1
|
Soto-Gamez A, Wang Y, Zhou X, Seras L, Quax W, Demaria M. Enhanced extrinsic apoptosis of therapy-induced senescent cancer cells using a death receptor 5 (DR5) selective agonist. Cancer Lett 2022; 525:67-75. [PMID: 34728311 DOI: 10.1016/j.canlet.2021.10.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/05/2023]
Abstract
Genotoxic agents are widely used anti-cancer therapies because of their ability to interfere with highly proliferative cells. An important outcome of these interventions is the induction of a state of permanent arrest also known as cellular senescence. However, senescent cancer cells are characterized by genomic instability and are at risk of escaping the growth arrest to eventually facilitate cancer relapse. The tumor necrosis factor related apoptosis inducing ligand (TRAIL) signals extrinsic apoptosis via Death Receptors (DR) 4 and 5, while Decoy Receptors (DcR) 1 and 2, and Osteoprotegerin (OPG) are homologous to death receptors but incapable of transducing an apoptotic signal. The use of recombinant TRAIL as an anti-cancer strategy in combination with chemotherapy is currently in development, and a major question remains whether senescent cancer cells respond to TRAIL. Here, we show variable sensitivity of cancer cells to TRAIL after senescence induction, and upregulation of both pro-apoptotic and anti-apoptotic receptors in therapy-induced senescent cancer cells. A DR5-selective TRAIL variant (DHER), unable to bind to DcR1 or OPG, was more effective in inducing apoptosis of senescent cancer cells compared to wild-type TRAIL. Importantly, no apoptosis induction was observed in non-cancerous cells, even at the highest concentrations tested. Our results suggest that targeting DR5 can serve as a novel therapeutic strategy for the elimination of therapy-induced senescent cancer cells.
Collapse
Affiliation(s)
- Abel Soto-Gamez
- European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands; University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, Netherlands
| | - Yizhou Wang
- University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, Netherlands
| | - Xinyu Zhou
- University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, Netherlands
| | - Lorina Seras
- University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, Netherlands
| | - Wim Quax
- University of Groningen, Groningen Research Institute of Pharmacy, Chemical and Pharmaceutical Biology, Groningen, Netherlands.
| | - Marco Demaria
- European Institute for the Biology of Aging (ERIBA), University Medical Center Groningen (UMCG), Groningen, Netherlands.
| |
Collapse
|
2
|
Ria R, Vacca A. Bone Marrow Stromal Cells-Induced Drug Resistance in Multiple Myeloma. Int J Mol Sci 2020; 21:ijms21020613. [PMID: 31963513 PMCID: PMC7013615 DOI: 10.3390/ijms21020613] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/12/2020] [Accepted: 01/14/2020] [Indexed: 01/06/2023] Open
Abstract
Multiple myeloma is a B-cell lineage cancer in which neoplastic plasma cells expand in the bone marrow and pathophysiological interactions with components of microenvironment influence many biological aspects of the malignant phenotype, including apoptosis, survival, proliferation, and invasion. Despite the therapeutic progress achieved in the last two decades with the introduction of a more effective and safe new class of drugs (i.e., immunomodulators, proteasome inhibitors, monoclonal antibodies), there is improvement in patient survival, and multiple myeloma (MM) remains a non-curable disease. The bone marrow microenvironment is a complex structure composed of cells, extracellular matrix (ECM) proteins, and cytokines, in which tumor plasma cells home and expand. The role of the bone marrow (BM) microenvironment is fundamental during MM disease progression because modification induced by tumor plasma cells is crucial for composing a "permissive" environment that supports MM plasma cells proliferation, migration, survival, and drug resistance. The "activated phenotype" of the microenvironment of multiple myeloma is functional to plasma cell proliferation and spreading and to plasma cell drug resistance. Plasma cell drug resistance induced by bone marrow stromal cells is mediated by stress-managing pathways, autophagy, transcriptional rewiring, and non-coding RNAs dysregulation. These processes represent novel targets for the ever-increasing anti-MM therapeutic armamentarium.
Collapse
Affiliation(s)
- Roberto Ria
- Correspondence: ; Tel.: +39-080-559-31-06; Fax: +39-080-559-38-04
| | | |
Collapse
|
3
|
de Looff M, de Jong S, Kruyt FAE. Multiple Interactions Between Cancer Cells and the Tumor Microenvironment Modulate TRAIL Signaling: Implications for TRAIL Receptor Targeted Therapy. Front Immunol 2019; 10:1530. [PMID: 31333662 PMCID: PMC6617985 DOI: 10.3389/fimmu.2019.01530] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/19/2019] [Indexed: 01/09/2023] Open
Abstract
Tumor necrosis factor (TNF) related apoptosis-inducing ligand (TRAIL) signaling is far more complex than initially anticipated and can lead to either anti- or protumorigenic effects, hampering the successful clinical use of therapeutic TRAIL receptor agonists. Cell autonomous resistance mechanisms have been identified in addition to paracrine factors that can modulate apoptosis sensitivity. The tumor microenvironment (TME), consisting of cellular and non-cellular components, is a source for multiple signals that are able to modulate TRAIL signaling in tumor and stromal cells. Particularly immune effector cells, also part of the TME, employ the TRAIL/TRAIL-R system whereby cell surface expressed TRAIL can activate apoptosis via TRAIL receptors on tumor cells, which is part of tumor immune surveillance. In this review we aim to dissect the impact of the TME on signaling induced by endogenous and exogenous/therapeutic TRAIL, thereby distinguishing different components of the TME such as immune effector cells, neutrophils, macrophages, and non-hematopoietic stromal cells. In addition, also non-cellular biochemical and biophysical properties of the TME are considered including mechanical stress, acidity, hypoxia, and glucose deprivation. Available literature thus far indicates that tumor-TME interactions are complex and often bidirectional leading to tumor-enhancing or tumor-reducing effects in a tumor model- and tumor type-dependent fashion. Multiple signals originating from different components of the TME simultaneously affect TRAIL receptor signaling. We conclude that in order to unleash the full clinical potential of TRAIL receptor agonists it will be necessary to increase our understanding of the contribution of different TME components on outcome of therapeutic TRAIL receptor activation in order to identify the most critical mechanism responsible for resistance, allowing the design of effective combination treatments.
Collapse
Affiliation(s)
- Margot de Looff
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Steven de Jong
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Frank A E Kruyt
- Department of Medical Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
4
|
Wang Y, Michiels T, Setroikromo R, van Merkerk R, Cool RH, Quax WJ. Creation of RANKL mutants with low affinity for decoy receptor OPG and their potential anti-fibrosis activity. FEBS J 2019; 286:3582-3593. [PMID: 31081236 PMCID: PMC6852375 DOI: 10.1111/febs.14925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/11/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Fibrosis is characterized by the progressive alteration of the tissue structure due to the excessive production of extracellular matrix (ECM). The signaling system encompassing Receptor Activator of Nuclear factor NF‐κB Ligand (RANKL)/RANK/Osteoprotegerin (OPG) was discovered to play an important role in the regulation of ECM formation and degradation in bone tissue. However, whether and how this signaling pathway plays a role in liver or pulmonary ECM degradation is unclear up to now. Interestingly, increased decoy receptor OPG levels are found in fibrotic tissues. We hypothesize that RANKL can stimulate RANK on macrophages and initiate the process of ECM degradation. This process may be inhibited by highly expressed OPG in fibrotic conditions. In this case, RANKL mutants that can bind to RANK without binding to OPG might become promising therapeutic candidates. In this study, we built a structure‐based library containing 44 RANKL mutants and found that the Q236 residue of RANKL is important for OPG binding. We show that RANKL_Q236D can activate RAW cells to initiate the process of ECM degradation and is able to escape from the obstruction by exogenous OPG. We propose that the generation of RANKL mutants with reduced affinity for OPG is a promising strategy for the exploration of new therapeutics against fibrosis.
Collapse
Affiliation(s)
- Yizhou Wang
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Timo Michiels
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Robbert H Cool
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| | - Wim J Quax
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, The Netherlands
| |
Collapse
|
5
|
Mesenchymal stem cells expressing osteoprotegerin variants inhibit osteolysis in a murine model of multiple myeloma. Blood Adv 2017; 1:2375-2385. [PMID: 29296887 DOI: 10.1182/bloodadvances.2017007310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022] Open
Abstract
The current treatment options for multiple myeloma (MM) osteolytic lesions are mainly combinations of chemotherapy and other small-molecule inhibitors, but toxic side effects still remain a major concern. Studies have shown that osteoclast activity is enhanced in MM patients through increased expression of receptor activator of nuclear factor κB ligand (RANKL), triggering RANK signaling on osteoclast precursors, which results in aggressive bone resorption. Furthermore, osteoprotegerin (OPG), a decoy receptor for RANKL, and the osteogenic potential of mesenchymal stem cells (MSCs) are significantly decreased in myeloma patients with multiple bone lesions. Thus, the use of OPG as a therapeutic molecule would greatly decrease osteolytic damage and reduce morbidity. However, in addition to inhibiting osteoclast activation, OPG binds to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), thereby rendering the tumor cells resistant to TRAIL-induced apoptosis and limiting the use of OPG for therapy. The present study developed a bone-disseminated myeloma disease model in mouse and successfully tested a cell therapy approach using MSCs, genetically engineered to express OPG variants that retain the capacity to bind RANKL, but do not bind TRAIL. Our results of skeletal remodeling following this regenerative stem cell therapy with OPG variants indicated a significant protection against myeloma-induced osteolytic bone damage in areas of major myeloma skeletal dissemination, suggesting the potential of this therapy for treating osteolytic damage in myeloma patients.
Collapse
|
6
|
Gamie Z, Kapriniotis K, Papanikolaou D, Haagensen E, Da Conceicao Ribeiro R, Dalgarno K, Krippner-Heidenreich A, Gerrand C, Tsiridis E, Rankin KS. TNF-related apoptosis-inducing ligand (TRAIL) for bone sarcoma treatment: Pre-clinical and clinical data. Cancer Lett 2017; 409:66-80. [PMID: 28888998 DOI: 10.1016/j.canlet.2017.08.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/24/2017] [Accepted: 08/28/2017] [Indexed: 01/25/2023]
Abstract
Bone sarcomas are rare, highly malignant mesenchymal tumours that affect teenagers and young adults, as well as older patients. Despite intensive, multimodal therapy, patients with bone sarcomas have poor 5-year survival, close to 50%, with lack of improvement over recent decades. TNF-related apoptosis-inducing ligand (TRAIL), a member of the tumour necrosis factor (TNF) ligand superfamily (TNFLSF), has been found to induce apoptosis in cancer cells while sparing nontransformed cells, and may therefore offer a promising new approach to treatment. We cover the existing preclinical and clinical evidence about the use of TRAIL and other death receptor agonists in bone sarcoma treatment. In vitro studies indicate that TRAIL and other death receptor agonists are generally potent against bone sarcoma cell lines. Ewing's sarcoma cell lines present the highest sensitivity, whereas osteosarcoma and chondrosarcoma cell lines are considered less sensitive. In vivo studies also demonstrate satisfactory results, especially in Ewing's sarcoma xenograft models. However, the few clinical trials in the literature show only low or moderate efficacy of TRAIL in treating bone sarcoma. Potential strategies to overcome the in vivo resistance reported include co-administration with other drugs and the potential to deliver TRAIL on the surface of primed mesenchymal or immune cells and the use of targeted single chain antibodies such as scFv-scTRAIL.
Collapse
Affiliation(s)
- Zakareya Gamie
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| | - Konstantinos Kapriniotis
- Academic Orthopedic Department, "PapaGeorgiou" General Hospital, Thessaloniki, Greece; CORE-Center for Orthopedic Research at CIRI-AUTh, Aristotle University Medical School, Thessaloniki, Hellas, Greece.
| | - Dimitra Papanikolaou
- Academic Orthopedic Department, "PapaGeorgiou" General Hospital, Thessaloniki, Greece; CORE-Center for Orthopedic Research at CIRI-AUTh, Aristotle University Medical School, Thessaloniki, Hellas, Greece.
| | - Emma Haagensen
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| | - Ricardo Da Conceicao Ribeiro
- School of Mechanical and Systems Engineering, Stephenson Building, Claremont Road, Newcastle Upon Tyne, NE1 7RU, UK.
| | - Kenneth Dalgarno
- School of Mechanical and Systems Engineering, Stephenson Building, Claremont Road, Newcastle Upon Tyne, NE1 7RU, UK.
| | - Anja Krippner-Heidenreich
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| | - Craig Gerrand
- North of England Bone and Soft Tissue Tumour Service, Freeman Hospital, Freeman Road, Newcastle Upon Tyne, NE7 7DN, UK.
| | - Eleftherios Tsiridis
- Academic Orthopedic Department, "PapaGeorgiou" General Hospital, Thessaloniki, Greece; CORE-Center for Orthopedic Research at CIRI-AUTh, Aristotle University Medical School, Thessaloniki, Hellas, Greece; Secretary General European Hip Society, Austria.
| | - Kenneth Samora Rankin
- Northern Institute for Cancer Research, Paul O'Gorman Building, Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
| |
Collapse
|
7
|
Chen L, Xiang B, Wang X, Xiang C. Exosomes derived from human menstrual blood-derived stem cells alleviate fulminant hepatic failure. Stem Cell Res Ther 2017; 8:9. [PMID: 28115012 PMCID: PMC5260032 DOI: 10.1186/s13287-016-0453-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/28/2016] [Accepted: 12/07/2016] [Indexed: 02/08/2023] Open
Abstract
Background Human menstrual blood-derived stem cells (MenSCs) are a novel source of MSCs that provide the advantage of being easy to collect and isolate. Exosomes contain some mRNAs and adhesion molecules that can potentially impact cellular and animal physiology. This study aimed to investigate the therapeutic potential of MenSC-derived exosomes (MenSC-Ex) on AML12 cells (in vitro) and D-GalN/LPS-induced FHF mice (in vivo). Methods Transmission electron microscopy and Western blot were used to identify MenSC-Ex. Antibody array was used to examine cytokine levels on MenSC-Ex. MenSC-Ex were treated in D-GalN/LPS-induced AML12 in vitro. Cell proliferation and apoptosis were measured. MenSC-Ex were injected into the tail veins of mice 24 h before treatment with D-GalN/LPS. Blood and liver tissues served as physiological and biochemical indexes. The number of liver mononuclear cells (MNCs) and the amount of the active apoptotic protein caspase-3 were determined to elaborate the mechanism of hepatoprotective activity. Results Human menstrual blood-derived stem cell-derived exosomes (MenSC-Ex) are bi-lipid membrane vesicles that have a round, ball-like shape with a diameter of approximately 30–100 nm. Cytokine arrays have shown that MenSC-Ex expressed cytokines, including ICAM-1, angiopoietin-2, Axl, angiogenin, IGFBP-6, osteoprotegerin, IL-6, and IL-8. MenSC-Ex markedly improved liver function, enhanced survival rates, and inhibited liver cell apoptosis at 6 h after transplantation. MenSC-Ex migrated to sites of injury and to AML12 cells (a mouse hepatocyte cell line), respectively. Moreover, MenSC-Ex reduced the number of liver mononuclear cells (MNCs) and the amount of the active apoptotic protein caspase-3 in injured livers. Conclusions In conclusion, our results provide preliminary evidence for the anti-apoptotic capacity of MenSC-Ex in FHF and suggest that MenSC-Ex may be an alternative therapeutic approach to treat FHF. Electronic supplementary material The online version of this article (doi:10.1186/s13287-016-0453-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Bingyu Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiaojun Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
| |
Collapse
|
8
|
Gasparian ME, Bychkov ML, Yagolovich AV, Dolgikh DA, Kirpichnikov MP. Mutations Enhancing Selectivity of Antitumor Cytokine TRAIL to DR5 Receptor Increase Its Cytotoxicity against Tumor Cells. BIOCHEMISTRY (MOSCOW) 2016; 80:1080-91. [PMID: 26547077 DOI: 10.1134/s0006297915080143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Tumor necrosis factor superfamily cytokine TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) induces apoptosis in tumor cells by binding to death receptors DR4 and DR5 without affecting normal cells. However, the therapeutic use of TRAIL is limited, because many tumor cells are resistant to it. The resistance is partially related to interaction of TRAIL with the decoy receptors DcR1 and DcR2, which do not trigger the apoptotic signal and inhibit signaling of death receptors. Previously, we designed a unique DR5-specific TRAIL mutant variant DR5-B, which binds to DR5 receptor as effectively as the original cytokine, but has practically no interaction with DR4 and DcR1 receptors, and its affinity for DcR2 is reduced 400-fold. In the present work, the cytotoxity of TRAIL and DR5-B was analyzed on 12 different tumor cell lines and two types of normal cells. In nine of 12 tumor cell lines, DR5-B killed 1.5-5.0 times more tumor cells than TRAIL, and it did not exhibit toxicity towards normal cells. Chemotherapeutic drugs such as doxorubicin, paclitaxel, and bortezomib augmented the effect of both TRAIL variants, and the enhancing effect was more pronounced for DR5-B. Half-maximal effective concentrations (EC50) for DR5-B in combination with chemotherapeutic agents were 1.5-10.0 times lower than for wild-type TRAIL. Thus, DR5-B is a promising candidate both for monotherapy and in combination with chemotherapy for treatment of TRAIL-resistant tumors.
Collapse
Affiliation(s)
- M E Gasparian
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| | | | | | | | | |
Collapse
|
9
|
Chen L, Zhang C, Chen L, Wang X, Xiang B, Wu X, Guo Y, Mou X, Yuan L, Chen B, Wang J, Xiang C. Human Menstrual Blood-Derived Stem Cells Ameliorate Liver Fibrosis in Mice by Targeting Hepatic Stellate Cells via Paracrine Mediators. Stem Cells Transl Med 2016; 6:272-284. [PMID: 28170193 PMCID: PMC5442725 DOI: 10.5966/sctm.2015-0265] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 06/16/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) may have potential applications in regenerative medicine for the treatment of chronic liver diseases (CLDs). Human menstrual blood is a novel source of MSCs, termed menstrual blood-derived stem cells (MenSCs). Compared with bone marrow MSCs, MenSCs exhibit a higher proliferation rate and they can be obtained through a simple, safe, painless procedure without ethical concerns. Although the therapeutic efficacy of MenSCs has been explored in some diseases, their effects on liver fibrosis are still unclear. In the present study, we investigated the therapeutic effects of MenSC transplantation in a carbon tetrachloride-induced mouse model of liver fibrosis. These results revealed that MenSCs markedly improved liver function, attenuated collagen deposition, and inhibited activated hepatic stellate cells up to 2 weeks after transplantation. Moreover, tracking of green fluorescent protein-expressing MenSCs demonstrated that transplanted cells migrated to the sites of injury, but few differentiated into functional hepatocyte-like cells. Transwell coculturing experiments also showed that MenSCs suppressed proliferation of LX-2 cells (an immortalized hepatic stellate cell line) through secretion of monocyte chemoattractant protein-1, interleukin-6, hepatocyte growth factor, growth-related oncogene, interleukin-8, and osteoprotegerin. Collectively, our results provided preliminary evidence for the antifibrotic capacity of MenSCs in liver fibrosis and suggested that these cells may be an alternative therapeutic approach for the treatment of CLDs. Stem Cells Translational Medicine 2017;6:272-284.
Collapse
Affiliation(s)
- Lijun Chen
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Molecular Diagnosis Division, Zhejiang‐California International Nanosystem Institute, Zhejiang University, Hangzhou, People's Republic of China
| | - Chunfeng Zhang
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Molecular Diagnosis Division, Zhejiang‐California International Nanosystem Institute, Zhejiang University, Hangzhou, People's Republic of China
| | - Lu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaojun Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Bingyu Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoxing Wu
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yang Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou, People's Republic of China
| | - Li Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Bo Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jinfu Wang
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
- Molecular Diagnosis Division, Zhejiang‐California International Nanosystem Institute, Zhejiang University, Hangzhou, People's Republic of China
- Institute for Cell‐Based Drug Development of Zhejiang Province, Hangzhou, People's Republic of China
| |
Collapse
|
10
|
Marine Drugs Regulating Apoptosis Induced by Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand (TRAIL). Mar Drugs 2015; 13:6884-909. [PMID: 26580630 PMCID: PMC4663558 DOI: 10.3390/md13116884] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/02/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022] Open
Abstract
Marine biomass diversity is a tremendous source of potential anticancer compounds. Several natural marine products have been described to restore tumor cell sensitivity to TNF-related apoptosis inducing ligand (TRAIL)-induced cell death. TRAIL is involved during tumor immune surveillance. Its selectivity for cancer cells has attracted much attention in oncology. This review aims at discussing the main mechanisms by which TRAIL signaling is regulated and presenting how marine bioactive compounds have been found, so far, to overcome TRAIL resistance in tumor cells.
Collapse
|
11
|
Dufresne SS, Dumont NA, Bouchard P, Lavergne É, Penninger JM, Frenette J. Osteoprotegerin protects against muscular dystrophy. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:920-6. [PMID: 25708645 DOI: 10.1016/j.ajpath.2015.01.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/10/2015] [Accepted: 01/15/2015] [Indexed: 01/18/2023]
Abstract
Receptor-activator of NF-κB, its ligand RANKL, and the soluble decoy receptor osteoprotegerin are the key regulators of osteoclast differentiation and bone remodeling. Although there is a strong association between osteoporosis and skeletal muscle atrophy/dysfunction, the functional relevance of a particular biological pathway that synchronously regulates bone and skeletal muscle physiopathology still is elusive. Here, we show that muscle cells can produce and secrete osteoprotegerin and pharmacologic treatment of dystrophic mdx mice with recombinant osteoprotegerin muscles. (Recombinant osteoprotegerin-Fc mitigates the loss of muscle force in a dose-dependent manner and preserves muscle integrity, particularly in fast-twitch extensor digitorum longus.) Our data identify osteoprotegerin as a novel protector of muscle integrity, and it potentially represents a new therapeutic avenue for both muscular diseases and osteoporosis.
Collapse
Affiliation(s)
- Sébastien S Dufresne
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada
| | - Nicolas A Dumont
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada
| | - Patrice Bouchard
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada
| | - Éliane Lavergne
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada
| | - Josef M Penninger
- Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - Jérôme Frenette
- CHU (CHUL) Research Center of Quebec, Université Laval, Quebec City, Quebec, Canada; Department of Rehabilitation, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|