1
|
Oliveira RD, Mousel MR, Gonzalez MV, Durfee CJ, Davenport KM, Murdoch BM, Taylor JB, Neibergs HL, White SN. A high-density genome-wide association with absolute blood monocyte count in domestic sheep identifies novel loci. PLoS One 2022; 17:e0266748. [PMID: 35522671 PMCID: PMC9075649 DOI: 10.1371/journal.pone.0266748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/27/2022] [Indexed: 11/20/2022] Open
Abstract
Monocytes are a core component of the immune system that arise from bone marrow and differentiate into cells responsible for phagocytosis and antigen presentation. Their derivatives are often responsible for the initiation of the adaptive immune response. Monocytes and macrophages are central in both controlling and propagating infectious diseases such as infection by Coxiella burnetii and small ruminant lentivirus in sheep. Genotypes from 513 Rambouillet, Polypay, and Columbia sheep (Ovis aries) were generated using the Ovine SNP50 BeadChip. Of these sheep, 222 animals were subsequently genotyped with the Ovine Infinium® HD SNP BeadChip to increase SNP coverage. Data from the 222 HD genotyped sheep were combined with the data from an additional 258 unique sheep to form a 480-sheep reference panel; this panel was used to impute the low-density genotypes to the HD genotyping density. Then, a genome-wide association analysis was conducted to identify loci associated with absolute monocyte counts from blood. The analysis used a single-locus mixed linear model implementing EMMAX with age and ten principal components as fixed effects. Two genome-wide significant peaks (p < 5x10-7) were identified on chromosomes 9 and 1, and ten genome-wide suggestive peaks (p < 1x10-5) were identified on chromosomes 1, 2, 3, 4, 9, 10, 15, and 16. The identified loci were within or near genes including KCNK9, involved into cytokine production, LY6D, a member of a superfamily of genes, some of which subset monocyte lineages, and HMGN1, which encodes a chromatin regulator associated with myeloid cell differentiation. Further investigation of these loci is being conducted to understand their contributions to monocyte counts. Investigating the genetic basis of monocyte lineages and numbers may in turn provide information about pathogens of veterinary importance and elucidate fundamental immunology.
Collapse
Affiliation(s)
- Ryan D. Oliveira
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
| | - Michelle R. Mousel
- USDA-ARS Animal Disease Research, Pullman, Washington, United States of America
- Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Michael V. Gonzalez
- Center for Applied Genomics, Children’s Hospital of Philadelphia, Philadelphia, PA, United States of America
| | - Codie J. Durfee
- USDA-ARS Animal Disease Research, Pullman, Washington, United States of America
| | - Kimberly M. Davenport
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, ID, United States of America
| | - Brenda M. Murdoch
- Department of Animal, Veterinary, and Food Science, University of Idaho, Moscow, ID, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
| | - J. Bret Taylor
- USDA-ARS Range Sheep Production Efficiency Research, Dubois, Idaho, United States of America
| | - Holly L. Neibergs
- Department of Animal Sciences, Washington State University, Pullman, WA, United States of America
| | - Stephen N. White
- Department of Veterinary Microbiology & Pathology, Washington State University, Pullman, Washington, United States of America
- USDA-ARS Animal Disease Research, Pullman, Washington, United States of America
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States of America
- * E-mail:
| |
Collapse
|
2
|
Abstract
Heterologous expression of recombinant ion channel subunits in mammalian cell lines allows for characterization of their functional properties and pharmacological regulation. In this chapter, we describe methods for thawing, refreezing, passaging, cell culture, and transfection of tsA201 cells suitable for electrophysiology and imaging experiments. Furthermore, we discuss the strengths and limitations of using these methods.
Collapse
|
3
|
Cunningham KP, Holden RG, Escribano-Subias PM, Cogolludo A, Veale EL, Mathie A. Characterization and regulation of wild-type and mutant TASK-1 two pore domain potassium channels indicated in pulmonary arterial hypertension. J Physiol 2018; 597:1087-1101. [PMID: 30365877 PMCID: PMC6376074 DOI: 10.1113/jp277275] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/24/2018] [Indexed: 12/22/2022] Open
Abstract
Key points The TASK‐1 channel gene (KCNK3) has been identified as a possible disease‐causing gene in heritable pulmonary arterial hypertension (PAH). In the present study, we show that novel mutated TASK‐1 channels, seen in PAH patients, have a substantially reduced current compared to wild‐type TASK‐1 channels. These mutated TASK‐1 channels are located at the plasma membrane to the same degree as wild‐type TASK‐1 channels. ONO‐RS‐082 and alkaline pH 8.4 both activate TASK‐1 channels but do not recover current through mutant TASK‐1 channels. We show that the guanylate cyclase activator, riociguat, a novel treatment for PAH, enhances current through TASK‐1 channels but does not recover current through mutant TASK‐1 channels.
Abstract Pulmonary arterial hypertension (PAH) affects ∼15–50 people per million. KCNK3, the gene that encodes the two pore domain potassium channel TASK‐1 (K2P3.1), has been identified as a possible disease‐causing gene in heritable PAH. Recently, two new mutations have been identified in KCNK3 in PAH patients: G106R and L214R. The present study aimed to characterize the functional properties and regulation of wild‐type (WT) and mutated TASK‐1 channels and determine how these might contribute to PAH and its treatment. Currents through WT and mutated human TASK‐1 channels transiently expressed in tsA201 cells were measured using whole‐cell patch clamp electrophysiology. Localization of fluorescence‐tagged channels was visualized using confocal microscopy and quantified with in‐cell and on‐cell westerns. G106R or L214R mutated channels were located at the plasma membrane to the same degree as WT channels; however, their current was markedly reduced compared to WT TASK‐1 channels. Functional current through these mutated channels could not be restored using activators of WT TASK‐1 channels (pH 8.4, ONO‐RS‐082). The guanylate cyclase activator, riociguat, enhanced current through WT TASK‐1 channels; however, similar to the other activators investigated, riociguat did not have any effect on current through mutated TASK‐1 channels. Thus, novel mutations in TASK‐1 seen in PAH substantially alter the functional properties of these channels. Current through these channels could not be restored by activators of TASK‐1 channels. Riociguat enhancement of current through TASK‐1 channels could contribute to its therapeutic benefit in the treatment of PAH. The TASK‐1 channel gene (KCNK3) has been identified as a possible disease‐causing gene in heritable pulmonary arterial hypertension (PAH). In the present study, we show that novel mutated TASK‐1 channels, seen in PAH patients, have a substantially reduced current compared to wild‐type TASK‐1 channels. These mutated TASK‐1 channels are located at the plasma membrane to the same degree as wild‐type TASK‐1 channels. ONO‐RS‐082 and alkaline pH 8.4 both activate TASK‐1 channels but do not recover current through mutant TASK‐1 channels. We show that the guanylate cyclase activator, riociguat, a novel treatment for PAH, enhances current through TASK‐1 channels but does not recover current through mutant TASK‐1 channels.
Collapse
Affiliation(s)
- Kevin P Cunningham
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| | - Robyn G Holden
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| | | | - Angel Cogolludo
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Emma L Veale
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| | - Alistair Mathie
- Medway School of Pharmacy, University of Kent and University of Greenwich, Chatham Maritime, Kent, UK
| |
Collapse
|
4
|
Calabrò E, Magazù S. Resonant interaction between electromagnetic fields and proteins: A possible starting point for the treatment of cancer. Electromagn Biol Med 2018; 37:155-168. [DOI: 10.1080/15368378.2018.1499031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Emanuele Calabrò
- Department of Mathematical and Informatics Sciences, Physical Sciences and Earth Sciences of Messina University, Messina, Italy
- CISFA - Interuniversity Consortium of Applied Physical Sciences (Consorzio Interuniversitario di Scienze Fisiche Applicate), Messina, Italy
| | - Salvatore Magazù
- Department of Mathematical and Informatics Sciences, Physical Sciences and Earth Sciences of Messina University, Messina, Italy
- Le Studium, Loire Valley Institute for Advanced Studies, Orléans & Tours, Orléans, France
- Centre de Biophysique Moleculaire (CBM), rue Charles Sadron, Laboratoire Interfaces, Confinement, Matériaux et Nanostructures (ICMN) – UMR 7374 CNRS, Université d’Orléans, Orleans, France
- Istituto Nazionale di Alta Matematica “F. Severi” – INDAM – Gruppo Nazionale per la Fisica Matematica – GNFM, Rome, Italy
| |
Collapse
|
5
|
Wright PD, Veale EL, McCoull D, Tickle DC, Large JM, Ococks E, Gothard G, Kettleborough C, Mathie A, Jerman J. Terbinafine is a novel and selective activator of the two-pore domain potassium channel TASK3. Biochem Biophys Res Commun 2017; 493:444-450. [DOI: 10.1016/j.bbrc.2017.09.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022]
|
6
|
Wang K, Wang F, Bao JP, Xie ZY, Chen L, Zhou BY, Xie XH, Wu XT. Tumor necrosis factor α modulates sodium-activated potassium channel SLICK in rat dorsal horn neurons via p38 MAPK activation pathway. J Pain Res 2017; 10:1265-1271. [PMID: 28579824 PMCID: PMC5449117 DOI: 10.2147/jpr.s132185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The dorsal horn (DH) of the spinal cord is the integrative center that processes and transmits pain sensation. Abnormal changes in ion channel expression can enhance the excitability of pain-related DH neurons. Sodium-activated potassium (KNa) channels are highly expressed particularly in the central nervous system; however, information about whether rat DH neurons express the SLICK channel protein is lacking, and the direct effects on SLICK in response to inflammation and the potential signaling pathway mediating such effects are yet to be elucidated. Here, using cultured DH neurons, we have shown that tumor necrosis factor-α inhibits the total outward potassium current IK and the KNa current predominantly as well as induces a progressive loss of firing accommodation. However, we found that this change in channel activity is offset by the p38 inhibitor SB202190, thereby suggesting the modulation of SLICK channel activity via the p38 MAPK pathway. Furthermore, we have demonstrated that the tumor necrosis factor-α modulation of KNa channels does not occur at the level of SLICK channel gating but arises from possible posttranslational modification.
Collapse
Affiliation(s)
- Kun Wang
- Medical School of Southeast University
| | - Feng Wang
- Medical School of Southeast University
| | - Jun-Ping Bao
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | | | - Lu Chen
- Medical School of Southeast University
| | | | - Xin-Hui Xie
- Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| | - Xiao-Tao Wu
- Medical School of Southeast University.,Department of Orthopaedics, Zhongda Hospital, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Guignabert C, Phan C, Seferian A, Huertas A, Tu L, Thuillet R, Sattler C, Le Hiress M, Tamura Y, Jutant EM, Chaumais MC, Bouchet S, Manéglier B, Molimard M, Rousselot P, Sitbon O, Simonneau G, Montani D, Humbert M. Dasatinib induces lung vascular toxicity and predisposes to pulmonary hypertension. J Clin Invest 2016; 126:3207-18. [PMID: 27482885 DOI: 10.1172/jci86249] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease that can be induced by dasatinib, a dual Src and BCR-ABL tyrosine kinase inhibitor that is used to treat chronic myelogenous leukemia (CML). Today, key questions remain regarding the mechanisms involved in the long-term development of dasatinib-induced PAH. Here, we demonstrated that chronic dasatinib therapy causes pulmonary endothelial damage in humans and rodents. We found that dasatinib treatment attenuated hypoxic pulmonary vasoconstriction responses and increased susceptibility to experimental pulmonary hypertension (PH) in rats, but these effects were absent in rats treated with imatinib, another BCR-ABL tyrosine kinase inhibitor. Furthermore, dasatinib treatment induced pulmonary endothelial cell apoptosis in a dose-dependent manner, while imatinib did not. Dasatinib treatment mediated endothelial cell dysfunction via increased production of ROS that was independent of Src family kinases. Consistent with these findings, we observed elevations in markers of endothelial dysfunction and vascular damage in the serum of CML patients who were treated with dasatinib, compared with CML patients treated with imatinib. Taken together, our findings indicate that dasatinib causes pulmonary vascular damage, induction of ER stress, and mitochondrial ROS production, which leads to increased susceptibility to PH development.
Collapse
|
8
|
Sung YJ, Pérusse L, Sarzynski MA, Fornage M, Sidney S, Sternfeld B, Rice T, Terry G, Jacobs DR, Katzmarzyk P, Curran JE, Carr JJ, Blangero J, Ghosh S, Després JP, Rankinen T, Rao D, Bouchard C. Genome-wide association studies suggest sex-specific loci associated with abdominal and visceral fat. Int J Obes (Lond) 2016; 40:662-74. [PMID: 26480920 PMCID: PMC4821694 DOI: 10.1038/ijo.2015.217] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 10/05/2015] [Accepted: 10/06/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND To identify loci associated with abdominal fat and replicate prior findings, we performed genome-wide association (GWA) studies of abdominal fat traits: subcutaneous adipose tissue (SAT); visceral adipose tissue (VAT); total adipose tissue (TAT) and visceral to subcutaneous adipose tissue ratio (VSR). SUBJECTS AND METHODS Sex-combined and sex-stratified analyses were performed on each trait with (TRAIT-BMI) or without (TRAIT) adjustment for body mass index (BMI), and cohort-specific results were combined via a fixed effects meta-analysis. A total of 2513 subjects of European descent were available for the discovery phase. For replication, 2171 European Americans and 772 African Americans were available. RESULTS A total of 52 single-nucleotide polymorphisms (SNPs) encompassing 7 loci showed suggestive evidence of association (P<1.0 × 10(-6)) with abdominal fat in the sex-combined analyses. The strongest evidence was found on chromosome 7p14.3 between a SNP near BBS9 gene and VAT (rs12374818; P=1.10 × 10(-7)), an association that was replicated (P=0.02). For the BMI-adjusted trait, the strongest evidence of association was found between a SNP near CYCSP30 and VAT-BMI (rs10506943; P=2.42 × 10(-7)). Our sex-specific analyses identified one genome-wide significant (P<5.0 × 10(-8)) locus for SAT in women with 11 SNPs encompassing the MLLT10, DNAJC1 and EBLN1 genes on chromosome 10p12.31 (P=3.97 × 10(-8) to 1.13 × 10(-8)). The THNSL2 gene previously associated with VAT in women was also replicated (P=0.006). The six gene/loci showing the strongest evidence of association with VAT or VAT-BMI were interrogated for their functional links with obesity and inflammation using the Biograph knowledge-mining software. Genes showing the closest functional links with obesity and inflammation were ADCY8 and KCNK9, respectively. CONCLUSIONS Our results provide evidence for new loci influencing abdominal visceral (BBS9, ADCY8, KCNK9) and subcutaneous (MLLT10/DNAJC1/EBLN1) fat, and confirmed a locus (THNSL2) previously reported to be associated with abdominal fat in women.
Collapse
Affiliation(s)
- Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St-Louis, MO
| | - Louis Pérusse
- Department of Kinesiology, School of Medicine and Institute of Nutrition and Functional Foods, Laval University, Québec, QC
| | - Mark A. Sarzynski
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Myriam Fornage
- Center for Human Genetics, University of Texas Health Science Center, Houston, TX
| | - Steve Sidney
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Barbara Sternfeld
- Division of Research, Kaiser Permanente Northern California, Oakland, CA
| | - Treva Rice
- Division of Biostatistics, Washington University School of Medicine, St-Louis, MO
| | - Gregg Terry
- Department of Radiology, School of Medicine, Vanderbilt University, Nahsville, TN
| | - David R. Jacobs
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN
| | - Peter Katzmarzyk
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - Joanne E Curran
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, TX
| | - John Jeffrey Carr
- Department of Radiology, School of Medicine, Vanderbilt University, Nahsville, TN
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, TX
| | - Sujoy Ghosh
- Cardiovascular and Metabolic Disorders Program and Center for Computational Biology, Duke-NUS Graduate Medical School, Singapore
| | - Jean-Pierre Després
- Department of Kinesiology, School of Medicine and Institute of Nutrition and Functional Foods, Laval University, Québec, QC
- Centre de recherché de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, QC
| | - Tuomo Rankinen
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| | - D.C. Rao
- Division of Biostatistics, Washington University School of Medicine, St-Louis, MO
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA
| |
Collapse
|
9
|
Kondratskyi A, Kondratska K, Skryma R, Prevarskaya N. Ion channels in the regulation of apoptosis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2532-46. [PMID: 25450339 DOI: 10.1016/j.bbamem.2014.10.030] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/08/2014] [Accepted: 10/20/2014] [Indexed: 02/07/2023]
Abstract
Apoptosis, a type of genetically controlled cell death, is a fundamental cellular mechanism utilized by multicellular organisms for disposal of cells that are no longer needed or potentially detrimental. Given the crucial role of apoptosis in physiology, deregulation of apoptotic machinery is associated with various diseases as well as abnormalities in development. Acquired resistance to apoptosis represents the common feature of most and perhaps all types of cancer. Therefore, repairing and reactivating apoptosis represents a promising strategy to fight cancer. Accumulated evidence identifies ion channels as essential regulators of apoptosis. However, the contribution of specific ion channels to apoptosis varies greatly depending on cell type, ion channel type and intracellular localization, pathology as well as intracellular signaling pathways involved. Here we discuss the involvement of major types of ion channels in apoptosis regulation. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
Affiliation(s)
- Artem Kondratskyi
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Kateryna Kondratska
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Roman Skryma
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Inserm, U-1003, Equipe labellisée par la Ligue Nationale Contre le Cancer, Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille 1, Villeneuve d'Ascq, France.
| |
Collapse
|