leads to a discernible decrease in the repressive Gli3 form and an increase in the full-length Gli2. Finally, we demonstrate that simultaneous deletion of Gli2 and Sufu in CNC completely restores calvarial bone formation, suggesting that a sustained level of Hedgehog activity is critical in specification of the osteogenic mesenchymal cells.
Collapse
Affiliation(s)
- Jianying Li
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Ying Cui
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Jie Xu
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Qihui Wang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Xueqin Yang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Yan Li
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Xiaoyun Zhang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Mengsheng Qiu
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Ze Zhang
- the Department of Ophthamology, Tulane Medical Center, Tulane University, New Orleans, Louisiana 70112
| | - Zunyi Zhang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| |
Collapse
|
26
|
Zhu XJ, Yuan X, Wang M, Fang Y, Liu Y, Zhang X, Yang X, Li Y, Li J, Li F, Dai ZM, Qiu M, Zhang Z, Zhang Z. A Wnt/Notch/Pax7 signaling network supports tissue integrity in tongue development. J Biol Chem 2017; 292:9409-9419. [PMID: 28438836 DOI: 10.1074/jbc.m117.789438] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 04/21/2017] [Indexed: 01/07/2023] Open
Abstract
The tongue is one of the major structures involved in human food intake and speech. Tongue malformations such as aglossia, microglossia, and ankyloglossia are congenital birth defects, greatly affecting individuals' quality of life. However, the molecular basis of the tissue-tissue interactions that ensure tissue morphogenesis to form a functional tongue remains largely unknown. Here we show that ShhCre -mediated epithelial deletion of Wntless (Wls), the key regulator for intracellular Wnt trafficking, leads to lingual hypoplasia in mice. Disruption of epithelial Wnt production by Wls deletion in epithelial cells led to a failure in lingual epidermal stratification and loss of the lamina propria and the underlying superior longitudinal muscle in developing mouse tongues. These defective phenotypes resulted from a reduction in epithelial basal cells positive for the basal epidermal marker protein p63 and from impaired proliferation and differentiation in connective tissue and paired box 3 (Pax3)- and Pax7-positive muscle progenitor cells. We also found that epithelial Wnt production is required for activation of the Notch signaling pathway, which promotes proliferation of myogenic progenitor cells. Notch signaling in turn negatively regulated Wnt signaling during tongue morphogenesis. We further show that Pax7 is a direct Notch target gene in the embryonic tongue. In summary, our findings demonstrate a key role for the lingual epithelial signals in supporting the integrity of the lamina propria and muscular tissue during tongue development and that a Wnt/Notch/Pax7 genetic hierarchy is involved in this development.
Collapse
Affiliation(s)
- Xiao-Jing Zhu
- From the Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Zhejiang 310036, China and
| | - Xueyan Yuan
- From the Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Zhejiang 310036, China and
| | - Min Wang
- From the Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Zhejiang 310036, China and
| | - Yukun Fang
- From the Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Zhejiang 310036, China and
| | - Yudong Liu
- From the Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Zhejiang 310036, China and
| | - Xiaoyun Zhang
- From the Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Zhejiang 310036, China and
| | - Xueqin Yang
- From the Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Zhejiang 310036, China and
| | - Yan Li
- From the Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Zhejiang 310036, China and
| | - Jianying Li
- From the Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Zhejiang 310036, China and
| | - Feixue Li
- From the Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Zhejiang 310036, China and
| | - Zhong-Min Dai
- From the Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Zhejiang 310036, China and
| | - Mengsheng Qiu
- From the Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Zhejiang 310036, China and
| | - Ze Zhang
- the Department of Ophthalmology, Tulane Medical Center, Tulane University, New Orleans, Louisiana 70115
| | - Zunyi Zhang
- From the Institute of Life Sciences, College of Life and Environmental Science, Key Laboratory of Mammalian Organogenesis and Regeneration, Hangzhou Normal University, Zhejiang 310036, China and
| |
Collapse
|
27
|
ISLET1-Dependent β-Catenin/Hedgehog Signaling Is Required for Outgrowth of the Lower Jaw. Mol Cell Biol 2017; 37:MCB.00590-16. [PMID: 28069742 DOI: 10.1128/mcb.00590-16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 01/04/2017] [Indexed: 12/30/2022] Open
Abstract
Mandibular patterning information initially resides in the epithelium during development. However, how transcriptional regulation of epithelium-derived signaling controls morphogenesis of the mandible remains elusive. Using ShhCre to target the mandibular epithelium, we ablated transcription factor Islet1, resulting in a distally truncated mandible via unbalanced cell apoptosis and decreased cell proliferation in the distal mesenchyme. Loss of Islet1 caused a lack of cartilage at the distal tip, leading the fusion of two growing mandibular elements surrounding the rostral process of Meckel's cartilage. Loss of Islet1 results in dysregulation of mesenchymal genes important for morphogenesis of the mandibular arch. We revealed that Islet1 is required for the activation of epithelial β-catenin signaling via repression of Wnt antagonists. Reactivation of β-catenin in the epithelium of the Islet1 mutant rescued mandibular morphogenesis through sonic hedgehog (SHH) signaling to the mesenchyme. Furthermore, overexpression of a transgenic hedgehog ligand in the epithelium also partially restored outgrowth of the mandible. These data reveal functional roles for an ISLET1-dependent network integrating β-catenin/SHH signals in mesenchymal cell survival and outgrowth of the mandible during development.
Collapse
|
28
|
Jiang S, Chen G, Feng L, Jiang Z, Yu M, Bao J, Tian W. Disruption of kif3a results in defective osteoblastic differentiation in dental mesenchymal stem/precursor cells via the Wnt signaling pathway. Mol Med Rep 2016; 14:1891-900. [PMID: 27432616 PMCID: PMC4991727 DOI: 10.3892/mmr.2016.5508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 02/22/2016] [Indexed: 02/05/2023] Open
Abstract
The anterograde intraflagellar transport motor protein, kif3a, regulates the integrity of primary cilia and various cellular functions, however, the role of kif3a in dental mesenchymal stem/precursor cell differentiation remains to be fully elucidated. In the present study, the expression of kif3a was knocked down in human dental follicle cells (hDFCs) and human dental pulp cells (hDPCs) using short hairpin RNA. The results of subsequent immunofluorescence revealed that knocking down kif3a resulted in the loss of primary cilia, which led to impairment of substantial mineralization and expression of the differentiation-associated markers, including alkaline phosphatase, Runt-related transcription factor 2, dentin matrix protein 1 and dentin sialophosphoprotein in the hDFCs and hDPCs. The results of reverse transcription-quantitative polymerase chain reaction and western blot analyses showed that the expression levels of Wnt3a-mediated active β-catenin and lymphoid enhancer-binding factor 1 were attenuated, whereas the expression of phosphorylated glycogen synthase kinase 3β was enhanced, in the kif3a-knockdown cells. In addition, exogenous Wnt3a partially rescued osteoblastic differentiation in the hDFCs and hDPCs. These results demonstrated that inhibition of kif3a in the hDFCs and hDPCs disrupted primary cilia formation and/or function, and indicated that kif3a is important in the differentiation of hDFCs and hDPCs through the Wnt pathway. These findings not only enhance current understanding of tooth development and diseases of tooth mineralization, but also indicate possible strategies to regulate mineralization during tooth repair and regeneration.
Collapse
Affiliation(s)
- Sicong Jiang
- School of Life Sciences and Key Laboratory of Bio‑Resources and Eco‑Environment, Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Guoqing Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Lian Feng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zongting Jiang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mei Yu
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jinku Bao
- School of Life Sciences and Key Laboratory of Bio‑Resources and Eco‑Environment, Ministry of Education, Sichuan University, Chengdu, Sichuan 610064, P.R. China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
29
|
Does murine spermatogenesis require WNT signalling? A lesson from Gpr177 conditional knockout mouse models. Cell Death Dis 2016; 7:e2281. [PMID: 27362799 PMCID: PMC5108341 DOI: 10.1038/cddis.2016.191] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/17/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022]
Abstract
Wingless-related MMTV integration site (WNT) proteins and several other components of the WNT signalling pathway are expressed in the murine testes. However, mice mutant for WNT signalling effector β-catenin using different Cre drivers have phenotypes that are inconsistent with each other. The complexity and overlapping expression of WNT signalling cascades have prevented researchers from dissecting their function in spermatogenesis. Depletion of the Gpr177 gene (the mouse orthologue of Drosophila Wntless), which is required for the secretion of various WNTs, makes it possible to genetically dissect the overall effect of WNTs in testis development. In this study, the Gpr177 gene was conditionally depleted in germ cells (Gpr177flox/flox, Mvh-Cre; Gpr177flox/flox, Stra8-Cre) and Sertoli cells (Gpr177flox/flox, Amh-Cre). No obvious defects in fertility and spermatogenesis were observed in these three Gpr177 conditional knockout (cKO) mice at 8 weeks. However, late-onset testicular atrophy and fertility decline in two germ cell-specific Gpr177 deletion mice were noted at 8 months. In contrast, we did not observe any abnormalities of spermatogenesis and fertility, even in 8-month-old Gpr177flox/flox, Amh-Cre mice. Elevation of reactive oxygen species (ROS) was detected in Gpr177 cKO germ cells and Sertoli cells and exhibited an age-dependent manner. However, significant increase in the activity of Caspase 3 was only observed in germ cells from 8-month-old germ cell-specific Gpr177 knockout mice. In conclusion, GPR177 in Sertoli cells had no apparent influence on spermatogenesis, whereas loss of GPR177 in germ cells disrupted spermatogenesis in an age-dependent manner via elevating ROS levels and triggering germ cell apoptosis.
Collapse
|
30
|
Tamura M, Nemoto E. Role of the Wnt signaling molecules in the tooth. JAPANESE DENTAL SCIENCE REVIEW 2016; 52:75-83. [PMID: 28408959 PMCID: PMC5390339 DOI: 10.1016/j.jdsr.2016.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/29/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
Abstract
Wnt signaling plays a central role in many processes during embryonic development and adult homeostasis. At least 19 types of Wnt ligands, receptors, transducers, transcription factors, and antagonists have been identified in mammals. Two distinct Wnt signaling pathways, the canonical signaling pathway and the noncanonical signaling pathway, have been described. Some Wnt signaling pathway components are expressed in the dental epithelium and mesenchyme during tooth development in humans and mice. Functional studies and experimental analysis of relevant animal models confirm the effects of Wnt signaling pathway on the regulation of developing tooth formation and adult tooth homeostasis. Mutations in some Wnt signaling pathway components have been identified in syndromic and non-syndromic tooth agenesis. This review provides an overview of progress in elucidating the role of Wnt signaling pathway components in the tooth and the resulting possibilities for therapeutic development.
Collapse
Affiliation(s)
- Masato Tamura
- Department of Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, N13, W7, Sapporo, Japan
| | - Eiji Nemoto
- Department of Periodontology and Endodontology, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba, Sendai, Japan
| |
Collapse
|
31
|
Vogel P, Read RW, Hansen GM, Powell DR, Kantaputra PN, Zambrowicz B, Brommage R. Dentin Dysplasia in Notum Knockout Mice. Vet Pathol 2016; 53:853-62. [DOI: 10.1177/0300985815626778] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Secreted WNT proteins control cell differentiation and proliferation in many tissues, and NOTUM is a secreted enzyme that modulates WNT morphogens by removing a palmitoleoylate moiety that is essential for their activity. To better understand the role this enzyme in development, the authors produced NOTUM-deficient mice by targeted insertional disruption of the Notum gene. The authors discovered a critical role for NOTUM in dentin morphogenesis suggesting that increased WNT activity can disrupt odontoblast differentiation and orientation in both incisor and molar teeth. Although molars in Notum-/- mice had normal-shaped crowns and normal mantle dentin, the defective crown dentin resulted in enamel prone to fracture during mastication and made teeth more susceptible to endodontal inflammation and necrosis. The dentin dysplasia and short roots contributed to tooth hypermobility and to the spread of periodontal inflammation, which often progressed to periapical abscess formation. The additional incidental finding of renal agenesis in some Notum -/- mice indicated that NOTUM also has a role in kidney development, with undiagnosed bilateral renal agenesis most likely responsible for the observed decreased perinatal viability of Notum-/- mice. The findings support a significant role for NOTUM in modulating WNT signaling pathways that have pleiotropic effects on tooth and kidney development.
Collapse
Affiliation(s)
- P. Vogel
- Department of Pathology, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - R. W. Read
- Department of Pathology, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - G. M. Hansen
- Molecular Genetics, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - D. R. Powell
- Metabolism, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - P. N. Kantaputra
- Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
- The Center of Excellence in Medical Genetics Research, Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - B. Zambrowicz
- Molecular Genetics, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| | - R. Brommage
- Metabolism, Lexicon Pharmaceuticals Inc, The Woodlands, TX, USA
| |
Collapse
|
32
|
Zhu XJ, Liu Y, Yuan X, Wang M, Zhao W, Yang X, Zhang X, Hsu W, Qiu M, Zhang Z, Zhang Z. Ectodermal Wnt controls nasal pit morphogenesis through modulation of the BMP/FGF/JNK signaling axis. Dev Dyn 2016; 245:414-26. [PMID: 26661618 DOI: 10.1002/dvdy.24376] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Mutations of WNT3, WNT5A, WNT9B, and WNT11 genes are associated with orofacial birth defects, including nonsyndromic cleft lip with cleft palate in humans. However, the source of Wnt ligands and their signaling effects on the orofacial morphogenetic process remain elusive. RESULTS Using Foxg1-Cre to impair Wnt secretion through the inactivation of Gpr177/mWls, we investigate the relevant regulation of Wnt production and signaling in nasal-facial development. Ectodermal ablation of Gpr177 leads to severe facial deformities resulting from dramatically reduced cell proliferation and increased cell death due to a combined loss of WNT, FGF and BMP signaling in the developing facial prominence. In the invaginating nasal pit, the Gpr177 disruption also causes a detrimental effect on migration of the olfactory epithelial cells into the mesenchymal region. The blockage of Wnt secretion apparently impairs the olfactory epithelial cells through modulation of JNK signaling. CONCLUSIONS Our study thus suggests the head ectoderm, including the facial ectoderm and the neuroectoderm, as the source of canonical as well as noncanonical Wnt ligands during early development of the nasal-facial prominence. Both β-catenin-dependent and -independent signaling pathways are required for proper development of these morphogenetic processes.
Collapse
Affiliation(s)
- Xiao-Jing Zhu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Yudong Liu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Xueyan Yuan
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Min Wang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Wanxin Zhao
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Xueqin Yang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Xiaoyun Zhang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| | - Wei Hsu
- Department of Biomedical Genetics, Center for Oral Biology, James P Wilmot Cancer Center, University of Rochester Medical Center, Rochester, New York
| | - Mengsheng Qiu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China.,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky
| | - Ze Zhang
- Department of Ophthalmology, Tulane University Medical center, New Orleans, Louisiana
| | - Zunyi Zhang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Zhejiang, China
| |
Collapse
|
33
|
Suppressor of Fused Is Required for Determining Digit Number and Identity via Gli3/Fgfs/Gremlin. PLoS One 2015; 10:e0128006. [PMID: 26001200 PMCID: PMC4441507 DOI: 10.1371/journal.pone.0128006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 04/21/2015] [Indexed: 11/23/2022] Open
Abstract
The anterior-posterior patterning of the vertebrate limb bud requires closely coordinated signaling interactions, including Sonic Hedgehog (Shh)-mediated counteraction of the Gli3 transcription factor in the distal and posterior mesenchyme of the limb bud. Suppressor of Fused (Sufu), an intracellular negative regulator of Shh signaling via Gli2 and Gli3, is implicated in early development of the mouse limb bud. However, how Sufu is involved in the genetic regulation of limb bud patterning still remains elusive. In this study, we show that the conditional deletion of Sufu in the mesenchyme of the early limb bud results in polydactyly with loss of digit identity and supernumerary bones in the wrist and the ankle. These pattern alterations are associated with anterior expansion of HoxD genes located at the 5’ end of the cluster. By focusing on gene expression analysis of Shh/Gremlin1/Fgf signaling critical for the establishment and maintenance of anterior-posterior patterning, we show that early response to loss of Sufu involves anterior prolongation of Fgf4 and Fgf8 expression in the apical ectodermal ridge at E10.5. We also reveal the anterior activation of Shh-dependent posterior markers Ptc1, Gli1 and Gremlin in limb buds lacking Sufu. Furthermore, we find that loss of Sufu leads to attenuated levels of repressor Gli2 and repressor Gli3 in the early limb bud. Moreover, expression of Hand2 is activated in the entire limb bud at the early outgrowth stage in the mutant lacking Sufu. Thus, we provide evidence that Sufu is involved in the genetic network that restricts the posterior expression of Gli2/3/Hand2 and Gremlin/Fgf in limb bud patterning.
Collapse
|
34
|
Wu BT, Wen SH, Hwang SPL, Huang CJ, Kuan YS. Control of Wnt5b secretion by Wntless modulates chondrogenic cell proliferation through fine-tuning fgf3 expression. J Cell Sci 2015; 128:2328-39. [PMID: 25934698 DOI: 10.1242/jcs.167403] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/21/2015] [Indexed: 01/22/2023] Open
Abstract
Wnts and Fgfs regulate various tissues development in vertebrates. However, how regional Wnt or Fgf activities are established and how they interact in any given developmental event is elusive. Here, we investigated the Wnt-mediated craniofacial cartilage development in zebrafish and found that fgf3 expression in the pharyngeal pouches is differentially reduced along the anteroposterior axis in wnt5b mutants and wntless (wls) morphants, but its expression is normal in wnt9a and wnt11 morphants. Introducing fgf3 mRNAs rescued the cartilage defects in Wnt5b- and Wls-deficient larvae. In wls morphants, endogenous Wls expression is not detectable but maternally deposited Wls is present in eggs, which might account for the lack of axis defects in wls morphants. Secretion of endogenous Wnt5b but not Wnt11 was affected in the pharyngeal tissue of Wls morphants, indicating that Wls is not involved in every Wnt secretion event. Furthermore, cell proliferation but not apoptosis in the developing jaw was affected in Wnt5b- and Wls-deficient embryos. Therefore, Wnt5b requires Wls for its secretion and regulates the proliferation of chondrogenic cells through fine-tuning the expression of fgf3 during jaw cartilage development.
Collapse
Affiliation(s)
- Bo-Tsung Wu
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Shih-Hsien Wen
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Sheng-Ping L Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Chang-Jen Huang
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Yung-Shu Kuan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan Institute of Biological Chemistry, Academia Sinica, Taipei 11529, Taiwan Center for System Biology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
35
|
Abstract
Cleft palate represents one of the major congenital birth defects in humans. Despite the essential roles of ectodermal canonical Wnt and mesenchymal Wnt signaling in the secondary palate development, the function of mesenchymal canonical Wnt activity in secondary palate development remains elusive. Here we show that Gpr177, a highly conserved transmembrane protein essential for Wnt trafficking, is required for secondary palate development. Gpr177 is expressed in both epithelium and mesenchyme of palatal shelves during mouse development. Wnt1Cre-mediated deletion of Gpr177 in craniofacial neural crest cells leads to a complete cleft secondary palate, which is formed mainly due to aberrant cell proliferation and increased cell death in palatal shelves. By BATGAL staining, we reveal an intense canonical Wnt activity in the anterior palate mesenchyme of E12.5 wild-type embryos but not in Gpr177Wnt1-Cre embryos, suggesting that mesenchymal canonical Wnt signaling activated by Gpr177-mediated mesenchymal Wnts is critical for secondary palate development. Moreover, phosphorylation of JNK and c-Jun is impaired in the Gpr177Wnt1-Cre palate and is restored by implantation of Wnt5a-soaked beads in the in vitro palate explants, suggesting that Gpr177 probably regulates palate development via the Wnt5a-mediated noncanonical Wnt pathway in which c-Jun and JNK are involved. Importantly, certain cellular processes and the altered gene expression in palates lacking Gpr177 are distinct from that of the Wnt5a mutant, further demonstrating involvement of other mesenchymal Wnts in the process of palate development. Together, these results suggest that mesenchymal Gpr177 is required for secondary palate development by regulating and integrating mesenchymal canonical and noncanonical Wnt signals.
Collapse
|
36
|
Abstract
Mammalian tooth development is a precise and complicated procedure. Several signaling pathways, such as nuclear factor (NF)-κB and WNT, are key regulators of tooth development. Any disturbance of these signaling pathways can potentially affect or block normal tooth development, and presently, there are more than 150 syndromes and 80 genes known to be related to tooth agenesis. Clarifying the interaction and crosstalk among these genes will provide important information regarding the mechanisms underlying missing teeth. In the current review, we summarize recently published findings on genes related to isolated and syndromic tooth agenesis; most of these genes function as positive regulators of cell proliferation or negative regulators of cell differentiation and apoptosis. Furthermore, we explore the corresponding networks involving these genes in addition to their implications for the clinical management of tooth agenesis. We conclude that this requires further study to improve patients' quality of life in the future.
Collapse
Affiliation(s)
- W Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China Department of Endodontics & Periodontics, College of Stomatology, Dalian Medical University, Dalian, China
| | - Z Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
37
|
Bae CH, Kim TH, Ko SO, Lee JC, Yang X, Cho ES. Wntless regulates dentin apposition and root elongation in the mandibular molar. J Dent Res 2015; 94:439-45. [PMID: 25595365 DOI: 10.1177/0022034514567198] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Wnt signaling plays an essential role in the dental epithelium and mesenchyme during tooth morphogenesis. However, it remains unclear if Wnt ligands, produced from dental mesenchyme, are necessary for odontoblast differentiation and dentin formation. Here, we show that odontoblast-specific disruption of Wntless (Wls), a chaperon protein that regulates Wnt sorting and secretion, leads to severe defects in dentin formation and root elongation. Dentin thickness decreased remarkably and pulp chambers enlarged in the mandibular molars of OC-Cre;Wls(CO/CO) mice. Although the initial odontoblast differentiation was normal in the mutant crown, odontoblasts became cuboidal and dentin thickness was reduced. In immunohistochemistry, Wnt10a, β-catenin, type I collagen, and dentin sialoprotein were significantly down-regulated in the odontoblasts of mutant crown. In addition, roots were short and root canals were widened. Cell proliferation was reduced in the developing root apex of mutant molars. Furthermore, Wnt10a and Axin2 expression was remarkably decreased in the odontoblasts of mutant roots. Deletion of the Wls gene in odontoblasts appears to reduce canonical Wnt activity, leading to inhibition of odontoblast maturation and root elongation.
Collapse
Affiliation(s)
- C H Bae
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, South Korea
| | - T H Kim
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, South Korea
| | - S O Ko
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, South Korea
| | - J C Lee
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, South Korea
| | - X Yang
- Genetic Laboratory of Development and Disease, Institute of Biotechnology, Beijing, China
| | - E S Cho
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences, Chonbuk National University School of Dentistry, Jeonju, South Korea
| |
Collapse
|
38
|
Yuan G, Yang G, Zheng Y, Zhu X, Chen Z, Zhang Z, Chen Y. The non-canonical BMP and Wnt/β-catenin signaling pathways orchestrate early tooth development. Development 2015; 142:128-39. [PMID: 25428587 PMCID: PMC4299140 DOI: 10.1242/dev.117887] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 10/24/2014] [Indexed: 12/31/2022]
Abstract
BMP and Wnt signaling pathways play a crucial role in organogenesis, including tooth development. Despite extensive studies, the exact functions, as well as if and how these two pathways act coordinately in regulating early tooth development, remain elusive. In this study, we dissected regulatory functions of BMP and Wnt pathways in early tooth development using a transgenic noggin (Nog) overexpression model (K14Cre;pNog). It exhibits early arrested tooth development, accompanied by reduced cell proliferation and loss of odontogenic fate marker Pitx2 expression in the dental epithelium. We demonstrated that overexpression of Nog disrupted BMP non-canonical activity, which led to a dramatic reduction of cell proliferation rate but did not affect Pitx2 expression. We further identified a novel function of Nog by inhibiting Wnt/β-catenin signaling, causing loss of Pitx2 expression. Co-immunoprecipitation and TOPflash assays revealed direct binding of Nog to Wnts to functionally prevent Wnt/β-catenin signaling. In situ PLA and immunohistochemistry on Nog mutants confirmed in vivo interaction between endogenous Nog and Wnts and modulation of Wnt signaling by Nog in tooth germs. Genetic rescue experiments presented evidence that both BMP and Wnt signaling pathways contribute to cell proliferation regulation in the dental epithelium, with Wnt signaling also controlling the odontogenic fate. Reactivation of both BMP and Wnt signaling pathways, but not of only one of them, rescued tooth developmental defects in K14Cre;pNog mice, in which Wnt signaling can be substituted by transgenic activation of Pitx2. Our results reveal the orchestration of non-canonical BMP and Wnt/β-catenin signaling pathways in the regulation of early tooth development.
Collapse
Affiliation(s)
- Guohua Yuan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Guobin Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Yuqian Zheng
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA Department of Periodontology, College of Stomatology, Fujian Medical University, Fuzhou 350002, China
| | - Xiaojing Zhu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhi Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology & Key Laboratory for Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Zunyi Zhang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - YiPing Chen
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| |
Collapse
|
39
|
|
40
|
BMP-FGF signaling axis mediates Wnt-induced epidermal stratification in developing mammalian skin. PLoS Genet 2014; 10:e1004687. [PMID: 25329657 PMCID: PMC4199507 DOI: 10.1371/journal.pgen.1004687] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 08/19/2014] [Indexed: 01/08/2023] Open
Abstract
Epidermal stratification of the mammalian skin requires proliferative basal progenitors to generate intermediate cells that separate from the basal layer and are replaced by post-mitotic cells. Although Wnt signaling has been implicated in this developmental process, the mechanism underlying Wnt-mediated regulation of basal progenitors remains elusive. Here we show that Wnt secreted from proliferative basal cells is not required for their differentiation. However, epidermal production of Wnts is essential for the formation of the spinous layer through modulation of a BMP-FGF signaling cascade in the dermis. The spinous layer defects caused by disruption of Wnt secretion can be restored by transgenically expressed Bmp4. Non-cell autonomous BMP4 promotes activation of FGF7 and FGF10 signaling, leading to an increase in proliferative basal cell population. Our findings identify an essential BMP-FGF signaling axis in the dermis that responds to the epidermal Wnts and feedbacks to regulate basal progenitors during epidermal stratification. Epidermis, a thin layer of stratified epithelium forming the outmost surface of the skin, provides the crucial function to protect animals from environmental insults, such as bacterial pathogens and water loss. This barrier function is established in embryogenesis, during which single layered epithelial cells differentiate into distinct layers of keratinocytes. Many human genetic diseases are featured with epidermal disruption, affecting at least one in five patients. Skin regeneration and future therapeutics require a thorough understanding of the molecular mechanisms underlying epidermal stratification. Wnt ligands have been implicated in hair follicle induction during skin development and self-renewal of stem cells in the interfollicular epidermis of adult skin; however, little is known about the mechanism of how Wnt signaling controls epidermal stratification during embryogenesis. In this study, by using a genetic mouse model to disrupt Wnt production in skin development, we found that signaling of epidermal Wnt in the dermis initiate mesenchymal responses by activating a Bone Morphogenetic Protein (BMP) and Fibroblast growth factor (FGF) signaling cascade, and this activation is required for feedback regulations in the embryonic epidermis to control stratification. Our findings identify a genetic hierarchy of signaling essential for epidermal-mesenchymal interactions, and promote our understanding of mammalian skin development.
Collapse
|
41
|
Huysseune A, Soenens M, Elderweirdt F. Wnt signaling during tooth replacement in zebrafish (Danio rerio): pitfalls and perspectives. Front Physiol 2014; 5:386. [PMID: 25339911 PMCID: PMC4186270 DOI: 10.3389/fphys.2014.00386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 09/18/2014] [Indexed: 12/24/2022] Open
Abstract
The canonical (β-catenin dependent) Wnt signaling pathway has emerged as a likely candidate for regulating tooth replacement in continuously renewing dentitions. So far, the involvement of canonical Wnt signaling has been experimentally demonstrated predominantly in amniotes. These studies tend to show stimulation of tooth formation by activation of the Wnt pathway, and inhibition of tooth formation when blocking the pathway. Here, we report a strong and dynamic expression of the soluble Wnt inhibitor dickkopf1 (dkk1) in developing zebrafish (Danio rerio) tooth germs, suggesting an active repression of Wnt signaling during morphogenesis and cytodifferentiation of a tooth, and derepression of Wnt signaling during start of replacement tooth formation. To further analyse the role of Wnt signaling, we used different gain-of-function approaches. These yielded disjunct results, yet none of them indicating enhanced tooth replacement. Thus, masterblind (mbl) mutants, defective in axin1, mimic overexpression of Wnt, but display a normally patterned dentition in which teeth are replaced at the appropriate times and positions. Activating the pathway with LiCl had variable outcomes, either resulting in the absence, or the delayed formation, of first-generation teeth, or yielding a regular dentition with normal replacement, but no supernumerary teeth or accelerated tooth replacement. The failure so far to influence tooth replacement in the zebrafish by perturbing Wnt signaling is discussed in the light of (i) potential technical pitfalls related to dose- or time-dependency, (ii) the complexity of the canonical Wnt pathway, and (iii) species-specific differences in the nature and activity of pathway components. Finally, we emphasize the importance of in-depth knowledge of the wild-type pattern for reliable interpretations. It is hoped that our analysis can be inspiring to critically assess and elucidate the role of Wnt signaling in tooth development in polyphyodonts.
Collapse
Affiliation(s)
- Ann Huysseune
- Evolutionary Developmental Biology Research Group, Biology Department, Ghent University Ghent, Belgium
| | - Mieke Soenens
- Evolutionary Developmental Biology Research Group, Biology Department, Ghent University Ghent, Belgium
| | - Fien Elderweirdt
- Evolutionary Developmental Biology Research Group, Biology Department, Ghent University Ghent, Belgium
| |
Collapse
|
42
|
Wnt/β-catenin pathway regulates cementogenic differentiation of adipose tissue-deprived stem cells in dental follicle cell-conditioned medium. PLoS One 2014; 9:e93364. [PMID: 24806734 PMCID: PMC4012947 DOI: 10.1371/journal.pone.0093364] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 03/04/2014] [Indexed: 12/14/2022] Open
Abstract
The formation and attachment of new cementum is crucial for periodontium regeneration. Tissue engineering is currently explored to achieve complete, reliable and reproducible regeneration of the periodontium. The capacity of multipotency and self-renewal makes adipose tissue-deprived stem cells (ADSCs) an excellent cell source for tissue regeneration and repair. After rat ADSCs were cultured in dental follicle cell-conditioned medium (DFC-CM) supplemented with DKK-1, an inhibitor of the Wnt pathway, followed by 7 days of induction, they exhibited several phenotypic characteristics of cementoblast lineages, as indicated by upregulated expression levels of CAP, ALP, BSP and OPN mRNA, and accelerated expression of BSP and CAP proteins. The Wnt/β-catenin signaling pathway controls differentiation of stem cells by regulating the expression of target genes. Cementoblasts share phenotypical features with osteoblasts. In this study, we demonstrated that culturing ADSCs in DFC-CM supplemented with DKK-1 results in inhibition of β-catenin nuclear translocation and down-regulates TCF-4 and LEF-1 mRNA expression levels. We also found that DKK-1 could promote cementogenic differentiation of ADSCs, which was evident by the up-regulation of CAP, ALP, BSP and OPN gene expressions. On the other hand, culturing ADSCs in DFC-CM supplemented with 100 ng/mL Wnt3a, which activates the Wnt/β-catenin pathway, abrogated this effect. Taken together, our study indicates that the Wnt/β-catenin signaling pathway plays an important role in regulating cementogenic differentiation of ADSCs cultured in DFC-CM. These results raise the possibility of using ADSCs for periodontal regeneration by modifying the Wnt/β-catenin pathway.
Collapse
|
43
|
Zhu X, Liu Y, Zhao P, Dai Z, Yang X, Li Y, Qiu M, Zhang Z. Gpr177-mediated Wnt Signaling is Required for Fungiform Placode Initiation. J Dent Res 2014; 93:582-8. [PMID: 24736288 DOI: 10.1177/0022034514531985] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/24/2014] [Indexed: 11/15/2022] Open
Abstract
Fungiform papillae are formed as patterned rows on the surface of the anterior tongue at early organogenesis and contain one taste bud in each papilla to form one of the important sensory organs. Despite the essential role of Wnt/β-catenin signaling in controlling the development of fungiform taste papillae, the universal function of Wnt ligands in the initiation of the fungiform placode has not been completely elucidated. Here, by Shh (Cre) -mediated oral epithelial deletion of Wntless (Gpr177), a regulator essential for intracellular Wnt trafficking, we demonstrate that an overall function of Wnts is required for initiation of the fungiform placode. Multiple Wnts are expressed in the tongue epithelium at E11.5 before initiation of the fungiform placodes. Epithelial Gpr177 loss-of-function, associated with reduction of canonical Wnt signaling in lingual epithelium as exhibited by a loss of TopGal activity and Axin2 expression, results in the failure of fungiform placode initiation, as assessed by diminished expression of several taste placode molecular markers. Moreover, LiCl treatment of Gpr177 epithelial-deficient tongue explants at E11.5, but not at E12.5, restores tongue placode formation, demonstrating that Wnt ligands in the tongue surface prior to but not after fungiform placode initiation are responsible for fungiform papilla initiation. Epithelium-specific expression of an active β-catenin in the Gpr177-deficient tongue leads to fungiform papillae generation, suggesting that an intra-epithelial response to Wnts is required for placode initiation. Together, these results suggest that Gpr177 controls epithelial initiation of the fungiform placode through signaling via epithelial Wnt ligands.
Collapse
Affiliation(s)
- X Zhu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| | - Y Liu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| | - P Zhao
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| | - Z Dai
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| | - X Yang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| | - Y Li
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| | - M Qiu
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| | - Z Zhang
- Institute of Developmental and Regenerative Biology, College of Life and Environmental Science, Hangzhou Normal University, 16 XueLin Street, Xiasha, Hangzhou 310036, Zhejiang, China
| |
Collapse
|
44
|
Mues G, Bonds J, Xiang L, Vieira AR, Seymen F, Klein O, D'Souza RN. The WNT10A gene in ectodermal dysplasias and selective tooth agenesis. Am J Med Genet A 2014; 164A:2455-60. [PMID: 24700731 DOI: 10.1002/ajmg.a.36520] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/30/2014] [Indexed: 11/10/2022]
Abstract
Mutations in the WNT10A gene were first detected in the rare syndrome odonto-onycho-dermal dysplasia (OODD, OMIM257980) but have now also been found to cause about 35-50% of selective tooth agenesis (STHAG4, OMIM150400), a common disorder that mostly affects the permanent dentition. In our random sample of tooth agenesis patients, 40% had at least one mutation in the WNT10A gene. The WNT10A Phe228Ile variant alone reached an allele frequency of 0.21 in the tooth agenesis cohort, about 10 times higher than the allele frequency reported in large SNP databases for Caucasian populations. Patients with bi-allelic WNT10A mutations have severe tooth agenesis while heterozygous individuals are either unaffected or have a mild phenotype. Mutations in the coding areas of the WNT10B gene, which is co-expressed with WNT10A during odontogenesis, and the WNT6 gene which is located at the same chromosomal locus as WNT10A in humans, do not contribute to the tooth agenesis phenotype.
Collapse
Affiliation(s)
- Gabriele Mues
- Department of Biomedical Sciences, Texas A&M University-HSC Baylor College of Dentistry, Dallas, Texas
| | | | | | | | | | | | | |
Collapse
|
45
|
Biggs LC, Mikkola ML. Early inductive events in ectodermal appendage morphogenesis. Semin Cell Dev Biol 2014; 25-26:11-21. [DOI: 10.1016/j.semcdb.2014.01.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 01/18/2023]
|
46
|
Liu C, Gu S, Sun C, Ye W, Song Z, Zhang Y, Chen Y. FGF signaling sustains the odontogenic fate of dental mesenchyme by suppressing β-catenin signaling. Development 2013; 140:4375-85. [PMID: 24067353 DOI: 10.1242/dev.097733] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Odontoblasts and osteoblasts develop from multipotent craniofacial neural crest cells during tooth and jawbone development, but the mechanisms that specify and sustain their respective fates remain largely unknown. In this study we used early mouse molar and incisor tooth germs that possess distinct tooth-forming capability after dissociation and reaggregation in vitro to investigate the mechanism that sustains odontogenic fate of dental mesenchyme during tooth development. We found that after dissociation and reaggregation, incisor, but not molar, mesenchyme exhibits a strong osteogenic potency associated with robustly elevated β-catenin signaling activity in a cell-autonomous manner, leading to failed tooth formation in the reaggregates. Application of FGF3 to incisor reaggregates inhibits β-catenin signaling activity and rescues tooth formation. The lack of FGF retention on the cell surface of incisor mesenchyme appears to account for the differential osteogenic potency between incisor and molar, which can be further attributed to the differential expression of syndecan 1 and NDST genes. We further demonstrate that FGF signaling inhibits intracellular β-catenin signaling by activating the PI3K/Akt pathway to regulate the subcellular localization of active GSK3β in dental mesenchymal cells. Our results reveal a novel function for FGF signaling in ensuring the proper fate of dental mesenchyme by regulating β-catenin signaling activity during tooth development.
Collapse
Affiliation(s)
- Chao Liu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | | | | | | | | | | | | |
Collapse
|