1
|
Andrés-Rodríguez J, González-Montero MC, García-Fernández N, Calvo-Álvarez E, Pérez-Pertejo MY, Reguera-Torres RM, Balaña-Fouce R, García-Estrada C. Free Radical Production Induced by Nitroimidazole Compounds Lead to Cell Death in Leishmania infantum Amastigotes. Molecules 2024; 29:4041. [PMID: 39274889 PMCID: PMC11396368 DOI: 10.3390/molecules29174041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/16/2024] Open
Abstract
Leishmania infantum is the vector-borne trypanosomatid parasite causing visceral leishmaniasis in the Mediterranean basin. This neglected tropical disease is treated with a limited number of obsolete drugs that are not exempt from adverse effects and whose overuse has promoted the emergence of resistant pathogens. In the search for novel antitrypanosomatid molecules that help overcome these drawbacks, drug repurposing has emerged as a good strategy. Nitroaromatic compounds have been found in drug discovery campaigns as promising antileishmanial molecules. Fexinidazole (recently introduced for the treatment of stages 1 and 2 of African trypanosomiasis), and pretomanid, which share the nitroimidazole nitroaromatic structure, have provided antileishmanial activity in different studies. In this work, we have tested the in vitro efficacy of these two nitroimidazoles to validate our 384-well high-throughput screening (HTS) platform consisting of L. infantum parasites emitting the near-infrared fluorescent protein (iRFP) as a biomarker of cell viability. These molecules showed good efficacy in both axenic and intramacrophage amastigotes and were poorly cytotoxic in RAW 264.7 and HepG2 cultures. Fexinidazole and pretomanid induced the production of ROS in axenic amastigotes but were not able to inhibit trypanothione reductase (TryR), thus suggesting that these compounds may target thiol metabolism through a different mechanism of action.
Collapse
Affiliation(s)
- Julia Andrés-Rodríguez
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - María-Cristina González-Montero
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Nerea García-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Estefanía Calvo-Álvarez
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milan, Italy
| | - María-Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa-María Reguera-Torres
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
2
|
Carvalho DB, Costa PAN, Portapilla GB, das Neves AR, Shiguemoto CYK, Pelizaro BI, Silva F, Piranda EM, Arruda CCP, Gaspari PDM, Cardoso IA, Luccas PH, Nonato MC, Lopes NP, de Albuquerque S, Baroni ACM. Design, synthesis and antitrypanosomatid activity of 2-nitroimidazole-3,5-disubstituted isoxazole compounds based on benznidazole. Eur J Med Chem 2023; 260:115451. [PMID: 37573209 DOI: 10.1016/j.ejmech.2023.115451] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 08/14/2023]
Abstract
Chagas disease and leishmaniasis are neglected diseases of high priority as a public health problem. Pharmacotherapy is based on the administration of a few drugs, which exhibit hazardous adverse effects and toxicity to the patients. Thus, the search for new antitrypanosomatid drugs is imperative to overcome the limitations of the treatments. In this work, 46 2-nitroimidazole 3,5-disubstituted isoxazole compounds were synthesized in good yields by [3 + 2] cycloaddition reaction between terminal acetylene (propargyl-2-nitroimidazole) and chloro-oximes. The compounds were non-toxic to LLC-MK2 cells. Compounds 30, 35, and 44 showed in vitro antichagasic activity, 15-fold, 12-fold, and 10-fold, respectively, more active than benznidazole (BZN). Compounds 30, 35, 44, 45, 53, and 61 acted as substrates for the TcNTR enzyme, indicating that this might be one of the mechanisms of action involved in their antiparasitic activity. Piperazine series and 4-monosubstituted compounds were potent against T. cruzi parasites. Besides the in vitro activity observed in compound 45, the in vivo assay showed that the compound only reduced the parasitemia levels by the seventh-day post-infection (77%, p > 0.001) compared to the control group. However, 45 significantly reduced the parasite load in cardiac tissue (p < 0.01) 11 days post-infection. Compounds 49, 52, and 54 showed antileishmanial activity against intracellular amastigotes of Leishmania (L.) amazonensis at the same range as amphotericin B. These findings highlight the antitrypanosomatid properties of 2-nitroimidazole 3,5-disubstituted isoxazole compounds and the possibility in using them as antitrypanosomatid agents in further studies.
Collapse
Affiliation(s)
- Diego B Carvalho
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79051-470, Brazil
| | - Pedro A N Costa
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79051-470, Brazil; Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Gisele B Portapilla
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, São Paulo, CEP 14040-900, Brazil
| | - Amarith R das Neves
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79051-470, Brazil; Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Cristiane Y K Shiguemoto
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79051-470, Brazil
| | - Bruno I Pelizaro
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79051-470, Brazil
| | - Fernanda Silva
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Eliane M Piranda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Carla C P Arruda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79070-900, Brazil
| | - Priscyla D M Gaspari
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Iara A Cardoso
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Pedro H Luccas
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - M Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, CEP 14040-903, Ribeirão Preto, SP, Brazil
| | - Norberto P Lopes
- Núcleo de Pesquisas em Produtos Naturais e Sintéticos, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, Ribeirão Preto, SP, CEP 14040-903, Brazil
| | - Sergio de Albuquerque
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo, Ribeirão Preto, São Paulo, CEP 14040-900, Brazil
| | - Adriano C M Baroni
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul, CEP 79051-470, Brazil.
| |
Collapse
|
3
|
García-Estrada C, Pérez-Pertejo Y, Domínguez-Asenjo B, Holanda VN, Murugesan S, Martínez-Valladares M, Balaña-Fouce R, Reguera RM. Further Investigations of Nitroheterocyclic Compounds as Potential Antikinetoplastid Drug Candidates. Biomolecules 2023; 13:biom13040637. [PMID: 37189384 DOI: 10.3390/biom13040637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Due to the lack of specific vaccines, management of the trypanosomatid-caused neglected tropical diseases (sleeping sickness, Chagas disease and leishmaniasis) relies exclusively on pharmacological treatments. Current drugs against them are scarce, old and exhibit disadvantages, such as adverse effects, parenteral administration, chemical instability and high costs which are often unaffordable for endemic low-income countries. Discoveries of new pharmacological entities for the treatment of these diseases are scarce, since most of the big pharmaceutical companies find this market unattractive. In order to fill the pipeline of compounds and replace existing ones, highly translatable drug screening platforms have been developed in the last two decades. Thousands of molecules have been tested, including nitroheterocyclic compounds, such as benznidazole and nifurtimox, which had already provided potent and effective effects against Chagas disease. More recently, fexinidazole has been added as a new drug against African trypanosomiasis. Despite the success of nitroheterocycles, they had been discarded from drug discovery campaigns due to their mutagenic potential, but now they represent a promising source of inspiration for oral drugs that can replace those currently on the market. The examples provided by the trypanocidal activity of fexinidazole and the promising efficacy of the derivative DNDi-0690 against leishmaniasis seem to open a new window of opportunity for these compounds that were discovered in the 1960s. In this review, we show the current uses of nitroheterocycles and the novel derived molecules that are being synthesized against these neglected diseases.
Collapse
Affiliation(s)
- Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Bárbara Domínguez-Asenjo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vanderlan Nogueira Holanda
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (IGM), Consejo Superior de Investigaciones Científicas-Universidad de León, Carretera León-Vega de Infanzones, Vega de Infanzones, 24346 León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
4
|
Pimviriyakul P, Kapaothong Y, Tangsupatawat T. Heterologous Expression and Characterization of a Full-length Protozoan Nitroreductase from Leishmania orientalis isolate PCM2. Mol Biotechnol 2023; 65:556-569. [PMID: 36042106 DOI: 10.1007/s12033-022-00556-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022]
Abstract
Leishmaniasis, a parasitic disease found in parts of the tropics and subtropics, is caused by Leishmania protozoa infection. Nitroreductases (NTRs), enzymes involved in nitroaromatic prodrug activation, are attractive targets for leishmaniasis treatment development. In this study, a full-length recombinant NTR from the Leishmania orientalis isolate PCM2 (LoNTR), which causes severe leishmaniasis in Thailand, was successfully expressed in soluble form using chaperone co-expression in Escherichia coli BL21(DE3). The purified histidine-tagged enzyme (His6-LoNTR) had a subunit molecular mass of 36 kDa with no cofactor bound; however, the addition of exogenous flavin (either FMN or FAD) readily increased its enzyme activity. Bioinformatics analysis found that the unique N-terminal sequences of LoNTR is only present in Leishmania where the addition of this region might result in the loss of flavin binding. Either NADH or NADPH can serve as an electron donor to transfer electrons to nitrofurazone; however, NADPH was preferred. Molecular oxygen was identified as an additional electron acceptor resulting in wasteful electrons from NADPH for the main catalysis. Steady-state kinetic experiments revealed a ping-pong mechanism for His6-LoNTR with Km,NADPH, Km,NFZ, and kcat of 28 µM, 68 µM, and 0.84 min-1, respectively. Besides nitroreductase activity, His6-LoNTR also has the ability to reduce quinone derivatives. The properties of full-length His6-LoNTR were different from previously reported protozoa and bacterial NTRs in many respects. This study provides information of NTR catalysis to be developed as a potential future therapeutic target to treat leishmaniasis.
Collapse
Affiliation(s)
- Panu Pimviriyakul
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand.
| | - Yuvarun Kapaothong
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| | - Theerapat Tangsupatawat
- Department of Biochemistry, Faculty of Science, Kasetsart University, Chatuchak, Bangkok, 10900, Thailand
| |
Collapse
|
5
|
Sviatenko LK, Gorb L, Leszczynski J. NTO Degradation by Nitroreductase: A DFT Study. J Phys Chem B 2022; 126:5991-6006. [PMID: 35926135 DOI: 10.1021/acs.jpcb.2c04153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
NTO (5-nitro-1,2,4-triazol-3-one), an energetic material used in military applications, may be released to the environment during manufacturing, transportation, storage, training, and disposal. A detailed investigation of the possible mechanism for all steps of reduction of NTO by oxygen-insensitive nitroreductase, as one of the pathways for NTO environmental degradation, was performed by computational study at the PCM(Pauling)/M06-2X/6-311++G(d,p) level. Obtained results reveal an overall sequence for NTO transformation into ATO (5-amino-1,2,4-triazol-3-one) with the flavin mononucleotide (FMN) cofactor of nitroreductase. Reduction of the nitro group to the nitroso group and the nitroso group to the hydroxylamino group follow a similar mechanism that consists of the sequential electron and proton transfer from the flavin cofactor. The hydride transfer mechanism may contribute to reduction of the nitroso group by the anionic form of the reduced flavin cofactor. Reduction of 5-(hydroxylamino)-1,2,4-triazol-3-one by the neutral form of the reduced flavin is impossible, whereas reduction of the hydroxylamino group to the amino group occurs with the anionic form of the reduced cofactor by a mechanism involving an initial proton transfer from the hydroxonium ion followed by two electrons and one proton transfers from the flavin cofactor. Small activation energies and high exothermicity support the significant contribution of oxygen-insensitive nitroreductase and other enzymes, containing FMN as a cofactor, to NTO degradation in the environment.
Collapse
Affiliation(s)
- Liudmyla K Sviatenko
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics & Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Leonid Gorb
- Institute of Molecular Biology and Genetics, NAS of Ukraine, 150 Zabolotny Str., Kyiv 03143, Ukraine
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics & Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
6
|
Li H, Jintao F, Wang Z, Jia Y, Li P, Yao C, Qu Z. A Highly Selective Fluorescent Probe for the Detection of Nitroreductase Based on a Naphthalimide Scaffold. J Fluoresc 2022; 32:1825-1832. [PMID: 35727383 DOI: 10.1007/s10895-022-02974-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/27/2022] [Indexed: 12/01/2022]
Abstract
The development of fluorescent probes for nitroreductase (NTR) has received intense attention because of its biological significance and wide application. In this work, a novel fluorescent probe for the detection of NTR in aqueous solution was designed and synthesized on a 1,8-naphthalimide scaffold. In the presence of NTR and nicotinamide adenine dinucleotide (NADH) under physiological conditions, the probe was converted into a 4-hydroxy-1,8-naphthalimide derivative and exhibited a sharp fluorescence enhancement at 550 nm, with a high selectivity for NTR over various analytes. The detection limit for NTR was determined to be 9.8 ng/ml by this probe. Due to its low signal background, this probe showed > 70-fold fluorescence enhancement. Theoretical calculations revealed that the reason for the fluorescence quenching of this probe is the photoinduced electron transfer (PET) from both the nitrobenzene and morpholine groups to the naphthalimide fluorophore.
Collapse
Affiliation(s)
- Han Li
- College of Chemistry and Chemical Engineering, Linyi University, Shandong, 276005, People's Republic of China
| | - Feng Jintao
- College of Chemistry and Chemical Engineering, Linyi University, Shandong, 276005, People's Republic of China
| | - Zhen Wang
- College of Chemistry and Chemical Engineering, Linyi University, Shandong, 276005, People's Republic of China
| | - Yan Jia
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Peng Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Cuixia Yao
- College of Chemistry and Chemical Engineering, Linyi University, Shandong, 276005, People's Republic of China.
| | - Zongjin Qu
- College of Chemistry and Chemical Engineering, Linyi University, Shandong, 276005, People's Republic of China.
| |
Collapse
|
7
|
Liu T, Wang Y, Feng L, Tian X, Cui J, Yu Z, Wang C, Zhang B, James TD, Ma X. 2D Strategy for the Construction of an Enzyme-Activated NIR Fluorophore Suitable for the Visual Sensing and Profiling of Homologous Nitroreductases from Various Bacterial Species. ACS Sens 2021; 6:3348-3356. [PMID: 34469146 PMCID: PMC8477384 DOI: 10.1021/acssensors.1c01216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022]
Abstract
Nitroreductases (NTRs) mediate the reduction of nitroaromatic compounds to the corresponding nitrite, hydroxylamine, or amino derivatives. The activity of NTRs in bacteria facilitates the metabolic activation and antibacterial activity of 5-nitroimidazoles. Therefore, NTR activity correlates with the drug susceptibility and resistance of pathogenic bacteria. As such, it is important to develop a rapid and visual assay for the real-time sensing of bacterial NTRs for the evaluation and development of antibiotics. Herein, an activatable near-infrared fluorescent probe (HC-NO2) derived from a hemicyanine fluorophore was designed and developed based on two evaluation factors, including the calculated partition coefficient (Clog P) and fluorescence wavelength. Using HC-NO2 as the special substrate of NTRs, NTR activity can be assayed efficiently, and then, bacteria can be imaged based on the detection of NTRs. More importantly, a sensitive in-gel assay using HC-NO2 has been developed to selectively identify NTRs and sensitively determine NTR activity. Using the in-gel assay, NTRs from various bacterial species have been profiled visually from the "fluorescence fingerprints", which facilitates the rapid identification of NTRs from bacterial lysates. Thus, various homologous NTRs were identified from three metronidazole-susceptible bacterial species as well as seven unsusceptible species, which were confirmed by the whole-genome sequence. As such, the evaluation of NTRs from different bacterial species should help improve the rational usage of 5-nitroimidazole drugs as antibiotics.
Collapse
Affiliation(s)
- Tao Liu
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Yifei Wang
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Lei Feng
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Xiangge Tian
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Jingnan Cui
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Zhenlong Yu
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Chao Wang
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Baojing Zhang
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, U.K.
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaochi Ma
- Dalian
Key Laboratory of Metabolic Target Characterization and Traditional
Chinese Medicine Intervention, College of Pharmacy, Dalian Medical University, Dalian 116044, China
- Jiangsu
Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
8
|
Čėnas N, Nemeikaitė-Čėnienė A, Kosychova L. Single- and Two-Electron Reduction of Nitroaromatic Compounds by Flavoenzymes: Mechanisms and Implications for Cytotoxicity. Int J Mol Sci 2021; 22:ijms22168534. [PMID: 34445240 PMCID: PMC8395237 DOI: 10.3390/ijms22168534] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Nitroaromatic compounds (ArNO2) maintain their importance in relation to industrial processes, environmental pollution, and pharmaceutical application. The manifestation of toxicity/therapeutic action of nitroaromatics may involve their single- or two-electron reduction performed by various flavoenzymes and/or their physiological redox partners, metalloproteins. The pivotal and still incompletely resolved questions in this area are the identification and characterization of the specific enzymes that are involved in the bioreduction of ArNO2 and the establishment of their contribution to cytotoxic/therapeutic action of nitroaromatics. This review addresses the following topics: (i) the intrinsic redox properties of ArNO2, in particular, the energetics of their single- and two-electron reduction in aqueous medium; (ii) the mechanisms and structure-activity relationships of reduction in ArNO2 by flavoenzymes of different groups, dehydrogenases-electrontransferases (NADPH:cytochrome P-450 reductase, ferredoxin:NADP(H) oxidoreductase and their analogs), mammalian NAD(P)H:quinone oxidoreductase, bacterial nitroreductases, and disulfide reductases of different origin (glutathione, trypanothione, and thioredoxin reductases, lipoamide dehydrogenase), and (iii) the relationships between the enzymatic reactivity of compounds and their activity in mammalian cells, bacteria, and parasites.
Collapse
Affiliation(s)
- Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
- Correspondence: ; Tel.: +370-5-223-4392
| | - Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania;
| | - Lidija Kosychova
- Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania;
| |
Collapse
|
9
|
Caridha D, Sciotti RJ, Sousa J, Vesely B, Teshome T, Bonkoungou G, Vuong C, Leed S, Khraiwesh M, Penn E, Kreishman-Deitrick M, Lee P, Pybus B, Lazo JS, Sharlow ER. Combination of Subtherapeutic Doses of Tretazicar and Liposomal Amphotericin B Suppresses and Cures Leishmania major-Induced Cutaneous Lesions in Murine Models. ACS Infect Dis 2021; 7:506-517. [PMID: 33529014 DOI: 10.1021/acsinfecdis.0c00886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cutaneous leishmaniasis (CL) is the most common form of leishmaniasis affecting human populations, yet CL remains largely ignored in drug discovery programs. CL causes disfiguring skin lesions and often relapses after "clinical cure" using existing therapeutics. To expand the pool of anti-CL lead candidates, we implemented an integrated screening platform comprising three progressive Leishmania parasite life cycle forms. We identified tretazicar (CB1954, 5-(aziridin-1-yl)-2,4-dinitrobenzamide) as a potent inhibitor of Leishmania parasite viability across multiple Leishmania species, which translated into complete and prolonged in vivo suppression of CL lesion formation in BALB/c mice when used as a monotherapy and which was superior to liposomal amphotericin B. In addition, oral twice a day administration of tretazicar healed the majority of existing Leishmania major (L. major) cutaneous lesions. In drug combination studies, there was a strong potentiation when subtherapeutic doses of liposomal amphotericin B and tretazicar were simultaneously administered. This drug combination decreased L. major lesion size in mice earlier than individual monotherapy drug treatments and maintained all animals lesion free for up to 64 days after treatment cessation. In contrast, administration of subtherapeutic doses of tretazicar or amphotericin B as monotherapies resulted in no or partial lesion cures, respectively. We propose that tretazicar should be explored as a component of a systemic CL combination therapy and potentially for other diseases where amphotericin B is a first line therapy.
Collapse
Affiliation(s)
- Diana Caridha
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Richard J. Sciotti
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Jason Sousa
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Brian Vesely
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Tesfaye Teshome
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Gustave Bonkoungou
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Chau Vuong
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Susan Leed
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Mozna Khraiwesh
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Erica Penn
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Mara Kreishman-Deitrick
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Patricia Lee
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - Brandon Pybus
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, Maryland 20910, United States
| | - John S. Lazo
- University of Virginia, Department of Pharmacology, 409 Lane Road, MR4, Charlottesville, Virginia 22908, United States
| | - Elizabeth R. Sharlow
- University of Virginia, Department of Pharmacology, 409 Lane Road, MR4, Charlottesville, Virginia 22908, United States
| |
Collapse
|
10
|
Rice AM, Long Y, King SB. Nitroaromatic Antibiotics as Nitrogen Oxide Sources. Biomolecules 2021; 11:267. [PMID: 33673069 PMCID: PMC7918234 DOI: 10.3390/biom11020267] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Nitroaromatic antibiotics show activity against anaerobic bacteria and parasites, finding use in the treatment of Heliobacter pylori infections, tuberculosis, trichomoniasis, human African trypanosomiasis, Chagas disease and leishmaniasis. Despite this activity and a clear need for the development of new treatments for these conditions, the associated toxicity and lack of clear mechanisms of action have limited their therapeutic development. Nitroaromatic antibiotics require reductive bioactivation for activity and this reductive metabolism can convert the nitro group to nitric oxide (NO) or a related reactive nitrogen species (RNS). As nitric oxide plays important roles in the defensive immune response to bacterial infection through both signaling and redox-mediated pathways, defining controlled NO generation pathways from these antibiotics would allow the design of new therapeutics. This review focuses on the release of nitrogen oxide species from various nitroaromatic antibiotics to portend the increased ability for these compounds to positively impact infectious disease treatment.
Collapse
Affiliation(s)
| | | | - S. Bruce King
- Department of Chemistry and Biochemistry, Wake Forest University, Winston-Salem, NC 27101, USA; (A.M.R.); (Y.L.)
| |
Collapse
|
11
|
Recent progress in the design principles, sensing mechanisms, and applications of small-molecule probes for nitroreductases. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213460] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Faral-Tello P, Greif G, Satragno D, Basmadjián Y, Robello C. Leishmania infantum isolates exhibit high infectivity and reduced susceptibility to amphotericin B. RSC Med Chem 2020; 11:913-918. [PMID: 33479686 PMCID: PMC7651856 DOI: 10.1039/d0md00073f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/12/2020] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is a neglected disease caused by a protozoan parasite of the Leishmania species in over 98 countries in five continents. Visceral leishmaniasis is one of the main forms of the disease and is mainly caused by Leishmania infantum, whose main vector is the dipteran Lutzomyia longipalpis. The presence of the vector in Uruguay was recorded for the first time in 2010 and an autochthonous outbreak of canine visceral leishmaniasis occurred in the northern locality of the country in 2015. We report the isolation in blood-free FBS-supplemented defined media of five isolates responsible for the referred outbreak, and characterize them in terms of their growth as promastigotes, infectivity and replication in human derived monocytes and drug resistance. Results indicate similar promastigote growth among the strains, enhanced infectivity and replication for the five strains isolated from the Uruguayan outbreak when compared with reference strains from South America, equivalent drug susceptibility for miltefosine and nifurtimox and a significant difference in IC50 values for amphotericin B between the Uruguayan strains, 3-4 fold higher than the reference strain.
Collapse
Affiliation(s)
- Paula Faral-Tello
- Laboratorio de Interacciones Hospedero Patógeno , Unidad de Biología Molecular , Institut Pasteur de Montevideo , Mataojo 2020 , Montevideo , 11400 , Uruguay
| | - Gonzalo Greif
- Laboratorio de Interacciones Hospedero Patógeno , Unidad de Biología Molecular , Institut Pasteur de Montevideo , Mataojo 2020 , Montevideo , 11400 , Uruguay
| | - Dinora Satragno
- Centro Hospital Veterinario , Facultad de Veterinaria , Universidad de la República , Uruguay
| | - Yester Basmadjián
- Departamento de Parasitología , Instituto de Higiene , Facultad de Medicina , Universidad de la República , Montevideo , Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno , Unidad de Biología Molecular , Institut Pasteur de Montevideo , Mataojo 2020 , Montevideo , 11400 , Uruguay
- Departamento de Bioquímica , Facultad de Medicina , Universidad de la República , Montevideo , Uruguay .
| |
Collapse
|
13
|
Fersing C, Boudot C, Castera-Ducros C, Pinault E, Hutter S, Paoli-Lombardo R, Primas N, Pedron J, Seguy L, Bourgeade-Delmas S, Sournia-Saquet A, Stigliani JL, Brossas JY, Paris L, Valentin A, Wyllie S, Fairlamb AH, Boutet-Robinet É, Corvaisier S, Since M, Malzert-Fréon A, Destere A, Mazier D, Rathelot P, Courtioux B, Azas N, Verhaeghe P, Vanelle P. 8-Alkynyl-3-nitroimidazopyridines display potent antitrypanosomal activity against both T. b. brucei and cruzi. Eur J Med Chem 2020; 202:112558. [PMID: 32652409 DOI: 10.1016/j.ejmech.2020.112558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 11/15/2022]
Abstract
An antikinetoplastid pharmacomodulation study was done at position 8 of a previously identified pharmacophore in 3-nitroimidazo[1,2-a]pyridine series. Twenty original derivatives bearing an alkynyl moiety were synthesized via a Sonogashira cross-coupling reaction and tested in vitro, highlighting 3 potent (40 nM ≤ EC50 blood stream form≤ 70 nM) and selective (500 ≤ SI ≤ 1800) anti-T. brucei brucei molecules (19, 21 and 22), in comparison with four reference drugs. Among these hit molecules, compound 19 also showed the same level of activity against T. cruzi (EC50 amastigotes = 1.2 μM) as benznidazole and fexinidazole. An in vitro comet assay showed that nitroaromatic derivative 19 was not genotoxic. It displayed a low redox potential value (-0.68 V/NHE) and was shown to be bioactivated by type 1 nitroreductases both in Leishmania and Trypanosoma. The SAR study indicated that an alcohol function improved aqueous solubility while maintaining good activity and low cytotoxicity when the hydroxyl group was at position beta of the alkyne triple bond. Hit-compound 19 was also evaluated regarding in vitro pharmacokinetic data: 19 is BBB permeable (PAMPA assay), has a 16 min microsomal half-life and a high albumin binding (98.5%). Moreover, compound 19 was orally absorbed and was well tolerated in mouse after both single and repeated administrations at 100 mg/kg. Its mouse plasma half-life (10 h) is also quite encouraging, paving the way toward further efficacy evaluations in parasitized mouse models, looking for a novel antitrypanosomal lead compound.
Collapse
Affiliation(s)
- Cyril Fersing
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Clotilde Boudot
- Université de Limoges, UMR Inserm 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025, Limoges, France
| | - Caroline Castera-Ducros
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Emilie Pinault
- Université de Limoges, BISCEm Mass Spectrometry Platform, CBRS, 2 rue du Pr. Descottes, F-87025, Limoges, France
| | - Sébastien Hutter
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, Tropical Eukaryotic Pathogens, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Romain Paoli-Lombardo
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Julien Pedron
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Line Seguy
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | | | | | - Jean-Yves Brossas
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, Paris, France
| | - Luc Paris
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie Mycologie, Paris, France
| | - Alexis Valentin
- UMR 152 PHARMA-DEV, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Susan Wyllie
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Alan H Fairlamb
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Élisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | - Marc Since
- Normandie Univ, UNICAEN, CERMN, 14000, Caen, France
| | | | - Alexandre Destere
- Department of Pharmacology, Toxicology and Pharmacovigilance, CHU Limoges, INSERM, UMR 1248, University of Limoges, Limoges, France
| | - Dominique Mazier
- CIMI-Paris, Sorbonne Université 91 boulevard de l'Hôpital, 75013, Paris, France
| | - Pascal Rathelot
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Bertrand Courtioux
- Université de Limoges, UMR Inserm 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025, Limoges, France
| | - Nadine Azas
- Aix Marseille Univ, IHU Méditerranée Infection, UMR VITROME, Tropical Eukaryotic Pathogens, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | | | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| |
Collapse
|
14
|
Alcântara LM, Ferreira TCS, Fontana V, Chatelain E, Moraes CB, Freitas-Junior LH. A Multi-Species Phenotypic Screening Assay for Leishmaniasis Drug Discovery Shows That Active Compounds Display a High Degree of Species-Specificity. Molecules 2020; 25:E2551. [PMID: 32486239 PMCID: PMC7321149 DOI: 10.3390/molecules25112551] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 12/05/2022] Open
Abstract
High genetic and phenotypic variability between Leishmania species and strains within species make the development of broad-spectrum antileishmanial drugs challenging. Thus, screening panels consisting of several diverse Leishmania species can be useful in enabling compound prioritization based on their spectrum of activity. In this study, a robust and reproducible high content assay was developed, and 1280 small molecules were simultaneously screened against clinically relevant cutaneous and visceral species: L. amazonensis, L. braziliensis, and L. donovani. The assay is based on THP-1 macrophages infected with stationary phase promastigotes and posterior evaluation of both compound antileishmanial activity and host cell toxicity. The profile of compound activity was species-specific, and out of 51 active compounds, only 14 presented broad-spectrum activity against the three species, with activities ranging from 52% to 100%. Notably, the compounds CB1954, Clomipramine, Maprotiline, Protriptyline, and ML-9 presented pan-leishmanial activity, with efficacy greater than 70%. The results highlight the reduced number of compound classes with pan-leishmanial activity that might be available from diversity libraries, emphasizing the need to screen active compounds against a panel of species and strains. The assay reported here can be adapted to virtually any Leishmania species without the need for genetic modification of parasites, providing the basis for the discovery of broad spectrum anti-leishmanial agents.
Collapse
Affiliation(s)
- Laura M. Alcântara
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Thalita C. S. Ferreira
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Instituto Butantan, São Paulo, SP 05503-900, Brazil
| | - Vanessa Fontana
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative, 1211 Geneva, Switzerland;
| | - Carolina B. Moraes
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
| | - Lucio H. Freitas-Junior
- Laboratório Nacional de Biociências (LNBio), Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Campinas, SP 13083-970, Brazil; (L.M.A.); (T.C.S.F.); (V.F.)
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP 05508-900, Brazil
- Instituto Butantan, São Paulo, SP 05503-900, Brazil
| |
Collapse
|
15
|
Le VVH, Olivera C, Spagnuolo J, Davies IG, Rakonjac J. In vitro synergy between sodium deoxycholate and furazolidone against enterobacteria. BMC Microbiol 2020; 20:5. [PMID: 31906851 PMCID: PMC6945529 DOI: 10.1186/s12866-019-1668-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Background Antimicrobial combinations have been proven as a promising approach in the confrontation with multi-drug resistant bacterial pathogens. In the present study, we identify and characterize a synergistic interaction of broad-spectrum nitroreductase-activated prodrugs 5-nitrofurans, with a secondary bile salt, sodium deoxycholate (DOC) in growth inhibition and killing of enterobacteria. Results Using checkerboard assay, we show that combination of nitrofuran furazolidone (FZ) and DOC generates a profound synergistic effect on growth inhibition in several enterobacterial species including Escherichia coli, Salmonella enterica, Citrobacter gillenii and Klebsiella pneumoniae. The Fractional Inhibitory Concentration Index (FICI) for DOC-FZ synergy ranges from 0.125 to 0.35 that remains unchanged in an ampicillin-resistant E. coli strain containing a β-lactamase-producing plasmid. Findings from the time-kill assay further highlight the synergy with respect to bacterial killing in E. coli and Salmonella. We further characterize the mechanism of synergy in E. coli K12, showing that disruption of the tolC or acrA genes that encode components of multidrug efflux pumps causes, respectively, a complete or partial loss, of the DOC-FZ synergy. This finding indicates the key role of TolC-associated efflux pumps in the DOC-FZ synergy. Overexpression of nitric oxide-detoxifying enzyme Hmp results in a three-fold increase in FICI for DOC-FZ interaction, suggesting a role of nitric oxide in the synergy. We further demonstrate that DOC-FZ synergy is largely independent of NfsA and NfsB, the two major activation enzymes of the nitrofuran prodrugs. Conclusions This study is to our knowledge the first report of nitrofuran-deoxycholate synergy against Gram-negative bacteria, offering potential applications in antimicrobial therapeutics. The mechanism of DOC-FZ synergy involves FZ-mediated inhibition of TolC-associated efflux pumps that normally remove DOC from bacterial cells. One possible route contributing to that effect is via FZ-mediated nitric oxide production.
Collapse
Affiliation(s)
- Vuong Van Hung Le
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Catrina Olivera
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Julian Spagnuolo
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.,Present Address: Department of Biomedicine, University Hospital Basel, 4031, Basel, Switzerland
| | - Ieuan G Davies
- New Zealand Pharmaceuticals Ltd, Palmerston North, New Zealand
| | - Jasna Rakonjac
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
| |
Collapse
|
16
|
Petravicius PO, Costa-Martins AG, Silva MN, Reis-Cunha JL, Bartholomeu DC, Teixeira MM, Zingales B. Mapping benznidazole resistance in trypanosomatids and exploring evolutionary histories of nitroreductases and ABCG transporter protein sequences. Acta Trop 2019; 200:105161. [PMID: 31494121 DOI: 10.1016/j.actatropica.2019.105161] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/22/2019] [Accepted: 09/03/2019] [Indexed: 12/24/2022]
Abstract
The nitro-heterocyclic compound benznidazole (BZ) is the first-line drug for the treatment of Chagas disease, caused by the protozoan Trypanosoma cruzi. However, therapeutic failures are common for reasons that include the influences of parasite and host genetics, the effects of toxicity on adherence to treatment, and difficulties in demonstrating parasitological cure. To obtain information on the origin of the resistance to BZ and eliminate from the scenery the participation of the host, initially we mapped the susceptibility to the drug in thirteen species of seven genera of the family Trypanosomatidae. We verified that all Trypanosoma species are sensitive to low concentrations of the drug (IC50 2.7 to 25 µM) while Non-Trypanosoma species are highly resistant to these concentrations. The two groups of parasites correspond to the major phylogenetic lineages of trypanosomatids. Next, we searched in the trypanosomatid genome databases homologs of two type-I nitroreductases (NTR-1 and OYE) and an ABC transporter (ABCG1) that have been associated with BZ resistance in T. cruzi. The predicted proteins were characterized regarding domains and used for phylogenetic analyses. Homologous NTR-1 genes were found in all trypanosomatids investigated and the structural characteristics of the enzyme suggest that it may be functional. OYE genes were absent in BZ-sensitive African trypanosomes, which excludes the participation of this enzyme in BZ bio-activation. Two copies of ABCG1 genes were observed in most BZ resistant species, while Trypanosoma species exhibit only one copy per haploid genome. Functional studies are required to verify the involvement of these genes in BZ resistance. In addition, since multiple mechanisms can contribute to BZ susceptibility, our study poses a range of organisms highly resistant to BZ in which these aspects can be investigated. Preliminary studies on BZ uptake indicate marked differences between BZ-sensitive and BZ-resistant species.
Collapse
|
17
|
Fersing C, Basmaciyan L, Boudot C, Pedron J, Hutter S, Cohen A, Castera-Ducros C, Primas N, Laget M, Casanova M, Bourgeade-Delmas S, Piednoel M, Sournia-Saquet A, Belle Mbou V, Courtioux B, Boutet-Robinet É, Since M, Milne R, Wyllie S, Fairlamb AH, Valentin A, Rathelot P, Verhaeghe P, Vanelle P, Azas N. Nongenotoxic 3-Nitroimidazo[1,2- a]pyridines Are NTR1 Substrates That Display Potent in Vitro Antileishmanial Activity. ACS Med Chem Lett 2019; 10:34-39. [PMID: 30655943 DOI: 10.1021/acsmedchemlett.8b00347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Twenty nine original 3-nitroimidazo[1,2-a]pyridine derivatives, bearing a phenylthio (or benzylthio) moiety at position 8 of the scaffold, were synthesized. In vitro evaluation highlighted compound 5 as an antiparasitic hit molecule displaying low cytotoxicity for the human HepG2 cell line (CC50 > 100 μM) alongside good antileishmanial activities (IC50 = 1-2.1 μM) against L. donovani, L. infantum, and L. major; and good antitrypanosomal activities (IC50 = 1.3-2.2 μM) against T. brucei brucei and T. cruzi, in comparison to several reference drugs such as miltefosine, fexinidazole, eflornithine, and benznidazole (IC50 = 0.6 to 13.3 μM). Molecule 5, presenting a low reduction potential (E° = -0.63 V), was shown to be selectively bioactivated by the L. donovani type 1 nitroreductase (NTR1). Importantly, molecule 5 was neither mutagenic (negative Ames test), nor genotoxic (negative comet assay), in contrast to many other nitroaromatics. Molecule 5 showed poor microsomal stability; however, its main metabolite (sulfoxide) remained both active and nonmutagenic, making 5 a good candidate for further in vivo studies.
Collapse
Affiliation(s)
- Cyril Fersing
- Aix Marseille Univ, CNRS, ICR UMR 7273, Équipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | | | - Clotilde Boudot
- Université de Limoges, UMR INSERM 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Julien Pedron
- LCC−CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Anita Cohen
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Caroline Castera-Ducros
- Aix Marseille Univ, CNRS, ICR UMR 7273, Équipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Équipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Michèle Laget
- Aix Marseille Univ, INSERM, UMR MD1, U1261,
SSA, MCT, Marseille, France
| | - Magali Casanova
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | | | - Mélanie Piednoel
- Aix Marseille Univ, CNRS, ICR UMR 7273, Équipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | | | - Valère Belle Mbou
- CHU de Limoges, Service d’anatomopathologie, 2 avenue Martin Luther King, 87042 Limoges, France
| | - Bertrand Courtioux
- Université de Limoges, UMR INSERM 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025 Limoges, France
| | - Élisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT,
INP-Purpan, UPS, Toulouse, France
| | - Marc Since
- Centre d’Etudes et de Recherche sur le Médicament de Normandie, Normandie Univ., UNICAEN, CERMN, 14000 Caen, France
| | - Rachel Milne
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Susan Wyllie
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Alan H. Fairlamb
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | - Alexis Valentin
- UMR 152 PharmaDev, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Pascal Rathelot
- Aix Marseille Univ, CNRS, ICR UMR 7273, Équipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | | | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Équipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Nadine Azas
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| |
Collapse
|
18
|
Fersing C, Boudot C, Pedron J, Hutter S, Primas N, Castera-Ducros C, Bourgeade-Delmas S, Sournia-Saquet A, Moreau A, Cohen A, Stigliani JL, Pratviel G, Crozet MD, Wyllie S, Fairlamb A, Valentin A, Rathelot P, Azas N, Courtioux B, Verhaeghe P, Vanelle P. 8-Aryl-6-chloro-3-nitro-2-(phenylsulfonylmethyl)imidazo[1,2-a]pyridines as potent antitrypanosomatid molecules bioactivated by type 1 nitroreductases. Eur J Med Chem 2018; 157:115-126. [PMID: 30092366 PMCID: PMC7089781 DOI: 10.1016/j.ejmech.2018.07.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 11/28/2022]
Abstract
Based on a previously identified antileishmanial 6,8-dibromo-3-nitroimidazo[1,2-a]pyridine derivative, a Suzuki-Miyaura coupling reaction at position 8 of the scaffold was studied and optimized from a 8-bromo-6-chloro-3-nitroimidazo[1,2-a]pyridine substrate. Twenty-one original derivatives were prepared, screened in vitro for activity against L. infantum axenic amastigotes and T. brucei brucei trypomastigotes and evaluated for their cytotoxicity on the HepG2 human cell line. Thus, 7 antileishmanial hit compounds were identified, displaying IC50 values in the 1.1-3 μM range. Compounds 13 and 23, the 2 most selective molecules (SI = >18 or >17) were additionally tested on both the promastigote and intramacrophage amastigote stages of L. donovani. The two molecules presented a good activity (IC50 = 1.2-1.3 μM) on the promastigote stage but only molecule 23, bearing a 4-pyridinyl substituent at position 8, was active on the intracellular amastigote stage, with a good IC50 value (2.3 μM), slightly lower than the one of miltefosine (IC50 = 4.3 μM). The antiparasitic screening also revealed 8 antitrypanosomal hit compounds, including 14 and 20, 2 very active (IC50 = 0.04-0.16 μM) and selective (SI = >313 to 550) molecules toward T. brucei brucei, in comparison with drug-candidate fexinidazole (IC50 = 0.6 & SI > 333) or reference drugs suramin and eflornithine (respective IC50 = 0.03 and 13.3 μM). Introducing an aryl moiety at position 8 of the scaffold quite significantly increased the antitrypanosomal activity of the pharmacophore. Antikinetoplastid molecules 13, 14, 20 and 23 were assessed for bioactivation by parasitic nitroreductases (either in L. donovani or in T. brucei brucei), using genetically modified parasite strains that over-express NTRs: all these molecules are substrates of type 1 nitroreductases (NTR1), such as those that are responsible for the bioactivation of fexinidazole. Reduction potentials measured for these 4 hit compounds were higher than that of fexinidazole (-0.83 V), ranging from -0.70 to -0.64 V.
Collapse
Affiliation(s)
- Cyril Fersing
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, FAC PHARM, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Clotilde Boudot
- Université de Limoges, UMR Inserm 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025, Limoges, France
| | - Julien Pedron
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Sébastien Hutter
- IHU Méditerranée Infection, Aix-Marseille Univ, UMR VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Nicolas Primas
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, FAC PHARM, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Caroline Castera-Ducros
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, FAC PHARM, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | | | | | - Alain Moreau
- LCC-CNRS Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Anita Cohen
- IHU Méditerranée Infection, Aix-Marseille Univ, UMR VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | | | | | - Maxime D Crozet
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, FAC PHARM, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Susan Wyllie
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Alan Fairlamb
- University of Dundee, School of Life Sciences, Division of Biological Chemistry and Drug Discovery, Dow Street, Dundee, DD1 5EH, Scotland, United Kingdom
| | - Alexis Valentin
- UMR 152 PHARMA-DEV, Université de Toulouse, IRD, UPS, Toulouse, France
| | - Pascal Rathelot
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, FAC PHARM, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France
| | - Nadine Azas
- IHU Méditerranée Infection, Aix-Marseille Univ, UMR VITROME, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Bertrand Courtioux
- Université de Limoges, UMR Inserm 1094, Neuroépidémiologie Tropicale, Faculté de Pharmacie, 2 rue du Dr Marcland, 87025, Limoges, France
| | | | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, FAC PHARM, 27 Boulevard Jean Moulin, CS30064, 13385, Marseille Cedex 05, France.
| |
Collapse
|
19
|
Meredith EL, Kumar A, Konno A, Szular J, Alsford S, Seifert K, Horn D, Wilkinson SR. Distinct activation mechanisms trigger the trypanocidal activity of DNA damaging prodrugs. Mol Microbiol 2017; 106:207-222. [PMID: 28792090 PMCID: PMC5656836 DOI: 10.1111/mmi.13767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2017] [Indexed: 02/02/2023]
Abstract
Quinone-based compounds have been exploited to treat infectious diseases and cancer, with such chemicals often functioning as inhibitors of key metabolic pathways or as prodrugs. Here, we screened an aziridinyl 1,4-benzoquinone (ABQ) library against the causative agents of trypanosomiasis, and cutaneous leishmaniasis, identifying several potent structures that exhibited EC50 values of <100 nM. However, these compounds also displayed significant toxicity towards mammalian cells indicating that they are not suitable therapies for systemic infections. Using anti-T. brucei ABQs as chemical probes, we demonstrated that these exhibit different trypanocidal modes of action. Many functioned as type I nitroreductase (TbNTR) or cytochrome P450 reductase (TbCPR) dependent prodrugs that, following activation, generate metabolites which promote DNA damage, specifically interstrand crosslinks (ICLs). Trypanosomes lacking TbSNM1, a nuclease that specifically repairs ICLs, are hypersensitive to most ABQ prodrugs, a phenotype exacerbated in cells also engineered to express elevated levels of TbNTR or TbCPR. In contrast, ABQs that contain substituent groups on the biologically active aziridine do not function as TbNTR or TbCPR-activated prodrugs and do not promote DNA damage. By unravelling how ABQs mediate their activities, features that facilitate the desired anti-parasitic growth inhibitory effects could be incorporated into new, safer compounds targeting these neglected tropical diseases.
Collapse
Affiliation(s)
- Emma Louise Meredith
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| | - Ambika Kumar
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| | - Aya Konno
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| | - Joanna Szular
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| | - Sam Alsford
- Department of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical Medicine, Keppel StreetLondonUK
| | - Karin Seifert
- Department of Infectious and Tropical DiseasesLondon School of Hygiene and Tropical Medicine, Keppel StreetLondonUK
| | - David Horn
- The Wellcome Trust Centre for Anti‐Infectives Research, School of Life SciencesUniversity of DundeeDundeeUK
| | - Shane R. Wilkinson
- School of Biological and Chemical SciencesQueen Mary University of London, Mile End RoadLondonE1 4NSUK
| |
Collapse
|
20
|
Romero AH, López SE. In silico molecular docking studies of new potential 4-phthalazinyl-hydrazones on selected Trypanosoma cruzi and Leishmania enzyme targets. J Mol Graph Model 2017; 76:313-329. [DOI: 10.1016/j.jmgm.2017.07.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
|
21
|
Montenegro M, Cuervo C, Cardenas C, Duarte S, Díaz JR, Thomas MC, Lopez MC, Puerta CJ. Identification of a type I nitroreductase gene in non-virulent Trypanosoma rangeli. Mem Inst Oswaldo Cruz 2017; 112:504-509. [PMID: 28591312 PMCID: PMC5452488 DOI: 10.1590/0074-02760160532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/22/2017] [Indexed: 11/21/2022] Open
Abstract
Trypanosomatid type I nitroreductases (NTRs), i.e., mitochondrial enzymes that metabolise nitroaromatic pro-drugs, are essential for parasite growth, infection, and survival. Here, a type I NTR of non-virulent protozoan Trypanosoma rangeli is described and compared to those of other trypanosomatids. The NTR gene was isolated from KP1(+) and KP1(-) strains, and its corresponding transcript and 5’ untranslated region (5’UTR) were determined. Bioinformatics analyses and nitro-drug activation assays were also performed. The results indicated that the type I NTR gene is present in both KP1(-) and KP1(+) strains, with 98% identity. However, the predicted subcellular localisation of the protein differed among the strains (predicted as mitochondrial in the KP1(+) strain). Comparisons of the domains and 3D structures of the NTRs with those of orthologs demonstrated that the nitroreductase domain of T. rangeli NTR is conserved across all the strains, including the residues involved in the interaction with the FMN cofactor and in the tertiary structure characteristics of this oxidoreductase protein family. mRNA processing and expression were also observed. In addition, T. rangeli was shown to be sensitive to benznidazole and nifurtimox in a concentration-dependent manner. In summary, T. rangeli appears to have a newly discovered functional type I NTR.
Collapse
Affiliation(s)
- Marjorie Montenegro
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia.,Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina López Neyra, Granada, Spain
| | - Claudia Cuervo
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| | - Constanza Cardenas
- Pontificia Universidad Católica de Valparaíso, Núcleo de Biotecnología Curauma, Valparaíso, Chile
| | - Silvia Duarte
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| | - Jenny R Díaz
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| | - M Carmen Thomas
- Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina López Neyra, Granada, Spain
| | - Manuel C Lopez
- Consejo Superior de Investigaciones Científicas, Instituto de Parasitología y Biomedicina López Neyra, Granada, Spain
| | - Concepcion J Puerta
- Pontificia Universidad Javeriana, Facultad de Ciencias, Departamento de Microbiología, Laboratorio de Parasitología Molecular, Bogotá, Colombia
| |
Collapse
|
22
|
Heterologous Overexpression and Biochemical Characterization of a Nitroreductase from Gluconobacter oxydans 621H. Mol Biotechnol 2017; 58:428-40. [PMID: 27138989 DOI: 10.1007/s12033-016-9942-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
A NADPH-dependent and FMN-containing nitroreductase (Gox0834) from Gluconobacter oxydans was cloned and heterogeneously expressed in Escherichia coli. The purified enzyme existed as a dimer with an apparent molecular mass of about 31.4 kDa. The enzyme displayed broad substrate specificity and reduced a variety of mononitrated, polynitrated, and polycyclic nitroaromatic compounds to the corresponding amino products. The highest activity was observed for the reduction of CB1954 (5-(1-aziridinyl)-2,4-dinitrobenzamide). The enzyme kinetics analysis showed that Gox0834 had relatively low K m (54 ± 11 μM) but high k cat/K m value (0.020 s(-1)/μM) for CB1954 when compared with known nitroreductases. Nitrobenzene and 2,4,6-trinitrotoluene (TNT) were preferred substrates for this enzyme with specific activity of 11.0 and 8.9 μmol/min/mg, respectively. Gox0834 exhibited a broad temperature optimum of 40-60 °C for the reduction of CB1954 with a pH optimum between 7.5 and 8.5. The purified enzyme was very stable below 37 °C over a broad pH range of 6.0-10.0. These characteristics suggest that the nitroreductase Gox0834 may be a possible candidate for catalyzing prodrug activation, bioremediation, or biocatalytic processes.
Collapse
|
23
|
Wong RHF, Kwong T, Yau KH, Au-Yeung HY. Real time detection of live microbes using a highly sensitive bioluminescent nitroreductase probe. Chem Commun (Camb) 2015; 51:4440-2. [PMID: 25680085 DOI: 10.1039/c4cc10345a] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A highly sensitive and selective nitroreductase probe, showing a rapid and strong bioluminescence enhancement (>100-fold in 5 minutes), and its initial application in the real time detection of both Gram positive and Gram negative live bacteria and monitoring of their growth has been reported.
Collapse
Affiliation(s)
- Roger H F Wong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China.
| | | | | | | |
Collapse
|
24
|
Tobin PH, Richards DH, Callender RA, Wilson CJ. Protein engineering: a new frontier for biological therapeutics. Curr Drug Metab 2015; 15:743-56. [PMID: 25495737 DOI: 10.2174/1389200216666141208151524] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 11/27/2014] [Accepted: 12/07/2014] [Indexed: 12/14/2022]
Abstract
Protein engineering holds the potential to transform the metabolic drug landscape through the development of smart, stimulusresponsive drug systems. Protein therapeutics are a rapidly expanding segment of Food and Drug Administration approved drugs that will improve clinical outcomes over the long run. Engineering of protein therapeutics is still in its infancy, but recent general advances in protein engineering capabilities are being leveraged to yield improved control over both pharmacokinetics and pharmacodynamics. Stimulus- responsive protein therapeutics are drugs which have been designed to be metabolized under targeted conditions. Protein engineering is being utilized to develop tailored smart therapeutics with biochemical logic. This review focuses on applications of targeted drug neutralization, stimulus-responsive engineered protein prodrugs, and emerging multicomponent smart drug systems (e.g., antibody-drug conjugates, responsive engineered zymogens, prospective biochemical logic smart drug systems, drug buffers, and network medicine applications).
Collapse
Affiliation(s)
| | | | | | - Corey J Wilson
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, USA.
| |
Collapse
|
25
|
Comparative characterisation of two nitroreductases from Giardia lamblia as potential activators of nitro compounds. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2015; 5:37-43. [PMID: 27099829 PMCID: PMC4813764 DOI: 10.1016/j.ijpddr.2015.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 11/23/2022]
Abstract
G. lamblia has two nitroreductases with substrate specificities not only for nitro compounds, but also for quinones. GlNR1 rather activates nitro drugs by forming toxic intermediates, GlNR2 rather inactivates them.
Giardia lamblia is a protozoan parasite that causes giardiasis, a diarrhoeal disease affecting humans and various animal species. Nitro drugs such as the nitroimidazole metronidazole and the nitrothiazolide nitazoxanide are used for treatment of giardiasis. Nitroreductases such as GlNR1 and GlNR2 may play a role in activation or inactivation of these drugs. The aim of this work is to characterise these two enyzmes using functional assays. For respective analyses recombinant analogues from GlNR1 and GlNR2 were produced in Escherichia coli. E. coli expressing GlNR1 and GlNR2 alone or together were grown in the presence of nitro compounds. Furthermore, pull-down assays were performed using HA-tagged GlNR1 and GlNR2 as baits. As expected, E. coli expressing GlNR1 were more susceptible to metronidazole under aerobic and semi-aerobic and to nitazoxanide under semi-aerobic growth conditions whereas E. coli expressing GlNR2 were susceptible to neither drug. Interestingly, expression of both nitroreductases gave the same results as expression of GlNR2 alone. In functional assays, both nitroreductases had their strongest activities on the quinone menadione (vitamin K3) and FAD, but reduction of nitro compounds including the nitro drugs metronidazole and nitazoxanide was clearly detected. Full reduction of 7-nitrocoumarin to 7-aminocoumarin was preferentially achieved with GlNR2. Pull-down assays revealed that GlNR1 and GlNR2 interacted in vivo forming a multienzyme complex. These findings suggest that both nitroreductases are multifunctional. Their main biological role may reside in the reduction of vitamin K analogues and FAD. Activation by GlNR1 or inactivation by GlNR2 of nitro drugs may be the consequence of a secondary enzymatic activity either yielding (GlNR1) or eliminating (GlNR2) toxic intermediates after reduction of these compounds.
Collapse
|
26
|
Patterson S, Wyllie S. Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects. Trends Parasitol 2014; 30:289-98. [PMID: 24776300 PMCID: PMC4045206 DOI: 10.1016/j.pt.2014.04.003] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 02/07/2023]
Abstract
Two nitro drugs are currently used in the treatment of trypanosomatid diseases. Several new nitroaromatics are being developed against the trypanosomatid diseases. Many nitro drugs and drug candidates act as prodrugs which require bioactivation. Nitroaromatics can have disparate mechanisms of action in trypanosomatid parasites.
There is an urgent need for new, safer, and effective treatments for the diseases caused by the protozoan parasites Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. In the search for more effective drugs to treat these ‘neglected diseases’ researchers have chosen to reassess the therapeutic value of nitroaromatic compounds. Previously avoided in drug discovery programs owing to potential toxicity issues, a nitro drug is now being used successfully as part of a combination therapy for human African trypanosomiasis. We describe here the rehabilitation of nitro drugs for the treatment of trypanosomatid diseases and discuss the future prospects for this compound class.
Collapse
Affiliation(s)
- Stephen Patterson
- Division of Biological Chemistry and Drug Discovery, Sir James Black Centre, College of Life Sciences, University of Dundee, Dundee, UK.
| | - Susan Wyllie
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Biocentre, College of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
27
|
Evaluating aziridinyl nitrobenzamide compounds as leishmanicidal prodrugs. Antimicrob Agents Chemother 2013; 58:370-7. [PMID: 24165190 DOI: 10.1128/aac.01459-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many of the nitroaromatic agents used in medicine function as prodrugs and must undergo activation before exerting their toxic effects. In most cases, this is catalyzed by flavin mononucleotide (FMN)-dependent type I nitroreductases (NTRs), a class of enzyme absent from higher eukaryotes but expressed by bacteria and several eukaryotic microbes, including trypanosomes and Leishmania. Here, we utilize this difference to evaluate whether members of a library of aziridinyl nitrobenzamides have activity against Leishmania major. Biochemical screens using purified L. major NTR (LmNTR) revealed that compounds containing an aziridinyl-2,4-dinitrobenzyl core were effective substrates for the enzyme and showed that the 4-nitro group was important for this activity. To facilitate drug screening against intracellular amastigote parasites, we generated leishmanial cells that expressed the luciferase reporter gene and optimized a mammalian infection model in a 96-well plate format. A subset of aziridinyl-2,4-dinitrobenzyl compounds possessing a 5-amide substituent displayed significant growth-inhibitory properties against the parasite, with the most potent agents generating 50% inhibitory concentrations of <100 nM for the intracellular form. This antimicrobial activity was shown to be LmNTR specific since L. major NTR(+/-) heterozygote parasites were slightly resistance to most aziridinyl dinitrobenzyl agents tested. When the most potent leishmanicidal agents were screened against the mammalian cells in which the amastigote parasites were propagated, no growth-inhibitory effect was observed at concentrations of up to 100 μM. We conclude that the aziridinyl nitrobenzamides represent a new lead structure that may have the potential to treat leishmanial infections.
Collapse
|