1
|
Bugajev V, Draberova L, Utekal P, Blazikova M, Tumova M, Draber P. Enhanced Membrane Fluidization and Cholesterol Displacement by 1-Heptanol Inhibit Mast Cell Effector Functions. Cells 2023; 12:2069. [PMID: 37626879 PMCID: PMC10453462 DOI: 10.3390/cells12162069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Signal transduction by the high-affinity IgE receptor (FcεRI) depends on membrane lipid and protein compartmentalization. Recently published data show that cells treated with 1-heptanol, a cell membrane fluidizer, exhibit changes in membrane properties. However, the functional consequences of 1-heptanol-induced changes on mast cell signaling are unknown. This study shows that short-term exposure to 1-heptanol reduces membrane thermal stability and dysregulates mast cell signaling at multiple levels. Cells treated with 1-heptanol exhibited increased lateral mobility and decreased internalization of the FcεRI. However, this did not affect the initial phosphorylation of the FcεRI-β chain and components of the SYK/LAT1/PLCγ1 signaling pathway after antigen activation. In contrast, 1-heptanol inhibited SAPK/JNK phosphorylation and effector functions such as calcium response, degranulation, and cytokine production. Membrane hyperfluidization induced a heat shock-like response via increased expression of the heat shock protein 70, increased lateral diffusion of ORAI1-mCherry, and unsatisfactory performance of STIM1-ORAI1 coupling, as determined by flow-FRET. Furthermore, 1-heptanol inhibited the antigen-induced production of reactive oxygen species and potentiated stress-induced plasma membrane permeability by interfering with heat shock protein 70 activity. The combined data suggest that 1-heptanol-mediated membrane fluidization does not interfere with the earliest biochemical steps of FcεRI signaling, such as phosphorylation of the FcεRI-β chain and components of the SYK/LAT/PLCγ1 signaling pathway, instead inhibiting the FcεRI internalization and mast cell effector functions, including degranulation and cytokine production.
Collapse
Affiliation(s)
- Viktor Bugajev
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Lubica Draberova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Pavol Utekal
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Michaela Blazikova
- Light Microscopy Core Facility, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic;
| | - Magda Tumova
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| | - Petr Draber
- Laboratory of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (L.D.); (P.U.); (M.T.)
| |
Collapse
|
2
|
Jeong DJ, Kim KW, Suh BC. Dual regulation of Kv7.2/7.3 channels by long-chain n-alcohols. J Gen Physiol 2022; 155:213769. [PMID: 36534082 PMCID: PMC9767652 DOI: 10.1085/jgp.202213191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Normal alcohols (n-alcohols) can induce anesthetic effects by acting on neuronal ion channels. Recent studies have revealed the effects of n-alcohols on various ion channels; however, the underlying molecular mechanisms remain unclear. Here, we provide evidence that long-chain n-alcohols have dual effects on Kv7.2/7.3 channels, resulting in channel activation as the net effect. Using heterologous expression systems, we found that n-alcohols could differentially regulate the Kv7.2/7.3 channel depending on their chain length. Treatment with short-chain ethanol and propanol diminished Kv7.2/7.3 currents, whereas treatment with long-chain hexanol and octanol enhanced the currents. However, the long-chain alcohols failed to potentiate Kv7.2 currents pre-activated by retigabine. Instead, they inhibited the currents, similar to short-chain ethanol. The stimulatory effect of the long-chain n-alcohols was also converted into an inhibitory one in the mutant Kv7.2(W236L) channels, while the inhibitory effect of ethanol did not differ between wild-type Kv7.2 and mutant Kv7.2(W236L). The inhibition of currents by n-alcohols was also seen in Kv7.1 channel which does not have the tryptophan (W) residue in S5. These findings suggest that long-chain n-alcohols exhibit dual effects through independent working sites on the Kv7.2 channel. Finally, we confirmed that the hydroxyl group with a negative electrostatic potential surface is essential for the dual actions of n-alcohol. Together, our data suggest that long-chain n-alcohols regulate Kv7.2/7.3 channels by interacting with both stimulatory and inhibitory sites and that their stimulatory action depends on the conserved tryptophan 236 residue in S5 and could be important for triggering their anesthetic effects.
Collapse
Affiliation(s)
- Da-Jeong Jeong
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Kwon-Woo Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Byung-Chang Suh
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea,Correspondence to Byung-Chang Suh:
| |
Collapse
|
3
|
Kumar Rawat A, Chakraborty S, Kumar Mishra A, Goswami D. Achieving molecular distinction in alcohols with femtosecond thermal lens spectroscopy. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Sharma S, Rajani S, Hui J, Chen A, Bivalacqua T, Singh A. Development of Enzymatic-Resistant and Compliant Decellularized Extracellular Matrixes via Aliphatic Chain Modification for Bladder Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37301-37315. [PMID: 35948054 DOI: 10.1021/acsami.2c06865] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we report the design and development of highly stretchable, compliant, and enzymatic-resistant transiently cross-linked decellularized extracellular matrixes (dECMs) (e.g., porcine small intestine submucosa/dSIS, urinary bladder matrix/dUBM, bovine pericardium/dBP, bovine dermis/dBD, and human dermis/dHD). Specifically, these dECMs were modified with long aliphatic chains (C9, C14, and C18). Upon modification, dECMs became significantly resistant to enzymatic degradation for extended periods, showed increased water contact angle (>20%-90%), and stretched >200% than their control counterparts. Modified dECMs are compliant, undergoing 100% elongation at only 0.3-0.5 MPa of applied tensile stress (∼10%-25% of their control counterparts), similar to the control bladder tissue. Furthermore, modified dECMs remain structurally stable at the physiological temperature with increased storage and loss modulus values but decreased tan δ values compared to their control counterparts. Although modification reduces cell adhesion, the gene expressions in polarized macrophages remain unchanged (e.g., TGFβ, CD163, and CD86), except for the modified bovine pericardium (dBP) where a significant decrease in TNFα gene expression is observed. When implanted in the rat subcutaneous model, modified dECMs degraded relatively slowly and did not cause significant fibrotic tissue formation. The numbers of pro-regenerative macrophages increased to several folds in a later time point of evaluation. Modified dECM also supported the bladder wall regeneration with formations of the urothelium, lamina propria, blood vessels, and muscle bundles and reduced the occurrence of calculi formation by 50% in a rat bladder augmentation model. We anticipate that the enhanced stretchability, compliance, and physiological stability of dECMs indicate their suitability for urologic tissue regeneration.
Collapse
Affiliation(s)
- Shivang Sharma
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sarah Rajani
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Justin Hui
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Aaron Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Trinity Bivalacqua
- Perelman Center for Advanced Medicine & Abramson Cancer Center, Penn Urology Perelman, Philadelphia, Pennsylvania 19104, United States
| | - Anirudha Singh
- Department of Urology, Johns Hopkins University, Baltimore, Maryland 21287, United States
| |
Collapse
|
5
|
Matsumoto A, Adachi H, Terashima I, Uesono Y. Escaping from the Cutoff Paradox by Accumulating Long-Chain Alcohols in the Cell Membrane. J Med Chem 2022; 65:10471-10480. [PMID: 35857416 DOI: 10.1021/acs.jmedchem.2c00629] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanism for the cutoff, an activity cliff at which long-chain alcohols lose their biological effects, has not been elucidated. Highly hydrophobic oleyl alcohol (C18:1) exists as a mixture of monomers and aggregated droplets in water. C18:1 did not inhibit the yeast growth but inhibited the growth of the slime mold without a cell wall. C18:1 exhibited toxicity to the yeast protoplast, which was enhanced by polyethylene glycol, a fusogen. Therefore, direct interactions of C18:1 with the membrane are crucial for the toxicity. The cutoff alcohols, C14 and C16, also exhibited strong toxicity obeying the Meyer-Overton correlation, in intact yeast cells whose membrane growth was suppressed in water. Taken together, the cutoff is avoidable by securing sufficient accumulation of the wall-permeable monomers in the membrane, which supports the lipid theory. It would be important to distinguish the effective drug structure localizing in the membrane and deal with the amount in the membrane.
Collapse
Affiliation(s)
- Atsushi Matsumoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroyuki Adachi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yukifumi Uesono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Matsumoto A, Uesono Y. Physicochemical Solubility of and Biological Sensitivity to Long-Chain Alcohols Determine the Cutoff Chain Length in Biological Activity. Mol Pharmacol 2018; 94:1312-1320. [PMID: 30291172 DOI: 10.1124/mol.118.112656] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/26/2018] [Indexed: 02/14/2025] Open
Abstract
The cutoff phenomenon associated with the effectiveness of long-chain alcohols in the induction of anesthesia is also observed for various antimicrobial activities, although the mechanism has remained unknown for over eight decades. The minimum inhibitory concentrations at 25°C for budding yeast growth exponentially decreased with increasing chain length of n-alcohols (C2-C12), whereas alcohols ≥C13 lost the inhibitory effect. Thus, growth inhibition by n-alcohols obeys the Meyer-Overton correlation up to C12 and exhibits a cutoff phenomenon. The densities of n-alcohols are low, and the melting point and hydrophobicity increase with chain length. C13 and C14 inhibited yeast growth at 39.8°C, above their melting points. Alcohols ≤C14 inhibited thermophilic bacterial growth at 50°C, whereas C16 inhibited it at 67.5°C, above their melting points. Thus, the high melting points of long-chain alcohols contribute to the cutoff phenomenon. C14 did not effectively inhibit yeast growth in a static culture at 39.8°C, in contrast to a shaking culture, in which the low density-dependent concentration gradient was eliminated. The duration of the transient growth inhibition of yeast by C12 was prolonged by sonication, which prevented hydrophobic aggregation. Therefore, a nonuniform distribution owing to low density and high hydrophobicity contributes to the cutoff. C14 inhibited the growth at 25°C of the pdr1,3,5 mutant, defective in multidrug efflux pumps, whereas C12 did not inhibit the growth of yeast overexpressing PDR5, indicating that the sensitivity to long-chain alcohols contributed to the cutoff. A balance between the physicochemical solubility of and the biological sensitivity to long-chain alcohols determines the cutoff chain length.
Collapse
Affiliation(s)
- Atsushi Matsumoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yukifumi Uesono
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
7
|
Hoyt LR, Ather JL, Randall MJ, DePuccio DP, Landry CC, Wewers MD, Gavrilin MA, Poynter ME. Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation. THE JOURNAL OF IMMUNOLOGY 2016; 197:1322-34. [PMID: 27421477 DOI: 10.4049/jimmunol.1600406] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 06/12/2016] [Indexed: 11/19/2022]
Abstract
Immunosuppression is a major complication of alcoholism that contributes to increased rates of opportunistic infections and sepsis in alcoholics. The NLRP3 inflammasome, a multiprotein intracellular pattern recognition receptor complex that facilitates the cleavage and secretion of the proinflammatory cytokines IL-1β and IL-18, can be inhibited by ethanol, and we sought to better understand the mechanism through which this occurs and whether chemically similar molecules exert comparable effects. We show that ethanol can specifically inhibit activation of the NLRP3 inflammasome, resulting in attenuated IL-1β and caspase-1 cleavage and secretion, as well as diminished apoptosis-associated speck-like protein containing a CARD (ASC) speck formation, without affecting potassium efflux, in a mouse macrophage cell line (J774), mouse bone marrow-derived dendritic cells, mouse neutrophils, and human PBMCs. The inhibitory effects on the Nlrp3 inflammasome were independent of γ-aminobutyric acid A receptor activation or N-methyl-d-asparate receptor inhibition but were associated with decreased oxidant production. Ethanol treatment markedly decreased cellular tyrosine phosphorylation, whereas administration of the tyrosine phosphatase inhibitor sodium orthovanadate prior to ethanol restored tyrosine phosphorylation and IL-1β secretion subsequent to ATP stimulation. Furthermore, sodium orthovanadate-induced phosphorylation of ASC Y144, necessary and sufficient for Nlrp3 inflammasome activation, and secretion of phosphorylated ASC were inhibited by ethanol. Finally, multiple alcohol-containing organic compounds exerted inhibitory effects on the Nlrp3 inflammasome, whereas 2-methylbutane (isopentane), the analogous alkane of the potent inhibitor isoamyl alcohol (isopentanol), did not. Our results demonstrate that ethanol antagonizes the NLRP3 inflammasome at an apical event in its activation through the stimulation of protein tyrosine phosphatases, an effect shared by other short-chain alcohols.
Collapse
Affiliation(s)
- Laura R Hoyt
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Jennifer L Ather
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Matthew J Randall
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405
| | - Daniel P DePuccio
- Department of Chemistry, University of Vermont, Burlington, VT 05405
| | - Christopher C Landry
- Department of Chemistry, University of Vermont, Burlington, VT 05405; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405; and
| | - Mark D Wewers
- Pulmonary, Allergy, Critical Care and Sleep Medicine, The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Mikhail A Gavrilin
- Pulmonary, Allergy, Critical Care and Sleep Medicine, The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH 43210
| | - Matthew E Poynter
- Vermont Lung Center, Division of Pulmonary Disease and Critical Care, Department of Medicine, University of Vermont, Burlington, VT 05405; Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT 05405; and
| |
Collapse
|
8
|
Alkanols inhibit voltage-gated K(+) channels via a distinct gating modifying mechanism that prevents gate opening. Sci Rep 2015; 5:17402. [PMID: 26616025 PMCID: PMC4663795 DOI: 10.1038/srep17402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/28/2015] [Indexed: 12/27/2022] Open
Abstract
Alkanols are small aliphatic compounds that inhibit voltage-gated K+ (Kv) channels through a yet unresolved gating mechanism. Kv channels detect changes in the membrane potential with their voltage-sensing domains (VSDs) that reorient and generate a transient gating current. Both 1-Butanol (1-BuOH) and 1-Hexanol (1-HeOH) inhibited the ionic currents of the Shaker Kv channel in a concentration dependent manner with an IC50 value of approximately 50 mM and 3 mM, respectively. Using the non-conducting Shaker-W434F mutant, we found that both alkanols immobilized approximately 10% of the gating charge and accelerated the deactivating gating currents simultaneously with ionic current inhibition. Thus, alkanols prevent the final VSD movement(s) that is associated with channel gate opening. Applying 1-BuOH and 1-HeOH to the Shaker-P475A mutant, in which the final gating transition is isolated from earlier VSD movements, strengthened that neither alkanol affected the early VSD movements. Drug competition experiments showed that alkanols do not share the binding site of 4-aminopyridine, a drug that exerts a similar effect at the gating current level. Thus, alkanols inhibit Shaker-type Kv channels via a unique gating modifying mechanism that stabilizes the channel in its non-conducting activated state.
Collapse
|
9
|
Immunomodulatory activity of Nerium indicum through inhibition of nitric oxide and cyclooxygenase activity and modulation of TH1/TH2 cytokine balance in murine splenic lymphocytes. Cytotechnology 2015; 68:749-61. [PMID: 25680696 DOI: 10.1007/s10616-014-9826-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 11/18/2014] [Indexed: 01/10/2023] Open
Abstract
Nerium indicum is a medicinal plant which is used in the treatment of wide range of illness in different ethnopharmacological practices. We have studied the immunomodulatory activity of the 70 % hydro-methanolic extract of N. indicum leaves (NILE) by studying plaque forming cell assay, haemagglutination titre, cell proliferation assay, inhibition of nitric oxide expression and cyclooxygenase activity, estimation of IL-2, IFN-γ, IL-4, IL-10, TNF-α and IgM levels. Furthermore, we have characterized NILE with Fourier Transform Infra-red (FTIR) spectroscopy. The results displayed that NILE possessed potent immunomodulatory activity by up-regulating IL-2, IFN-γ, IL-10 expression and down-regulating IL-4, TNF-α expression in vitro. NILE also stimulated the in vivo expression of immunoglobulin level in mouse. FTIR analysis revealed phytocompounds of diverse chemical nature present in NILE. Thus, the potent immunomodulatory activity of N. indicum may have serious implications in the treatment of inflammatory diseases in the future.
Collapse
|