1
|
Liu J, Murray JI. Mechanisms of lineage specification in Caenorhabditis elegans. Genetics 2023; 225:iyad174. [PMID: 37847877 PMCID: PMC11491538 DOI: 10.1093/genetics/iyad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023] Open
Abstract
The studies of cell fate and lineage specification are fundamental to our understanding of the development of multicellular organisms. Caenorhabditis elegans has been one of the premiere systems for studying cell fate specification mechanisms at single cell resolution, due to its transparent nature, the invariant cell lineage, and fixed number of somatic cells. We discuss the general themes and regulatory mechanisms that have emerged from these studies, with a focus on somatic lineages and cell fates. We next review the key factors and pathways that regulate the specification of discrete cells and lineages during embryogenesis and postembryonic development; we focus on transcription factors and include numerous lineage diagrams that depict the expression of key factors that specify embryonic founder cells and postembryonic blast cells, and the diverse somatic cell fates they generate. We end by discussing some future perspectives in cell and lineage specification.
Collapse
Affiliation(s)
- Jun Liu
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - John Isaac Murray
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Broitman-Maduro G, Maduro MF. Evolutionary Change in Gut Specification in Caenorhabditis Centers on the GATA Factor ELT-3 in an Example of Developmental System Drift. J Dev Biol 2023; 11:32. [PMID: 37489333 PMCID: PMC10366740 DOI: 10.3390/jdb11030032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Cells in a developing animal embryo become specified by the activation of cell-type-specific gene regulatory networks. The network that specifies the gut in the nematode Caenorhabditis elegans has been the subject of study for more than two decades. In this network, the maternal factors SKN-1/Nrf and POP-1/TCF activate a zygotic GATA factor cascade consisting of the regulators MED-1,2 → END-1,3 → ELT-2,7, leading to the specification of the gut in early embryos. Paradoxically, the MED, END, and ELT-7 regulators are present only in species closely related to C. elegans, raising the question of how the gut can be specified without them. Recent work found that ELT-3, a GATA factor without an endodermal role in C. elegans, acts in a simpler ELT-3 → ELT-2 network to specify gut in more distant species. The simpler ELT-3 → ELT-2 network may thus represent an ancestral pathway. In this review, we describe the elucidation of the gut specification network in C. elegans and related species and propose a model by which the more complex network might have formed. Because the evolution of this network occurred without a change in phenotype, it is an example of the phenomenon of Developmental System Drift.
Collapse
Affiliation(s)
- Gina Broitman-Maduro
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| | - Morris F Maduro
- Department of Molecular, Cell, and Systems Biology, University of California-Riverside, Riverside, CA 92521, USA
| |
Collapse
|
3
|
Zhang Q, Li Q, Wang Y, Zhang Y, Peng R, Wang Z, Zhu B, Xu L, Gao X, Chen Y, Gao H, Hu J, Qian C, Ma M, Duan R, Li J, Zhang L. Characterization of Chromatin Accessibility in Fetal Bovine Chondrocytes. Animals (Basel) 2023; 13:1875. [PMID: 37889831 PMCID: PMC10251841 DOI: 10.3390/ani13111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 10/29/2023] Open
Abstract
Despite significant advances of the bovine epigenome investigation, new evidence for the epigenetic basis of fetal cartilage development remains lacking. In this study, the chondrocytes were isolated from long bone tissues of bovine fetuses at 90 days. The Assay for Transposase-Accessible Chromatin with high throughput sequencing (ATAC-seq) and transcriptome sequencing (RNA-seq) were used to characterize gene expression and chromatin accessibility profile in bovine chondrocytes. A total of 9686 open chromatin regions in bovine fetal chondrocytes were identified and 45% of the peaks were enriched in the promoter regions. Then, all peaks were annotated to the nearest gene for Gene Ontology (GO) and Kyoto Encylopaedia of Genes and Genomes (KEGG) analysis. Growth and development-related processes such as amide biosynthesis process (GO: 0043604) and translation regulation (GO: 006417) were enriched in the GO analysis. The KEGG analysis enriched endoplasmic reticulum protein processing signal pathway, TGF-β signaling pathway and cell cycle pathway, which are closely related to protein synthesis and processing during cell proliferation. Active transcription factors (TFs) were enriched by ATAC-seq, and were fully verified with gene expression levels obtained by RNA-seq. Among the top50 TFs from footprint analysis, known or potential cartilage development-related transcription factors FOS, FOSL2 and NFY were found. Overall, our data provide a theoretical basis for further determining the regulatory mechanism of cartilage development in bovine.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Qian Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Yahui Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Yapeng Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Ruiqi Peng
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Zezhao Wang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Bo Zhu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Lingyang Xu
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Xue Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Yan Chen
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Huijiang Gao
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Junwei Hu
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| | - Cong Qian
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| | - Minghao Ma
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| | - Rui Duan
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| | - Junya Li
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
| | - Lupei Zhang
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Q.Z.); (Q.L.); (Y.W.); (Y.Z.); (R.P.); (Z.W.); (B.Z.); (L.X.); (X.G.); (Y.C.); (H.G.)
- Academy of Pingliang Red Cattle, 492 South Ring Road, Kongtong District, Pingliang 744000, China; (J.H.); (C.Q.); (M.M.); (R.D.)
| |
Collapse
|
4
|
Broitman-Maduro G, Maduro MF. The long isoform of the C. elegans ELT-3 GATA factor can specify endoderm when overexpressed. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000748. [PMID: 36748041 PMCID: PMC9898813 DOI: 10.17912/micropub.biology.000748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/03/2023] [Accepted: 01/18/2023] [Indexed: 02/08/2023]
Abstract
The C. elegans elt-3 gene encodes a GATA transcription factor that is expressed in the hypodermis and has roles in hypodermal specification and regulation of collagen and stress response genes. The gene encodes short and long isoforms, ELT-3A and ELT-3B respectively, that differ upstream of their DNA-binding domains. Previous work showed that ELT-3A can specify hypodermal cell fates when forcibly overexpressed throughout early embryos. We recently showed that the ELT-3B orthologue from the distantly related species C. angaria can specify endodermal fates when forcibly overexpressed in C. elegans. Here, we show that C. elegans ELT-3B can also specify endoderm.
Collapse
Affiliation(s)
- Gina Broitman-Maduro
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA USA
| | - Morris F. Maduro
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA USA
,
Correspondence to: Morris F. Maduro (
)
| |
Collapse
|
5
|
Broitman-Maduro G, Sun S, Kikuchi T, Maduro MF. The GATA factor ELT-3 specifies endoderm in Caenorhabditis angaria in an ancestral gene network. Development 2022; 149:277064. [PMID: 36196618 PMCID: PMC9720673 DOI: 10.1242/dev.200984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Endoderm specification in Caenorhabditis elegans occurs through a network in which maternally provided SKN-1/Nrf, with additional input from POP-1/TCF, activates the GATA factor cascade MED-1,2→END-1,3→ELT-2,7. Orthologues of the MED, END and ELT-7 factors are found only among nematodes closely related to C. elegans, raising the question of how gut is specified in their absence in more distant species in the genus. We find that the C. angaria, C. portoensis and C. monodelphis orthologues of the GATA factor gene elt-3 are expressed in the early E lineage, just before their elt-2 orthologues. In C. angaria, Can-pop-1(RNAi), Can-elt-3(RNAi) and a Can-elt-3 null mutation result in a penetrant ‘gutless’ phenotype. Can-pop-1 is necessary for Can-elt-3 activation, showing that it acts upstream. Forced early E lineage expression of Can-elt-3 in C. elegans can direct the expression of a Can-elt-2 transgene and rescue an elt-7 end-1 end-3; elt-2 quadruple mutant strain to viability. Our results demonstrate an ancestral mechanism for gut specification and differentiation in Caenorhabditis involving a simpler POP-1→ELT-3→ELT-2 gene network.
Collapse
Affiliation(s)
- Gina Broitman-Maduro
- University of California 1 Department of Molecular, Cell and Systems Biology , , Riverside, CA 92521 , USA
| | - Simo Sun
- Faculty of Medicine, University of Miyazaki 2 Department of Infectious Diseases , , 5200 Kihara, Miyazaki 889-1692 , Japan
- Graduate School of Frontier Sciences, The University of Tokyo 3 Department of Integrated Biosciences , , Chiba 277-8562 , Japan
| | - Taisei Kikuchi
- Faculty of Medicine, University of Miyazaki 2 Department of Infectious Diseases , , 5200 Kihara, Miyazaki 889-1692 , Japan
- Graduate School of Frontier Sciences, The University of Tokyo 3 Department of Integrated Biosciences , , Chiba 277-8562 , Japan
| | - Morris F. Maduro
- University of California 1 Department of Molecular, Cell and Systems Biology , , Riverside, CA 92521 , USA
| |
Collapse
|
6
|
Wong MK, Ho VWS, Huang X, Chan LY, Xie D, Li R, Ren X, Guan G, Ma Y, Hu B, Yan H, Zhao Z. Initial characterization of gap phase introduction in every cell cycle of C. elegans embryogenesis. Front Cell Dev Biol 2022; 10:978962. [PMID: 36393848 PMCID: PMC9641140 DOI: 10.3389/fcell.2022.978962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Early embryonic cell cycles usually alternate between S and M phases without any gap phase. When the gap phases are developmentally introduced in various cell types remains poorly defined especially during embryogenesis. To establish the cell-specific introduction of gap phases in embryo, we generate multiple fluorescence ubiquitin cell cycle indicators (FUCCI) in C. elegans. Time-lapse 3D imaging followed by lineal expression profiling reveals sharp and differential accumulation of the FUCCI reporters, allowing the systematic demarcation of cell cycle phases throughout embryogenesis. Accumulation of the reporters reliably identifies both G1 and G2 phases only in two embryonic cells with an extended cell cycle length, suggesting that the remaining cells divide either without a G1 phase, or with a brief G1 phase that is too short to be picked up by our reporters. In summary, we provide an initial picture of gap phase introduction in a metazoan embryo. The newly developed FUCCI reporters pave the way for further characterization of developmental control of cell cycle progression.
Collapse
Affiliation(s)
- Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xiaotai Huang
- School of Computer Science and Technology, Xidian University, Xi’an, China
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Dongying Xie
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing, China
| | - Yiming Ma
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Boyi Hu
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Hong Yan
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- *Correspondence: Zhongying Zhao,
| |
Collapse
|
7
|
Katsanos D, Barkoulas M. Targeted DamID in C. elegans reveals a direct role for LIN-22 and NHR-25 in antagonizing the epidermal stem cell fate. SCIENCE ADVANCES 2022; 8:eabk3141. [PMID: 35119932 PMCID: PMC8816332 DOI: 10.1126/sciadv.abk3141] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/13/2021] [Indexed: 05/13/2023]
Abstract
Transcription factors are key players in gene networks controlling cell fate specification during development. In multicellular organisms, they display complex patterns of expression and binding to their targets, hence, tissue specificity is required in the characterization of transcription factor-target interactions. We introduce here targeted DamID (TaDa) as a method for tissue-specific transcription factor target identification in intact Caenorhabditis elegans animals. We use TaDa to recover targets in the epidermis for two factors, the HES1 homolog LIN-22, and the NR5A1/2 nuclear hormone receptor NHR-25. We demonstrate a direct link between LIN-22 and the Wnt signaling pathway through repression of the Frizzled receptor lin-17. We report a direct role for NHR-25 in promoting cell differentiation via repressing the expression of stem cell-promoting GATA factors. Our results expand our understanding of the epidermal gene network and highlight the potential of TaDa to dissect the architecture of tissue-specific gene regulatory networks.
Collapse
|
8
|
Riga A, Cravo J, Schmidt R, Pires HR, Castiglioni VG, van den Heuvel S, Boxem M. Caenorhabditis elegans LET-413 Scribble is essential in the epidermis for growth, viability, and directional outgrowth of epithelial seam cells. PLoS Genet 2021; 17:e1009856. [PMID: 34673778 PMCID: PMC8570498 DOI: 10.1371/journal.pgen.1009856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 11/05/2021] [Accepted: 10/04/2021] [Indexed: 12/12/2022] Open
Abstract
The conserved adapter protein Scribble (Scrib) plays essential roles in a variety of cellular processes, including polarity establishment, proliferation, and directed cell migration. While the mechanisms through which Scrib promotes epithelial polarity are beginning to be unraveled, its roles in other cellular processes including cell migration remain enigmatic. In C. elegans, the Scrib ortholog LET-413 is essential for apical–basal polarization and junction formation in embryonic epithelia. However, whether LET-413 is required for postembryonic development or plays a role in migratory events is not known. Here, we use inducible protein degradation to investigate the functioning of LET-413 in larval epithelia. We find that LET-413 is essential in the epidermal epithelium for growth, viability, and junction maintenance. In addition, we identify a novel role for LET-413 in the polarized outgrowth of the epidermal seam cells. These stem cell-like epithelial cells extend anterior and posterior directed apical protrusions in each larval stage to reconnect to their neighbors. We show that the role of LET-413 in seam cell outgrowth is likely mediated largely by the junctional component DLG-1 discs large, which we demonstrate is also essential for directed outgrowth of the seam cells. Our data uncover multiple essential functions for LET-413 in larval development and show that the polarized outgrowth of the epithelial seam cells is controlled by LET-413 Scribble and DLG-1 Discs large. Most cells in multicellular organisms are organized along a directional axis of cell polarity. One protein that is important for this polarized organization is the conserved polarity regulator Scribble. This protein has several functions, including forming the basolateral domains of cells, promoting the formation of cell junctions, and promoting cell migration. How Scribble performs these functions is not fully understood. In this paper we study the role of Scribble during larval development of the small nematode Caenorhabditis elegans using an inducible protein degradation system. We show that Scribble, called LET-413 in C. elegans, is essential in the epidermal epithelium for animal development, as depletion of LET-413 in only this tissue blocks growth. We also demonstrate that LET-413 is required for the polarized outgrowth of an epithelial cell type called the seam cells, a process resembling cell migration. Finally, we show that one major function of LET-413 in seam cell outgrowth is the localization of the junctional component Discs large (DLG-1), which we demonstrate is also essential for this process. Our data thus uncover multiple essential functions for LET-413 in larval development and provide new insights into how the directional outgrowth of epithelial seam cells is controlled.
Collapse
Affiliation(s)
- Amalia Riga
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Janine Cravo
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ruben Schmidt
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Helena R. Pires
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Victoria G. Castiglioni
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Sander van den Heuvel
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Institute of Biodynamics and Biocomplexity, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
9
|
Katsanos D, Ferrando-Marco M, Razzaq I, Aughey G, Southall TD, Barkoulas M. Gene expression profiling of epidermal cell types in C. elegans using Targeted DamID. Development 2021; 148:dev199452. [PMID: 34397094 PMCID: PMC7613258 DOI: 10.1242/dev.199452] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/05/2021] [Indexed: 12/19/2022]
Abstract
The epidermis of Caenorhabditis elegans is an essential tissue for survival because it contributes to the formation of the cuticle barrier as well as facilitating developmental progression and animal growth. Most of the epidermis consists of the hyp7 hypodermal syncytium, the nuclei of which are largely generated by the seam cells, which exhibit stem cell-like behaviour during development. How seam cell progenitors differ transcriptionally from the differentiated hypodermis is poorly understood. Here, we introduce Targeted DamID (TaDa) in C. elegans as a method for identifying genes expressed within a tissue of interest without cell isolation. We show that TaDa signal enrichment profiles can be used to identify genes transcribed in the epidermis and use this method to resolve differences in gene expression between the seam cells and the hypodermis. Finally, we predict and functionally validate new transcription and chromatin factors acting in seam cell development. These findings provide insights into cell type-specific gene expression profiles likely associated with epidermal cell fate patterning.
Collapse
Affiliation(s)
- Dimitris Katsanos
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Mar Ferrando-Marco
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Iqrah Razzaq
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Gabriel Aughey
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Tony D. Southall
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Michalis Barkoulas
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
10
|
Hutchison LAD, Berger B, Kohane IS. Meta-analysis of Caenorhabditis elegans single-cell developmental data reveals multi-frequency oscillation in gene activation. Bioinformatics 2020; 36:4047-4057. [PMID: 31860066 PMCID: PMC7332571 DOI: 10.1093/bioinformatics/btz864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/23/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
MOTIVATION The advent of in vivo automated techniques for single-cell lineaging, sequencing and analysis of gene expression has begun to dramatically increase our understanding of organismal development. We applied novel meta-analysis and visualization techniques to the EPIC single-cell-resolution developmental gene expression dataset for Caenorhabditis elegans from Bao, Murray, Waterston et al. to gain insights into regulatory mechanisms governing the timing of development. RESULTS Our meta-analysis of the EPIC dataset revealed that a simple linear combination of the expression levels of the developmental genes is strongly correlated with the developmental age of the organism, irrespective of the cell division rate of different cell lineages. We uncovered a pattern of collective sinusoidal oscillation in gene activation, in multiple dominant frequencies and in multiple orthogonal axes of gene expression, pointing to the existence of a coordinated, multi-frequency global timing mechanism. We developed a novel method based on Fisher's Discriminant Analysis to identify gene expression weightings that maximally separate traits of interest, and found that remarkably, simple linear gene expression weightings are capable of producing sinusoidal oscillations of any frequency and phase, adding to the growing body of evidence that oscillatory mechanisms likely play an important role in the timing of development. We cross-linked EPIC with gene ontology and anatomy ontology terms, employing Fisher's Discriminant Analysis methods to identify previously unknown positive and negative genetic contributions to developmental processes and cell phenotypes. This meta-analysis demonstrates new evidence for direct linear and/or sinusoidal mechanisms regulating the timing of development. We uncovered a number of previously unknown positive and negative correlations between developmental genes and developmental processes or cell phenotypes. Our results highlight both the continued relevance of the EPIC technique, and the value of meta-analysis of previously published results. The presented analysis and visualization techniques are broadly applicable across developmental and systems biology. AVAILABILITY AND IMPLEMENTATION Analysis software available upon request. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
| | - Bonnie Berger
- MIT Computer Science and AI Lab, Cambridge, MA 02139, USA
| | | |
Collapse
|
11
|
Lancaster BR, McGhee JD. How affinity of the ELT-2 GATA factor binding to cis-acting regulatory sites controls Caenorhabditis elegans intestinal gene transcription. Development 2020; 147:dev190330. [PMID: 32586978 PMCID: PMC7390640 DOI: 10.1242/dev.190330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/06/2020] [Indexed: 12/13/2022]
Abstract
We define a quantitative relationship between the affinity with which the intestine-specific GATA factor ELT-2 binds to cis-acting regulatory motifs and the resulting transcription of asp-1, a target gene representative of genes involved in Caenorhabditis elegans intestine differentiation. By establishing an experimental system that allows unknown parameters (e.g. the influence of chromatin) to effectively cancel out, we show that levels of asp-1 transcripts increase monotonically with increasing binding affinity of ELT-2 to variant promoter TGATAA sites. The shape of the response curve reveals that the product of the unbound ELT-2 concentration in vivo [i.e. (ELT-2free) or ELT-2 'activity'] and the largest ELT-XXTGATAAXX association constant (Kmax) lies between five and ten. We suggest that this (unitless) product [Kmax×(ELT-2free) or the equivalent product for any other transcription factor] provides an important quantitative descriptor of transcription-factor/regulatory-motif interaction in development, evolution and genetic disease. A more complicated model than simple binding affinity is necessary to explain the fact that ELT-2 appears to discriminate in vivo against equal-affinity binding sites that contain AGATAA instead of TGATAA.
Collapse
Affiliation(s)
- Brett R Lancaster
- Department of Biochemistry and Molecular Biology, University of Calgary, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta T2N 4N1, Canada
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, University of Calgary, Cumming School of Medicine, Alberta Children's Hospital Research Institute, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
12
|
Guan G, Fang M, Wong MK, Ho VWS, An X, Tang C, Huang X, Zhao Z. Multilevel regulation of muscle-specific transcription factor hlh-1 during Caenorhabditis elegans embryogenesis. Dev Genes Evol 2020; 230:265-278. [PMID: 32556563 PMCID: PMC7371654 DOI: 10.1007/s00427-020-00662-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 05/31/2020] [Indexed: 11/29/2022]
Abstract
hlh-1 is a myogenic transcription factor required for body-wall muscle specification during embryogenesis in Caenorhabditis elegans. Despite its well-known role in muscle specification, comprehensive regulatory control upstream of hlh-1 remains poorly defined. Here, we first established a statistical reference for the spatiotemporal expression of hlh-1 at single-cell resolution up to the second last round of divisions for most of the cell lineages (from 4- to 350-cell stage) using 13 wild-type embryos. We next generated lineal expression of hlh-1 after RNA interference (RNAi) perturbation of 65 genes, which were selected based on their degree of conservation, mutant phenotypes, and known roles in development. We then compared the expression profiles between wild-type and RNAi embryos by clustering according to their lineal expression patterns using mean-shift and density-based clustering algorithms, which not only confirmed the roles of existing genes but also uncovered the potential functions of novel genes in muscle specification at multiple levels, including cellular, lineal, and embryonic levels. By combining the public data on protein-protein interactions, protein-DNA interactions, and genetic interactions with our RNAi data, we inferred regulatory pathways upstream of hlh-1 that function globally or locally. This work not only revealed diverse and multilevel regulatory mechanisms coordinating muscle differentiation during C. elegans embryogenesis but also laid a foundation for further characterizing the regulatory pathways controlling muscle specification at the cellular, lineal (local), or embryonic (global) level.
Collapse
Affiliation(s)
- Guoye Guan
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Meichen Fang
- School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Xiaomeng An
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- School of Physics, Peking University, Beijing, 100871, China
| | - Xiaotai Huang
- School of Computer Science and Technology, Xidian University, Xi'an, 710126, Shaanxi, China.
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China.
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
13
|
Specific Interactions Between Autosome and X Chromosomes Cause Hybrid Male Sterility in Caenorhabditis Species. Genetics 2019; 212:801-813. [PMID: 31064822 DOI: 10.1534/genetics.119.302202] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/03/2019] [Indexed: 11/18/2022] Open
Abstract
Hybrid male progeny from interspecies crosses are more prone to sterility or inviability than hybrid female progeny, and the male sterility and inviability often demonstrate parent-of-origin asymmetry. However, the underlying genetic mechanism of asymmetric sterility or inviability remains elusive. We previously established a genome-wide hybrid incompatibility (HI) landscape between Caenorhabditis briggsae and C. nigoni by phenotyping a large collection of C. nigoni strains each carrying a C. briggsae introgression. In this study, we systematically dissect the genetic mechanism of asymmetric sterility and inviability in both hybrid male and female progeny between the two species. Specifically, we performed reciprocal crosses between C . briggsae and different C. nigoni strains that each carry a GFP-labeled C. briggsae genomic fragment referred to as introgression, and scored the HI phenotypes in the F1 progeny. The aggregated introgressions cover 94.6% of the C. briggsae genome, including 100% of the X chromosome. Surprisingly, we observed that two C. briggsae X fragments that produce C. nigoni male sterility as an introgression rescued hybrid F1 sterility in males fathered by C. briggsae Subsequent backcrossing analyses indicated that a specific interaction between the X-linked interaction and one autosome introgression is required to rescue the hybrid male sterility. In addition, we identified another two C. briggsae genomic intervals on chromosomes II and IV that can rescue the inviability, but not the sterility, of hybrid F1 males fathered by C. nigoni, suggesting the involvement of differential epistatic interactions in the asymmetric hybrid male fertility and inviability. Importantly, backcrossing of the rescued sterile males with C. nigoni led to the isolation of a 1.1-Mb genomic interval that specifically interacts with an X-linked introgression, which is essential for hybrid male fertility. We further identified three C. briggsae genomic intervals on chromosome I, II, and III that produced inviability in all F1 progeny, dependent on or independent of the parent-of-origin. Taken together, we identified multiple independent interacting loci that are responsible for asymmetric hybrid male and female sterility, and inviability, which lays a foundation for their molecular characterization.
Collapse
|
14
|
Chen L, Ho VWS, Wong MK, Huang X, Chan LY, Ng HCK, Ren X, Yan H, Zhao Z. Establishment of Signaling Interactions with Cellular Resolution for Every Cell Cycle of Embryogenesis. Genetics 2018; 209:37-49. [PMID: 29567658 PMCID: PMC5937172 DOI: 10.1534/genetics.118.300820] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 03/19/2018] [Indexed: 11/18/2022] Open
Abstract
Intercellular signaling interactions play a key role in breaking fate symmetry during animal development. Identification of signaling interactions at cellular resolution is technically challenging, especially in a developing embryo. Here, we develop a platform that allows automated inference and validation of signaling interactions for every cell cycle of Caenorhabditis elegans embryogenesis. This is achieved by the generation of a systems-level cell contact map, which consists of 1114 highly confident intercellular contacts, by modeling analysis and is validated through cell membrane labeling coupled with cell lineage analysis. We apply the map to identify cell pairs between which a Notch signaling interaction takes place. By generating expression patterns for two ligands and two receptors of the Notch signaling pathway with cellular resolution using the automated expression profiling technique, we are able to refine existing and identify novel Notch interactions during C. elegans embryogenesis. Targeted cell ablation followed by cell lineage analysis demonstrates the roles of signaling interactions during cell division in breaking fate symmetry. Finally, we describe the development of a website that allows online access to the cell-cell contact map for mapping of other signaling interactions by the community. The platform can be adapted to establish cellular interactions from any other signaling pathway.
Collapse
Affiliation(s)
- Long Chen
- Department of Electronic Engineering, City University of Hong Kong, China
| | | | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, China
| | - Xiaotai Huang
- School of Computer Science and Technology, Xidian University, Xi'an, 710126 China
| | - Lu-Yan Chan
- Department of Biology, Hong Kong Baptist University, China
| | | | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, China
| | - Hong Yan
- Department of Electronic Engineering, City University of Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, China
- State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, China
| |
Collapse
|
15
|
Comparative proteome analysis between C . briggsae embryos and larvae reveals a role of chromatin modification proteins in embryonic cell division. Sci Rep 2017; 7:4296. [PMID: 28655887 PMCID: PMC5487359 DOI: 10.1038/s41598-017-04533-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/16/2017] [Indexed: 11/12/2022] Open
Abstract
Caenorhabditis briggsae has emerged as a model for comparative biology against model organism C. elegans. Most of its cell fate specifications are completed during embryogenesis whereas its cell growth is achieved mainly in larval stages. The molecular mechanism underlying the drastic developmental changes is poorly understood. To gain insights into the molecular changes between the two stages, we compared the proteomes between the two stages using iTRAQ. We identified a total of 2,791 proteins in the C. briggsae embryos and larvae, 247 of which undergo up- or down-regulation between the two stages. The proteins that are upregulated in the larval stages are enriched in the Gene Ontology categories of energy production, protein translation, and cytoskeleton; whereas those upregulated in the embryonic stage are enriched in the categories of chromatin dynamics and posttranslational modification, suggesting a more active chromatin modification in the embryos than in the larva. Perturbation of a subset of chromatin modifiers followed by cell lineage analysis suggests their roles in controlling cell division pace. Taken together, we demonstrate a general molecular switch from chromatin modification to metabolism during the transition from C. briggsae embryonic to its larval stages using iTRAQ approach. The switch might be conserved across metazoans.
Collapse
|
16
|
Zhao H, Wang DD, Chen L, Liu X, Yan H. Identifying Multi-Dimensional Co-Clusters in Tensors Based on Hyperplane Detection in Singular Vector Spaces. PLoS One 2016; 11:e0162293. [PMID: 27598575 PMCID: PMC5012624 DOI: 10.1371/journal.pone.0162293] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 08/19/2016] [Indexed: 11/18/2022] Open
Abstract
Co-clustering, often called biclustering for two-dimensional data, has found many applications, such as gene expression data analysis and text mining. Nowadays, a variety of multi-dimensional arrays (tensors) frequently occur in data analysis tasks, and co-clustering techniques play a key role in dealing with such datasets. Co-clusters represent coherent patterns and exhibit important properties along all the modes. Development of robust co-clustering techniques is important for the detection and analysis of these patterns. In this paper, a co-clustering method based on hyperplane detection in singular vector spaces (HDSVS) is proposed. Specifically in this method, higher-order singular value decomposition (HOSVD) transforms a tensor into a core part and a singular vector matrix along each mode, whose row vectors can be clustered by a linear grouping algorithm (LGA). Meanwhile, hyperplanar patterns are extracted and successfully supported the identification of multi-dimensional co-clusters. To validate HDSVS, a number of synthetic and biological tensors were adopted. The synthetic tensors attested a favorable performance of this algorithm on noisy or overlapped data. Experiments with gene expression data and lineage data of embryonic cells further verified the reliability of HDSVS to practical problems. Moreover, the detected co-clusters are well consistent with important genetic pathways and gene ontology annotations. Finally, a series of comparisons between HDSVS and state-of-the-art methods on synthetic tensors and a yeast gene expression tensor were implemented, verifying the robust and stable performance of our method.
Collapse
Affiliation(s)
- Hongya Zhao
- Industrial Center, Shenzhen Polytechnic, Shenzhen, China
| | - Debby D. Wang
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
- Caritas Institute of Higher Education, New Territories, Hong Kong
| | - Long Chen
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
- * E-mail:
| | - Xinyu Liu
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Hong Yan
- Department of Electronic Engineering, City University of Hong Kong, Kowloon, Hong Kong
| |
Collapse
|
17
|
Wong MK, Guan D, Ng KHC, Ho VWS, An X, Li R, Ren X, Zhao Z. Timing of Tissue-specific Cell Division Requires a Differential Onset of Zygotic Transcription during Metazoan Embryogenesis. J Biol Chem 2016; 291:12501-12513. [PMID: 27056332 DOI: 10.1074/jbc.m115.705426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 12/20/2022] Open
Abstract
Metazoan development demands not only precise cell fate differentiation but also accurate timing of cell division to ensure proper development. How cell divisions are temporally coordinated during development is poorly understood. Caenorhabditis elegans embryogenesis provides an excellent opportunity to study this coordination due to its invariant development and widespread division asynchronies. One of the most pronounced asynchronies is a significant delay of cell division in two endoderm progenitor cells, Ea and Ep, hereafter referred to as E2, relative to its cousins that mainly develop into mesoderm organs and tissues. To unravel the genetic control over the endoderm-specific E2 division timing, a total of 822 essential and conserved genes were knocked down using RNAi followed by quantification of cell cycle lengths using in toto imaging of C. elegans embryogenesis and automated lineage. Intriguingly, knockdown of numerous genes encoding the components of general transcription pathway or its regulatory factors leads to a significant reduction in the E2 cell cycle length but an increase in cell cycle length of the remaining cells, indicating a differential requirement of transcription for division timing between the two. Analysis of lineage-specific RNA-seq data demonstrates an earlier onset of transcription in endoderm than in other germ layers, the timing of which coincides with the birth of E2, supporting the notion that the endoderm-specific delay in E2 division timing demands robust zygotic transcription. The reduction in E2 cell cycle length is frequently associated with cell migration defect and gastrulation failure. The results suggest that a tissue-specific transcriptional activation is required to coordinate fate differentiation, division timing, and cell migration to ensure proper development.
Collapse
Affiliation(s)
- Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China
| | - Daogang Guan
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China
| | - Kaoru Hon Chun Ng
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China
| | - Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China
| | - Xiaomeng An
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China
| | - Runsheng Li
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong Baptist University, Hong Kong, China; State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China.
| |
Collapse
|
18
|
Goszczynski B, Captan VV, Danielson AM, Lancaster BR, McGhee JD. A 44 bp intestine-specific hermaphrodite-specific enhancer from the C. elegans vit-2 vitellogenin gene is directly regulated by ELT-2, MAB-3, FKH-9 and DAF-16 and indirectly regulated by the germline, by daf-2/insulin signaling and by the TGF-β/Sma/Mab pathway. Dev Biol 2016; 413:112-27. [PMID: 26963674 DOI: 10.1016/j.ydbio.2016.02.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 01/29/2016] [Accepted: 02/10/2016] [Indexed: 11/29/2022]
Abstract
The Caenorhabditis elegans vitellogenin genes are transcribed in the intestine of adult hermaphrodites but not of males. A 44-bp region from the vit-2 gene promoter is able largely to reconstitute this tissue-, stage- and sex-specific-expression. This "enhancer" contains a binding site for the DM-domain factor MAB-3, the male-specific repressor of vitellogenesis, as well as an activator site that we show is the direct target of the intestinal GATA factor ELT-2. We further show that the enhancer is directly activated by the winged-helix/forkhead-factor FKH-9, (whose gene has been shown by others to be a direct target of DAF-16), by an unknown activator binding to the MAB-3 site, and by the full C. elegans TGF-β/Sma/Mab pathway acting within the intestine. The vit-2 gene has been shown by others to be repressed by the daf-2/daf-16 insulin signaling pathway, which so strongly influences aging and longevity in C. elegans. We show that the activity of the 44 bp vit-2 enhancer is abolished by loss of daf-2 but is restored by simultaneous loss of daf-16. DAF-2 acts from outside of the intestine but DAF-16 acts both from outside of the intestine and from within the intestine where it binds directly to the same non-canonical target site that interacts with FKH-9. Activity of the 44 bp vit-2 enhancer is also inhibited by loss of the germline, in a manner that is only weakly influenced by DAF-16 but that is strongly influenced by KRI-1, a key downstream effector in the pathway by which germline loss increases C. elegans lifespan. The complex behavior of this enhancer presumably allows vitellogenin gene transcription to adjust to demands of body size, germline proliferation and nutritional state but we suggest that the apparent involvement of this enhancer in aging and longevity "pathways" could be incidental.
Collapse
Affiliation(s)
- Barbara Goszczynski
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vasile V Captan
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alicia M Danielson
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Brett R Lancaster
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - James D McGhee
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
19
|
Block DH, Shapira M. GATA transcription factors as tissue-specific master regulators for induced responses. WORM 2015; 4:e1118607. [PMID: 27123374 PMCID: PMC4826149 DOI: 10.1080/21624054.2015.1118607] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 01/15/2023]
Abstract
GATA transcription factors play important roles in directing developmental genetic programs and cell differentiation, and are conserved in animals, plants and fungi. C. elegans has 11 GATA-type transcription factors that orchestrate development of the gut, epidermis and vulva. However, the expression of certain GATA proteins persists into adulthood, where their function is less understood. Accumulating evidence demonstrates contributions of 2 terminal differentiation GATA transcription factors, ELT-2 and ELT-3, to epithelial immune responses in the adult intestine and epidermis (hypodermis), respectively. Involvement in other stress responses has also been documented. We recently showed that ELT-2 acted as a tissue-specific master regulator, cooperating with 2 transcription factors activated by the p38 pathway, ATF-7 and SKN-1, to control immune responses in the adult C. elegans intestine. Here, we discuss the broader implications of these findings for understanding the involvement of GATA transcription factors in adult stress responses, and draw parallels between ELT-2 and ELT-3 to speculate that the latter may fulfill similar tissue-specific functions in the epidermis.
Collapse
Affiliation(s)
- Dena Hs Block
- Department of Integrative Biology; University of California ; Berkeley, CA USA
| | - Michael Shapira
- Department of Integrative Biology; University of California; Berkeley, CA USA; Graduate Group in Microbiology; University of California; Berkeley, CA USA
| |
Collapse
|
20
|
Ho VWS, Wong MK, An X, Guan D, Shao J, Ng HCK, Ren X, He K, Liao J, Ang Y, Chen L, Huang X, Yan B, Xia Y, Chan LLH, Chow KL, Yan H, Zhao Z. Systems-level quantification of division timing reveals a common genetic architecture controlling asynchrony and fate asymmetry. Mol Syst Biol 2015; 11:814. [PMID: 26063786 PMCID: PMC4501849 DOI: 10.15252/msb.20145857] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Coordination of cell division timing is crucial for proper cell fate specification and tissue growth. However, the differential regulation of cell division timing across or within cell types during metazoan development remains poorly understood. To elucidate the systems-level genetic architecture coordinating division timing, we performed a high-content screening for genes whose depletion produced a significant reduction in the asynchrony of division between sister cells (ADS) compared to that of wild-type during Caenorhabditis elegans embryogenesis. We quantified division timing using 3D time-lapse imaging followed by computer-aided lineage analysis. A total of 822 genes were selected for perturbation based on their conservation and known roles in development. Surprisingly, we find that cell fate determinants are not only essential for establishing fate asymmetry, but also are imperative for setting the ADS regardless of cellular context, indicating a common genetic architecture used by both cellular processes. The fate determinants demonstrate either coupled or separate regulation between the two processes. The temporal coordination appears to facilitate cell migration during fate specification or tissue growth. Our quantitative dataset with cellular resolution provides a resource for future analyses of the genetic control of spatial and temporal coordination during metazoan development.
Collapse
Affiliation(s)
- Vincy Wing Sze Ho
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Ming-Kin Wong
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaomeng An
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Daogang Guan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Jiaofang Shao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Hon Chun Kaoru Ng
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiaoliang Ren
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Kan He
- Department of Biology, Hong Kong Baptist University, Hong Kong, China Center for Stem Cell and Translational Medicine, School of Life Sciences Anhui University, Hefei, China
| | - Jinyue Liao
- Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yingjin Ang
- Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Long Chen
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Xiaotai Huang
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Bin Yan
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Leanne Lai Hang Chan
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - King Lau Chow
- Division of Life Science and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hong Yan
- Department of Electronic Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhongying Zhao
- Department of Biology, Hong Kong Baptist University, Hong Kong, China State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
21
|
Head B, Aballay A. Recovery from an acute infection in C. elegans requires the GATA transcription factor ELT-2. PLoS Genet 2014; 10:e1004609. [PMID: 25340560 PMCID: PMC4207467 DOI: 10.1371/journal.pgen.1004609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 07/17/2014] [Indexed: 11/18/2022] Open
Abstract
The mechanisms involved in the recognition of microbial pathogens and activation of the immune system have been extensively studied. However, the mechanisms involved in the recovery phase of an infection are incompletely characterized at both the cellular and physiological levels. Here, we establish a Caenorhabditis elegans-Salmonella enterica model of acute infection and antibiotic treatment for studying biological changes during the resolution phase of an infection. Using whole genome expression profiles of acutely infected animals, we found that genes that are markers of innate immunity are down-regulated upon recovery, while genes involved in xenobiotic detoxification, redox regulation, and cellular homeostasis are up-regulated. In silico analyses demonstrated that genes altered during recovery from infection were transcriptionally regulated by conserved transcription factors, including GATA/ELT-2, FOXO/DAF-16, and Nrf/SKN-1. Finally, we found that recovery from an acute bacterial infection is dependent on ELT-2 activity.
Collapse
Affiliation(s)
- Brian Head
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Alejandro Aballay
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
22
|
Nuclear receptors in nematode development: Natural experiments made by a phylum. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:224-37. [PMID: 24984201 DOI: 10.1016/j.bbagrm.2014.06.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/21/2014] [Accepted: 06/23/2014] [Indexed: 11/21/2022]
Abstract
The development of complex multicellular organisms is dependent on regulatory decisions that are necessary for the establishment of specific differentiation and metabolic cellular states. Nuclear receptors (NRs) form a large family of transcription factors that play critical roles in the regulation of development and metabolism of Metazoa. Based on their DNA binding and ligand binding domains, NRs are divided into eight NR subfamilies from which representatives of six subfamilies are present in both deuterostomes and protostomes indicating their early evolutionary origin. In some nematode species, especially in Caenorhabditis, the family of NRs expanded to a large number of genes strikingly exceeding the number of NR genes in vertebrates or insects. Nematode NRs, including the multiplied Caenorhabditis genes, show clear relation to vertebrate and insect homologues belonging to six of the eight main NR subfamilies. This review summarizes advances in research of nematode NRs and their developmental functions. Nematode NRs can reveal evolutionarily conserved mechanisms that regulate specific developmental and metabolic processes as well as new regulatory adaptations. They represent the results of a large number of natural experiments with structural and functional potential of NRs for the evolution of the phylum. The conserved and divergent character of nematode NRs adds a new dimension to our understanding of the general biology of regulation by NRs. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
|