1
|
Trunk F, Köhler L, Fischer T, Gärtner W, Song C, Slavov C, Wachtveitl J. Single GAF Domain Phytochrome Exhibits a pH-Dependent Shunt on the Millisecond Timescale. Chemphyschem 2025; 26:e202401022. [PMID: 39744913 PMCID: PMC11913468 DOI: 10.1002/cphc.202401022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/19/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
The light-sensing activity of phytochromes is based on the reversible light-induced switching between two isomerization states of the bilin chromophore. These photo-transformations may not necessarily be only unidirectional, but could potentially branch back to the initial ground state in a thermally driven process termed shunt. Such shunts have been rarely reported, and thus our understanding of this process and its governing factors are limited. Here, we aim to close this gap by providing coherent experimental evidence of a shunt process using UV/Vis laser flash photolysis. We studied the Pfr to Pr dynamics of the single GAF domain (g1) construct of the knotless phytochrome All2699 from cyanobacterium Nostoc punctiforme. We identified a shunt that can be switched on and off by ambient buffer conditions. In combination with H/D exchange and kinetic modeling, we propose a keto-enol tautomerism to allow for the thermal isomerization of the chromophore and act as the driver of the shunt transition.
Collapse
Affiliation(s)
- Florian Trunk
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt, Germany
| | - Lisa Köhler
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - Tobias Fischer
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt, Germany
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - Chen Song
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103, Leipzig, Germany
| | - Chavdar Slavov
- Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, CHE 205, Tampa, FL 33620, USA
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438, Frankfurt, Germany
| |
Collapse
|
2
|
El Kurdi A, Kaeser G, Scheerer P, Hoffmann D, Akkus E, Elstner M, Krauß N, Lamparter T. Interaction between bacterial phytochromes Agp1 and Agp2 of Agrobacterium fabrum by fluorescence resonance energy transfer and docking studies. FEBS Lett 2025; 599:848-865. [PMID: 39865424 PMCID: PMC11931990 DOI: 10.1002/1873-3468.15102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/31/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025]
Abstract
Phytochromes are biliprotein photoreceptors found in bacteria, fungi, and plants. The soil bacterium Agrobacterium fabrum has two phytochromes, Agp1 and Agp2, which work together to control DNA transfer to plants and bacterial conjugation. Both phytochromes interact as homodimeric proteins. For fluorescence resonance energy transfer (FRET) measurements, various Agp1 mutants and wild-type Agp2 were labeled with specific fluorophores to study their interaction. FRET efficiencies rose from position 122 to 545 of Agp1. The photosensory chromophore module (PCM) of Agp1 did not show a FRET signal, but the PCM of Agp2 did. Docking models suggest that Agp1 and Agp2 interact with their histidine kinase and PCM perpendicular to each, around 45 amino acids of Agp1 or Agp2 are involved.
Collapse
Affiliation(s)
- Afaf El Kurdi
- Allgemeine BotanikKarlsruhe Institute of Technology, Joseph Kölreuter Institut für Pflanzenwissenschaften (JKIP)KarlsruheGermany
| | - Gero Kaeser
- Allgemeine BotanikKarlsruhe Institute of Technology, Joseph Kölreuter Institut für Pflanzenwissenschaften (JKIP)KarlsruheGermany
| | - Patrick Scheerer
- Charité ‐ Universitätsmedizin Berlin, Institute of Medical Physics and Biophysics, Group Structural Biology of Cellular SignalingBerlinGermany
| | - David Hoffmann
- Institut für Physikalische ChemieKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Ebru Akkus
- Institut für Physikalische ChemieKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Marcus Elstner
- Institut für Physikalische ChemieKarlsruhe Institute of TechnologyKarlsruheGermany
| | - Norbert Krauß
- Allgemeine BotanikKarlsruhe Institute of Technology, Joseph Kölreuter Institut für Pflanzenwissenschaften (JKIP)KarlsruheGermany
| | - Tilman Lamparter
- Allgemeine BotanikKarlsruhe Institute of Technology, Joseph Kölreuter Institut für Pflanzenwissenschaften (JKIP)KarlsruheGermany
| |
Collapse
|
3
|
Zhou LJ, Höppner A, Wang YQ, Hou JY, Scheer H, Zhao KH. Crystallographic and biochemical analyses of a far-red allophycocyanin to address the mechanism of the super-red-shift. PHOTOSYNTHESIS RESEARCH 2024; 162:171-185. [PMID: 38182842 DOI: 10.1007/s11120-023-01066-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/03/2023] [Indexed: 01/07/2024]
Abstract
Far-red absorbing allophycocyanins (APC), identified in cyanobacteria capable of FRL photoacclimation (FaRLiP) and low-light photoacclimation (LoLiP), absorb far-red light, functioning in energy transfer as light-harvesting proteins. We report an optimized method to obtain high purity far-red absorbing allophycocyanin B, AP-B2, of Chroococcidiopsis thermalis sp. PCC7203 by synthesis in Escherichia coli and an improved purification protocol. The crystal structure of the trimer, (PCB-ApcD5/PCB-ApcB2)3, has been resolved to 2.8 Å. The main difference to conventional APCs absorbing in the 650-670 nm range is a largely flat chromophore with the co-planarity extending, in particular, from rings BCD to ring A. This effectively extends the conjugation system of PCB and contributes to the super-red-shifted absorption of the α-subunit (λmax = 697 nm). On complexation with the β-subunit, it is even further red-shifted (λmax, absorption = 707 nm, λmax, emission = 721 nm). The relevance of ring A for this shift is supported by mutagenesis data. A variant of the α-subunit, I123M, has been generated that shows an intense FR-band already in the absence of the β-subunit, a possible model is discussed. Two additional mechanisms are known to red-shift the chromophore spectrum: lactam-lactim tautomerism and deprotonation of the chromophore that both mechanisms appear inconsistent with our data, leaving this question unresolved.
Collapse
Affiliation(s)
- Li-Juan Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China
| | - Astrid Höppner
- Center for Structural Studies, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Yi-Qing Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China
| | - Jian-Yun Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China
| | - Hugo Scheer
- Department Biologie I, Universität München, Menzinger Str. 67, 80638, Munich, Germany
| | - Kai-Hong Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, The People's Republic of China.
| |
Collapse
|
4
|
Salvadori G, Mennucci B. Analogies and Differences in the Photoactivation Mechanism of Bathy and Canonical Bacteriophytochromes Revealed by Multiscale Modeling. J Phys Chem Lett 2024; 15:8078-8084. [PMID: 39087732 PMCID: PMC11376688 DOI: 10.1021/acs.jpclett.4c01823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Bacteriophytochromes are light-sensing biological machines that switch between two photoreversible states, Pr and Pfr. Their relative stability is opposite in canonical and bathy bacteriophytochromes, but in both cases the switch between them is triggered by the photoisomerization of an embedded bilin chromophore. We applied an integrated multiscale strategy of excited-state QM/MM nonadiabatic dynamics and (QM/)MM molecular dynamics simulations with enhanced sampling techniques to the Agrobacterium fabrum bathy phytochrome and compared the results with those obtained for the canonical phytochrome Deinococcus radiodurans. Contrary to what recently suggested, we found that photoactivation in both phytochromes is triggered by the same hula-twist motion of the bilin chromophore. However, only in the bathy phytochrome, the bilin reaches the final rotated structure already in the first intermediate. This allows a reorientation of the binding pocket in a microsecond time scale, which can propagate through the entire protein causing the spine to tilt.
Collapse
Affiliation(s)
- Giacomo Salvadori
- Institute for Computational Biomedicine (INM-9/IAS-5), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, 56124 Pisa, Italy
| |
Collapse
|
5
|
Yang HW, Kim YW, Villafani Y, Song JY, Park YI. Teal-light absorbing cyanobacterial phytochrome superfamily provides insights into the diverse mechanisms of spectral tuning and facilitates the engineering of photoreceptors for optogenetic tools. Int J Biol Macromol 2024; 274:133407. [PMID: 38925190 DOI: 10.1016/j.ijbiomac.2024.133407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/14/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Cyanobacteriochromes (CBCRs) are distinctive tetrapyrrole (bilin)-binding photoreceptors exclusively found in cyanobacteria. Unlike canonical phytochromes, CBCRs require only a GAF (cGMP-phosphodiesterase/adenylate cyclase/FhlA) domain for autolyase activity to form a bilin adduct via a Cys residue and cis-trans photoisomerization. Apart from the canonical Cys, which attaches covalently to C31 in the A-ring of the bilin, some GAF domains of CBCRs contain a second-Cys in the Asp-Xaa-Cys-Phe (DXCF) motif, responsible for isomerization of phycocyanobilin (PCB) to phycoviolobilin (PVB) and/or for the formation of a reversible 2nd thioether linkage to the C10. Unlike green/teal-absorbing GAF proteins lacking ligation activity, the second-Cys in another teal-absorbing lineage (DXCF blue/teal group) exhibits both isomerization and ligation activity due to the presence of the Tyr instead of His next to the canonical Cys. Herein, we discovered an atypical CBCR GAF protein, Tpl7205g1, belonging to the DXCF blue/teal group, but having His instead of Tyr next to the first-Cys. Consistent with its subfamily, the second-Cys of Tpl7205g1 did not form a thioether linkage at C10 of PCB, showing only isomerization activity. Instead of forming 2nd thioether linkage, this novel GAF protein exhibits a pH-dependent photocycle between protonated 15Z and deprotonated 15E. Site-directed mutagenesis to the GAF scaffolds revealed its combined characteristics, including properties of teal-DXCF CBCRs and red/green-absorbing CBCRs (XRG CBCRs), suggesting itself as the evolutionary bridge between the two CBCR groups. Our study thus sheds light on the expanded spectral tuning characteristics of teal-light absorbing CBCRs and enhances feasibility of engineering these photoreceptors.
Collapse
Affiliation(s)
- Hee Wook Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young Won Kim
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yvette Villafani
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
6
|
Fischer T, Köhler L, Engel PD, Song C, Gärtner W, Wachtveitl J, Slavov C. Conserved tyrosine in phytochromes controls the photodynamics through steric demand and hydrogen bonding capabilities. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148996. [PMID: 37437858 DOI: 10.1016/j.bbabio.2023.148996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/02/2023] [Accepted: 07/06/2023] [Indexed: 07/14/2023]
Abstract
Using ultrafast spectroscopy and site-specific mutagenesis, we demonstrate the central role of a conserved tyrosine within the chromophore binding pocket in the forward (Pr → Pfr) photoconversion of phytochromes. Taking GAF1 of the knotless phytochrome All2699g1 from Nostoc as representative member of phytochromes, it was found that the mutations have no influence on the early (<30 ps) dynamics associated with conformational changes of the chromophore in the excited state. Conversely, they drastically impact the extended protein-controlled excited state decay (>100 ps). Thus, the steric demand, position and H-bonding capabilities of the identified tyrosine control the chromophore photoisomerization while leaving the excited state chromophore dynamics unaffected. In effect, this residue operates as an isomerization-steric-gate that tunes the excited state lifetime and the photoreaction efficiency by modulating the available space of the chromophore and by stabilizing the primary intermediate Lumi-R. Understanding the role of such a conserved structural element sheds light on a key aspect of phytochrome functionality and provides a basis for rational design of optimized photoreceptors for biotechnological applications.
Collapse
Affiliation(s)
- Tobias Fischer
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany.
| | - Lisa Köhler
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Philipp D Engel
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany.
| | - Chen Song
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry, University of Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany.
| | - Chavdar Slavov
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Straße 7, 60438 Frankfurt, Germany; Department of Chemistry, University of South Florida, 4202 E. Fowler Avenue, 33620 Tampa, United States of America.
| |
Collapse
|
7
|
Hildebrandt P. Vibrational Spectroscopy of Phytochromes. Biomolecules 2023; 13:1007. [PMID: 37371587 DOI: 10.3390/biom13061007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Phytochromes are biological photoswitches that translate light into physiological functions. Spectroscopic techniques are essential tools for molecular research into these photoreceptors. This review is directed at summarizing how resonance Raman and IR spectroscopy contributed to an understanding of the structure, dynamics, and reaction mechanism of phytochromes, outlining the substantial experimental and theoretical challenges and describing the strategies to master them. It is shown that the potential of the various vibrational spectroscopic techniques can be most efficiently exploited using integral approaches via a combination of theoretical methods as well as other experimental techniques.
Collapse
Affiliation(s)
- Peter Hildebrandt
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
8
|
Conserved histidine and tyrosine determine spectral responses through the water network in Deinococcus radiodurans phytochrome. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2022; 21:1975-1989. [PMID: 35906527 DOI: 10.1007/s43630-022-00272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/12/2022] [Indexed: 10/16/2022]
Abstract
Phytochromes are red light-sensing photoreceptor proteins that bind a bilin chromophore. Here, we investigate the role of a conserved histidine (H260) and tyrosine (Y263) in the chromophore-binding domain (CBD) of Deinococcus radiodurans phytochrome (DrBphP). Using crystallography, we show that in the H260A variant, the missing imidazole side chain leads to increased water content in the binding pocket. On the other hand, Y263F mutation reduces the water occupancy around the chromophore. Together, these changes in water coordination alter the protonation and spectroscopic properties of the biliverdin. These results pinpoint the importance of this conserved histidine and tyrosine, and the related water network, for the function and applications of phytochromes.
Collapse
|
9
|
Mishima K, Shoji M, Umena Y, Boero M, Shigeta Y. Estimation of the relative contributions to the electronic energy transfer rates based on Förster theory: The case of C-phycocyanin chromophores. Biophys Physicobiol 2021; 18:196-214. [PMID: 34552842 PMCID: PMC8421246 DOI: 10.2142/biophysico.bppb-v18.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/20/2021] [Indexed: 12/01/2022] Open
Abstract
In the present study, we provide a reformulation of the theory originally proposed by Förster which allows for simple and convenient formulas useful to estimate the relative contributions of transition dipole moments of a donor and acceptor (chemical factors), their orientation factors (intermolecular structural factors), intermolecular center-to-center distances (intermolecular structural factors), spectral overlaps of absorption and emission spectra (photophysical factors), and refractive index (material factor) to the excitation energy transfer (EET) rate constant. To benchmark their validity, we focused on the EET occurring in C-phycocyanin (C-PC) chromophores. To this aim, we resorted to quantum chemistry calculations to get optimized molecular structures of the C-PC chromophores within the density functional theory (DFT) framework. The absorption and emission spectra, as well as transition dipole moments, were computed by using the time-dependent DFT (TDDFT). Our method was applied to several types of C-PCs showing that the EET rates are determined by an interplay of their specific physical, chemical, and geometrical features. These results show that our formulas can become a useful tool for a reliable estimation of the relative contributions of the factors regulating the EET transfer rate.
Collapse
Affiliation(s)
- Kenji Mishima
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Mitsuo Shoji
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.,JST-PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Yasufumi Umena
- Department of Physiology, Division of Biophysics, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Mauro Boero
- University of Strasbourg, Institut de Physique et Chimie des Matériaux de Strasbourg, France
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
10
|
Merga G, Lopez MF, Fischer P, Piwowarski P, Nogacz Ż, Kraskov A, Buhrke D, Escobar FV, Michael N, Siebert F, Scheerer P, Bartl F, Hildebrandt P. Light- and temperature-dependent dynamics of chromophore and protein structural changes in bathy phytochrome Agp2. Phys Chem Chem Phys 2021; 23:18197-18205. [PMID: 34612283 DOI: 10.1039/d1cp02494a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial phytochromes are sensoric photoreceptors that transform light absorbed by the photosensor core module (PCM) to protein structural changes that eventually lead to the activation of the enzymatic output module. The underlying photoinduced reaction cascade in the PCM starts with the isomerization of the tetrapyrrole chromophore, followed by conformational relaxations, proton transfer steps, and a secondary structure transition of a peptide segment (tongue) that is essential for communicating the signal to the output module. In this work, we employed various static and time-resolved IR and resonance Raman spectroscopic techniques to study the structural and reaction dynamics of the Meta-F intermediate of both the PCM and the full-length (PCM and output module) variant of the bathy phytochrome Agp2 from Agrobacterium fabrum. In both cases, this intermediate represents a branching point of the phototransformation, since it opens an unproductive reaction channel back to the initial state and a productive pathway to the final active state, including the functional protein structural changes. It is shown that the functional quantum yield, i.e. the events of tongue refolding per absorbed photons, is lower by a factor of ca. two than the quantum yield of the primary photochemical process. However, the kinetic data derived from the spectroscopic experiments imply an increased formation of the final active state upon increasing photon flux or elevated temperature under photostationary conditions. Accordingly, the branching mechanism does not only account for the phytochrome's function as a light intensity sensor but may also modulate its temperature sensitivity.
Collapse
Affiliation(s)
- Galaan Merga
- Humboldt Universität zu Berlin, Institut für Biologie, Biophysikalische Chemie, Invalidenstr. 42, D-10115 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Phytochrome Mediated Responses in Agrobacterium fabrum: Growth, Motility and Plant Infection. Curr Microbiol 2021; 78:2708-2719. [PMID: 34023916 PMCID: PMC8213605 DOI: 10.1007/s00284-021-02526-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 04/28/2021] [Indexed: 02/05/2023]
Abstract
The soil bacterium and plant pathogen Agrobacterium fabrum C58 has two phytochrome photoreceptors, Agp1 and Agp2. We found that plant infection and tumor induction by A. fabrum is down-regulated by light and that phytochrome knockout mutants of A. fabrum have diminished infection rates. The regulation pattern of infection matches with that of bacterial conjugation reported earlier, suggesting similar regulatory mechanisms. In the regulation of conjugation and plant infection, phytochromes are active in darkness. This is a major difference to plant phytochromes, which are typically active after irradiation. We also found that propagation and motility were affected in agp1− and agp2− knockout mutants, although propagation was not always affected by light. The regulatory patterns can partially but not completely be explained by modulated histidine kinase activities of Agp1 and Agp2. In a mass spectrometry-based proteomic study, 24 proteins were different between light and dark grown A. fabrum, whereas 382 proteins differed between wild type and phytochrome knockout mutants, pointing again to light independent roles of Agp1 and Agp2.
Collapse
|
12
|
Takala H, Edlund P, Ihalainen JA, Westenhoff S. Tips and turns of bacteriophytochrome photoactivation. Photochem Photobiol Sci 2021; 19:1488-1510. [PMID: 33107538 DOI: 10.1039/d0pp00117a] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Phytochromes are ubiquitous photosensor proteins, which control the growth, reproduction and movement in plants, fungi and bacteria. Phytochromes switch between two photophysical states depending on the light conditions. In analogy to molecular machines, light absorption induces a series of structural changes that are transduced from the bilin chromophore, through the protein, and to the output domains. Recent progress towards understanding this structural mechanism of signal transduction has been manifold. We describe this progress with a focus on bacteriophytochromes. We describe the mechanism along three structural tiers, which are the chromophore-binding pocket, the photosensory module, and the output domains. We discuss possible interconnections between the tiers and conclude by presenting future directions and open questions. We hope that this review may serve as a compendium to guide future structural and spectroscopic studies designed to understand structural signaling in phytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland. and Department of Anatomy, Faculty of Medicine, University of Helsinki, Box 63, 00014 Helsinki, Finland
| | - Petra Edlund
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | - Janne A Ihalainen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyvaskyla, Box 35, 40014 Jyvaskyla, Finland.
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| |
Collapse
|
13
|
Ultrafast proton release reaction and primary photochemistry of phycocyanobilin in solution observed with fs-time-resolved mid-IR and UV/Vis spectroscopy. Photochem Photobiol Sci 2021; 20:715-732. [PMID: 34002345 DOI: 10.1007/s43630-021-00045-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022]
Abstract
Deactivation processes of photoexcited (λex = 580 nm) phycocyanobilin (PCB) in methanol were investigated by means of UV/Vis and mid-IR femtosecond (fs) transient absorption (TA) as well as static fluorescence spectroscopy, supported by density-functional-theory calculations of three relevant ground state conformers, PCBA, PCBB and PCBC, their relative electronic state energies and normal mode vibrational analysis. UV/Vis fs-TA reveals time constants of 2.0, 18 and 67 ps, describing decay of PCBB*, of PCBA* and thermal re-equilibration of PCBA, PCBB and PCBC, respectively, in line with the model by Dietzek et al. (Chem Phys Lett 515:163, 2011) and predecessors. Significant substantiation and extension of this model is achieved first via mid-IR fs-TA, i.e. identification of molecular structures and their dynamics, with time constants of 2.6, 21 and 40 ps, respectively. Second, transient IR continuum absorption (CA) is observed in the region above 1755 cm-1 (CA1) and between 1550 and 1450 cm-1 (CA2), indicative for the IR absorption of highly polarizable protons in hydrogen bonding networks (X-H…Y). This allows to characterize chromophore protonation/deprotonation processes, associated with the electronic and structural dynamics, on a molecular level. The PCB photocycle is suggested to be closed via a long living (> 1 ns), PCBC-like (i.e. deprotonated), fluorescent species.
Collapse
|
14
|
Khan FI, Song H, Hassan F, Tian J, Tang L, Lai D, Juan F. Impact of amino acid substitutions on the behavior of a photoactivatable near infrared fluorescent protein PAiRFP1. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 253:119572. [PMID: 33631627 DOI: 10.1016/j.saa.2021.119572] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/16/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
A photoactivatable near-infrared fluorescent protein (NIR-FP) PAiRFP1 has been developed by 15 amino acid substitutions in its nonfluorescent template Agp2. In our previous communication, we investigated the role of three amino acids in PHY domain distal from BV molecule. The impact of the twelve amino acids in GAF domain, especially five residues near BV-binding pocket is unclear. In this paper, PCR based reverse mutagenesis, spectroscopic methods, molecular modelling and simulations have been employed to explore the roles of these substitutions during the molecular evolution of PAiRFP1. It was found that the residue L163 is important for protein folding in PAiRFP1. The residues F244 and C280 exerted remarkable effects on molar extinction coefficient, NIR fluorescence quantum yield, molecular brightness, fluorescence fold, and dark recovery rate. The residues F244 and V276 modulate the maximum absorption and emission peak position. The reverse mutant L168M exhibited a higher fluorescence fold than PAiRFP1. Additionally, the reverse mutants V203A, V294E, S218G and D127G possessed better spectral properties than PAiRFP1. This study is important for the rational design of a better BphP-based photoactivatable NIR-FPs.
Collapse
Affiliation(s)
- Faez Iqbal Khan
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Honghong Song
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Fakhrul Hassan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Tian
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Lixia Tang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China.
| | - Feng Juan
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
15
|
Bandara S, Rockwell NC, Zeng X, Ren Z, Wang C, Shin H, Martin SS, Moreno MV, Lagarias JC, Yang X. Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Proc Natl Acad Sci U S A 2021; 118:e2025094118. [PMID: 33727422 PMCID: PMC8000052 DOI: 10.1073/pnas.2025094118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red-sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red-sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs. To elucidate the molecular basis of far-red light perception by this third frCBCR subfamily, we determined the crystal structure of the far-red-absorbing dark state of one such frCBCR Anacy_2551g3 from Anabaena cylindrica PCC 7122 which exhibits a reversible far-red/orange photocycle. Determined by room temperature serial crystallography and cryocrystallography, the refined 2.7-Å structure reveals an unusual all-Z,syn configuration of the phycocyanobilin (PCB) chromophore that is considerably less extended than those of previously characterized red-light sensors in the phytochrome superfamily. Based on structural and spectroscopic comparisons with other bilin-binding proteins together with site-directed mutagenesis data, our studies reveal protein-chromophore interactions that are critical for the atypical bathochromic shift. Based on these analyses, we propose that far-red absorption in Anacy_2551g3 is the result of the additive effect of two distinct red-shift mechanisms involving cationic bilin lactim tautomers stabilized by a constrained all-Z,syn conformation and specific interactions with a highly conserved anionic residue.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Xiaoli Zeng
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Zhong Ren
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Cong Wang
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Heewhan Shin
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Marcus V Moreno
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616;
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois, Chicago, IL 60607;
- Department of Ophthalmology and Vision Sciences, University of Illinois, Chicago, IL 60607
| |
Collapse
|
16
|
Mroginski MA, Adam S, Amoyal GS, Barnoy A, Bondar AN, Borin VA, Church JR, Domratcheva T, Ensing B, Fanelli F, Ferré N, Filiba O, Pedraza-González L, González R, González-Espinoza CE, Kar RK, Kemmler L, Kim SS, Kongsted J, Krylov AI, Lahav Y, Lazaratos M, NasserEddin Q, Navizet I, Nemukhin A, Olivucci M, Olsen JMH, Pérez de Alba Ortíz A, Pieri E, Rao AG, Rhee YM, Ricardi N, Sen S, Solov'yov IA, De Vico L, Wesolowski TA, Wiebeler C, Yang X, Schapiro I. Frontiers in Multiscale Modeling of Photoreceptor Proteins. Photochem Photobiol 2021; 97:243-269. [PMID: 33369749 DOI: 10.1111/php.13372] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023]
Abstract
This perspective article highlights the challenges in the theoretical description of photoreceptor proteins using multiscale modeling, as discussed at the CECAM workshop in Tel Aviv, Israel. The participants have identified grand challenges and discussed the development of new tools to address them. Recent progress in understanding representative proteins such as green fluorescent protein, photoactive yellow protein, phytochrome, and rhodopsin is presented, along with methodological developments.
Collapse
Affiliation(s)
| | - Suliman Adam
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gil S Amoyal
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Avishai Barnoy
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ana-Nicoleta Bondar
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Veniamin A Borin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Jonathan R Church
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tatiana Domratcheva
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Department Biomolecular Mechanisms, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Bernd Ensing
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Francesca Fanelli
- Department of Life Sciences, Center for Neuroscience and Neurotechnology, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | | | - Ofer Filiba
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Laura Pedraza-González
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | - Ronald González
- Institut für Chemie, Technische Universität Berlin, Berlin, Germany
| | | | - Rajiv K Kar
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Lukas Kemmler
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Seung Soo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Anna I Krylov
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Yigal Lahav
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel.,MIGAL - Galilee Research Institute, S. Industrial Zone, Kiryat Shmona, Israel
| | - Michalis Lazaratos
- Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany
| | - Qays NasserEddin
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Isabelle Navizet
- MSME, Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris Est Creteil, Marne-la-Vallée, France
| | - Alexander Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | - Massimo Olivucci
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy.,Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Jógvan Magnus Haugaard Olsen
- Department of Chemistry, Aarhus University, Aarhus, Denmark.,Department of Chemistry, Hylleraas Centre for Quantum Molecular Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - Alberto Pérez de Alba Ortíz
- Van 't Hoff Institute for Molecular Science and Amsterdam Center for Multiscale Modeling, University of Amsterdam, Amsterdam, The Netherlands
| | - Elisa Pieri
- Aix-Marseille Univ, CNRS, ICR, Marseille, France
| | - Aditya G Rao
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Niccolò Ricardi
- Département de Chimie Physique, Université de Genève, Genève, Switzerland
| | - Saumik Sen
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ilia A Solov'yov
- Department of Physics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Luca De Vico
- Department of Biotechnology, Chemistry and Pharmacy, Università degli Studi di Siena, Siena, Italy
| | | | - Christian Wiebeler
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Xuchun Yang
- Chemistry Department, Bowling Green State University, Bowling Green, OH, USA
| | - Igor Schapiro
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
17
|
Altmayer S, Jähnigen S, Köhler L, Wiebeler C, Song C, Sebastiani D, Matysik J. Hydrogen Bond between a Tyrosine Residue and the C-Ring Propionate Has a Direct Influence on Conformation and Absorption of the Bilin Cofactor in Red/Green Cyanobacteriochromes. J Phys Chem B 2021; 125:1331-1342. [PMID: 33523656 DOI: 10.1021/acs.jpcb.0c08518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cyanobacteriochromes (CBCRs) are photoreceptors of the phytochrome superfamily showing remarkable variability in the wavelengths of the first electronic transition-sometimes denoted as Q band-compared to canonical phytochromes. Both classes carry the same cofactor, a bilin, but the molecular basis for the wide variation of their absorption properties is still a matter of debate. The interaction between the cofactor and the surrounding protein moiety has been proposed as a possible tuning factor. Here, we address the impact of hydrogen-bonding interaction between the covalently bound tetrapyrrole cofactor (phycocyanobilin, PCB) and a conserved tyrosine residue (Y302) in the second GAF (cGMP-specific phosphodiesterase, adenylyl cyclases, and FhlA) domain of the red-/green-switching CBCR AnPixJ (AnPixJg2). In the wild type, AnPixJg2 shows absorption maxima of 648 and 543 nm for the dark-adapted (Pr) and photoproduct (Pg) states, respectively. The Y302F mutation leads to the occurrence of an additional absorption band at 687 nm, which is assigned to a new spectroscopically identified sub-state called PIII. Similar spectral changes result upon mutating the Y302F-homologue in another representative red-/green-switching CBCR, Slr1393g3. Molecular dynamics simulations on the dark-adapted state suggest that the removal of the hydrogen bond leads to an additional PCB sub-state differing in its A- and D-ring geometries. The origin of the Q band satellite in the dark-adapted state is discussed.
Collapse
Affiliation(s)
- Susanne Altmayer
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sascha Jähnigen
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Lisa Köhler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Christian Wiebeler
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany.,Leibniz-Institut für Oberflächenmodifizierung, Permoserstraße 15, 04318 Leipzig, Germany
| | - Chen Song
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| | - Daniel Sebastiani
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 4, 06120 Halle, Germany
| | - Jörg Matysik
- Institut für Analytische Chemie, Universität Leipzig, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
18
|
Kirpich JS, Chang CW, Franse J, Yu Q, Escobar FV, Jenkins AJ, Martin SS, Narikawa R, Ames JB, Lagarias JC, Larsen DS. Comparison of the Forward and Reverse Photocycle Dynamics of Two Highly Similar Canonical Red/Green Cyanobacteriochromes Reveals Unexpected Differences. Biochemistry 2021; 60:274-288. [PMID: 33439010 DOI: 10.1021/acs.biochem.0c00796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors that exhibit photochromism between two states: a thermally stable dark-adapted state and a metastable light-adapted state with bound linear tetrapyrrole (bilin) chromophores possessing 15Z and 15E configurations, respectively. The photodynamics of canonical red/green CBCRs have been extensively studied; however, the time scales of their excited-state lifetimes and subsequent ground-state evolution rates widely differ and, at present, remain difficult to predict. Here, we compare the photodynamics of two closely related red/green CBCRs that have substantial sequence identity (∼68%) and similar chromophore environments: AnPixJg2 from Anabaena sp. PCC 7120 and NpR6012g4 from Nostoc punctiforme. Using broadband transient absorption spectroscopy on the primary (125 fs to 7 ns) and secondary (7 ns to 10 ms) time scales together with global analysis modeling, our studies revealed that AnPixJg2 and NpR6012g4 have comparable quantum yields for initiating the forward (15ZPr → 15EPg) and reverse (15EPg → 15ZPr) reactions, which proceed through monotonic and nonmonotonic mechanisms, respectively. In addition to small discrepancies in the kinetics, the secondary reverse dynamics resolved unique features for each domain: intermediate shunts in NpR6012g4 and a Meta-Gf intermediate red-shifted from the 15ZPr photoproduct in AnPixJg2. Overall, this study supports the conclusion that sequence similarity is a useful criterion for predicting pathways of the light-induced evolution and quantum yield of generating primary intermediate Φp within subfamilies of CBCRs, but more studies are still needed to develop a comprehensive molecular level understanding of these processes.
Collapse
Affiliation(s)
- Julia S Kirpich
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Che-Wei Chang
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Jasper Franse
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Qinhong Yu
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Francisco Velazquez Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC14, Straße des 17 Juni 135, D-10623 Berlin, Germany
| | - Adam J Jenkins
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - Shelley S Martin
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Rei Narikawa
- Department of Biological Sciences, Faculty of Sciences, Shizuoka University, 836, Ohya, Suruga-ku, Shizuoka-Shi, Shizuoka-Ken 422-8529, Japan
| | - James B Ames
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| | - J Clark Lagarias
- Department of Molecular and Cell Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, California 95616, United States
| |
Collapse
|
19
|
Hontani Y, Baloban M, Escobar FV, Jansen SA, Shcherbakova DM, Weißenborn J, Kloz M, Mroginski MA, Verkhusha VV, Kennis JTM. Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome. Commun Chem 2021; 4:3. [PMID: 34746444 PMCID: PMC8570541 DOI: 10.1038/s42004-020-00437-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/09/2020] [Indexed: 01/27/2023] Open
Abstract
Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes are widely used for structural and functional deep-tissue imaging in vivo. To fluoresce, NIR FPs covalently bind a chromophore, such as biliverdin IXa tetrapyrrole. The efficiency of biliverdin binding directly affects the fluorescence properties, rendering understanding of its molecular mechanism of major importance. miRFP proteins constitute a family of bright monomeric NIR FPs that comprise a Per-ARNT-Sim (PAS) and cGMP-specific phosphodiesterases - Adenylyl cyclases - FhlA (GAF) domain. Here, we structurally analyze biliverdin binding to miRFPs in real time using time-resolved stimulated Raman spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. Biliverdin undergoes isomerization, localization to its binding pocket, and pyrrolenine nitrogen protonation in <1 min, followed by hydrogen bond rearrangement in ~2 min. The covalent attachment to a cysteine in the GAF domain was detected in 4.3 min and 19 min in miRFP670 and its C20A mutant, respectively. In miRFP670, a second C-S covalent bond formation to a cysteine in the PAS domain occurred in 14 min, providing a rigid tetrapyrrole structure with high brightness. Our findings provide insights for the rational design of NIR FPs and a novel method to assess cofactor binding to light-sensitive proteins.
Collapse
Affiliation(s)
- Yusaku Hontani
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
- Present Address: School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| | - Mikhail Baloban
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Francisco Velazquez Escobar
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623 Germany
| | - Swetta A. Jansen
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
| | - Daria M. Shcherbakova
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Jörn Weißenborn
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
| | - Miroslav Kloz
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
- ELI-Beamlines, Institute of Physics, Na Slovance 2, 182 21 Praha 8, Czech Republic
| | - Maria Andrea Mroginski
- Institut für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623 Germany
| | - Vladislav V. Verkhusha
- Departments of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290 Finland
| | - John T. M. Kennis
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, 1081 HV The Netherlands
| |
Collapse
|
20
|
Phytochromes and Cyanobacteriochromes: Photoreceptor Molecules Incorporating a Linear Tetrapyrrole Chromophore. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1293:167-187. [PMID: 33398813 DOI: 10.1007/978-981-15-8763-4_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we summarize the molecular mechanisms of the linear tetrapyrrole-binding photoreceptors, phytochromes, and cyanobacteriochromes. We especially focus on the color-tuning mechanisms and conformational changes during the photoconversion process. Furthermore, we introduce current status of development of the optogenetic tools based on these molecules. Huge repertoire of these photoreceptors with diverse spectral properties would contribute to development of multiplex optogenetic regulation. Among them, the photoreceptors incorporating the biliverdin IXα chromophore is advantageous for in vivo optogenetics because this is intrinsic in the mammalian cells, and absorbs far-red light penetrating into deep mammalian tissues.
Collapse
|
21
|
Jenkins AJ, Gottlieb SM, Chang CW, Kim PW, Hayer RJ, Hanke SJ, Martin SS, Lagarias JC, Larsen DS. Conservation and Diversity in the Primary Reverse Photodynamics of the Canonical Red/Green Cyanobacteriochrome Family. Biochemistry 2020; 59:4015-4028. [PMID: 33021375 DOI: 10.1021/acs.biochem.0c00454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this report, we compare the femtosecond to nanosecond primary reverse photodynamics (15EPg → 15ZPr) of eight tetrapyrrole binding photoswitching cyanobacteriochromes in the canonical red/green family from the cyanobacterium Nostoc punctiforme. Three characteristic classes were identified on the basis of the diversity of excited-state and ground-state properties, including the lifetime, photocycle initiation quantum yield, photointermediate stability, spectra, and temporal properties. We observed a correlation between the excited-state lifetime and peak wavelength of the electronic absorption spectrum with higher-energy-absorbing representatives exhibiting both faster excited-state decay times and higher photoisomerization quantum yields. The latter was attributed to both an increased number of structural restraints and differences in H-bonding networks that facilitate photoisomerization. All three classes exhibited primary Lumi-Go intermediates, with class II and III representatives evolving to a secondary Meta-G photointermediate. Class II Meta-GR intermediates were orange absorbing, whereas class III Meta-G had structurally relaxed, red-absorbing chromophores that resemble their dark-adapted 15ZPr states. Differences in the reverse and forward reaction mechanisms are discussed within the context of structural constraints.
Collapse
Affiliation(s)
- Adam J Jenkins
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Sean Marc Gottlieb
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Che-Wei Chang
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Peter W Kim
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Randeep J Hayer
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Samuel J Hanke
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
22
|
Song JY, Lee HY, Yang HW, Song JJ, Lagarias JC, Park YI. Spectral and photochemical diversity of tandem cysteine cyanobacterial phytochromes. J Biol Chem 2020; 295:6754-6766. [PMID: 32184354 DOI: 10.1074/jbc.ra120.012950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/13/2020] [Indexed: 11/06/2022] Open
Abstract
The atypical trichromatic cyanobacterial phytochrome NpTP1 from Nostoc punctiforme ATCC 29133 is a linear tetrapyrrole (bilin)-binding photoreceptor protein that possesses tandem-cysteine residues responsible for shifting its light-sensing maximum to the violet spectral region. Using bioinformatics and phylogenetic analyses, here we established that tandem-cysteine cyanobacterial phytochromes (TCCPs) compose a well-supported monophyletic phytochrome lineage distinct from prototypical red/far-red cyanobacterial phytochromes. To investigate the light-sensing diversity of this family, we compared the spectroscopic properties of NpTP1 (here renamed NpTCCP) with those of three phylogenetically diverged TCCPs identified in the draft genomes of Tolypothrix sp. PCC7910, Scytonema sp. PCC10023, and Gloeocapsa sp. PCC7513. Recombinant photosensory core modules of ToTCCP, ScTCCP, and GlTCCP exhibited violet-blue-absorbing dark-states consistent with dual thioether-linked phycocyanobilin (PCB) chromophores. Photoexcitation generated singly-linked photoproduct mixtures with variable ratios of yellow-orange and red-absorbing species. The photoproduct ratio was strongly influenced by pH and by mutagenesis of TCCP- and phytochrome-specific signature residues. Our experiments support the conclusion that both photoproduct species possess protonated 15E bilin chromophores, but differ in the ionization state of the noncanonical "second" cysteine sulfhydryl group. We found that the ionization state of this and other residues influences subsequent conformational change and downstream signal transmission. We also show that tandem-cysteine phytochromes present in eukaryotes possess similar amino acid substitutions within their chromophore-binding pocket, which tune their spectral properties in an analogous fashion. Taken together, our findings provide a roadmap for tailoring the wavelength specificity of plant phytochromes to optimize plant performance in diverse natural and artificial light environments.
Collapse
Affiliation(s)
- Ji-Young Song
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Ha Yong Lee
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hee Wook Yang
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Ji-Joon Song
- Department of Biological Science and KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California Davis, Davis, California 95616
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
23
|
Sadeghi M, Balke J, Schneider C, Nagano S, Stellmacher J, Lochnit G, Lang C, Weise C, Hughes J, Alexiev U. Transient Deprotonation of the Chromophore Affects Protein Dynamics Proximal and Distal to the Linear Tetrapyrrole Chromophore in Phytochrome Cph1. Biochemistry 2020; 59:1051-1062. [PMID: 32069394 DOI: 10.1021/acs.biochem.9b00967] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phytochromes are biological red/far-red light sensors found in many organisms. Prototypical phytochromes, including Cph1 from the cyanobacterium Synechocystis 6803, act as photochemical switches that interconvert between stable red (Pr)- and metastable far-red (Pfr)-absorbing states induced by photoisomerization of the bilin chromophore. The connection between photoconversion and the cellular output signal involves light-mediated global structural changes in the interaction between the photosensory module (PAS-GAF-PHY) and the C-terminal transmitter (output) module, usually a histidine kinase, as in the case of Cph1. The chromophore deprotonates transiently during the Pr → Pfr photoconversion in association with extensive global structural changes required for signal transmission. Here, we performed equilibrium studies in the Pr state, involving pH titration of the linear tetrapyrrole chromophore in different Cph1 constructs, and measurement of pH-dependent structural changes at various positions in the protein using picosecond time-resolved fluorescence anisotropy. The fluorescent reporter group was attached at positions 371 (PHY domain), 305 (GAF domain), and 120 (PAS domain), as well as at sites in the PAS-GAF bidomain. We show direct correlation of chromophore deprotonation with pH-dependent conformational changes in the various domains. Our results suggest that chromophore deprotonation is closely associated with a higher protein mobility (conformational space) both in proximal and in distal protein sites, implying a causal relationship that might be important for the global large protein arrangements and thus intramolecular signal transduction.
Collapse
Affiliation(s)
- Maryam Sadeghi
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Jens Balke
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Constantin Schneider
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Soshichiro Nagano
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Johannes Stellmacher
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| | - Günter Lochnit
- Justus-Liebig-Universität, Institut für Medizinische Biochemie, D-35390 Giessen, Germany
| | - Christina Lang
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Chris Weise
- Freie Universität Berlin, Institut für Chemie und Biochemie, D-14195 Berlin, Germany
| | - Jon Hughes
- Justus-Liebig-Universität, Institut für Pflanzenphysiologie, D-35390 Giessen, Germany
| | - Ulrike Alexiev
- Freie Universität Berlin, Institut für Experimentalphysik, D-14195 Berlin, Germany
| |
Collapse
|
24
|
Kraskov A, Nguyen AD, Goerling J, Buhrke D, Velazquez Escobar F, Fernandez Lopez M, Michael N, Sauthof L, Schmidt A, Piwowarski P, Yang Y, Stensitzki T, Adam S, Bartl F, Schapiro I, Heyne K, Siebert F, Scheerer P, Mroginski MA, Hildebrandt P. Intramolecular Proton Transfer Controls Protein Structural Changes in Phytochrome. Biochemistry 2020; 59:1023-1037. [DOI: 10.1021/acs.biochem.0c00053] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Anastasia Kraskov
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Anh Duc Nguyen
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Jan Goerling
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Fernandez Lopez
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Luisa Sauthof
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Andrea Schmidt
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Patrick Piwowarski
- Humboldt Universität zu Berlin, Institut für Biologie, Experimentelle Biophysik, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Yang Yang
- Freie Universität Berlin, Experimentelle Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Till Stensitzki
- Freie Universität Berlin, Experimentelle Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Suliman Adam
- Institute of Chemistry, Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Franz Bartl
- Humboldt Universität zu Berlin, Institut für Biologie, Experimentelle Biophysik, Invalidenstraße 42, D-10115 Berlin, Germany
| | - Igor Schapiro
- Institute of Chemistry, Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Karsten Heyne
- Freie Universität Berlin, Experimentelle Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Friedrich Siebert
- Albert-Ludwigs-Universität Freiburg, Institut für Molekulare Medizin und Zellforschung, Sektion Biophysik, Hermann-Herderstraße 9, D-79104 Freiburg, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, D-10117 Berlin, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
25
|
Villegas-Escobar N, Matute RA. The Keto-Enol Tautomerism of Biliverdin in Bacteriophytochrome: Could it Explain the Bathochromic Shift in the Pfr Form? †. Photochem Photobiol 2020; 97:99-109. [PMID: 33053203 DOI: 10.1111/php.13341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/08/2020] [Indexed: 01/21/2023]
Abstract
Phytochromes are ubiquitous photoreceptors found in plants, eukaryotic algae, bacteria and fungi. Particularly, when bacteriophytochrome is irradiated with light, a Z-to-E (photo)isomerization takes place in the biliverdin chromophore as part of the Pr-to-Pfr conversion. This photoisomerization is concomitant with a bathochromic shift in the Q-band. Based on experimental evidence, we studied a possible keto-enol tautomerization of BV, as an alternative reaction channel after its photoisomerization. In this contribution, the noncatalyzed and water-assisted reaction pathways for the lactam-lactim interconversion through consecutive keto-enol tautomerization of a model BV species were studied deeply. It was found that in the absence of water molecules, the proton transfer reaction is unable to take place at normal conditions, due to large activation energies, and the endothermic formation of lactim derivatives prevents its occurrence. However, when a water molecule assists the process by catalyzing the proton transfer reaction, the activation free energy lowers considerably. The drastic lowering in the activation energy for the keto-enol tautomerism is due to the stabilization of the water moiety through hydrogen bonds along the reaction coordinate. The absorption spectra were computed for all tautomers. It was found that the UV-visible absorption bands are in reasonable agreement with the experimental data. Our results suggest that although the keto-enol equilibrium is likely favoring the lactam tautomer, the equilibrium could eventually be shifted in favor of the lactim, as it has been reported to occur in the dark reversion mechanism of bathy phytochromes.
Collapse
Affiliation(s)
- Nery Villegas-Escobar
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo OHiggins, Santiago, Chile
| | - Ricardo A Matute
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo OHiggins, Santiago, Chile.,Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
26
|
Yu Z, Ali A, Igbalajobi OA, Streng C, Leister K, Krauß N, Lamparter T, Fischer R. Two hybrid histidine kinases, TcsB and the phytochrome FphA, are involved in temperature sensing in
Aspergillus nidulans. Mol Microbiol 2019; 112:1814-1830. [DOI: 10.1111/mmi.14395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2019] [Indexed: 12/30/2022]
Affiliation(s)
- Zhenzhong Yu
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
- Jiangsu Provincial Key Laboratory of Organic Solid Waste Utilization College of Resources and Environmental Sciences Nanjing Agricultural University Nanjing 210095China
| | - Arin Ali
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Olumuyiwa Ayokunle Igbalajobi
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Christian Streng
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Kai Leister
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| | - Norbert Krauß
- Botanical Institute Karlsruhe Institute of Technology (KIT) ‐ South Campus Karlsruhe D‐76131Germany
| | - Tilman Lamparter
- Botanical Institute Karlsruhe Institute of Technology (KIT) ‐ South Campus Karlsruhe D‐76131Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences Department of Microbiology Karlsruhe Institute of Technology (KIT) ‐ South Campus Fritz‐Haber‐Weg 4 Karlsruhe D‐76131Germany
| |
Collapse
|
27
|
Gourinchas G, Etzl S, Winkler A. Bacteriophytochromes - from informative model systems of phytochrome function to powerful tools in cell biology. Curr Opin Struct Biol 2019; 57:72-83. [PMID: 30878713 PMCID: PMC6625962 DOI: 10.1016/j.sbi.2019.02.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 11/17/2022]
Abstract
Bacteriophytochromes are a subfamily of the diverse light responsive phytochrome photoreceptors. Considering their preferential interaction with biliverdin IXα as endogenous cofactor, they have recently been used for creating optogenetic tools and engineering fluorescent probes. Ideal absorption characteristics for the activation of bacteriophytochrome-based systems in the therapeutic near-infrared window as well the availability of biliverdin in mammalian tissues have resulted in tremendous progress in re-engineering bacteriophytochromes for diverse applications. At the same time, both the structural analysis and the functional characterization of diverse naturally occurring bacteriophytochrome systems have unraveled remarkable differences in signaling mechanisms and have so far only touched the surface of the evolutionary diversity within the family of bacteriophytochromes. This review highlights recent findings and future challenges.
Collapse
Affiliation(s)
- Geoffrey Gourinchas
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Stefan Etzl
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010 Graz, Austria; BioTechMed-Graz, 8010 Graz, Austria.
| |
Collapse
|
28
|
Xue P, El Kurdi A, Kohler A, Ma H, Kaeser G, Ali A, Fischer R, Krauß N, Lamparter T. Evidence for weak interaction between phytochromes Agp1 and Agp2 from Agrobacterium fabrum. FEBS Lett 2019; 593:926-941. [PMID: 30941759 DOI: 10.1002/1873-3468.13376] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/25/2019] [Accepted: 03/28/2019] [Indexed: 11/09/2022]
Abstract
During bacterial conjugation, plasmid DNA is transferred from cell to cell. In Agrobacterium fabrum, conjugation is regulated by the phytochrome photoreceptors Agp1 and Agp2. Both contribute equally to this regulation. Agp1 and Agp2 are histidine kinases, but, for Agp2, we found no autophosphorylation activity. A clear autophosphorylation signal, however, was obtained with mutants in which the phosphoaccepting Asp of the C-terminal response regulator domain is replaced. Thus, the Agp2 histidine kinase differs from the classical transphosphorylation pattern. We performed size exclusion, photoconversion, dark reversion, autophosphorylation, chromophore assembly kinetics and fluorescence resonance energy transfer measurements on mixed Agp1/Agp2 samples. These assays pointed to an interaction between both proteins. This could partially explain the coaction of both phytochromes in the cell.
Collapse
Affiliation(s)
- Peng Xue
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Afaf El Kurdi
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Anja Kohler
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Hongju Ma
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Gero Kaeser
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | - Arin Ali
- Institute for Applied Biosciences, Karlsruhe Institute of Technology, Germany
| | - Reinhard Fischer
- Institute for Applied Biosciences, Karlsruhe Institute of Technology, Germany
| | - Norbert Krauß
- Botanical Institute, Karlsruhe Institute of Technology, Germany
| | | |
Collapse
|
29
|
Rumfeldt JA, Takala H, Liukkonen A, Ihalainen JA. UV‐Vis Spectroscopy Reveals a Correlation Between Y263 and BV Protonation States in Bacteriophytochromes. Photochem Photobiol 2019; 95:969-979. [DOI: 10.1111/php.13095] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/26/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica A. Rumfeldt
- Department of Biological and Environmental Science Nanoscience Center University of Jyväskylä Jyväskylä Finland
| | - Heikki Takala
- Department of Biological and Environmental Science Nanoscience Center University of Jyväskylä Jyväskylä Finland
- Anatomy Faculty of Medicine University of Helsinki Helsinki Finland
| | - Alli Liukkonen
- Department of Biological and Environmental Science Nanoscience Center University of Jyväskylä Jyväskylä Finland
| | - Janne A. Ihalainen
- Department of Biological and Environmental Science Nanoscience Center University of Jyväskylä Jyväskylä Finland
| |
Collapse
|
30
|
Gourinchas G, Vide U, Winkler A. Influence of the N-terminal segment and the PHY-tongue element on light-regulation in bacteriophytochromes. J Biol Chem 2019; 294:4498-4510. [PMID: 30683693 PMCID: PMC6433076 DOI: 10.1074/jbc.ra118.007260] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/22/2019] [Indexed: 11/30/2022] Open
Abstract
Photoreceptors enable the integration of ambient light stimuli to trigger lifestyle adaptations via modulation of central metabolite levels involved in diverse regulatory processes. Red light–sensing bacteriophytochromes are attractive targets for the development of innovative optogenetic tools because of their natural modularity of coupling with diverse functionalities and the natural availability of the light-absorbing biliverdin chromophore in animal tissues. However, a rational design of such tools is complicated by the poor understanding of molecular mechanisms of light signal transduction over long distances—from the site of photon absorption to the active site of downstream enzymatic effectors. Here we show how swapping structural elements between two bacteriophytochrome homologs provides additional insight into light signal integration and effector regulation, involving a fine-tuned interplay of important structural elements of the sensor, as well as the sensor–effector linker. Facilitated by the availability of structural information of inhibited and activated full-length structures of one of the two homologs (Idiomarina species A28L phytochrome-activated diguanylyl cyclase (IsPadC)) and characteristic differences in photoresponses of the two homologs, we identify an important cross-talk between the N-terminal segment, containing the covalent attachment site of the chromophore, and the PHY-tongue region. Moreover, we highlight how these elements influence the dynamic range of photoactivation and how activation can be improved to light/dark ratios of ∼800-fold by reducing basal dark-state activities at the same time as increasing conversion in the light state. This will enable future optimization of optogenetic tools aiming at a direct allosteric regulation of enzymatic effectors.
Collapse
Affiliation(s)
- Geoffrey Gourinchas
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and
| | - Uršula Vide
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and
| | - Andreas Winkler
- From the Institute of Biochemistry, Graz University of Technology, 8010 Graz, Austria and .,BioTechMed-Graz, 8010 Graz, Austria
| |
Collapse
|
31
|
Consiglieri E, Gutt A, Gärtner W, Schubert L, Viappiani C, Abbruzzetti S, Losi A. Dynamics and efficiency of photoswitching in biliverdin-binding phytochromes. Photochem Photobiol Sci 2019; 18:2484-2496. [DOI: 10.1039/c9pp00264b] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A full scale analysis of the kinetic processes in the μ-to-millisecond time scale for red-and far red-triggered processes in biliverdin-binding bacterial and fungal phytochromes.
Collapse
Affiliation(s)
- Eleonora Consiglieri
- Department of Mathematical
- Physical and Computer Sciences
- University of Parma
- 43124 Parma
- Italy
| | - Alexander Gutt
- Max-Planck-Institute for Chemical Energy Conversion
- 45470 Mülheim an der Ruhr
- Germany
| | - Wolfgang Gärtner
- Institute for Analytical Chemistry
- University of Leipzig
- 04103 Leipzig
- Germany
| | - Luiz Schubert
- Institute for Physical Chemistry
- Heinrich-Heine-University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Cristiano Viappiani
- Department of Mathematical
- Physical and Computer Sciences
- University of Parma
- 43124 Parma
- Italy
| | - Stefania Abbruzzetti
- Department of Mathematical
- Physical and Computer Sciences
- University of Parma
- 43124 Parma
- Italy
| | - Aba Losi
- Department of Mathematical
- Physical and Computer Sciences
- University of Parma
- 43124 Parma
- Italy
| |
Collapse
|
32
|
Schmidt A, Sauthof L, Szczepek M, Lopez MF, Escobar FV, Qureshi BM, Michael N, Buhrke D, Stevens T, Kwiatkowski D, von Stetten D, Mroginski MA, Krauß N, Lamparter T, Hildebrandt P, Scheerer P. Structural snapshot of a bacterial phytochrome in its functional intermediate state. Nat Commun 2018; 9:4912. [PMID: 30464203 PMCID: PMC6249285 DOI: 10.1038/s41467-018-07392-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 10/31/2018] [Indexed: 11/09/2022] Open
Abstract
Phytochromes are modular photoreceptors of plants, bacteria and fungi that use light as a source of information to regulate fundamental physiological processes. Interconversion between the active and inactive states is accomplished by a photoinduced reaction sequence which couples the sensor with the output module. However, the underlying molecular mechanism is yet not fully understood due to the lack of structural data of functionally relevant intermediate states. Here we report the crystal structure of a Meta-F intermediate state of an Agp2 variant from Agrobacterium fabrum. This intermediate, the identity of which was verified by resonance Raman spectroscopy, was formed by irradiation of the parent Pfr state and displays significant reorientations of almost all amino acids surrounding the chromophore. Structural comparisons allow identifying structural motifs that might serve as conformational switch for initiating the functional secondary structure change that is linked to the (de-)activation of these photoreceptors.
Collapse
Affiliation(s)
- Andrea Schmidt
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, D-10117, Germany
| | - Luisa Sauthof
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, D-10117, Germany
| | - Michal Szczepek
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, D-10117, Germany
| | - Maria Fernandez Lopez
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - Francisco Velazquez Escobar
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - Bilal M Qureshi
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, D-10117, Germany
- Division of Biological & Environmental Sciences & Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Norbert Michael
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - David Buhrke
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - Tammo Stevens
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, D-10117, Germany
| | - Dennis Kwiatkowski
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, D-10117, Germany
| | - David von Stetten
- Structural Biology Group, European Synchrotron Radiation Facility, CS 40220 F-38043, Grenoble Cedex 9, France
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation c/o DESY, Notkestrasse 85, Hamburg, D-22607, Germany
| | - Maria Andrea Mroginski
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623, Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Fritz-Haber-Weg 4, Karlsruhe, D-76131, Germany
| | - Tilman Lamparter
- Karlsruhe Institute of Technology (KIT), Botanical Institute, Fritz-Haber-Weg 4, Karlsruhe, D-76131, Germany
| | - Peter Hildebrandt
- Technische Universität Berlin, Institut für Chemie, Sekr. PC 14, Straße des 17. Juni 135, Berlin, D-10623, Germany.
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute for Medical Physics and Biophysics, Group Protein X-ray Crystallography and Signal Transduction, Charitéplatz 1, Berlin, D-10117, Germany.
| |
Collapse
|
33
|
Gourinchas G, Heintz U, Winkler A. Asymmetric activation mechanism of a homodimeric red light-regulated photoreceptor. eLife 2018; 7:e34815. [PMID: 29869984 PMCID: PMC6005682 DOI: 10.7554/elife.34815] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/03/2018] [Indexed: 12/18/2022] Open
Abstract
Organisms adapt to environmental cues using diverse signaling networks. In order to sense and integrate light for regulating various biological functions, photoreceptor proteins have evolved in a modular way. This modularity is targeted in the development of optogenetic tools enabling the control of cellular events with high spatiotemporal precision. However, the limited understanding of signaling mechanisms impedes the rational design of innovative photoreceptor-effector couples. Here, we reveal molecular details of signal transduction in phytochrome-regulated diguanylyl cyclases. Asymmetric structural changes of the full-length homodimer result in a functional heterodimer featuring two different photoactivation states. Structural changes around the cofactors result in a quasi-translational rearrangement of the distant coiled-coil sensor-effector linker. Eventually, this regulates enzymatic activity by modulating the dimer interface of the output domains. Considering the importance of phytochrome heterodimerization in plant signaling, our mechanistic details of asymmetric photoactivation in a bacterial system reveal novel aspects of the evolutionary adaptation of phytochromes.
Collapse
Affiliation(s)
| | - Udo Heintz
- Max Planck Institute for Medical ResearchHeidelbergGermany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of TechnologyGrazAustria
| |
Collapse
|
34
|
O'Banion CP, Lawrence DS. Optogenetics: A Primer for Chemists. Chembiochem 2018; 19:1201-1216. [DOI: 10.1002/cbic.201800013] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Colin P. O'Banion
- Department of Chemistry; Division of Chemical Biology and Medicinal Chemistry and; Department of Pharmacology; University of North Carolina; Chapel Hill NC 27599 USA
| | - David S. Lawrence
- Department of Chemistry; Division of Chemical Biology and Medicinal Chemistry and; Department of Pharmacology; University of North Carolina; Chapel Hill NC 27599 USA
| |
Collapse
|
35
|
Buhrke D, Kuhlmann U, Michael N, Hildebrandt P. The Photoconversion of Phytochrome Includes an Unproductive Shunt Reaction Pathway. Chemphyschem 2018; 19:566-570. [DOI: 10.1002/cphc.201701311] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 11/08/2022]
Affiliation(s)
- David Buhrke
- Institut für Chemie, Sekr. PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Uwe Kuhlmann
- Institut für Chemie, Sekr. PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Norbert Michael
- Institut für Chemie, Sekr. PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| | - Peter Hildebrandt
- Institut für Chemie, Sekr. PC14; Technische Universität Berlin; Straße des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
36
|
Velázquez Escobar F, Buhrke D, Michael N, Sauthof L, Wilkening S, Tavraz NN, Salewski J, Frankenberg-Dinkel N, Mroginski MA, Scheerer P, Friedrich T, Siebert F, Hildebrandt P. Common Structural Elements in the Chromophore Binding Pocket of the Pfr State of Bathy Phytochromes. Photochem Photobiol 2017; 93:724-732. [DOI: 10.1111/php.12742] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/06/2017] [Indexed: 01/17/2023]
Affiliation(s)
| | - David Buhrke
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
| | - Norbert Michael
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
| | - Luisa Sauthof
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
- Institute of Medical Physics and Biophysics (CCO); Group Protein X-ray Crystallography & Signal Transduction; Charité - University Medicine Berlin; Berlin Germany
| | - Svea Wilkening
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
| | | | | | - Nicole Frankenberg-Dinkel
- Fachbereich Biologie; Abt. Mikrobiologie; Technische Universität Kaiserslautern; Kaiserslautern Germany
| | | | - Patrick Scheerer
- Institute of Medical Physics and Biophysics (CCO); Group Protein X-ray Crystallography & Signal Transduction; Charité - University Medicine Berlin; Berlin Germany
| | - Thomas Friedrich
- Institut für Chemie; Technische Universität Berlin; Berlin Germany
| | - Friedrich Siebert
- Institut für Molekulare Medizin und Zellforschung; Sektion Biophysik; Albert-Ludwigs-Universität Freiburg; Freiburg Germany
| | | |
Collapse
|
37
|
Lamparter T, Krauß N, Scheerer P. Phytochromes from Agrobacterium fabrum. Photochem Photobiol 2017; 93:642-655. [DOI: 10.1111/php.12761] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 02/22/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Tilman Lamparter
- Karlsruhe Institute of Technology (KIT); Botanical Institute; Karlsruhe Germany
| | - Norbert Krauß
- Karlsruhe Institute of Technology (KIT); Botanical Institute; Karlsruhe Germany
| | - Patrick Scheerer
- Charité - Universitätsmedizin Berlin; Institute of Medical Physics and Biophysics (CC2); Group Protein X-ray Crystallography and Signal Transduction; Berlin Germany
| |
Collapse
|
38
|
Velazquez Escobar F, Lang C, Takiden A, Schneider C, Balke J, Hughes J, Alexiev U, Hildebrandt P, Mroginski MA. Protonation-Dependent Structural Heterogeneity in the Chromophore Binding Site of Cyanobacterial Phytochrome Cph1. J Phys Chem B 2016; 121:47-57. [DOI: 10.1021/acs.jpcb.6b09600] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Francisco Velazquez Escobar
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Christina Lang
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Aref Takiden
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Constantin Schneider
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jens Balke
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Jon Hughes
- Plant
Physiology, Justus-Liebig University Gießen, Senckenbergstrasse 3, D-35390 Giessen, Germany
| | - Ulrike Alexiev
- Institut
für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Maria Andrea Mroginski
- Institut
für Chemie, Technische Universität Berlin, Sekr. PC 14, Straße des 17. Juni 135, D-10623 Berlin, Germany
| |
Collapse
|
39
|
Lychagov VV, Shemetov AA, Jimenez R, Verkhusha VV. Microfluidic System for In-Flow Reversible Photoswitching of Near-Infrared Fluorescent Proteins. Anal Chem 2016; 88:11821-11829. [PMID: 27807973 DOI: 10.1021/acs.analchem.6b03499] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We have developed a microfluidic flow cytometry system to screen reversibly photoswitchable fluorescent proteins for contrast and stability of reversible photoconversion between high- and low-fluorescent states. A two-color array of 20 excitation and deactivation beams generated with diffractive optics was combined with a serpentine microfluidic channel geometry designed to provide five cycles of photoswitching with real-time calculation of photoconversion fluorescence contrast. The characteristics of photoswitching in-flow as a function of excitation and deactivation beam fluence, flow speed, and protein concentration were studied with droplets of the bacterial phytochrome from Deinococcus radiodurans (DrBphP), which is weakly fluorescent in the near-infrared (NIR) spectral range. In agreement with measurements on stationary droplets and HeLa S3 mammalian cells expressing DrBphP, optimized operation of the flow system provided up to 50% photoconversion contrast in-flow at a droplet rate of few hertz and a coefficient of variation (CV) of up to 2% over 10 000 events. The methods for calibrating the brightness and photoswitching measurements in microfluidic flow established here provide a basis for screening of cell-based libraries of reversibly switchable NIR fluorescent proteins.
Collapse
Affiliation(s)
| | | | | | - Vladislav V Verkhusha
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki , Helsinki 00029, Finland
| |
Collapse
|
40
|
Singer P, Wörner S, Lamparter T, Diller R. Spectroscopic Investigation on the Primary Photoreaction of Bathy Phytochrome Agp2-Pr ofAgrobacterium fabrum: Isomerization in a pH-dependent H-bond Network. Chemphyschem 2016; 17:1288-97. [DOI: 10.1002/cphc.201600199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Patrick Singer
- Department of Physics; University of Kaiserslautern; Erwin-Schrödinger-Strasse, Geb. 46 67663 Kaiserslautern Germany), Fax: +49-631-205-3902
| | - Sybille Wörner
- Botanical Institute; Karlsruhe Institute of Technology; Kaiserstraße 2 76131 Karlsruhe Germany
| | - Tilman Lamparter
- Botanical Institute; Karlsruhe Institute of Technology; Kaiserstraße 2 76131 Karlsruhe Germany
| | - Rolf Diller
- Department of Physics; University of Kaiserslautern; Erwin-Schrödinger-Strasse, Geb. 46 67663 Kaiserslautern Germany), Fax: +49-631-205-3902
| |
Collapse
|
41
|
Lehtivuori H, Bhattacharya S, Angenent-Mari NM, Satyshur KA, Forest KT. Removal of Chromophore-Proximal Polar Atoms Decreases Water Content and Increases Fluorescence in a Near Infrared Phytofluor. Front Mol Biosci 2015; 2:65. [PMID: 26636092 PMCID: PMC4658570 DOI: 10.3389/fmolb.2015.00065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/02/2015] [Indexed: 11/13/2022] Open
Abstract
Genetically encoded fluorescent markers have revolutionized cell and molecular biology due to their biological compatibility, controllable spatiotemporal expression, and photostability. To achieve in vivo imaging in whole animals, longer excitation wavelength probes are needed due to the superior ability of near infrared light to penetrate tissues unimpeded by absorbance from biomolecules or autofluorescence of water. Derived from near infrared-absorbing bacteriophytochromes, phytofluors are engineered to fluoresce in this region of the electromagnetic spectrum, although high quantum yield remains an elusive goal. An invariant aspartate residue is of utmost importance for photoconversion in native phytochromes, presumably due to the proximity of its backbone carbonyl to the pyrrole ring nitrogens of the biliverdin (BV) chromophore as well as the size and charge of the side chain. We hypothesized that the polar interaction network formed by the charged side chain may contribute to the decay of the excited state via proton transfer. Thus, we chose to further probe the role of this amino acid by removing all possibility for polar interactions with its carboxylate side chain by incorporating leucine instead. The resultant fluorescent protein, WiPhy2, maintains BV binding, monomeric status, and long maximum excitation wavelength while minimizing undesirable protoporphyrin IXα binding in cells. A crystal structure and time-resolved fluorescence spectroscopy reveal that water near the BV chromophore is excluded and thus validate our hypothesis that removal of polar interactions leads to enhanced fluorescence by increasing the lifetime of the excited state. This new phytofluor maintains its fluorescent properties over a broad pH range and does not suffer from photobleaching. WiPhy2 achieves the best compromise to date between high fluorescence quantum yield and long illumination wavelength in this class of fluorescent proteins.
Collapse
Affiliation(s)
- Heli Lehtivuori
- Department of Bacteriology, University of Wisconsin-Madison Madison, WI, USA ; Department of Physics, Nanoscience Center, University of Jyväskylä Jyväskylä, Finland
| | | | | | - Kenneth A Satyshur
- Department of Bacteriology, University of Wisconsin-Madison Madison, WI, USA
| | - Katrina T Forest
- Department of Bacteriology, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
42
|
Björling A, Berntsson O, Takala H, Gallagher KD, Patel H, Gustavsson E, St Peter R, Duong P, Nugent A, Zhang F, Berntsen P, Appio R, Rajkovic I, Lehtivuori H, Panman MR, Hoernke M, Niebling S, Harimoorthy R, Lamparter T, Stojković EA, Ihalainen JA, Westenhoff S. Ubiquitous Structural Signaling in Bacterial Phytochromes. J Phys Chem Lett 2015; 6:3379-83. [PMID: 26275765 DOI: 10.1021/acs.jpclett.5b01629] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The phytochrome family of light-switchable proteins has long been studied by biochemical, spectroscopic and crystallographic means, while a direct probe for global conformational signal propagation has been lacking. Using solution X-ray scattering, we find that the photosensory cores of several bacterial phytochromes undergo similar large-scale structural changes upon red-light excitation. The data establish that phytochromes with ordinary and inverted photocycles share a structural signaling mechanism and that a particular conserved histidine, previously proposed to be involved in signal propagation, in fact tunes photoresponse.
Collapse
Affiliation(s)
- Alexander Björling
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| | - Oskar Berntsson
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| | - Heikki Takala
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä , 40014 Jyväskylä, Finland
| | - Kevin D Gallagher
- Department of Biology, Northeastern Illinois University , 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Hardik Patel
- Department of Biology, Northeastern Illinois University , 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Emil Gustavsson
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| | - Rachael St Peter
- Department of Biology, Northeastern Illinois University , 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Phu Duong
- Department of Biology, Northeastern Illinois University , 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Angela Nugent
- Department of Biology, Northeastern Illinois University , 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Fan Zhang
- Botanical Institute, Karlsruhe Institute of Technology KIT , Kaiserstr. 2, 76131 Karlsruhe, Germany
| | - Peter Berntsen
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
- Centre for Advanced Molecular Imaging, La Trobe Institute for Molecular Science, La Trobe University , Melbourne, Victoria 3086, Australia
| | - Roberto Appio
- MAX IV Laboratory, Lund University , P.O. Box 118, Lund SE-221 00, Sweden
| | - Ivan Rajkovic
- Paul Scherrer Institut , 5232 Villigen PSI, Switzerland
| | - Heli Lehtivuori
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä , 40014 Jyväskylä, Finland
| | - Matthijs R Panman
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| | - Maria Hoernke
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| | - Stephan Niebling
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| | - Rajiv Harimoorthy
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| | - Tilman Lamparter
- Botanical Institute, Karlsruhe Institute of Technology KIT , Kaiserstr. 2, 76131 Karlsruhe, Germany
| | - Emina A Stojković
- Department of Biology, Northeastern Illinois University , 5500 North St. Louis Avenue, Chicago, Illinois 60625, United States
| | - Janne A Ihalainen
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä , 40014 Jyväskylä, Finland
| | - Sebastian Westenhoff
- Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, 40530 Gothenburg, Sweden
| |
Collapse
|
43
|
Velazquez Escobar F, von Stetten D, Günther-Lütkens M, Keidel A, Michael N, Lamparter T, Essen LO, Hughes J, Gärtner W, Yang Y, Heyne K, Mroginski MA, Hildebrandt P. Conformational heterogeneity of the Pfr chromophore in plant and cyanobacterial phytochromes. Front Mol Biosci 2015. [PMID: 26217669 PMCID: PMC4498102 DOI: 10.3389/fmolb.2015.00037] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Phytochromes are biological photoreceptors that can be reversibly photoconverted between a dark and photoactivated state. The underlying reaction sequences are initiated by the photoisomerization of the tetrapyrrole cofactor, which in plant and cyanobacterial phytochromes are a phytochromobilin (PΦB) and a phycocyanobilin (PCB), respectively. The transition between the two states represents an on/off-switch of the output module activating or deactivating downstream physiological processes. In addition, the photoactivated state, i.e., Pfr in canonical phytochromes, can be thermally reverted to the dark state (Pr). The present study aimed to improve our understanding of the specific reactivity of various PΦB- and PCB-binding phytochromes in the Pfr state by analysing the cofactor structure by vibrational spectroscopic techniques. Resonance Raman (RR) spectroscopy revealed two Pfr conformers (Pfr-I and Pfr-II) forming a temperature-dependent conformational equilibrium. The two sub-states—found in all phytochromes studied, albeit with different relative contributions—differ in structural details of the C-D and A-B methine bridges. In the Pfr-I sub-state the torsion between the rings C and D is larger by ca. 10° compared to Pfr-II. This structural difference is presumably related to different hydrogen bonding interactions of ring D as revealed by time-resolved IR spectroscopic studies of the cyanobacterial phytochrome Cph1. The transitions between the two sub-states are evidently too fast (i.e., nanosecond time scale) to be resolved by NMR spectroscopy which could not detect a structural heterogeneity of the chromophore in Pfr. The implications of the present findings for the dark reversion of the Pfr state are discussed.
Collapse
Affiliation(s)
| | | | | | - Anke Keidel
- Institut für Chemie, Technische Universität Berlin Berlin, Germany
| | - Norbert Michael
- Institut für Chemie, Technische Universität Berlin Berlin, Germany
| | - Tilman Lamparter
- Botanisches Institut, Karlsruher Institut für Technologie Karlsruhe, Germany
| | | | - Jon Hughes
- Institut für Pflanzenphysiologie, Justus Liebig University Gießen, Germany
| | - Wolfgang Gärtner
- Max-Planck-Institut für Chemische Energiekonversion Mülheim, Germany
| | - Yang Yang
- Institut für Experimentalphysik, Freie Universität Berlin Berlin, Germany
| | - Karsten Heyne
- Institut für Experimentalphysik, Freie Universität Berlin Berlin, Germany
| | | | | |
Collapse
|
44
|
Takala H, Björling A, Linna M, Westenhoff S, Ihalainen JA. Light-induced Changes in the Dimerization Interface of Bacteriophytochromes. J Biol Chem 2015; 290:16383-92. [PMID: 25971964 DOI: 10.1074/jbc.m115.650127] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Indexed: 11/06/2022] Open
Abstract
Phytochromes are dimeric photoreceptor proteins that sense red light levels in plants, fungi, and bacteria. The proteins are structurally divided into a light-sensing photosensory module consisting of PAS, GAF, and PHY domains and a signaling output module, which in bacteriophytochromes typically is a histidine kinase (HK) domain. Existing structural data suggest that two dimerization interfaces exist between the GAF and HK domains, but their functional roles remain unclear. Using mutational, biochemical, and computational analyses of the Deinococcus radiodurans phytochrome, we demonstrate that two dimerization interfaces between sister GAF and HK domains stabilize the dimer with approximately equal contributions. The existence of both dimerization interfaces is critical for thermal reversion back to the resting state. We also find that a mutant in which the interactions between the GAF domains were removed monomerizes under red light. This implies that the interactions between the HK domains are significantly altered by photoconversion. The results suggest functional importance of the dimerization interfaces in bacteriophytochromes.
Collapse
Affiliation(s)
- Heikki Takala
- From the University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, SE-40530 Sweden and University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Sciences, Jyväskylä, FI-40014 Finland
| | - Alexander Björling
- From the University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, SE-40530 Sweden and
| | - Marko Linna
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Sciences, Jyväskylä, FI-40014 Finland
| | - Sebastian Westenhoff
- From the University of Gothenburg, Department of Chemistry and Molecular Biology, Gothenburg, SE-40530 Sweden and
| | - Janne A Ihalainen
- University of Jyvaskyla, Nanoscience Center, Department of Biological and Environmental Sciences, Jyväskylä, FI-40014 Finland
| |
Collapse
|
45
|
Velazquez Escobar F, Piwowarski P, Salewski J, Michael N, Fernandez Lopez M, Rupp A, Qureshi BM, Scheerer P, Bartl F, Frankenberg-Dinkel N, Siebert F, Andrea Mroginski M, Hildebrandt P. A protonation-coupled feedback mechanism controls the signalling process in bathy phytochromes. Nat Chem 2015; 7:423-30. [DOI: 10.1038/nchem.2225] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 03/02/2015] [Indexed: 11/09/2022]
|
46
|
Li F, Burgie ES, Yu T, Héroux A, Schatz GC, Vierstra RD, Orville AM. X-ray radiation induces deprotonation of the bilin chromophore in crystalline D. radiodurans phytochrome. J Am Chem Soc 2015; 137:2792-5. [PMID: 25650486 DOI: 10.1021/ja510923m] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We report that in the red light-absorbing (Pr) state, the bilin chromophore of the Deinococcus radiodurans proteobacterial phytochrome (DrBphP) is hypersensitive to X-ray photons used in typical synchrotron X-ray protein crystallography experiments. This causes the otherwise fully protonated chromophore to deprotonate without additional major structural changes. These results have major implications for our understanding of the structural and chemical characteristics of the resting and intermediate states of phytochromes and other photoreceptor proteins.
Collapse
Affiliation(s)
- Feifei Li
- Photon Sciences Directorate and ∥Biosciences Department, Brookhaven National Laboratory , Upton, New York 11973, United States
| | | | | | | | | | | | | |
Collapse
|
47
|
Lim S, Rockwell NC, Martin SS, Dallas JL, Lagarias JC, Ames JB. Photoconversion changes bilin chromophore conjugation and protein secondary structure in the violet/orange cyanobacteriochrome NpF2164g3' [corrected]. Photochem Photobiol Sci 2014; 13:951-62. [PMID: 24745038 DOI: 10.1039/c3pp50442e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to phytochromes. All CBCRs examined to date utilize a conserved Cys residue to form a covalent thioether linkage to the bilin chromophore. In the insert-Cys CBCR subfamily, a second conserved Cys can covalently link to the bilin C10 methine bridge, allowing detection of near-UV to blue light. The best understood insert-Cys CBCR is the violet/orange CBCR NpF2164g3 from Nostoc punctiforme, which has a stable second linkage in the violet-absorbing dark state. Photoconversion of NpF2164g3 leads to elimination of the second linkage and formation of an orange-absorbing photoproduct. We recently reported NMR chemical shift assignments for the orange-absorbing photoproduct state of NpF2164g3. We here present equivalent information for its violet-absorbing dark state. In both photostates, NpF2164g3 is monomeric in solution and regions containing the two conserved Cys residues essential for photoconversion are structurally disordered. In contrast to blue light receptors such as phototropin, NpF2164g3 is less structurally ordered in the dark state than in the photoproduct. The insert-Cys insertion loop and C-terminal helix exhibit light-dependent structural changes. Moreover, a motif containing an Asp residue also found in other CBCRs and in phytochromes adopts a random-coil structure in the dark state but a stable α-helix structure in the photoproduct. NMR analysis of the chromophore is consistent with a less ordered dark state, with A-ring resonances only resolved in the photoproduct. The C10 atom of the bilin chromophore exhibits a drastic change in chemical shift upon photoconversion, changing from 34.5 ppm (methylene) in the dark state to 115 ppm (methine) in the light-activated state. Our results provide structural insight into the two-Cys photocycle of NpF2164g3 and the structurally diverse mechanisms used for light perception by the larger phytochrome superfamily.
Collapse
Affiliation(s)
- Sunghyuk Lim
- Department of Chemistry, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|