1
|
Swaroop A, Saleiro D, Platanias LC. Interferon and myeloproliferative neoplasms: Evolving therapeutic approaches. Bioessays 2023; 45:e2200203. [PMID: 36642848 DOI: 10.1002/bies.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/17/2023]
Abstract
Interferons (IFNs) are a diverse group of cytokines whose potent antitumor effects have piqued the interest of scientists for decades. Some of the most sustained clinical accomplishments have been in the field of myeloproliferative neoplasms (MPNs). Here, we discuss how both historical and novel breakthroughs in our understanding of IFN function may lead to more effective therapies for MPNs. The particular relevance and importance of modulating the novel IFN-regulated ULK1 pathway to optimize IFN responses is highlighted.
Collapse
Affiliation(s)
- Alok Swaroop
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Diana Saleiro
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA
| | - Leonidas C Platanias
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, Illinois, USA.,Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, USA
| |
Collapse
|
2
|
Liu B, Sun Y, Tang M, Liang C, Huang CP, Niu Y, Wang Z, Chang C. The miR-361-3p increases enzalutamide (Enz) sensitivity via targeting the ARv7 and MKNK2 to better suppress the Enz-resistant prostate cancer. Cell Death Dis 2020; 11:807. [PMID: 32978369 PMCID: PMC7519644 DOI: 10.1038/s41419-020-02932-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/07/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
The androgen receptor splicing variant 7 (ARv7) that lacks the ligand-binding domain is increasingly considered as a key player leading to enzalutamide (Enz) resistance in patients with prostate cancer (PCa). However, the detailed mechanisms of how ARv7 expression is regulated and whether it also needs other factors to induce maximal Enz resistance remain unclear. Here, we identified a microRNA, miR-361-3p, whose expression is lower in patients with recurrent PCa, could function via binding to the 3'UTR of ARv7, but not the wild type of AR, to suppress its expression to increase the Enz sensitivity. Importantly, we found that miR-361-3p could also bind to the 3'UTR of MAP kinase-interacting serine/threonine kinase 2 (MKNK2) to suppress its expression to further increase the Enz sensitivity. In turn, the increased Enz can then function via a feedback mechanism through altering the HIF-2α/VEGFA signaling to suppress the expression of miR-361-3p under hypoxia conditions. Preclinical studies using an in vivo mouse model with orthotopically xenografted CWR22Rv1 cells demonstrated that combining the Enz with the small molecule miR-361-3p would result in better suppression of the Enz-resistant PCa tumor progression. Together, these preclinical studies demonstrate that miR-361-3p can function via suppressing the expression of ARv7 and MKNK2 to maximally increase the Enz sensitivity, and targeting these newly identified Enz/miR-361-3p/ARv7 and/or Enz/miR-361-3p/MKNK2 signals with small molecules may help in the development of novel therapies to better suppress the CRPC in patients that already have developed the Enz resistance.
Collapse
Affiliation(s)
- Bianjiang Liu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yin Sun
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Min Tang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Chao Liang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chi-Ping Huang
- Sex Hormone Research Center and Department of Urology, China Medical University/Hospital, Taichung, Taiwan
| | - Yuanjie Niu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Zengjun Wang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology and Radiation Oncology, and The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
- Sex Hormone Research Center and Department of Urology, China Medical University/Hospital, Taichung, Taiwan.
| |
Collapse
|
3
|
Pinto-Díez C, Ferreras-Martín R, Carrión-Marchante R, González VM, Martín ME. Deeping in the Role of the MAP-Kinases Interacting Kinases (MNKs) in Cancer. Int J Mol Sci 2020; 21:ijms21082967. [PMID: 32340135 PMCID: PMC7215568 DOI: 10.3390/ijms21082967] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 02/05/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK)-interacting kinases (MNKs) are involved in oncogenic transformation and can promote metastasis and tumor progression. In human cells, there are four MNKs isoforms (MNK1a/b and MNK2a/b), derived from two genes by alternative splicing. These kinases play an important role controlling the expression of specific proteins involved in cell cycle, cell survival and cell motility via eukaryotic initiation factor 4E (eIF4E) regulation, but also through other substrates such as heterogeneous nuclear ribonucleoprotein A1, polypyrimidine tract-binding protein-associated splicing factor and Sprouty 2. In this review, we provide an overview of the role of MNK in human cancers, describing the studies conducted to date to elucidate the mechanism involved in the action of MNKs, as well as the development of MNK inhibitors in different hematological cancers and solid tumors.
Collapse
|
4
|
Saleiro D, Platanias LC. Interferon signaling in cancer. Non-canonical pathways and control of intracellular immune checkpoints. Semin Immunol 2019; 43:101299. [PMID: 31771762 PMCID: PMC8177745 DOI: 10.1016/j.smim.2019.101299] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/11/2019] [Indexed: 01/01/2023]
Abstract
The interferons (IFNs) are cytokines with important antineoplastic and immune modulatory effects. These cytokines have been conserved through evolution as important elements of the immune surveillance against cancer. Despite this, defining their precise and specific roles in the generation of antitumor responses remains challenging. Emerging evidence suggests the existence of previously unknown roles for IFNs in the control of the immune response against cancer that may redefine our understanding on how these cytokines function. Beyond the engagement of classical JAK-STAT signaling pathways that promote transcription and expression of gene products, the IFNs engage multiple other signaling cascades to generate products that mediate biological responses and outcomes. There is recent emerging evidence indicating that IFNs control the expression of both traditional immune checkpoints like the PD-L1/PD1 axis, but also less well understood "intracellular" immune checkpoints whose targeting may define new approaches for the treatment of malignancies.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, 303 East Superior Ave., Chicago, IL 60611, USA; Department of Medicine, Jesse Brown Veterans Affairs Medical Center, 820 S. Damen Ave., Chicago, IL 60612, USA.
| |
Collapse
|
5
|
Schubert C, Allhoff M, Tillmann S, Maié T, Costa IG, Lipka DB, Schemionek M, Feldberg K, Baumeister J, Brümmendorf TH, Chatain N, Koschmieder S. Differential roles of STAT1 and STAT2 in the sensitivity of JAK2V617F- vs. BCR-ABL-positive cells to interferon alpha. J Hematol Oncol 2019; 12:36. [PMID: 30940163 PMCID: PMC6444528 DOI: 10.1186/s13045-019-0722-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 03/13/2019] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Interferon alpha (IFNa) monotherapy is recommended as the standard therapy in polycythemia vera (PV) but not in chronic myeloid leukemia (CML). Here, we investigated the mechanisms of IFNa efficacy in JAK2V617F- vs. BCR-ABL-positive cells. METHODS Gene expression microarrays and RT-qPCR of PV vs. CML patient PBMCs and CD34+ cells and of the murine cell line 32D expressing JAK2V617F or BCR-ABL were used to analyze and compare interferon-stimulated gene (ISG) expression. Furthermore, using CRISPR/Cas9n technology, targeted disruption of STAT1 or STAT2, respectively, was performed in 32D-BCR-ABL and 32D-JAK2V617F cells to evaluate the role of these transcription factors for IFNa efficacy. The knockout cell lines were reconstituted with STAT1, STAT2, STAT1Y701F, or STAT2Y689F to analyze the importance of wild-type and phosphomutant STATs for the IFNa response. ChIP-seq and ChIP were performed to correlate histone marks with ISG expression. RESULTS Microarray analysis and RT-qPCR revealed significant upregulation of ISGs in 32D-JAK2V617F but downregulation in 32D-BCR-ABL cells, and these effects were reversed by tyrosine kinase inhibitor (TKI) treatment. Similar expression patterns were confirmed in human cell lines, primary PV and CML patient PBMCs and CD34+ cells, demonstrating that these effects are operational in patients. IFNa treatment increased Stat1, Stat2, and Irf9 mRNA as well as pY-STAT1 in all cell lines; however, viability was specifically decreased in 32D-JAK2V617F. STAT1 or STAT2 knockout and reconstitution with wild-type or phospho-deficient STAT mutants demonstrated the necessity of STAT2 for IFNa-induced STAT1 phosphorylation in BCR-ABL- but not in JAK2V617F-expressing cells. STAT1 was essential for IFNa activity in both BCR-ABL- and JAK2V617F-positive cells. Furthermore, ChIP experiments demonstrate higher repressive and lower active chromatin marks at the promoters of ISGs in BCR-ABL-expressing cells. CONCLUSIONS JAK2V617F but not BCR-ABL sensitizes MPN cells to interferon, and this effect was dependent on STAT1. Moreover, STAT2 is a survival factor in BCR-ABL- and JAK2V617F-positive cells but an IFNa-sensitizing factor solely in 32D-JAK2V617F cells by upregulation of STAT1 expression.
Collapse
Affiliation(s)
- Claudia Schubert
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Manuel Allhoff
- Institute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Stefan Tillmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Daniel B Lipka
- Regulation of Cellular Differentiation Group, Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Kristina Feldberg
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Julian Baumeister
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Pauwelsstr 30, 52074, Aachen, Germany.
| |
Collapse
|
6
|
Bell JB, Eckerdt F, Dhruv HD, Finlay D, Peng S, Kim S, Kroczynska B, Beauchamp EM, Alley K, Clymer J, Goldman S, Cheng SY, James CD, Nakano I, Horbinski C, Mazar AP, Vuori K, Kumthekar P, Raizer J, Berens ME, Platanias LC. Differential Response of Glioma Stem Cells to Arsenic Trioxide Therapy Is Regulated by MNK1 and mRNA Translation. Mol Cancer Res 2017; 16:32-46. [PMID: 29042487 DOI: 10.1158/1541-7786.mcr-17-0397] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/13/2017] [Accepted: 10/11/2017] [Indexed: 12/16/2022]
Abstract
Mesenchymal (MES) and proneural (PN) are two distinct glioma stem cell (GSC) populations that drive therapeutic resistance in glioblastoma (GBM). We screened a panel of 650 small molecules against patient-derived GBM cells to discover compounds targeting specific GBM subtypes. Arsenic trioxide (ATO), an FDA-approved drug that crosses the blood-brain barrier, was identified as a potent PN-specific compound in the initial screen and follow-up validation studies. Furthermore, MES and PN GSCs exhibited differential sensitivity to ATO. As ATO has been shown to activate the MAPK-interacting kinase 1 (MNK1)-eukaryotic translation initiation factor 4E (eIF4E) pathway and subsequent mRNA translation in a negative regulatory feedback manner, the mechanistic role of ATO resistance in MES GBM was explored. In GBM cells, ATO-activated translation initiation cellular events via the MNK1-eIF4E signaling axis. Furthermore, resistance to ATO in intracranial PDX tumors correlated with high eIF4E phosphorylation. Polysomal fractionation and microarray analysis of GBM cells were performed to identify ATO's effect on mRNA translation and enrichment of anti-apoptotic mRNAs in the ATO-induced translatome was found. Additionally, it was determined that MNK inhibition sensitized MES GSCs to ATO in neurosphere and apoptosis assays. Finally, examination of the effect of ATO on patients from a phase I/II clinical trial of ATO revealed that PN GBM patients responded better to ATO than other subtypes as demonstrated by longer overall and progression-free survival.Implications: These findings raise the possibility of a unique therapeutic approach for GBM, involving MNK1 targeting to sensitize MES GSCs to drugs like arsenic trioxide. Mol Cancer Res; 16(1); 32-46. ©2017 AACR.
Collapse
Affiliation(s)
- Jonathan B Bell
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Frank Eckerdt
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Harshil D Dhruv
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Darren Finlay
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Sen Peng
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Seungchan Kim
- Integrated Cancer Genomics Division, The Translational Genomics Research Institute, Phoenix, Arizona.,Department of Electrical and Computer Engineering, Roy G. Perry College of Engineering, Prairie View A&M University, Prairie View, Texas
| | - Barbara Kroczynska
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Elspeth M Beauchamp
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois
| | - Kristen Alley
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jessica Clymer
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Division of Hematology/Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Stewart Goldman
- Division of Hematology/Oncology/Stem Cell Transplantation, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Shi-Yuan Cheng
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - C David James
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Ichiro Nakano
- Department of Neurosurgery and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Andrew P Mazar
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Developmental Therapeutics Core, Center for Developmental Therapeutics, Northwestern University, Evanston, Illinois
| | - Kristiina Vuori
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Priya Kumthekar
- Division of Neuro-Oncology, Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jeffrey Raizer
- Division of Neuro-Oncology, Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Michael E Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, Arizona
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois. .,Division of Hematology/Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois.,Department of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
7
|
Kroczynska B, Blyth GT, Rafidi RL, Majchrzak-Kita B, Xu L, Saleiro D, Kosciuczuk EM, Jemielity J, Su B, Altman JK, Eklund EA, Fish EN, Platanias LC. Central Regulatory Role for SIN1 in Interferon γ (IFNγ) Signaling and Generation of Biological Responses. J Biol Chem 2017; 292:4743-4752. [PMID: 28174303 DOI: 10.1074/jbc.m116.757666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 01/30/2017] [Indexed: 12/25/2022] Open
Abstract
The precise signaling mechanisms by which type II IFN receptors control expression of unique genes to induce biological responses remain to be established. We provide evidence that Sin1, a known element of the mammalian target of rapamycin complex 2 (mTORC2), is required for IFNγ-induced phosphorylation and activation of AKT and that such activation mediates downstream regulation of mTORC1 and its effectors. These events play important roles in the assembly of the eukaryotic translation initiation factor 4F (eIF4F) and mRNA translation of IFN-stimulated genes. Interestingly, IFNγ-induced tyrosine phosphorylation of STAT1 is reduced in cells with targeted disruption of Sin1, leading to decreased transcription of several IFNγ-inducible genes in an mTORC2-independent manner. Additionally, our studies establish that Sin1 is essential for generation of type II IFN-dependent antiviral effects and antiproliferative responses in normal and malignant hematopoiesis. Together, our findings establish an important role for Sin1 in both transcription and translation of IFN-stimulated genes and type II IFN-mediated biological responses, involving both mTORC2-dependent and -independent functions.
Collapse
Affiliation(s)
- Barbara Kroczynska
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and.,the Department of Radiation Oncology, Northwestern University, Chicago, Illinois 60611
| | - Gavin T Blyth
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and
| | - Robert L Rafidi
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and
| | - Beata Majchrzak-Kita
- the Toronto General Research Institute, University Health Network, and Department of Immunology, University of Toronto, Toronto, Ontario M5G 2M1, Canada
| | - Lucy Xu
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and
| | - Diana Saleiro
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and
| | - Ewa M Kosciuczuk
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and.,the Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Jacek Jemielity
- the Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland
| | - Bing Su
- the Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut 06520, and.,the Shanghai Institute of Immunology and Department of Microbiology and Immunology, Shanghai JiaoTong University School of Medicine, Shanghai 200000, China
| | - Jessica K Altman
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and.,the Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Elizabeth A Eklund
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and.,the Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| | - Eleanor N Fish
- the Toronto General Research Institute, University Health Network, and Department of Immunology, University of Toronto, Toronto, Ontario M5G 2M1, Canada
| | - Leonidas C Platanias
- From the Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, and .,the Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612
| |
Collapse
|
8
|
A Rapid Screening Assay Identifies Monotherapy with Interferon-ß and Combination Therapies with Nucleoside Analogs as Effective Inhibitors of Ebola Virus. PLoS Negl Trop Dis 2016; 10:e0004364. [PMID: 26752302 PMCID: PMC4709101 DOI: 10.1371/journal.pntd.0004364] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022] Open
Abstract
To date there are no approved antiviral drugs for the treatment of Ebola virus disease (EVD). While a number of candidate drugs have shown limited efficacy in vitro and/or in non-human primate studies, differences in experimental methodologies make it difficult to compare their therapeutic effectiveness. Using an in vitro model of Ebola Zaire replication with transcription-competent virus like particles (trVLPs), requiring only level 2 biosafety containment, we compared the activities of the type I interferons (IFNs) IFN-α and IFN-ß, a panel of viral polymerase inhibitors (lamivudine (3TC), zidovudine (AZT) tenofovir (TFV), favipiravir (FPV), the active metabolite of brincidofovir, cidofovir (CDF)), and the estrogen receptor modulator, toremifene (TOR), in inhibiting viral replication in dose-response and time course studies. We also tested 28 two- and 56 three-drug combinations against Ebola replication. IFN-α and IFN-ß inhibited viral replication 24 hours post-infection (IC50 0.038μM and 0.016μM, respectively). 3TC, AZT and TFV inhibited Ebola replication when used alone (50-62%) or in combination (87%). They exhibited lower IC50 (0.98-6.2μM) compared with FPV (36.8μM), when administered 24 hours post-infection. Unexpectedly, CDF had a narrow therapeutic window (6.25-25μM). When dosed >50μM, CDF treatment enhanced viral infection. IFN-ß exhibited strong synergy with 3TC (97.3% inhibition) or in triple combination with 3TC and AZT (95.8% inhibition). This study demonstrates that IFNs and viral polymerase inhibitors may have utility in EVD. We identified several 2 and 3 drug combinations with strong anti-Ebola activity, confirmed in studies using fully infectious ZEBOV, providing a rationale for testing combination therapies in animal models of lethal Ebola challenge. These studies open up new possibilities for novel therapeutic options, in particular combination therapies, which could prevent and treat Ebola infection and potentially reduce drug resistance.
Collapse
|
9
|
Interferon Beta: From Molecular Level to Therapeutic Effects. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:343-72. [DOI: 10.1016/bs.ircmb.2016.06.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Navari M, Etebari M, De Falco G, Ambrosio MR, Gibellini D, Leoncini L, Piccaluga PP. The presence of Epstein-Barr virus significantly impacts the transcriptional profile in immunodeficiency-associated Burkitt lymphoma. Front Microbiol 2015; 6:556. [PMID: 26113842 PMCID: PMC4462103 DOI: 10.3389/fmicb.2015.00556] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/20/2015] [Indexed: 11/20/2022] Open
Abstract
Burkitt lymphoma (BL) is an aggressive neoplasm derived from mature, antigen-experienced B-lymphocytes. Three clinical/epidemiological variants have been recognized, named sporadic, endemic and immunodeficiency-associated BL (ID-BL). Although they are listed within a unique entity in the current WHO Classification, recent evidence indicated genetic and transcriptional differences among the three sub-groups. Further, the presence of latently persisting Epstein-Barr virus (EBV) has been associated with specific features in endemic and sporadic cases. In this study, we explored for the first time whether EBV infection could be related with a specific molecular profile in immunodeficiency-associated cases. We studied 30 BL cases, including nine occurring in HIV-positive patients (5 EBV-positive and 4 EBV-negative) by gene and microRNA (miRNA) expression profiling. We found that ID-BL presented with different profiles based on EBV presence. Specifically, 252 genes were differentially expressed, some of them being involved in intracellular signaling and apoptosis regulation. Furthermore, 28 miRNAs including both EBV-encoded (N = 18) and cellular (N = 10) ones were differentially regulated. Of note, genes previously demonstrated to be targeted by such miRNA were consistently found among differentially expressed genes, indicating the relevant contribution of miRNA to the molecular profile of the examined cases. Grippingly, 17 out of the 252 differentially expressed genes turned out to be potentially targeted by both cellular and EBV-encoded miRNA, suggesting a complex interaction and not excluding a potential synergism. In conclusion, we documented transcriptional differences based on the presence of EBV in ID-BL, and suggested a complex interaction between cellular and viral molecules in the determination of the global molecular profile of the tumor.
Collapse
Affiliation(s)
- Mohsen Navari
- Hematopathology Section, Department of Experimental, Diagnostic, and Specialty Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine Bologna, Italy ; Department of Basic Sciences, Torbat Heydariyeh University of Medical Sciences Torbat Heydariyeh, Iran
| | - Maryam Etebari
- Hematopathology Section, Department of Experimental, Diagnostic, and Specialty Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine Bologna, Italy
| | - Giulia De Falco
- School of Biological and Chemical Sciences, Queen Mary University of London London, UK
| | - Maria R Ambrosio
- Department of Medical Biotechnology, University of Siena Siena, Italy
| | - Davide Gibellini
- Microbiology and Virology Unit, Department of Pathology and Diagnostic, University of Verona Verona, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena Siena, Italy
| | - Pier Paolo Piccaluga
- Hematopathology Section, Department of Experimental, Diagnostic, and Specialty Medicine, S. Orsola-Malpighi Hospital, Bologna University School of Medicine Bologna, Italy
| |
Collapse
|
11
|
Saleiro D, Mehrotra S, Kroczynska B, Beauchamp EM, Lisowski P, Majchrzak-Kita B, Bhagat TD, Stein BL, McMahon B, Altman JK, Kosciuczuk EM, Baker DP, Jie C, Jafari N, Thompson CB, Levine RL, Fish EN, Verma AK, Platanias LC. Central role of ULK1 in type I interferon signaling. Cell Rep 2015; 11:605-17. [PMID: 25892232 DOI: 10.1016/j.celrep.2015.03.056] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/16/2015] [Accepted: 03/25/2015] [Indexed: 11/17/2022] Open
Abstract
We provide evidence that the Unc-51-like kinase 1 (ULK1) is activated during engagement of the type I interferon (IFN) receptor (IFNR). Our studies demonstrate that the function of ULK1 is required for gene transcription mediated via IFN-stimulated response elements (ISRE) and IFNγ activation site (GAS) elements and controls expression of key IFN-stimulated genes (ISGs). We identify ULK1 as an upstream regulator of p38α mitogen-activated protein kinase (MAPK) and establish that the regulatory effects of ULK1 on ISG expression are mediated possibly by engagement of the p38 MAPK pathway. Importantly, we demonstrate that ULK1 is essential for antiproliferative responses and type I IFN-induced antineoplastic effects against malignant erythroid precursors from patients with myeloproliferative neoplasms. Together, these data reveal a role for ULK1 as a key mediator of type I IFNR-generated signals that control gene transcription and induction of antineoplastic responses.
Collapse
Affiliation(s)
- Diana Saleiro
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Swarna Mehrotra
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Barbara Kroczynska
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elspeth M Beauchamp
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Pawel Lisowski
- Department of Molecular Biology, Institute of Genetics and Animal Breeding, 05-552 Jastrzebiec n/Warsaw, Poland; iPS Cell-Based Disease Modeling Group, Max-Delbrück-Center for Molecular Medicine (MDC) in the Helmholtz Association, 13092 Berlin, Germany
| | - Beata Majchrzak-Kita
- Toronto General Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, ON M5G 2M1, Canada
| | - Tushar D Bhagat
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Brady L Stein
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brandon McMahon
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jessica K Altman
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Ewa M Kosciuczuk
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Darren P Baker
- Biogen Idec Inc., 14 Cambridge Center, Cambridge, MA 02142, USA
| | - Chunfa Jie
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nadereh Jafari
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ross L Levine
- Human Oncology and Pathogenesis Program, and Leukemia Service, Memorial Sloan Kettering Cancer Center; and Weill Cornell Medical College, New York, NY 10065, USA
| | - Eleanor N Fish
- Toronto General Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, ON M5G 2M1, Canada
| | - Amit K Verma
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Hematology-Oncology, Department of Medicine, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA.
| |
Collapse
|
12
|
Fish EN, Platanias LC. Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol Cancer Res 2014; 12:1691-703. [PMID: 25217450 DOI: 10.1158/1541-7786.mcr-14-0450] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IFNs are cytokines with important antiproliferative activity and exhibit key roles in immune surveillance against malignancies. Early work initiated over three decades ago led to the discovery of IFN receptor activated Jak-Stat pathways and provided important insights into mechanisms for transcriptional activation of IFN-stimulated genes (ISG) that mediate IFN biologic responses. Since then, additional evidence has established critical roles for other receptor-activated signaling pathways in the induction of IFN activities. These include MAPK pathways, mTOR cascades, and PKC pathways. In addition, specific miRNAs appear to play a significant role in the regulation of IFN signaling responses. This review focuses on the emerging evidence for a model in which IFNs share signaling elements and pathways with growth factors and tumorigenic signals but engage them in a distinctive manner to mediate antiproliferative and antiviral responses.
Collapse
Affiliation(s)
- Eleanor N Fish
- Toronto General Research Institute, University Health Network and Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Leonidas C Platanias
- Robert H. Lurie Comprehensive Cancer Center and Division of Hematology-Oncology, Northwestern University Medical School and Jesse Brown VA Medical Center, Chicago, Illinois.
| |
Collapse
|
13
|
Myeloproliferative Neoplasms: JAK2 Signaling Pathway as a Central Target for Therapy. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2014; 14 Suppl:S23-35. [DOI: 10.1016/j.clml.2014.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 06/04/2014] [Indexed: 12/16/2022]
|
14
|
Joshi S, Platanias LC. Mnk kinase pathway: Cellular functions and biological outcomes. World J Biol Chem 2014; 5:321-333. [PMID: 25225600 PMCID: PMC4160526 DOI: 10.4331/wjbc.v5.i3.321] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/10/2014] [Accepted: 06/03/2014] [Indexed: 02/05/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) interacting protein kinases 1 and 2 (Mnk1 and Mnk2) play important roles in controlling signals involved in mRNA translation. In addition to the MAPKs (p38 or Erk), multiple studies suggest that the Mnk kinases can be regulated by other known kinases such as Pak2 and/or other unidentified kinases by phosphorylation of residues distinct from the sites phosphorylated by the MAPKs. Several studies have established multiple Mnk protein targets, including PSF, heterogenous nuclear ribonucleoprotein A1, Sprouty 2 and have lead to the identification of distinct biological functions and substrate specificity for the Mnk kinases. In this review we discuss the pathways regulating the Mnk kinases, their known substrates as well as the functional consequences of engagement of pathways controlled by Mnk kinases. These kinases play an important role in mRNA translation via their regulation of eukaryotic initiation factor 4E (eIF4E) and their functions have important implications in tumor biology as well as the regulation of drug resistance to anti-oncogenic therapies. Other studies have identified a role for the Mnk kinases in cap-independent mRNA translation, suggesting that the Mnk kinases can exert important functional effects independently of the phosphorylation of eIF4E. The role of Mnk kinases in inflammation and inflammation-induced malignancies is also discussed.
Collapse
|
15
|
Regulatory effects of SKAR in interferon α signaling and its role in the generation of type I IFN responses. Proc Natl Acad Sci U S A 2014; 111:11377-82. [PMID: 25049393 DOI: 10.1073/pnas.1405250111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We provide evidence that S6 kinase 1 (S6K1) Aly/REF-like target (SKAR) is engaged in IFN-α signaling and plays a key role in the generation of IFN responses. Our data demonstrate that IFN-α induces phosphorylation of SKAR, which is mediated by either the p90 ribosomal protein S6 kinase (RSK) or p70 S6 kinase (S6K1), in a cell type-specific manner. This type I IFN-inducible phosphorylation of SKAR results in enhanced interaction with the eukaryotic initiation factor (eIF)4G and recruitment of activated RSK1 to 5' cap mRNA. Our studies also establish that SKAR is present in cap-binding CBP80 immune complexes and that this interaction is mediated by eIF4G. We demonstrate that inducible protein expression of key IFN-α-regulated protein products such as ISG15 and p21(WAF1/CIP1) requires SKAR activity. Importantly, our studies define a requirement for SKAR in the generation of IFN-α-dependent inhibitory effects on malignant hematopoietic progenitors from patients with chronic myeloid leukemia or myeloproliferative neoplasms. Taken altogether, these findings establish critical and essential roles for SKAR in the regulation of mRNA translation of IFN-sensitive genes and induction of IFN-α biological responses.
Collapse
|
16
|
Kroczynska B, Mehrotra S, Arslan AD, Kaur S, Platanias LC. Regulation of interferon-dependent mRNA translation of target genes. J Interferon Cytokine Res 2014; 34:289-96. [PMID: 24559173 DOI: 10.1089/jir.2013.0148] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Interferons (IFNs) are released by cells on exposure to various stimuli, including viruses, double-stranded RNA, and other cytokines and various polypeptides. These IFNs play important physiological and pathophysiological roles in humans. Many clinical studies have established activity for these cytokines in the treatment of several malignancies, viral syndromes, and autoimmune disorders. In this review, the regulatory effects of type I and II IFN receptors on the translation-initiation process mediated by mechanistic target of rapamycin (mTOR) and mitogen-activated protein kinase (MAPK) pathways and the known mechanisms of control of mRNA translation of IFN-stimulated genes are summarized and discussed.
Collapse
Affiliation(s)
- Barbara Kroczynska
- 1 Division of Hematology-Oncology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University Medical School , Chicago, Illinois
| | | | | | | | | |
Collapse
|