1
|
Wilkinson AJ, Ooi N, Finlayson J, Lee VE, Lyth D, Maskew KS, Newman R, Orr D, Ansell K, Birchall K, Canning P, Coombs P, Fusani L, McIver E, Pisco J, Ireland PM, Jenkins C, Norville IH, Southern SJ, Cowan R, Hall G, Kettleborough C, Savage VJ, Cooper IR. Evaluating the druggability of TrmD, a potential antibacterial target, through design and microbiological profiling of a series of potent TrmD inhibitors. Bioorg Med Chem Lett 2023; 90:129331. [PMID: 37187252 DOI: 10.1016/j.bmcl.2023.129331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
The post-transcriptional modifier tRNA-(N1G37) methyltransferase (TrmD) has been proposed to be essential for growth in many Gram-negative and Gram-positive pathogens, however previously reported inhibitors show only weak antibacterial activity. In this work, optimisation of fragment hits resulted in compounds with low nanomolar TrmD inhibition incorporating features designed to enhance bacterial permeability and covering a range of physicochemical space. The resulting lack of significant antibacterial activity suggests that whilst TrmD is highly ligandable, its essentiality and druggability are called into question.
Collapse
Affiliation(s)
- Andrew J Wilkinson
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK.
| | - Nicola Ooi
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Jonathan Finlayson
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Victoria E Lee
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - David Lyth
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Kathryn S Maskew
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Rebecca Newman
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - David Orr
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Keith Ansell
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Kristian Birchall
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Peter Canning
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Peter Coombs
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Lucia Fusani
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Ed McIver
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - João Pisco
- LifeArc, Accelerator Building, Open Innovation Campus, Stevenage, SG1 2FX, UK
| | - Philip M Ireland
- CBR division, Dstl Porton Down, Salisbury, Wiltshire, SP4 0JQ, UK
| | | | | | | | - Richard Cowan
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Gareth Hall
- Leicester Institute of Structural and Chemical Biology and Department of Molecular and Cell Biology, Henry Wellcome Building, University of Leicester, Leicester, LE1 7RH, UK
| | | | - Victoria J Savage
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| | - Ian R Cooper
- Infex Therapeutics Ltd, Mereside, Alderley Park, Macclesfield, SK10 4TG, UK
| |
Collapse
|
2
|
Finger V, Kufa M, Soukup O, Castagnolo D, Roh J, Korabecny J. Pyrimidine derivatives with antitubercular activity. Eur J Med Chem 2023; 246:114946. [PMID: 36459759 DOI: 10.1016/j.ejmech.2022.114946] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Small molecules with antitubercular activity containing the pyrimidine motif in their structure have gained more attention after three drugs, namely GSK 2556286 (GSK-286), TBA-7371 and SPR720, have entered clinical trials. This review provides an overview of recent advances in the hit-to-lead drug discovery studies of antitubercular pyrimidine-containing compounds with the aim to highlight their structural diversity. In the first part, the review discusses the pyrimidine compounds according to their targets, pinpointing the structure-activity relationships of each pyrimidine family. The second part of this review is concentrated on antitubercular pyrimidine derivatives with a yet unexplored or speculative target, dividing the compounds according to their structural types.
Collapse
Affiliation(s)
- Vladimir Finger
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Martin Kufa
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic
| | - Daniele Castagnolo
- Department of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ, London, United Kingdom
| | - Jaroslav Roh
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 50005 Hradec Kralove, Czech Republic.
| | - Jan Korabecny
- Biomedical Research Center, University Hospital Hradec Kralove, Sokolska 581, 500 05, Hradec, Kralove, Czech Republic.
| |
Collapse
|
3
|
Motorin Y, Helm M. RNA nucleotide methylation: 2021 update. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1691. [PMID: 34913259 DOI: 10.1002/wrna.1691] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/14/2022]
Abstract
Among RNA modifications, transfer of methylgroups from the typical cofactor S-adenosyl-l-methionine by methyltransferases (MTases) to RNA is by far the most common reaction. Since our last review about a decade ago, the field has witnessed the re-emergence of mRNA methylation as an important mechanism in gene regulation. Attention has then spread to many other RNA species; all being included into the newly coined concept of the "epitranscriptome." The focus moved from prokaryotes and single cell eukaryotes as model organisms to higher eukaryotes, in particular to mammals. The perception of the field has dramatically changed over the past decade. A previous lack of phenotypes in knockouts in single cell organisms has been replaced by the apparition of MTases in numerous disease models and clinical investigations. Major driving forces of the field include methylation mapping techniques, as well as the characterization of the various MTases, termed "writers." The latter term has spilled over from DNA modification in the neighboring epigenetics field, along with the designations "readers," applied to mediators of biological effects upon specific binding to a methylated RNA. Furthermore "eraser" enzymes effect the newly discovered oxidative removal of methylgroups. A sense of reversibility and dynamics has replaced the older perception of RNA modification as a concrete-cast, irreversible part of RNA maturation. A related concept concerns incompletely methylated residues, which, through permutation of each site, lead to inhomogeneous populations of numerous modivariants. This review recapitulates the major developments of the past decade outlined above, and attempts a prediction of upcoming trends. This article is categorized under: RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuri Motorin
- Université de Lorraine, CNRS, INSERM, UMS2008/US40 IBSLor, EpiRNA-Seq Core Facility, Nancy, France.,Université de Lorraine, CNRS, UMR7365 IMoPA, Nancy, France
| | - Mark Helm
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität, Mainz, Germany
| |
Collapse
|
4
|
Masuda I, Hwang JY, Christian T, Maharjan S, Mohammad F, Gamper H, Buskirk AR, Hou YM. Loss of N1-methylation of G37 in tRNA induces ribosome stalling and reprograms gene expression. eLife 2021; 10:70619. [PMID: 34382933 PMCID: PMC8384417 DOI: 10.7554/elife.70619] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/09/2021] [Indexed: 01/20/2023] Open
Abstract
N1-methylation of G37 is required for a subset of tRNAs to maintain the translational reading-frame. While loss of m1G37 increases ribosomal +1 frameshifting, whether it incurs additional translational defects is unknown. Here, we address this question by applying ribosome profiling to gain a genome-wide view of the effects of m1G37 deficiency on protein synthesis. Using E coli as a model, we show that m1G37 deficiency induces ribosome stalling at codons that are normally translated by m1G37-containing tRNAs. Stalling occurs during decoding of affected codons at the ribosomal A site, indicating a distinct mechanism than that of +1 frameshifting, which occurs after the affected codons leave the A site. Enzyme- and cell-based assays show that m1G37 deficiency reduces tRNA aminoacylation and in some cases peptide-bond formation. We observe changes of gene expression in m1G37 deficiency similar to those in the stringent response that is typically induced by deficiency of amino acids. This work demonstrates a previously unrecognized function of m1G37 that emphasizes its role throughout the entire elongation cycle of protein synthesis, providing new insight into its essentiality for bacterial growth and survival.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
| | - Jae-Yeon Hwang
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Thomas Christian
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
| | - Sunita Maharjan
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
| | - Fuad Mohammad
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
| | - Allen R Buskirk
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, United States
| |
Collapse
|
5
|
Edwards AM, Addo MA, Dos Santos PC. Extracurricular Functions of tRNA Modifications in Microorganisms. Genes (Basel) 2020; 11:genes11080907. [PMID: 32784710 PMCID: PMC7466049 DOI: 10.3390/genes11080907] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/29/2020] [Accepted: 08/02/2020] [Indexed: 12/29/2022] Open
Abstract
Transfer RNAs (tRNAs) are essential adaptors that mediate translation of the genetic code. These molecules undergo a variety of post-transcriptional modifications, which expand their chemical reactivity while influencing their structure, stability, and functionality. Chemical modifications to tRNA ensure translational competency and promote cellular viability. Hence, the placement and prevalence of tRNA modifications affects the efficiency of aminoacyl tRNA synthetase (aaRS) reactions, interactions with the ribosome, and transient pairing with messenger RNA (mRNA). The synthesis and abundance of tRNA modifications respond directly and indirectly to a range of environmental and nutritional factors involved in the maintenance of metabolic homeostasis. The dynamic landscape of the tRNA epitranscriptome suggests a role for tRNA modifications as markers of cellular status and regulators of translational capacity. This review discusses the non-canonical roles that tRNA modifications play in central metabolic processes and how their levels are modulated in response to a range of cellular demands.
Collapse
|
6
|
Zhong W, Pasunooti KK, Balamkundu S, Wong YH, Nah Q, Gadi V, Gnanakalai S, Chionh YH, McBee ME, Gopal P, Lim SH, Olivier N, Buurman ET, Dick T, Liu CF, Lescar J, Dedon PC. Thienopyrimidinone Derivatives That Inhibit Bacterial tRNA (Guanine37- N1)-Methyltransferase (TrmD) by Restructuring the Active Site with a Tyrosine-Flipping Mechanism. J Med Chem 2019; 62:7788-7805. [PMID: 31442049 PMCID: PMC6748665 DOI: 10.1021/acs.jmedchem.9b00582] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Among the >120
modified ribonucleosides in the prokaryotic epitranscriptome,
many tRNA modifications are critical to bacterial survival, which
makes their synthetic enzymes ideal targets for antibiotic development.
Here we performed a structure-based design of inhibitors of tRNA-(N1G37) methyltransferase, TrmD, which is an essential enzyme
in many bacterial pathogens. On the basis of crystal structures of
TrmDs from Pseudomonas aeruginosa and Mycobacterium tuberculosis, we synthesized a series
of thienopyrimidinone derivatives with nanomolar potency against TrmD
in vitro and discovered a novel active site conformational change
triggered by inhibitor binding. This tyrosine-flipping mechanism is
uniquely found in P. aeruginosa TrmD
and renders the enzyme inaccessible to the cofactor S-adenosyl-l-methionine (SAM) and probably to the substrate
tRNA. Biophysical and biochemical structure–activity relationship
studies provided insights into the mechanisms underlying the potency
of thienopyrimidinones as TrmD inhibitors, with several derivatives
found to be active against Gram-positive and mycobacterial pathogens.
These results lay a foundation for further development of TrmD inhibitors
as antimicrobial agents.
Collapse
Affiliation(s)
- Wenhe Zhong
- Infectious Disease and Antimicrobial Resistance Interdisciplinary Research Groups , Singapore-MIT Alliance for Research and Technology , 1 CREATE Way , 138602 Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , 636921 Singapore
| | - Kalyan Kumar Pasunooti
- Infectious Disease and Antimicrobial Resistance Interdisciplinary Research Groups , Singapore-MIT Alliance for Research and Technology , 1 CREATE Way , 138602 Singapore
| | - Seetharamsing Balamkundu
- Infectious Disease and Antimicrobial Resistance Interdisciplinary Research Groups , Singapore-MIT Alliance for Research and Technology , 1 CREATE Way , 138602 Singapore
| | - Yee Hwa Wong
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , 637551 Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , 636921 Singapore
| | - Qianhui Nah
- Infectious Disease and Antimicrobial Resistance Interdisciplinary Research Groups , Singapore-MIT Alliance for Research and Technology , 1 CREATE Way , 138602 Singapore
| | - Vinod Gadi
- Infectious Disease and Antimicrobial Resistance Interdisciplinary Research Groups , Singapore-MIT Alliance for Research and Technology , 1 CREATE Way , 138602 Singapore
| | - Shanmugavel Gnanakalai
- Infectious Disease and Antimicrobial Resistance Interdisciplinary Research Groups , Singapore-MIT Alliance for Research and Technology , 1 CREATE Way , 138602 Singapore
| | - Yok Hian Chionh
- Infectious Disease and Antimicrobial Resistance Interdisciplinary Research Groups , Singapore-MIT Alliance for Research and Technology , 1 CREATE Way , 138602 Singapore
| | - Megan E McBee
- Infectious Disease and Antimicrobial Resistance Interdisciplinary Research Groups , Singapore-MIT Alliance for Research and Technology , 1 CREATE Way , 138602 Singapore
| | - Pooja Gopal
- Yong Loo Lin School of Medicine , National University of Singapore , 117597 Singapore
| | - Siau Hoi Lim
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , 637551 Singapore
| | | | | | - Thomas Dick
- Yong Loo Lin School of Medicine , National University of Singapore , 117597 Singapore
| | - Chuan Fa Liu
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , 637551 Singapore
| | - Julien Lescar
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , 637551 Singapore.,NTU Institute of Structural Biology , Nanyang Technological University , 636921 Singapore
| | - Peter C Dedon
- Infectious Disease and Antimicrobial Resistance Interdisciplinary Research Groups , Singapore-MIT Alliance for Research and Technology , 1 CREATE Way , 138602 Singapore.,Department of Biological Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
7
|
Masuda I, Takase R, Matsubara R, Paulines MJ, Gamper H, Limbach PA, Hou YM. Selective terminal methylation of a tRNA wobble base. Nucleic Acids Res 2019; 46:e37. [PMID: 29361055 PMCID: PMC5909439 DOI: 10.1093/nar/gky013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Active tRNAs are extensively post-transcriptionally modified, particularly at the wobble position 34 and the position 37 on the 3′-side of the anticodon. The 5-carboxy-methoxy modification of U34 (cmo5U34) is present in Gram-negative tRNAs for six amino acids (Ala, Ser, Pro, Thr, Leu and Val), four of which (Ala, Ser, Pro and Thr) have a terminal methyl group to form 5-methoxy-carbonyl-methoxy-uridine (mcmo5U34) for higher reading-frame accuracy. The molecular basis for the selective terminal methylation is not understood. Many cmo5U34-tRNAs are essential for growth and cannot be substituted for mutational analysis. We show here that, with a novel genetic approach, we have created and isolated mutants of Escherichia coli tRNAPro and tRNAVal for analysis of the selective terminal methylation. We show that substitution of G35 in the anticodon of tRNAPro inactivates the terminal methylation, whereas introduction of G35 to tRNAVal confers it, indicating that G35 is a major determinant for the selectivity. We also show that, in tRNAPro, the terminal methylation at U34 is dependent on the primary m1G methylation at position 37 but not vice versa, indicating a hierarchical ranking of modifications between positions 34 and 37. We suggest that this hierarchy provides a mechanism to ensure top performance of a tRNA inside of cells.
Collapse
Affiliation(s)
- Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ryuichi Takase
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ryuma Matsubara
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mellie June Paulines
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Howard Gamper
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, PO Box 210172, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
8
|
Zhong W, Koay A, Ngo A, Li Y, Nah Q, Wong YH, Chionh YH, Ng HQ, Koh-Stenta X, Poulsen A, Foo K, McBee M, Choong ML, El Sahili A, Kang C, Matter A, Lescar J, Hill J, Dedon P. Targeting the Bacterial Epitranscriptome for Antibiotic Development: Discovery of Novel tRNA-(N 1G37) Methyltransferase (TrmD) Inhibitors. ACS Infect Dis 2019; 5:326-335. [PMID: 30682246 DOI: 10.1021/acsinfecdis.8b00275] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Bacterial tRNA modification synthesis pathways are critical to cell survival under stress and thus represent ideal mechanism-based targets for antibiotic development. One such target is the tRNA-(N1G37) methyltransferase (TrmD), which is conserved and essential in many bacterial pathogens. Here we developed and applied a widely applicable, radioactivity-free, bioluminescence-based high-throughput screen (HTS) against 116350 compounds from structurally diverse small-molecule libraries to identify inhibitors of Pseudomonas aeruginosa TrmD ( PaTrmD). Of 285 compounds passing primary and secondary screens, a total of 61 TrmD inhibitors comprised of more than 12 different chemical scaffolds were identified, all showing submicromolar to low micromolar enzyme inhibitor constants, with binding affinity confirmed by thermal stability and surface plasmon resonance. S-Adenosyl-l-methionine (SAM) competition assays suggested that compounds in the pyridine-pyrazole-piperidine scaffold were substrate SAM-competitive inhibitors. This was confirmed in structural studies, with nuclear magnetic resonance analysis and crystal structures of PaTrmD showing pyridine-pyrazole-piperidine compounds bound in the SAM-binding pocket. Five hits showed cellular activities against Gram-positive bacteria, including mycobacteria, while one compound, a SAM-noncompetitive inhibitor, exhibited broad-spectrum antibacterial activity. The results of this HTS expand the repertoire of TrmD-inhibiting molecular scaffolds that show promise for antibiotic development.
Collapse
Affiliation(s)
- Wenhe Zhong
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
| | - Ann Koay
- Experimental Therapeutics Centre, 31 Biopolis Way, #03-01 Nanos, 138669 Singapore
| | - Anna Ngo
- Experimental Therapeutics Centre, 31 Biopolis Way, #03-01 Nanos, 138669 Singapore
| | - Yan Li
- Experimental Therapeutics Centre, 31 Biopolis Way, #03-01 Nanos, 138669 Singapore
| | - Qianhui Nah
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602 Singapore
| | - Yee Hwa Wong
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Yok Hian Chionh
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602 Singapore
| | - Hui Qi Ng
- Experimental Therapeutics Centre, 31 Biopolis Way, #03-01 Nanos, 138669 Singapore
| | - Xiaoying Koh-Stenta
- Experimental Therapeutics Centre, 31 Biopolis Way, #03-01 Nanos, 138669 Singapore
| | - Anders Poulsen
- Experimental Therapeutics Centre, 31 Biopolis Way, #03-01 Nanos, 138669 Singapore
| | - Klement Foo
- Experimental Therapeutics Centre, 31 Biopolis Way, #03-01 Nanos, 138669 Singapore
| | - Megan McBee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602 Singapore
| | - Meng Ling Choong
- Experimental Therapeutics Centre, 31 Biopolis Way, #03-01 Nanos, 138669 Singapore
| | - Abbas El Sahili
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Congbao Kang
- Experimental Therapeutics Centre, 31 Biopolis Way, #03-01 Nanos, 138669 Singapore
| | - Alex Matter
- Experimental Therapeutics Centre, 31 Biopolis Way, #03-01 Nanos, 138669 Singapore
| | - Julien Lescar
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602 Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921 Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore
| | - Jeffrey Hill
- Experimental Therapeutics Centre, 31 Biopolis Way, #03-01 Nanos, 138669 Singapore
| | - Peter Dedon
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, 138602 Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Hou YM, Masuda I, Gamper H. Codon-Specific Translation by m 1G37 Methylation of tRNA. Front Genet 2019; 9:713. [PMID: 30687389 PMCID: PMC6335274 DOI: 10.3389/fgene.2018.00713] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022] Open
Abstract
Although the genetic code is degenerate, synonymous codons for the same amino acid are not translated equally. Codon-specific translation is important for controlling gene expression and determining the proteome of a cell. At the molecular level, codon-specific translation is regulated by post-transcriptional epigenetic modifications of tRNA primarily at the wobble position 34 and at position 37 on the 3'-side of the anticodon. Modifications at these positions determine the quality of codon-anticodon pairing and the speed of translation on the ribosome. Different modifications operate in distinct mechanisms of codon-specific translation, generating a diversity of regulation that is previously unanticipated. Here we summarize recent work that demonstrates codon-specific translation mediated by the m1G37 methylation of tRNA at CCC and CCU codons for proline, an amino acid that has unique features in translation.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | | | | |
Collapse
|
10
|
Hou YM, Matsubara R, Takase R, Masuda I, Sulkowska JI. TrmD: A Methyl Transferase for tRNA Methylation With m 1G37. Enzymes 2017; 41:89-115. [PMID: 28601227 DOI: 10.1016/bs.enz.2017.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
TrmD is an S-adenosyl methionine (AdoMet)-dependent methyl transferase that synthesizes the methylated m1G37 in tRNA. TrmD is specific to and essential for bacterial growth, and it is fundamentally distinct from its eukaryotic and archaeal counterpart Trm5. TrmD is unusual by using a topological protein knot to bind AdoMet. Despite its restricted mobility, the TrmD knot has complex dynamics necessary to transmit the signal of AdoMet binding to promote tRNA binding and methyl transfer. Mutations in the TrmD knot block this intramolecular signaling and decrease the synthesis of m1G37-tRNA, prompting ribosomes to +1-frameshifts and premature termination of protein synthesis. TrmD is unique among AdoMet-dependent methyl transferases in that it requires Mg2+ in the catalytic mechanism. This Mg2+ dependence is important for regulating Mg2+ transport to Salmonella for survival of the pathogen in the host cell. The strict conservation of TrmD among bacterial species suggests that a better characterization of its enzymology and biology will have a broad impact on our understanding of bacterial pathogenesis.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Thomas Jefferson University, Philadelphia, PA, United States.
| | - Ryuma Matsubara
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Ryuichi Takase
- Thomas Jefferson University, Philadelphia, PA, United States
| | - Isao Masuda
- Thomas Jefferson University, Philadelphia, PA, United States
| | | |
Collapse
|
11
|
Transfer RNA methyltransferases with a SpoU-TrmD (SPOUT) fold and their modified nucleosides in tRNA. Biomolecules 2017; 7:biom7010023. [PMID: 28264529 PMCID: PMC5372735 DOI: 10.3390/biom7010023] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Accepted: 02/23/2017] [Indexed: 11/22/2022] Open
Abstract
The existence of SpoU-TrmD (SPOUT) RNA methyltransferase superfamily was first predicted by bioinformatics. SpoU is the previous name of TrmH, which catalyzes the 2’-O-methylation of ribose of G18 in tRNA; TrmD catalyzes the formation of N1-methylguanosine at position 37 in tRNA. Although SpoU (TrmH) and TrmD were originally considered to be unrelated, the bioinformatics study suggested that they might share a common evolution origin and form a single superfamily. The common feature of SPOUT RNA methyltransferases is the formation of a deep trefoil knot in the catalytic domain. In the past decade, the SPOUT RNA methyltransferase superfamily has grown; furthermore, knowledge concerning the functions of their modified nucleosides in tRNA has also increased. Some enzymes are potential targets in the design of anti-bacterial drugs. In humans, defects in some genes may be related to carcinogenesis. In this review, recent findings on the tRNA methyltransferases with a SPOUT fold and their methylated nucleosides in tRNA, including classification of tRNA methyltransferases with a SPOUT fold; knot structures, domain arrangements, subunit structures and reaction mechanisms; tRNA recognition mechanisms, and functions of modified nucleosides synthesized by this superfamily, are summarized. Lastly, the future perspective for studies on tRNA modification enzymes are considered.
Collapse
|
12
|
Mg2+ regulates transcription of mgtA in Salmonella Typhimurium via translation of proline codons during synthesis of the MgtL peptide. Proc Natl Acad Sci U S A 2016; 113:15096-15101. [PMID: 27849575 DOI: 10.1073/pnas.1612268113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In Salmonella enterica serovar Typhimurium, Mg2+ limitation induces transcription of the mgtA Mg2+ transport gene, but the mechanism involved is unclear. The 5' leader of the mgtA mRNA contains a 17-codon, proline-rich ORF, mgtL, whose translation regulates the transcription of mgtA [Park S-Y et al. (2010) Cell 142:737-748]. Rapid translation of mgtL promotes formation of a secondary structure in the mgtA mRNA that permits termination of transcription by the Rho protein upstream of mgtA, whereas slow or incomplete translation of mgtL generates a different structure that blocks termination. We identified the following mutations that conferred high-level transcription of mgtA at high [Mg2+]: (i) a base-pair change that introduced an additional proline codon into mgtL, generating three consecutive proline codons; (ii) lesions in rpmA and rpmE, which encode ribosomal proteins L27 and L31, respectively; (iii) deletion of efp, which encodes elongation factor EF-P that assists the translation of proline codons; and (iv) a heat-sensitive mutation in trmD, whose product catalyzes the m1G37 methylation of tRNAPro Furthermore, substitution of three of the four proline codons in mgtL rendered mgtA uninducible. We hypothesize that the proline codons present an impediment to the translation of mgtL, which can be alleviated by high [Mg2+] exerted on component(s) of the translation machinery, such as EF-P, TrmD, or a ribosomal factor. Inadequate [Mg2+] precludes this alleviation, making mgtL translation inefficient and thereby permitting mgtA transcription. These findings are a significant step toward defining the target of Mg2+ in the regulation of mgtA transcription.
Collapse
|
13
|
Zhao M, Wijayasinghe YS, Bhansali P, Viola RE, Blumenthal RM. A surprising range of modified-methionyl S-adenosylmethionine analogues support bacterial growth. MICROBIOLOGY-SGM 2015; 161:674-82. [PMID: 25717169 DOI: 10.1099/mic.0.000034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
S-Adenosyl-l-methionine (AdoMet) is an essential metabolite, serving in a very wide variety of metabolic reactions. The enzyme that produces AdoMet from l-methionine and ATP (methionine adenosyltransferase, MAT) is thus an attractive target for antimicrobial agents. We previously showed that a variety of methionine analogues are MAT substrates, yielding AdoMet analogues that function in specific methyltransfer reactions. However, this left open the question of whether the modified AdoMet molecules could support bacterial growth, meaning that they functioned in the full range of essential AdoMet-dependent reactions. The answer matters both for insight into the functional flexibility of key metabolic enzymes, and for drug design strategies for both MAT inhibitors and selectively toxic MAT substrates. In this study, methionine analogues were converted in vitro into AdoMet analogues, and tested with an Escherichia coli strain lacking MAT (ΔmetK) but that produces a heterologous AdoMet transporter. Growth that yields viable, morphologically normal cells provides exceptionally robust evidence that the analogue functions in every essential reaction in which AdoMet participates. Overall, the S-adenosylated derivatives of all tested l-methionine analogues modified at the carboxyl moiety, and some others as well, showed in vivo functionality sufficient to allow good growth in both rich and minimal media, with high viability and morphological normality. As the analogues were chosen based on incompatibility with the reactions via which AdoMet is used to produce acylhomoserine lactones (AHLs) for quorum sensing, these results support the possibility of using this route to selectively interfere with AHL biosynthesis without inhibiting bacterial growth.
Collapse
Affiliation(s)
- Mojun Zhao
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | | | - Pravin Bhansali
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, OH 43606, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, University of Toledo Health Sciences Campus, Toledo, OH 43614, USA
| |
Collapse
|
14
|
Abstract
Transfer RNA (tRNA) molecules contain many chemical modifications that are introduced after transcription. A major form of these modifications is methyl transfer to bases and backbone groups, using S-adenosyl methionine (AdoMet) as the methyl donor. Each methylation confers a specific advantage to tRNA in structure or in function. A remarkable methylation is to the G37 base on the 3'-side of the anticodon to generate m(1)G37-tRNA, which suppresses frameshift errors during protein synthesis and is therefore essential for cell growth in all three domains of life. This methylation is catalyzed by TrmD in bacteria and by Trm5 in eukaryotes and archaea. Although TrmD and Trm5 catalyze the same methylation reaction, kinetic analysis reveals that these two enzymes are unrelated to each other and are distinct in their reaction mechanism. This chapter summarizes the kinetic assays that are used to reveal the distinction between TrmD and Trm5. Three types of assays are described, the steady-state, the pre-steady-state, and the single-turnover assays, which collectively provide the basis for mechanistic investigation of AdoMet-dependent methyl transfer reactions.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania USA.
| | - Isao Masuda
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania USA
| |
Collapse
|
15
|
Maintenance of protein synthesis reading frame by EF-P and m(1)G37-tRNA. Nat Commun 2015; 6:7226. [PMID: 26009254 PMCID: PMC4445466 DOI: 10.1038/ncomms8226] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 04/20/2015] [Indexed: 01/20/2023] Open
Abstract
Maintaining the translational reading frame poses difficulty for the ribosome. Slippery mRNA sequences such as CC[C/U]-[C/U], read by isoacceptors of tRNA(Pro), are highly prone to +1 frameshift (+1FS) errors. Here we show that +1FS errors occur by two mechanisms, a slow mechanism when tRNA(Pro) is stalled in the P-site next to an empty A-site and a fast mechanism during translocation of tRNA(Pro) into the P-site. Suppression of +1FS errors requires the m(1)G37 methylation of tRNA(Pro) on the 3' side of the anticodon and the translation factor EF-P. Importantly, both m(1)G37 and EF-P show the strongest suppression effect when CC[C/U]-[C/U] are placed at the second codon of a reading frame. This work demonstrates that maintaining the reading frame immediately after the initiation of translation by the ribosome is an essential aspect of protein synthesis.
Collapse
|
16
|
DPY-17 and MUA-3 Interact for Connective Tissue-Like Tissue Integrity in Caenorhabditis elegans: A Model for Marfan Syndrome. G3-GENES GENOMES GENETICS 2015; 5:1371-8. [PMID: 25917920 PMCID: PMC4502371 DOI: 10.1534/g3.115.018465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
mua-3 is a Caenorhabditis elegans homolog of the mammalian fibrillin1, a monogenic cause of Marfan syndrome. We identified a new mutation of mua-3 that carries an in-frame deletion of 131 amino acids in the extracellular domain, which allows the mutants to survive in a temperature-dependent manner; at the permissive temperature, the mutants grow normally without obvious phenotypes, but at the nonpermissive temperature, more than 90% die during the L4 molt due to internal organ detachment. Using the temperature-sensitive lethality, we performed unbiased genetic screens to isolate suppressors to find genetic interactors of MUA-3. From two independent screens, we isolated mutations in dpy-17 as a suppressor. RNAi of dpy-17 in mua-3 rescued the lethality, confirming dpy-17 is a suppressor. dpy-17 encodes a collagen known to genetically interact with dpy-31, a BMP-1/Tolloid-like metalloprotease required for TGFβ activation in mammals. Human fibrillin1 mutants fail to sequester TGFβ2 leading to excess TGFβ signaling, which in turn contributes to Marfan syndrome or Marfan-related syndrome. Consistent with that, RNAi of dbl-1, a TGFβ homolog, modestly rescued the lethality of mua-3 mutants, suggesting a potentially conserved interaction between MUA-3 and a TGFβ pathway in C. elegans. Our work provides genetic evidence of the interaction between TGFβ and a fibrillin homolog, and thus provides a simple yet powerful genetic model to study TGFβ function in development of Marfan pathology.
Collapse
|
17
|
Abstract
Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome. Finally, the role of deacylated tRNAs in the bacterial “stringent response” mechanism that can lead to bacteria displaying antibiotic persistence phenotypes will be discussed.
Collapse
|
18
|
A divalent metal ion-dependent N(1)-methyl transfer to G37-tRNA. ACTA ACUST UNITED AC 2014; 21:1351-1360. [PMID: 25219964 DOI: 10.1016/j.chembiol.2014.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 01/09/2023]
Abstract
The catalytic mechanism of the majority of S-adenosyl methionine (AdoMet)-dependent methyl transferases requires no divalent metal ions. Here we report that methyl transfer from AdoMet to N(1) of G37-tRNA, catalyzed by the bacterial TrmD enzyme, is strongly dependent on divalent metal ions and that Mg(2+) is the most physiologically relevant. Kinetic isotope analysis, metal rescue, and spectroscopic measurements indicate that Mg(2+) is not involved in substrate binding, but in promoting methyl transfer. On the basis of the pH-activity profile indicating one proton transfer during the TrmD reaction, we propose a catalytic mechanism in which the role of Mg(2+) is to help to increase the nucleophilicity of N(1) of G37 and stabilize the negative developing charge on O(6) during attack on the methyl sulfonium of AdoMet. This work demonstrates how Mg(2+) contributes to the catalysis of AdoMet-dependent methyl transfer in one of the most crucial posttranscriptional modifications to tRNA.
Collapse
|