1
|
Zhao X, Chen C, Qiu H, Liu J, Shao N, Guo M, Jiang Y, Zhao J, Xu L. The landscape of ATF3 in tumors: metabolism, expression regulation, therapy approach, and open concerns. Pharmacol Res 2025:107666. [PMID: 39978658 DOI: 10.1016/j.phrs.2025.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Cellular stress response is a pivotal process in tumor development and therapy. Activating transcription factor 3 (ATF3), a representative stress-responsive protein, plays pleiotropic roles in various biological processes. Over the past decade, studies have described not only the general role of ATF3 in tumor metabolism but also the complexity of ATF3 expression regulation and its associated modifications, including phosphorylation, ubiquitination, SUMOylation, and NEDDylation. Interestingly, beyond being a transcription factor, ATF3 can act as a modifier to control the ubiquitination of target molecules, such as p53, to exert its function in tumors. These advances in uncovering ATF3 biological function have yielded new insights into the cellular stress response during tumor development and will be instrumental in developing novel interventions. In this review, we update the role of ATF3 as a nexus in amino acid metabolism, lipid metabolism, glycometabolism, and other metabolic pathways in tumors; delineate the underlying mechanisms involving DNA level regulation, epigenetic regulation, and post-translational modifications of ATF3; and summarize the progression of tumor mono/combination therapies related to ATF3. In particular, we discuss the challenges that need to be addressed to provide a new conceptual framework for further understanding the potential therapeutic value of ATF3 in ongoing clinical trials.
Collapse
Affiliation(s)
- Xu Zhao
- Medical College, Guizhou University, Guiyang 550025, Guizhou province, China; Key Laboratory of Gene Detection and Treatment of Guizhou province, Guizhou Zunyi, 563000 China; Department of Immunology, Zunyi Medical University, Guizhou, 563000 China
| | - Chao Chen
- Medical College, Guizhou University, Guiyang 550025, Guizhou province, China; Key Laboratory of Gene Detection and Treatment of Guizhou province, Guizhou Zunyi, 563000 China; Department of Immunology, Zunyi Medical University, Guizhou, 563000 China
| | - Hui Qiu
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Guizhou Zunyi, 563000 China; Department of Immunology, Zunyi Medical University, Guizhou, 563000 China
| | - Jing Liu
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Guizhou Zunyi, 563000 China; Department of Immunology, Zunyi Medical University, Guizhou, 563000 China
| | - Nan Shao
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Guizhou Zunyi, 563000 China; Department of Immunology, Zunyi Medical University, Guizhou, 563000 China
| | - Mengmeng Guo
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Guizhou Zunyi, 563000 China; Department of Immunology, Zunyi Medical University, Guizhou, 563000 China
| | - Yuanye Jiang
- Department of Gastroenterology, Putuo hospital, Shanghai University of Tradtional Chinese Medicine, Shanghai, 200062, China
| | - Juanjuan Zhao
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Guizhou Zunyi, 563000 China; Department of Immunology, Zunyi Medical University, Guizhou, 563000 China.
| | - Lin Xu
- Key Laboratory of Gene Detection and Treatment of Guizhou province, Guizhou Zunyi, 563000 China; Medical College, Guizhou University, Guiyang 550025, Guizhou province, China; Department of Immunology, Zunyi Medical University, Guizhou, 563000 China; Innovation Center for Tissue Damage Repair, Ministry of Education, Zunyi, Guizhou 563000, China.
| |
Collapse
|
2
|
Lv S, Luo C. Ferroptosis in schizophrenia: Mechanisms and therapeutic potentials (Review). Mol Med Rep 2025; 31:37. [PMID: 39611491 PMCID: PMC11613623 DOI: 10.3892/mmr.2024.13402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Schizophrenia, a complex psychiatric disorder, presents with multifaceted symptoms and important challenges in treatment, primarily due to its pathophysiological complexity, which involves oxidative stress and aberrant iron metabolism. Recent insights into ferroptosis, a unique form of iron‑dependent cell death characterized by lipid peroxidation and antioxidant system failures, open new avenues for understanding the neurobiological foundation of schizophrenia. The present review explores the interplay between ferroptosis and schizophrenia, emphasizing the potential contributions of disrupted iron homeostasis and oxidative mechanisms to the pathology and progression of this disease. The emerging evidence linking ferroptosis with the oxidative stress observed in schizophrenia provides a compelling narrative for re‑evaluating current therapeutic strategies and exploring novel interventions targeting these molecular pathways, such as the glutathione peroxidase 4 pathway and the ferroptosis suppressor protein 1 pathway. By integrating recent advances in ferroptosis research, the current review highlights innovative therapeutic potentials, including N‑acetylcysteine, selenium, omega‑3 fatty acids and iron chelation therapy, which could address the limitations of existing treatments and improve clinical outcomes for individuals with schizophrenia.
Collapse
Affiliation(s)
- Shuang Lv
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| | - Chunxia Luo
- Department of Psychiatry, Guangzhou Kangning Hospital (The Psychiatric Hospital of Guangzhou Civil Administration Bureau), Guangzhou, Guangdong 510430, P.R. China
| |
Collapse
|
3
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Kooti A, Abuei H, Jaafari A, Taki S, Saberzadeh J, Farhadi A. Activating transcription factor 3 mediates apoptosis and cell cycle arrest in TP53-mutated anaplastic thyroid cancer cells. Thyroid Res 2024; 17:12. [PMID: 39085957 PMCID: PMC11292864 DOI: 10.1186/s13044-024-00202-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/19/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND It is believed that loss of p53 function plays a crucial role in the progression of well to poorly differentiated thyroid cancers including anaplastic thyroid carcinoma (ATC). Given the poor prognosis of ATC due to its strong therapeutic resistance, there is a need to establish new therapeutic targets to extend the survival of ATC patients. Activating transcription factor 3 (ATF3) can inhibit the oncogenic activity of mutant p53 and, as a result, contribute to tumor suppression in several TP53-mutated cancers. Herein, we demonstrate that the ectopic overexpression of ATF3 leads to the suppression of oncogenic mutant p53 activity in chemo-resistant 8305 C thyroid cancer cells harboring R273C p53 gene mutation. METHODS The biological behavior of 8305 C cells was assessed pre- and post-transfection with pCMV6-ATF3 plasmid using MTT assay, fluorescent microscopy, cell cycle, and annexin V/PI flow cytometric analysis. The effect of ectopic ATF3 overexpression on the cellular level of p53 was examined by western blotting assay. The mRNA expression levels of TP53, TAp63, ΔNp63, and SHARP1 were evaluated in ectopic ATF3-expressing cells compared to controls. RESULTS The overexpression of ATF3 in 8305 C thyroid cancer cells significantly decreased cell viability and induced apoptosis and cell cycle arrest in vitro. The immunoblotting of p53 protein revealed that ATF3 overexpression significantly increased the level of mutant p53 in 8305C cells compared to mock-transfected control cells. Additionally, elevated mRNA levels of TAp63 and SHARP1 and a decreased mRNA level of ΔNp63 were observed in PCMV6-AC-ATF3-transfected 8305 C cells with significant differences compared to the mock and untreated cells. CONCLUSION In light of our findings, it is evident that therapeutic strategies aimed at increasing ATF3 expression or enhancing the interaction between ATF3 and mutant p53 can be a promising approach for the treatment of p53-mutated metastatic thyroid cancer.
Collapse
Affiliation(s)
- Abolfazl Kooti
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Haniyeh Abuei
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Jaafari
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shayan Taki
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamileh Saberzadeh
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Farhadi
- Division of Medical Biotechnology, Department of Medical Laboratory Sciences, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, 7143918596, Iran.
| |
Collapse
|
5
|
Price K, Yang WH, Cardoso L, Wang CM, Yang RH, Yang WH. Jun Dimerization Protein 2 (JDP2) Increases p53 Transactivation by Decreasing MDM2. Cancers (Basel) 2024; 16:1000. [PMID: 38473360 DOI: 10.3390/cancers16051000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The AP-1 protein complex primarily consists of several proteins from the c-Fos, c-Jun, activating transcription factor (ATF), and Jun dimerization protein (JDP) families. JDP2 has been shown to interact with the cAMP response element (CRE) site present in many cis-elements of downstream target genes. JDP2 has also demonstrates important roles in cell-cycle regulation, cancer development and progression, inhibition of adipocyte differentiation, and the regulation of antibacterial immunity and bone homeostasis. JDP2 and ATF3 exhibit significant similarity in their C-terminal domains, sharing 60-65% identities. Previous studies have demonstrated that ATF3 is able to influence both the transcriptional activity and p53 stability via a p53-ATF3 interaction. While some studies have shown that JDP2 suppresses p53 transcriptional activity and in turn, p53 represses JDP2 promoter activity, the direct interaction between JDP2 and p53 and the regulatory role of JDP2 in p53 transactivation have not been explored. In the current study, we provide evidence, for the first time, that JDP2 interacts with p53 and regulates p53 transactivation. First, we demonstrated that JDP2 binds to p53 and the C-terminal domain of JDP2 is crucial for the interaction. Second, in p53-null H1299 cells, JDP2 shows a robust increase of p53 transactivation in the presence of p53 using p53 (14X)RE-Luc. Furthermore, JDP2 and ATF3 together additively enhance p53 transactivation in the presence of p53. While JDP2 can increase p53 transactivation in the presence of WT p53, JDP2 fails to enhance transactivation of hotspot mutant p53. Moreover, in CHX chase experiments, we showed that JDP2 slightly enhances p53 stability. Finally, our findings indicate that JDP2 has the ability to reverse MDM2-induced p53 repression, likely due to decreased levels of MDM2 by JDP2. In summary, our results provide evidence that JDP2 directly interacts with p53 and decreases MDM2 levels to enhance p53 transactivation, suggesting that JDP2 is a novel regulator of p53 and MDM2.
Collapse
Affiliation(s)
- Kasey Price
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - William H Yang
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - Leticia Cardoso
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - Chiung-Min Wang
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - Richard H Yang
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| | - Wei-Hsiung Yang
- Department of Biomedical Sciences, School of Medicine, Mercer University, Savannah, GA 31404, USA
| |
Collapse
|
6
|
Elson DJ, Nguyen BD, Korjeff NA, Wilferd SF, Puig-Sanvicens V, Sang Jang H, Bernales S, Chakravarty S, Belmar S, Ureta G, Finlay D, Plaisier CL, Kolluri SK. Suppression of Ah Receptor (AhR) increases the aggressiveness of TNBC cells and 11-Cl-BBQ-activated AhR inhibits their growth. Biochem Pharmacol 2023; 215:115706. [PMID: 37506922 DOI: 10.1016/j.bcp.2023.115706] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Triple-negative breast cancer (TNBC) represents around 15% of the 2.26 million breast cancers diagnosed worldwide annually and has the worst outcome. Despite recent therapeutic advances, there remains a lack of targeted therapies for this breast cancer subtype. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor with biological roles in regulating development, xenobiotic metabolism, cell cycle progression and cell death. AhR activation by select ligands can promote tumor suppression in multiple cancer types. AhR can negatively regulate the activity of different oncogenic signaling pathways and can directly upregulate tumor suppressor genes such as p27Kip1. To determine the role of AhR in TNBC, we generated AhR-deficient cancer cells and investigated the impact of AhR loss on TNBC cell growth phenotypes. We found that AhR-deficient MDA-MB-468 TNBC cells have increased proliferation and formed significantly more colonies compared to AhR expressing cells. These cells without AhR expression grew aggressively in vivo. To determine the molecular targets driving this phenotype, we performed transcriptomic profiling in AhR expressing and AhR knockout MDA-MB-468 cells and identified tyrosine receptor kinases, as well as other genes involved in proliferation, survival and clonogenicity that are repressed by AhR. In order to determine therapeutic targeting of AhR in TNBC, we investigated the anti-cancer effects of the novel AhR ligand 11-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (11-Cl-BBQ), which belongs to a class of high affinity, rapidly metabolized AhR ligands called benzimidazoisoquinolines (BBQs). 11-Cl-BBQ induced AhR-dependent cancer cell-selective growth inhibition and strongly inhibited colony formation in TNBC cells.
Collapse
Affiliation(s)
- Daniel J Elson
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Bach D Nguyen
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Nicholas A Korjeff
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Sierra F Wilferd
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, United States
| | - Veronica Puig-Sanvicens
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Hyo Sang Jang
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States
| | - Sebastian Bernales
- Praxis Biotech, San Francisco, CA 94158, United States; Fundación Ciencia & Vida, Centro Científico y Tecnológico Ciencia & Vida, Avda. Del valle Norte 725, Santiago, Chile
| | | | - Sebastián Belmar
- Praxis Biotech, San Francisco, CA 94158, United States; Merken Biotech, Avda. Del valle Norte 725, Santiago, Chile
| | - Gonzalo Ureta
- Praxis Biotech, San Francisco, CA 94158, United States; Merken Biotech, Avda. Del valle Norte 725, Santiago, Chile
| | - Darren Finlay
- Sanford Burnham Prebys Medical Discovery Institute, NCI Designated Cancer Center, La Jolla, CA 92037, United States
| | - Christopher L Plaisier
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, United States
| | - Siva K Kolluri
- Cancer Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States; Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, United States.
| |
Collapse
|
7
|
Elson D, Nguyen BD, Bernales S, Chakravarty S, Jang HS, Korjeff NA, Zhang Y, Wilferd SF, Castro DJ, Plaisier CL, Finlay D, Oshima RG, Kolluri SK. Induction of Aryl Hydrocarbon Receptor-Mediated Cancer Cell-Selective Apoptosis in Triple-Negative Breast Cancer Cells by a High-Affinity Benzimidazoisoquinoline. ACS Pharmacol Transl Sci 2023; 6:1028-1042. [PMID: 37470014 PMCID: PMC10353065 DOI: 10.1021/acsptsci.2c00253] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Indexed: 07/21/2023]
Abstract
Triple-negative breast cancer (TNBC) remains a disease with a paucity of targeted treatment opportunities. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that is involved in a wide range of physiological processes, including the sensing of xenobiotics, immune function, development, and differentiation. Different small-molecule AhR ligands drive strikingly varied cellular and organismal responses. In certain cancers, AhR activation by select small molecules induces cell cycle arrest or apoptosis via activation of tumor-suppressive transcriptional programs. AhR is expressed in triple-negative breast cancers, presenting a tractable therapeutic opportunity. Here, we identify a novel ligand of the aryl hydrocarbon receptor that potently and selectively induces cell death in triple-negative breast cancer cells and TNBC stem cells via the AhR. Importantly, we found that this compound, Analog 523, exhibits minimal cytotoxicity against multiple normal human primary cells. Analog 523 represents a high-affinity AhR ligand with potential for future clinical translation as an anticancer agent.
Collapse
Affiliation(s)
- Daniel
J. Elson
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Bach D. Nguyen
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Sebastian Bernales
- Praxis
Biotech, San Francisco, California, 94158, United States
- Centro Ciencia
& Vida, Avda. Del
Valle Norte 725, Santiago, 8580702, Chile
| | | | - Hyo Sang Jang
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Nicholas A. Korjeff
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Yi Zhang
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
| | - Sierra F. Wilferd
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - David J. Castro
- Sanford
Burnham Prebys Medical Discovery Institute, NCI Designated Cancer
Center, La Jolla, California, 92037, United States
- Oregon Health
& Science University, Portland, Oregon, 97239, United States
| | - Christopher L. Plaisier
- School
of Biological and Health Systems Engineering, Arizona State University, Tempe, Arizona 85287, United States
| | - Darren Finlay
- Sanford
Burnham Prebys Medical Discovery Institute, NCI Designated Cancer
Center, La Jolla, California, 92037, United States
| | - Robert G. Oshima
- Sanford
Burnham Prebys Medical Discovery Institute, NCI Designated Cancer
Center, La Jolla, California, 92037, United States
| | - Siva K. Kolluri
- Cancer
Research Laboratory, Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon, 97331, United States
- Linus
Pauling Institute, Oregon State University, Corvallis, Oregon, 97331, United
States
- The
Pacific Northwest Center for Translational Environmental Health Research, Oregon State University, Corvallis, Oregon, 97331, United States
| |
Collapse
|
8
|
Ozdemir ES, Gomes MM, Fischer JM. Computational Modeling of TP63-TP53 Interaction and Rational Design of Inhibitors: Implications for Therapeutics. Mol Cancer Ther 2022; 21:1846-1856. [PMID: 36190964 DOI: 10.1158/1535-7163.mct-22-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/16/2022] [Accepted: 09/23/2022] [Indexed: 01/12/2023]
Abstract
Tumor protein p63 (TP63) is a member of the TP53 protein family that are important for development and in tumor suppression. Unlike TP53, TP63 is rarely mutated in cancer, but instead different TP63 isoforms regulate its activity. TA isoforms (TAp63) act as tumor suppressors, whereas ΔN isoforms are strong drivers of squamous or squamous-like cancers. Many of these tumors become addicted to ΔN isoforms and removal of ΔN isoforms result in cancer cell death. Furthermore, some TP53 conformational mutants (TP53CM) gain the ability to interact with TAp63 isoforms and inhibit their antitumorigenic function, while indirectly promoting tumorigenic function of ΔN isoforms, but the exact mechanism of TP63-TP53CM interaction is unclear. The changes in the balance of TP63 isoform activity are crucial to understanding the transition between normal and tumor cells. Here, we modeled TP63-TP53CM complex using computational approaches. We then used our models to design peptides to disrupt the TP63-TP53CM interaction and restore antitumorigenic TAp63 function. In addition, we studied ΔN isoform oligomerization and designed peptides to inhibit its oligomerization and reduce their tumorigenic activity. We show that some of our peptides promoted cell death in a TP63 highly expressed cancer cell line, but not in a TP63 lowly expressed cancer cell line. Furthermore, we performed kinetic-binding assays to validate binding of our peptides to their targets. Our computational and experimental analyses present a detailed model for the TP63-TP53CM interaction and provide a framework for potential therapeutic peptides for the elimination of TP53CM cancer cells.
Collapse
Affiliation(s)
- E Sila Ozdemir
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Michelle M Gomes
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Jared M Fischer
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
9
|
Wang B, Yang X, Sun X, Liu J, Fu Y, Liu B, Qiu J, Lian J, Zhou J. ATF3 in atherosclerosis: a controversial transcription factor. J Mol Med (Berl) 2022; 100:1557-1568. [PMID: 36207452 DOI: 10.1007/s00109-022-02263-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022]
Abstract
Atherosclerosis, the pathophysiological basis of most malignant cardiovascular diseases, remains a global concern. Transcription factors play a key role in regulating cell function and disease progression in developmental signaling pathways involved in atherosclerosis. Activated transcription factor (ATF) 3 is an adaptive response gene in the ATF/cAMP response element binding (CREB) protein family that acts as a transcription suppressor or activator by forming homodimers or heterodimers with other ATF/CREB members. Appropriate ATF3 expression is vital for normal physiological cell function. Notably, ATF3 exhibits distinct roles in vascular endothelial cells, macrophages, and the liver, which will also be described in detail. This review provides a new perspective for atherosclerosis therapy by summarizing the mechanism of ATF3 in atherosclerosis, as well as the structure and pathophysiological properties of ATF3. KEY MESSAGES: • In endothelial cells, ATF3 overexpression aggravates oxidative stress and inflammation. • In macrophages and liver cells, ATF3 can act as a negative regulator of inflammation and promote cholesterol metabolism. • ATF3 can be used as a potential therapeutic factor in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Bingyu Wang
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Xi Yang
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China.,Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Xinyi Sun
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Jianhui Liu
- Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Yin Fu
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Bingyang Liu
- Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Jun Qiu
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China
| | - Jiangfang Lian
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China.,Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China.,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China
| | - Jianqing Zhou
- Department of Cardiovascular, Medical College, Ningbo University, Ningbo, China. .,Department of Cardiovascular, Lihuili Hospital Affiliated to Ningbo University, Ningbo, China. .,Central Laboratory, Ningbo Institute of Innovation for Combined Medicine and Engineering, Ningbo, China.
| |
Collapse
|
10
|
Sun T, Zhang K, Li W, Liu Y, Pangeni RP, Li A, Arvanitis L, Raz DJ. Transcription factor AP2 enhances malignancy of non-small cell lung cancer through upregulation of USP22 gene expression. Cell Commun Signal 2022; 20:147. [PMID: 36123698 PMCID: PMC9484186 DOI: 10.1186/s12964-022-00946-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ubiquitin-specific protease 22 (USP22), a putative cancer stem cell marker, is frequently upregulated in cancers, and USP22 overexpression is associated with aggressive growth, metastasis, and therapy resistance in various human cancers including lung cancer. However, USP22 gene amplification seldom occurs, and the mechanism underlying USP22 upregulation in human cancers remains largely unknown. METHODS A luciferase reporter driven by a promoter region of USP22 gene was selectively constructed to screen against a customized siRNA library targeting 89 selected transcription factors to identify potential transcription factors (TFs) that regulate USP22 expression in human non-small cell lung cancers (NSCLC). Association of identified TFs with USP22 and potential role of the TFs were validated and explored in NSCLC by biological assays and immunohistochemistry analysis. RESULTS Luciferase reporter assays revealed that SP1 and activating transcription factor 3 (ATF3) inhibit USP22 transcription, while transcription factor AP-2 Alpha/Beta (TFAP2A/2B) and c-Myc promote USP22 transcription. Binding site-directed mutagenesis and chromosome immunoprecipitation (ChIP) assays validated AP2α and AP2β are novel TFs of USP22. Furthermore, overexpression of AP2A and AP2B significantly upregulates USP22 expression, and its target: Cyclin D1, concurrently enhances the proliferation, migration, and invasion of NSCLC A549 and H1299 cells in a partially USP22-dependent manner. Moreover, AP2 protein level correlated with USP22 protein in human NSCLC tissues. CONCLUSION Our findings indicate AP2α and AP2β are important transcription factors driving USP22 gene expression to promote the progression of NSCLC, and further support USP22 as a potential biomarker and therapeutic target for lung cancer. Video Abstract.
Collapse
Affiliation(s)
- Ting Sun
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA.,Laboratory of Surgery, The General Hospital of Ningxia Medical University, Yinchuan, China.,Faculty of Health Science, University of Macau, Macau, China
| | - Keqiang Zhang
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| | - Wendong Li
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Yunze Liu
- Faculty of Health Science, University of Macau, Macau, China
| | - Rajendra P Pangeni
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Aimin Li
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Leonidas Arvanitis
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Dan J Raz
- Division of Thoracic Surgery, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
11
|
Ahmed FF, Reza MS, Sarker MS, Islam MS, Mosharaf MP, Hasan S, Mollah MNH. Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. PLoS One 2022; 17:e0266124. [PMID: 35390032 PMCID: PMC8989220 DOI: 10.1371/journal.pone.0266124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 03/15/2022] [Indexed: 12/18/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is one of the most severe global pandemic due to its high pathogenicity and death rate starting from the end of 2019. Though there are some vaccines available against SAER-CoV-2 infections, we are worried about their effectiveness, due to its unstable sequence patterns. Therefore, beside vaccines, globally effective supporting drugs are also required for the treatment against SARS-CoV-2 infection. To explore commonly effective repurposable drugs for the treatment against different variants of coronavirus infections, in this article, an attempt was made to explore host genomic biomarkers guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. At first, we identified 138 differentially expressed genes (DEGs) between SARS-CoV-1 infected and control samples by analyzing high throughput gene-expression profiles to select drug target key receptors. Then we identified top-ranked 11 key DEGs (SMAD4, GSK3B, SIRT1, ATM, RIPK1, PRKACB, MED17, CCT2, BIRC3, ETS1 and TXN) as hub genes (HubGs) by protein-protein interaction (PPI) network analysis of DEGs highlighting their functions, pathways, regulators and linkage with other disease risks that may influence SARS-CoV-1 infections. The DEGs-set enrichment analysis significantly detected some crucial biological processes (immune response, regulation of angiogenesis, apoptotic process, cytokine production and programmed cell death, response to hypoxia and oxidative stress), molecular functions (transcription factor binding and oxidoreductase activity) and pathways (transcriptional mis-regulation in cancer, pathways in cancer, chemokine signaling pathway) that are associated with SARS-CoV-1 infections as well as SARS-CoV-2 infections by involving HubGs. The gene regulatory network (GRN) analysis detected some transcription factors (FOXC1, GATA2, YY1, FOXL1, TP53 and SRF) and micro-RNAs (hsa-mir-92a-3p, hsa-mir-155-5p, hsa-mir-106b-5p, hsa-mir-34a-5p and hsa-mir-19b-3p) as the key transcriptional and post- transcriptional regulators of HubGs, respectively. We also detected some chemicals (Valproic Acid, Cyclosporine, Copper Sulfate and arsenic trioxide) that may regulates HubGs. The disease-HubGs interaction analysis showed that our predicted HubGs are also associated with several other diseases including different types of lung diseases. Then we considered 11 HubGs mediated proteins and their regulatory 6 key TFs proteins as the drug target proteins (receptors) and performed their docking analysis with the SARS-CoV-2 3CL protease-guided top listed 90 anti-viral drugs out of 3410. We found Rapamycin, Tacrolimus, Torin-2, Radotinib, Danoprevir, Ivermectin and Daclatasvir as the top-ranked 7 candidate-drugs with respect to our proposed target proteins for the treatment against SARS-CoV-1 infections. Then, we validated these 7 candidate-drugs against the already published top-ranked 11 target proteins associated with SARS-CoV-2 infections by molecular docking simulation and found their significant binding affinity scores with our proposed candidate-drugs. Finally, we validated all of our findings by the literature review. Therefore, the proposed candidate-drugs might play a vital role for the treatment against different variants of SARS-CoV-2 infections with comorbidities, since the proposed HubGs are also associated with several comorbidities.
Collapse
Affiliation(s)
- Fee Faysal Ahmed
- Department of Mathematics, Jashore University of Science and Technology, Jashore, Bangladesh
- Bioinformatics Lab., Department of Statistics, Rajshahi University, Rajshahi, Bangladesh
| | - Md. Selim Reza
- Bioinformatics Lab., Department of Statistics, Rajshahi University, Rajshahi, Bangladesh
| | - Md. Shahin Sarker
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Samiul Islam
- Department of Plant Pathology, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Md. Parvez Mosharaf
- Bioinformatics Lab., Department of Statistics, Rajshahi University, Rajshahi, Bangladesh
| | - Sohel Hasan
- Department of Biochemistry and Molecular Biology, Rajshahi University, Rajshhi, Bangladesh
| | - Md. Nurul Haque Mollah
- Bioinformatics Lab., Department of Statistics, Rajshahi University, Rajshahi, Bangladesh
| |
Collapse
|
12
|
Targeting Post-Translational Regulation of p53 in Colorectal Cancer by Exploiting Vulnerabilities in the p53-MDM2 Axis. Cancers (Basel) 2022; 14:cancers14010219. [PMID: 35008383 PMCID: PMC8750794 DOI: 10.3390/cancers14010219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/30/2021] [Indexed: 02/05/2023] Open
Abstract
The role played by the key tumor suppressor gene p53 and the implications of p53 mutations for the development and progression of neoplasia continue to expand. This review focuses on colorectal cancer and the regulators of p53 expression and activity identified over the past decade. These newly recognized regulatory mechanisms include (1) direct regulation of mouse double minute 2 homolog (MDM2), an E3 ubiquitin-protein ligase; (2) modulation of the MDM2-p53 interaction; (3) MDM2-independent p53 degradation; and (4) inhibition of p53 nuclear translocation. We positioned these regulatory mechanisms in the context of p53 missense mutations, which not only evade canonical p53 degradation machinery but also exhibit gain-of-function phenotypes that enhance tumor survival and metastasis. Lastly, we discuss current and potential therapeutic strategies directed against p53 mutant-bearing tumors.
Collapse
|
13
|
Xie G, Dong P, Chen H, Xu L, Liu Y, Ma Y, Zheng Y, Yang J, Zhou Y, Chen L, Shen L. Decreased expression of ATF3, orchestrated by β-catenin/TCF3, miR-17-5p and HOXA11-AS, promoted gastric cancer progression via increased β-catenin and CEMIP. Exp Mol Med 2021; 53:1706-1722. [PMID: 34728784 PMCID: PMC8639750 DOI: 10.1038/s12276-021-00694-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/09/2021] [Accepted: 08/24/2021] [Indexed: 01/04/2023] Open
Abstract
ATF3 has been reported to be dysregulated in various cancers and involved in various steps of tumorigenesis. However, the mechanisms underlying the abnormal expression of ATF3 and its biological function in gastric cancer (GC) have not been well investigated. Here, we report ATF3 as one of the key regulators of GC development and progression. Patients with low ATF3 expression had shorter survival and a poorer prognosis. In vitro and in vivo assays investigating ATF3 alterations revealed a complex integrated phenotype that affects cell growth and migration. Strikingly, high-throughput sequencing and microarray analysis of cells with ATF3 silencing or of ATF3-low GC tissues indicated alterations in the Wnt signaling pathway, focal adhesions and adherens junctions. Mechanistically, the expression of β-catenin and cell migration inducing hyaluronidase 1 (CEMIP) was significantly upregulated in GC cells with downregulated ATF3, which was synergistically repressed by the β-catenin/TCF3 signaling axis and noncoding RNA miR-17-5p and HOXA11-AS. In addition, we found that WDR5 expression was promoted by TCF3 and is involved in miR-17-5p and HOXA11-AS activation in GC cells. Taken together, our findings revealed the mechanism of ATF3 downregulation and its biological role in regulating the expression of Wnt signaling-related genes during GC progression, suggesting new informative biomarkers of malignancy and therapeutic directions for GC patients. New treatments for gastric cancer could involve controlling the activity of a regulatory gene and associated signaling pathway. Over-activation of the Wnt signaling pathway, which regulates many cellular functions, occurs in around half of gastric cancers. Further, the activating transcription factor 3 gene (ATF3) is thought to influence tumorigenesis, although its role in gastric cancer is unclear. Guohua Xie and co-workers at Shanghai Jiao Tong University, China, explored the function of ATF3 in human gastric cancer tissues. Patients with low ATF3 expression had poorer prognosis and shorter life expectancy. The team discovered that reduced expression of ATF3 triggered the increased expression of two of its target genes, which then altered Wnt signaling. Reduced ATF3 expression also boosted the invasiveness of gastric cancer cells. Initial results suggest that overexpression of ATF3 could suppress gastric cancer progression.
Collapse
Affiliation(s)
- Guohua Xie
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ping Dong
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Chen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Xu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Liu
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanhui Ma
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yingxia Zheng
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junyao Yang
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunlan Zhou
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Department of General Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lisong Shen
- Department of Clinical Laboratory, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. .,Faculty of Medical Laboratory Sciences, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
14
|
Zhao Q, Luo YF, Tian M, Xiao YL, Cai HR, Li H. Activating transcription factor 3 involved in Pseudomonas aeruginosa PAO1-induced macrophage senescence. Mol Immunol 2021; 133:122-127. [PMID: 33640762 DOI: 10.1016/j.molimm.2021.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 11/25/2022]
Abstract
Pseudomonas aeruginosa (PA) is one of the most prevalent pathogens that cause nosocomial infection in critical patients. Previously, we reported PA induced macrophage to senescence under the circumstance of infection. As an oxidative stress responsiveness element, activating transcription factor 3 (ATF3) might be involved in the macrophage senescence process. To test this presumption, we manipulated the expression of ATF3 in macrophage by using a PAO1 infection system. In the present study, ATF3 expression in macrophage was increased, following the duration and colony counts of PAO1 infection. Knockdown of ATF3 in macrophage resulted in increased percentage of senescent macrophage under PAO1 infection, while overexpressing ATF3 partly blocked PAO1-induced macrophage senescence. In accordance with the senescent phenotype, elevated reactive oxygen species (ROS) production was shown in ATF3 knockdown macrophages. Also, capacity of phagocytosis was also affected by manipulation of ATF3 expression in macrophages, and increased phagocytosed fluorescent beads was found in ATF3 knockdown macrophage. ATF3 might regulate the senescence process through influence on NF-κB translocation. During infection, the overexpression or downregulation of ATF3 in macrophage negatively modulated the translocation of NF-κB p65 and its phosphorylation at Ser-536. As a result, IL-6 and TNFα was elevated, while IL-10 decreased in case of ATF3 knockdown. In conclusion, ATF3 negatively regulates NF-κB translocation and activation, and participates in PA-induced macrophage senescence. As oxidative stress and inflammation induced element, ATF3 may modulate macrophage-related host defense.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Pulmonary and Critical Care Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Yi-Feng Luo
- Department of Pulmonary and Critical Care Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
| | - Mi Tian
- Department of Pulmonary and Critical Care Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Yong-Long Xiao
- Department of Pulmonary and Critical Care Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Hou-Rong Cai
- Department of Pulmonary and Critical Care Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China
| | - Hui Li
- Department of Pulmonary and Critical Care Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, China.
| |
Collapse
|
15
|
Novikov NM, Zolotaryova SY, Gautreau AM, Denisov EV. Mutational drivers of cancer cell migration and invasion. Br J Cancer 2021; 124:102-114. [PMID: 33204027 PMCID: PMC7784720 DOI: 10.1038/s41416-020-01149-0] [Citation(s) in RCA: 142] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability and mutations underlie the hallmarks of cancer-genetic alterations determine cancer cell fate by affecting cell proliferation, apoptosis and immune response, and increasing data show that mutations are involved in metastasis, a crucial event in cancer progression and a life-threatening problem in cancer patients. Invasion is the first step in the metastatic cascade, when tumour cells acquire the ability to move, penetrate into the surrounding tissue and enter lymphatic and blood vessels in order to disseminate. A role for genetic alterations in invasion is not universally accepted, with sceptics arguing that cellular motility is related only to external factors such as hypoxia, chemoattractants and the rigidity of the extracellular matrix. However, increasing evidence shows that mutations might trigger and accelerate the migration and invasion of different types of cancer cells. In this review, we summarise data from published literature on the effect of chromosomal instability and genetic mutations on cancer cell migration and invasion.
Collapse
Affiliation(s)
- Nikita M Novikov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sofia Y Zolotaryova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexis M Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| |
Collapse
|
16
|
Activating transcription factor 3 inhibits endometrial carcinoma aggressiveness via JunB suppression. Int J Oncol 2020; 57:707-720. [PMID: 32582999 PMCID: PMC7384851 DOI: 10.3892/ijo.2020.5084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
The function of activating transcription factor 3 (ATF3) in cancer is context‑dependent and its role in endometrial carcinoma (EC) is yet to be elucidated. In the present study, ATF3 was indicated to be downregulated, while one of the ATF3‑interacting proteins, JunB, was upregulated in ECs according to western blot analysis. After overexpression in ECs, ATF3 inhibited the proliferation and invasion of EC cells and enhanced apoptosis, as well as suppressed the expression of JunB. The properties of EC cells, including the expression of matrix metalloproteinases, tissue inhibitors of metalloproteinases, the cell cycle and apoptosis were all altered by overexpression of ATF3. Furthermore, luciferase activity assay, chromatin precipitation and DNA affinity assay results indicated that ATF3 exerted the aforementioned functions via JunB binding and activator protein‑1 signaling. However, the interaction between ATF3 and JunB did not occur in EC cells under basal conditions, but in ATF3‑overexpressing ECs, which was capable of mitigating EC proliferation, invasion and metastasis. Collectively, the present results suggested that the ATF3/JunB interaction may serve as a potential therapeutic target for ECs.
Collapse
|
17
|
Ku HC, Cheng CF. Master Regulator Activating Transcription Factor 3 (ATF3) in Metabolic Homeostasis and Cancer. Front Endocrinol (Lausanne) 2020; 11:556. [PMID: 32922364 PMCID: PMC7457002 DOI: 10.3389/fendo.2020.00556] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Activating transcription factor 3 (ATF3) is a stress-induced transcription factor that plays vital roles in modulating metabolism, immunity, and oncogenesis. ATF3 acts as a hub of the cellular adaptive-response network. Multiple extracellular signals, such as endoplasmic reticulum (ER) stress, cytokines, chemokines, and LPS, are connected to ATF3 induction. The function of ATF3 as a regulator of metabolism and immunity has recently sparked intense attention. In this review, we describe how ATF3 can act as both a transcriptional activator and a repressor. We then focus on the role of ATF3 and ATF3-regulated signals in modulating metabolism, immunity, and oncogenesis. The roles of ATF3 in glucose metabolism and adipose tissue regulation are also explored. Next, we summarize how ATF3 regulates immunity and maintains normal host defense. In addition, we elaborate on the roles of ATF3 as a regulator of prostate, breast, colon, lung, and liver cancers. Further understanding of how ATF3 regulates signaling pathways involved in glucose metabolism, adipocyte metabolism, immuno-responsiveness, and oncogenesis in various cancers, including prostate, breast, colon, lung, and liver cancers, is then provided. Finally, we demonstrate that ATF3 acts as a master regulator of metabolic homeostasis and, therefore, may be an appealing target for the treatment of metabolic dyshomeostasis, immune disorders, and various cancers.
Collapse
Affiliation(s)
- Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien, Taiwan
- *Correspondence: Ching-Feng Cheng
| |
Collapse
|
18
|
Gain-of-Function Mutant p53: All the Roads Lead to Tumorigenesis. Int J Mol Sci 2019; 20:ijms20246197. [PMID: 31817996 PMCID: PMC6940767 DOI: 10.3390/ijms20246197] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/25/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
The p53 protein is mutated in about 50% of human cancers. Aside from losing the tumor-suppressive functions of the wild-type form, mutant p53 proteins often acquire inherent, novel oncogenic functions, a phenomenon termed mutant p53 gain-of-function (GOF). A growing body of evidence suggests that these pro-oncogenic functions of mutant p53 proteins are mediated by affecting the transcription of various genes, as well as by protein-protein interactions with transcription factors and other effectors. In the current review, we discuss the various GOF effects of mutant p53, and how it may serve as a central node in a network of genes and proteins, which, altogether, promote the tumorigenic process. Finally, we discuss mechanisms by which "Mother Nature" tries to abrogate the pro-oncogenic functions of mutant p53. Thus, we suggest that targeting mutant p53, via its reactivation to the wild-type form, may serve as a promising therapeutic strategy for many cancers that harbor mutant p53. Not only will this strategy abrogate mutant p53 GOF, but it will also restore WT p53 tumor-suppressive functions.
Collapse
|
19
|
Hall C, Muller PA. The Diverse Functions of Mutant 53, Its Family Members and Isoforms in Cancer. Int J Mol Sci 2019; 20:ijms20246188. [PMID: 31817935 PMCID: PMC6941067 DOI: 10.3390/ijms20246188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/29/2019] [Accepted: 12/05/2019] [Indexed: 02/08/2023] Open
Abstract
The p53 family of proteins has grown substantially over the last 40 years. It started with p53, then p63, p73, isoforms and mutants of these proteins. The function of p53 as a tumour suppressor has been thoroughly investigated, but the functions of all isoforms and mutants and the interplay between them are still poorly understood. Mutant p53 proteins lose p53 function, display dominant-negative (DN) activity and display gain-of-function (GOF) to varying degrees. GOF was originally attributed to mutant p53′s inhibitory function over the p53 family members p63 and p73. It has become apparent that this is not the only way in which mutant p53 operates as a large number of transcription factors that are not related to p53 are activated on mutant p53 binding. This raises the question to what extent mutant p53 binding to p63 and p73 plays a role in mutant p53 GOF. In this review, we discuss the literature around the interaction between mutant p53 and family members, including other binding partners, the functional consequences and potential therapeutics.
Collapse
|
20
|
Wu C, Lin H, Zhang X. Inhibitory effects of pirfenidone on fibroblast to myofibroblast transition in rheumatoid arthritis-associated interstitial lung disease via the downregulation of activating transcription factor 3 (ATF3). Int Immunopharmacol 2019; 74:105700. [DOI: 10.1016/j.intimp.2019.105700] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/01/2019] [Accepted: 06/13/2019] [Indexed: 12/20/2022]
|
21
|
Wei S, Li T, Xie R, Ye B, Xiang J, Liu K, Chen Z, Gao X. The role of ATF3 in ZnO nanoparticle-induced genotoxicity and cytotoxicity in bronchial epithelial cells. Int J Biochem Cell Biol 2019; 113:95-102. [PMID: 31220582 DOI: 10.1016/j.biocel.2019.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/06/2019] [Accepted: 06/14/2019] [Indexed: 12/15/2022]
Abstract
ZnO nanoparticle (ZnO NP) exposure causes oxidative stress in the respiratory system, leading to pulmonary damage. Activating transcription factor 3 (ATF3) participates in a variety of cellular stress responses. However, the role of ATF3 in ZnO NP genotoxicity and cytotoxicity remains to be explored. Here we reported that ZnO NP treatment dramatically induced the expression of ATF3 in human bronchial epithelial (HBE) cells, which was mediated by the nuclear factor erythroid 2-related factor 2 (Nrf2). ATF3 was required for the repair of ZnO NP-induced DNA damage as gamma foci number increased when endogenous ATF3 was silenced. Moreover, ATF3 also contributed to ZnO NP-induced cell apoptosis. Mechanistic study revealed that ATF3 interacted with the p53 protein and upregulated its expression under ZnO NP treatment. Collectively, our findings demonstrated ATF3 as an important regulator of epithelial homeostasis by promoting both DNA repair and the death of damaged cells under ZnO NP-induced genotoxic stress.
Collapse
Affiliation(s)
- Saisai Wei
- Institute of Environmental Health, and Sir Run-Run Shaw Hospital, and Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Tiezheng Li
- Institute of Environmental Health, and Sir Run-Run Shaw Hospital, and Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Renxiang Xie
- Institute of Environmental Health, and Sir Run-Run Shaw Hospital, and Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Bingqi Ye
- Institute of Environmental Health, and Sir Run-Run Shaw Hospital, and Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jie Xiang
- Institute of Environmental Health, and Sir Run-Run Shaw Hospital, and Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Kangli Liu
- Institute of Environmental Health, and Sir Run-Run Shaw Hospital, and Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhanghui Chen
- Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Xiangwei Gao
- Institute of Environmental Health, and Sir Run-Run Shaw Hospital, and Institute of Environmental Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
22
|
Rohini M, Arumugam B, Vairamani M, Selvamurugan N. Stimulation of ATF3 interaction with Smad4 via TGF-β1 for matrix metalloproteinase 13 gene activation in human breast cancer cells. Int J Biol Macromol 2019; 134:954-961. [PMID: 31082421 DOI: 10.1016/j.ijbiomac.2019.05.062] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/27/2019] [Accepted: 05/09/2019] [Indexed: 02/08/2023]
Abstract
We previously reported that transforming growth factor-β1 (TGF-β1) stimulated the sustained and prolonged expression of activating transcription factor 3 (ATF3) in highly metastatic and invasive human breast cancer cells (MDA-MB231), in contrast to normal human mammary epithelial cells. However, the mechanism behind the stability of ATF3 expression is not yet known. Based on an in silico approach with co-immunoprecipitation and mass spectrometric analyses, we identified a number of proteins, including Smad4, that interacted with ATF3 after TGF-β1 treatment in MDA-MB231 cells. The knockdown of Smad4 using the siRNA technique resulted in a significant loss of ATF3 expression in these cells. Chromatin immunoprecipitation was then used to identify the formation of an ATF3 and Smad4 complex at the matrix metalloproteinase 13 (MMP13) promoter upon TGF-β1-treatment, and the knockdown of Smad4 decreased MMP13 promoter activity in MDA-MB231 cells. Our findings indicate that Smad4 is a pre-requisite for providing stability to ATF3 via TGF-β1 in human breast cancer cells. The targeting of Smad4 may thus provide the sustainable loss of ATF3 expression that is needed to control breast cancer progression.
Collapse
Affiliation(s)
- M Rohini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - B Arumugam
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - M Vairamani
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
23
|
Li X, Zang S, Cheng H, Li J, Huang A. Overexpression of activating transcription factor 3 exerts suppressive effects in HepG2 cells. Mol Med Rep 2018; 19:869-876. [PMID: 30535500 PMCID: PMC6323204 DOI: 10.3892/mmr.2018.9707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
Abstract
The present study observed and compared the biological behaviour of HepG2 cells prior and subsequent to the overexpression of activating transcription factor 3 (ATF3). Experiments investigating the cytological function by which ATF3 affects liver cancer cells were also performed. MTT, Transwell and flow cytometry assays were used to observe and detect the biological behaviour of HepG2 cells with and without lentivirus (LV)-ATF3-enhanced green fluorescent protein (EGFP) infection. The effects of ATF3 overexpression on cell proliferation, migration, apoptosis and cell cycle progression were evaluated. The LV-ATF3-EGFP overexpression vector was successfully constructed, and the HepG2 cells were successfully infected with the vector. Following ATF3 overexpression, cell proliferation was decreased, the rate of cell apoptosis was accelerated and cell cycle progression was slowed (P<0.05). There were no marked changes in cell migration (P>0.05), although there was a trend towards a gradual decrease. In conclusion, ATF3 exerted suppressive effects in HepG2 cells, potentially by inhibiting cancer cell growth, accelerating cell apoptosis, and blocking cell cycle progression. Intervention targeting ATF3 expression may represent a novel approach for the prevention and treatment of human liver cancer.
Collapse
Affiliation(s)
- Xiaoyan Li
- Department of Pathology and Institute of Oncology, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Shengbing Zang
- Department of Pathology and Institute of Oncology, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Haili Cheng
- Department of Pathology and Institute of Oncology, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Jiasi Li
- Department of Pathology and Institute of Oncology, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| | - Aimin Huang
- Department of Pathology and Institute of Oncology, Fujian Medical University, Fuzhou, Fujian 350004, P.R. China
| |
Collapse
|
24
|
Rohini M, Haritha Menon A, Selvamurugan N. Role of activating transcription factor 3 and its interacting proteins under physiological and pathological conditions. Int J Biol Macromol 2018; 120:310-317. [PMID: 30144543 DOI: 10.1016/j.ijbiomac.2018.08.107] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/18/2018] [Accepted: 08/21/2018] [Indexed: 12/27/2022]
Abstract
Activating transcription factor 3 (ATF3) is a stress-responsive factor that belongs to the activator protein 1 (AP-1) family of transcription factors. ATF3 expression is stimulated by various factors such as hypoxia, cytokines, and chemotherapeutic and DNA damaging agents. Upon stimulation, ATF3 can form homodimers or heterodimers with other members of the AP-1 family to repress or activate transcription. Under physiological conditions, ATF3 expression is transient and plays a pivotal role in controlling the expression of cell-cycle regulators and tumor suppressor, DNA repair, and apoptosis genes. However, under pathological conditions such as those during breast cancer, a sustained and prolonged expression of ATF3 has been observed. In this review, the structure and function of ATF3, its posttranslational modifications (PTM), and its interacting proteins are discussed with a special emphasis on breast cancer metastasis.
Collapse
Affiliation(s)
- M Rohini
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - A Haritha Menon
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
25
|
Bellazzo A, Sicari D, Valentino E, Del Sal G, Collavin L. Complexes formed by mutant p53 and their roles in breast cancer. BREAST CANCER-TARGETS AND THERAPY 2018; 10:101-112. [PMID: 29950894 PMCID: PMC6011883 DOI: 10.2147/bctt.s145826] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Breast cancer is the most frequently diagnosed malignancy in women, and mutations in the tumor suppressor p53 are commonly detected in the most aggressive subtypes. The majority of TP53 gene alterations are missense substitutions, leading to expression of mutant forms of the p53 protein that are frequently detected at high levels in cancer cells. P53 mutants not only lose the physiological tumor-suppressive activity of the wild-type p53 protein but also acquire novel powerful oncogenic functions, referred to as gain of function, that may actively confer a selective advantage during tumor progression. Some of the best-characterized oncogenic activities of mutant p53 are mediated by its ability to form aberrant protein complexes with other transcription factors or proteins not directly related to gene transcription. The set of cellular proteins available to interact with mutant p53 is dependent on cell type and extensively affected by environmental signals, so the prognostic impact of p53 mutation is complex. Specific functional interactions of mutant p53 can profoundly impact homeostasis of breast cancer cells, reprogramming gene expression in response to specific extracellular inputs or cell-intrinsic conditions. The list of protein complexes involving mutant p53 in breast cancer is continuously growing, as is the number of oncogenic phenotypes in which they could be involved. In consideration of the functional impact of such complexes, key interactions of mutant p53 may be exploited as potential targets for development of therapies aimed at defusing the oncogenic potential of p53 mutation.
Collapse
Affiliation(s)
- Arianna Bellazzo
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy
| | - Daria Sicari
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Elena Valentino
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Giannino Del Sal
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Licio Collavin
- National Laboratory CIB (LNCIB), AREA Science park, Trieste, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
26
|
Naik A, Al-Yahyaee A, Abdullah N, Sam JE, Al-Zeheimi N, Yaish MW, Adham SA. Neuropilin-1 promotes the oncogenic Tenascin-C/integrin β3 pathway and modulates chemoresistance in breast cancer cells. BMC Cancer 2018; 18:533. [PMID: 29728077 PMCID: PMC5935908 DOI: 10.1186/s12885-018-4446-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022] Open
Abstract
Background Neuropilin-1 (NRP-1), a non-tyrosine kinase glycoprotein receptor, is associated with poor prognosis breast cancer, however transcriptomic changes triggered by NRP-1 overexpression and its association with chemoresistance in breast cancer have not yet been explored. Methods BT-474 NRP-1 variant cells were generated by stable overexpression of NRP-1 in the BT-474 breast cancer cell line. RNA sequencing and qRT-PCR were conducted to identify differentially expressed genes. The role of an upregulated oncogene, Tenascin C (TNC) and its associated pathway was investigated by siRNA-mediated knockdown. Resistant variants of the control and BT-474 NRP-1 cells were generated by sequential treatment with four cycles of Adriamycin/Cyclophosphamide (4xAC) followed by four cycles of Paclitaxel (4xAC + 4xPAC). Results NRP-1 overexpression increased cellular tumorigenic behavior. RNA sequencing identified upregulation of an oncogene, Tenascin-C (TNC) and downregulation of several tumor suppressors in BT-474 NRP-1 cells. Additionally, protein analysis indicated activation of the TNC-associated integrin β3 (ITGB3) pathway via focal adhesion kinase (FAK), Akt (Ser473) and nuclear factor kappa B (NF-kB) p65. siRNA-mediated TNC knockdown ablated the migratory capacity of BT-474 NRP-1 cells and inactivated FAK/Akt473 signaling. NRP-1 overexpressing cells downregulated breast cancer resistance protein (BCRP/ABCG2). Consequently, sequential treatment with Adriamycin/Cyclophosphamide (AC) cytotoxic drugs to generate resistant cells indicated that BT-474 NRP-1 cells increased sensitivity to treatment by inactivating NRP-1/ITGB3/FAK/Akt/NF-kB p65 signaling compared to wild-type BT-474 resistant cells. Conclusions We thus report a novel mechanism correlating high baseline NRP-1 with upregulated TNC/ITGB3 signaling, but decreased ABCG2 expression, which sensitizes BT-474 NRP-1 cells to Adriamycin/Cyclophosphamide. The study emphasizes on the targetability of the NRP-1/ITGB3 axis and its potential as a predictive biomarker for chemotherapy response. Electronic supplementary material The online version of this article (10.1186/s12885-018-4446-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adviti Naik
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 36, Muscat, Oman
| | - Aida Al-Yahyaee
- Department of Genetics, College of Medicine, Sultan Qaboos University, P. O. Box 35, Muscat, Oman
| | - Nada Abdullah
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 36, Muscat, Oman
| | - Juda-El Sam
- Department of Life Sciences, Hogeschool van Arnhem en Nijmegen, Kapittelweg 33, 6525, Nijmegen, EN, Netherlands
| | - Noura Al-Zeheimi
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 36, Muscat, Oman
| | - Mahmoud W Yaish
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 36, Muscat, Oman
| | - Sirin A Adham
- Department of Biology, College of Science, Sultan Qaboos University, P. O. Box 36, Muscat, Oman.
| |
Collapse
|
27
|
Ozaki T, Yu M, Yin D, Sun D, Zhu Y, Bu Y, Sang M. Impact of RUNX2 on drug-resistant human pancreatic cancer cells with p53 mutations. BMC Cancer 2018; 18:309. [PMID: 29558908 PMCID: PMC5861661 DOI: 10.1186/s12885-018-4217-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/12/2018] [Indexed: 12/20/2022] Open
Abstract
Background Despite the remarkable advances in the early diagnosis and treatment, overall 5-year survival rate of patients with pancreatic cancer is less than 10%. Gemcitabine (GEM), a cytidine nucleoside analogue and ribonucleotide reductase inhibitor, is a primary option for patients with advanced pancreatic cancer; however, its clinical efficacy is extremely limited. This unfavorable clinical outcome of pancreatic cancer patients is at least in part attributable to their poor response to anti-cancer drugs such as GEM. Thus, it is urgent to understand the precise molecular basis behind the drug-resistant property of pancreatic cancer and also to develop a novel strategy to overcome this deadly disease. Review Accumulating evidence strongly suggests that p53 mutations contribute to the acquisition and/or maintenance of drug-resistant property of pancreatic cancer. Indeed, certain p53 mutants render pancreatic cancer cells much more resistant to GEM, implying that p53 mutation is one of the critical determinants of GEM sensitivity. Intriguingly, runt-related transcription factor 2 (RUNX2) is expressed at higher level in numerous human cancers such as pancreatic cancer and osteosarcoma, indicating that, in addition to its pro-osteogenic role, RUNX2 has a pro-oncogenic potential. Moreover, a growing body of evidence implies that a variety of miRNAs suppress malignant phenotypes of pancreatic cancer cells including drug resistance through the down-regulation of RUNX2. Recently, we have found for the first time that forced depletion of RUNX2 significantly increases GEM sensitivity of p53-null as well as p53-mutated pancreatic cancer cells through the stimulation of p53 family TAp63/TAp73-dependent cell death pathway. Conclusions Together, it is likely that RUNX2 is one of the promising molecular targets for the treatment of the patients with pancreatic cancer regardless of their p53 status. In this review article, we will discuss how to overcome the serious drug-resistant phenotype of pancreatic cancer.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, 260-8717, Japan.
| | - Meng Yu
- Department of Laboratory Animal of China Medical University, Shenyang, 110001, People's Republic of China
| | - Danjing Yin
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| | - Dan Sun
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Yuyan Zhu
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, People's Republic of China
| | - Youquan Bu
- Department of Biochemistry and Molecular Biology, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Meixiang Sang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, 050017, People's Republic of China
| |
Collapse
|
28
|
Wang Z, He Y, Deng W, Lang L, Yang H, Jin B, Kolhe R, Ding HF, Zhang J, Hai T, Yan C. Atf3 deficiency promotes genome instability and spontaneous tumorigenesis in mice. Oncogene 2017; 37:18-27. [PMID: 28869597 PMCID: PMC6179156 DOI: 10.1038/onc.2017.310] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 07/19/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
Mice lacking genes involving in the DNA damage response (DDR) are often tumor prone owing to genome instability caused by oncogenic challenges. Previous studies demonstrate that activating transcription factor 3 (ATF3), a common stress sensor, can activate the tumor suppressor p53 and regulate expression of p53 target genes upon DNA damage. However, whether ATF3 contributes to the maintenance of genome stability and tumor suppression remains unknown. Here we report that Atf3-deficient (Atf3-/-) mice developed spontaneous tumors, and died significantly earlier than wild-type (Atf3+/+) mice. Consistent with these results, Atf3-/- mouse embryonic fibroblasts (MEFs) had more aberrant chromosomes and micronuclei, and were genetically unstable. Whereas we demonstrated that ATF3 activated p53 and promoted its pro-apoptotic activity in mouse thymi and small intestines, the chromosomal instability caused by Atf3 deficiency was largely dependent on the regulation of p53 by ATF3. Interestingly, loss of Atf3 also promoted spontaneous tumorigenesis in Trp53+/- mice, but did not affect tumor formation in Trp53-/- mice. Our results thus provide the first genetic evidence linking ATF3 to the suppression of the early development of cancer, and underscore the importance of ATF3 in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Z Wang
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Y He
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - W Deng
- State Key Laboratory of Oncology in South China, Collaboration Innovation Center of Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - L Lang
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - H Yang
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - B Jin
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - R Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - H-F Ding
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - J Zhang
- Department of Radiation Oncology, Case Western Reserve University, Cleveland, OH, USA
| | - T Hai
- Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH, USA
| | - C Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, USA.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
29
|
Ogata T, Nakamura M, Sang M, Yoda H, Hiraoka K, Yin D, Sang M, Shimozato O, Ozaki T. Depletion of runt-related transcription factor 2 (RUNX2) enhances SAHA sensitivity of p53-mutated pancreatic cancer cells through the regulation of mutant p53 and TAp63. PLoS One 2017; 12:e0179884. [PMID: 28671946 PMCID: PMC5495219 DOI: 10.1371/journal.pone.0179884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 06/06/2017] [Indexed: 01/19/2023] Open
Abstract
Suberoylanilide hydroxamic acid (SAHA) represents one of the new class of anti-cancer drugs. However, multiple lines of clinical evidence indicate that SAHA might be sometimes ineffective on certain solid tumors including pancreatic cancer. In this study, we have found for the first time that RUNX2/mutant p53/TAp63-regulatory axis has a pivotal role in the determination of SAHA sensitivity of p53-mutated pancreatic cancer MiaPaCa-2 cells. According to our present results, MiaPaCa-2 cells responded poorly to SAHA. Forced depletion of mutant p53 stimulated SAHA-mediated cell death of MiaPaCa-2 cells, which was accomapanied by a further accumulation of γH2AX and cleaved PARP. Under these experimental conditions, pro-oncogenic RUNX2 was strongly down-regulated in mutant p53-depleted MiaPaCa-2 cells. Surprisingly, RUNX2 silencing augmented SAHA-dependent cell death of MiaPaCa-2 cells and caused a significant reduction of mutant p53. Consistent with these observations, overexpression of RUNX2 in MiaPaCa-2 cells restored SAHA-mediated decrease in cell viability and increased the amount of mutant p53. Thus, it is suggestive that there exists a positive auto-regulatory loop between RUNX2 and mutant p53, which might amplify their pro-oncogenic signals. Intriguingly, knockdown of mutant p53 or RUNX2 potentiated SAHA-induced up-regulation of TAp63. Indeed, SAHA-stimulated cell death of MiaPaCa-2 cells was partially attenuated by p63 depletion. Collectively, our present observations strongly suggest that RUNX2/mutant p53/TAp63-regulatory axis is one of the key determinants of SAHA sensitivity of p53-mutated pancreatic cancer cells.
Collapse
Affiliation(s)
- Takehiro Ogata
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Mizuyo Nakamura
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Meijie Sang
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
- Department of Regenerative Medicine, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Hiroyuki Yoda
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Kiriko Hiraoka
- Laboratory of Cancer Genetics, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Danjing Yin
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Mexiang Sang
- Research Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Osamu Shimozato
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
| | - Toshinori Ozaki
- Laboratory of DNA Damage Signaling, Chiba Cancer Center Research Institute, Chiba, Japan
- * E-mail:
| |
Collapse
|
30
|
Novel targets and interaction partners of mutant p53 Gain-Of-Function. Biochem Soc Trans 2016; 44:460-6. [PMID: 27068955 DOI: 10.1042/bst20150261] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Indexed: 12/24/2022]
Abstract
In many human cancers p53 expression is lost or a mutant p53 protein is expressed. Over the past 15 years it has become apparent that a large number of these mutant p53 proteins have lost wild type function, but more importantly have gained functions that promote tumorigenesis and drive chemo-resistance, invasion and metastasis. Many researchers have investigated the underlying mechanisms of these Gain-Of-Functions (GOFs) and it has become apparent that many of these functions are the result of mutant p53 hijacking other transcription factors. In this review, we summarize the latest research on p53 GOF and categorize these in light of the hallmarks of cancer as presented by Hannahan and Weinberg.
Collapse
|
31
|
McKenzie AT, Katsyv I, Song WM, Wang M, Zhang B. DGCA: A comprehensive R package for Differential Gene Correlation Analysis. BMC SYSTEMS BIOLOGY 2016; 10:106. [PMID: 27846853 PMCID: PMC5111277 DOI: 10.1186/s12918-016-0349-1] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/03/2016] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dissecting the regulatory relationships between genes is a critical step towards building accurate predictive models of biological systems. A powerful approach towards this end is to systematically study the differences in correlation between gene pairs in more than one distinct condition. RESULTS In this study we develop an R package, DGCA (for Differential Gene Correlation Analysis), which offers a suite of tools for computing and analyzing differential correlations between gene pairs across multiple conditions. To minimize parametric assumptions, DGCA computes empirical p-values via permutation testing. To understand differential correlations at a systems level, DGCA performs higher-order analyses such as measuring the average difference in correlation and multiscale clustering analysis of differential correlation networks. Through a simulation study, we show that the straightforward z-score based method that DGCA employs significantly outperforms the existing alternative methods for calculating differential correlation. Application of DGCA to the TCGA RNA-seq data in breast cancer not only identifies key changes in the regulatory relationships between TP53 and PTEN and their target genes in the presence of inactivating mutations, but also reveals an immune-related differential correlation module that is specific to triple negative breast cancer (TNBC). CONCLUSIONS DGCA is an R package for systematically assessing the difference in gene-gene regulatory relationships under different conditions. This user-friendly, effective, and comprehensive software tool will greatly facilitate the application of differential correlation analysis in many biological studies and thus will help identification of novel signaling pathways, biomarkers, and targets in complex biological systems and diseases.
Collapse
Affiliation(s)
- Andrew T. McKenzie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Igor Katsyv
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Won-Min Song
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Icahn Institute of Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029 USA
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, Room S8-111, New York, NY 10029 USA
| |
Collapse
|
32
|
Global analysis of chromosome 1 genes among patients with lung adenocarcinoma, squamous carcinoma, large-cell carcinoma, small-cell carcinoma, or non-cancer. Cancer Metastasis Rev 2016; 34:249-64. [PMID: 25937073 DOI: 10.1007/s10555-015-9558-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The present study aimed at investigating genetic variations, specific signal pathways, or biological processes of chromosome 1 genes between subtypes and stages of lung cancer and prediction of selected targeting genes for patient survival rate. About 537 patients with lung adenocarcinoma (ADC), 140 with lung squamous carcinoma (SCC), 9 with lung large-cell carcinoma (LCC), 56 with small-cell lung cancer (SCLC), and 590 without caner were integrated from 16 databases and analyzed in the present study. Three (ASPM, CDC20, KIAA1799) or 28 genes significantly up- or down-expressed in four subtypes of lung cancer. The activated cell division and down-regulated immune responses were identified in patients with lung cancer. Keratinocyte development associated genes S100 and SPRR families dominantly up-expressed in SCC and AKT3 and NRAS in SCLC. Subtype-specific genes of ADC, SCC, LCC, or SCLC were also identified. C1orf106, CAPN8, CDC20, COL11A1, CRABP2, and NBPF9 up-expressed at four stages of ADC. Fifty six related with keratinocytes or potassium channels up-expressed in three stages of SCC. CDC20, IL10, ECM1, GABPB2, CRABP2, and COL11A1 significantly predicted the poor overall survival of ADC patients and S100A2 and TIMM17A in SCC patients. Our data indicate that a number of altered chromosome 1 genes have the subtype and stage specificities of lung cancer and can be considered as diagnostic and prognosis biomarkers.
Collapse
|
33
|
Wu M, An J, Zheng Q, Xin X, Lin Z, Li X, Li H, Lu D. Double mutant P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of Pim1 mediated by PKM2 and LncRNA CUDR. Oncotarget 2016; 7:66525-66539. [PMID: 27167190 PMCID: PMC5341818 DOI: 10.18632/oncotarget.9089] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/17/2016] [Indexed: 12/12/2022] Open
Abstract
P53 is frequently mutated in human tumors as a novel gain-of-function to promote tumor development. Although dimeric (M340Q/L344R) influences on tetramerisation on site-specific post-translational modifications of p53, it is not clear how dimeric (M340Q/L344R) plays a role during hepatocarcinogenesis. Herein, we reveal that P53 (N340Q/L344R) promotes hepatocarcinogenesis through upregulation of PKM2. Mechanistically, P53 (N340Q/L344R) forms complex with CUDR and the complex binds to the promoter regions of PKM2 which enhances the expression, phosphorylation of PKM2 and its polymer formation. Thereby, the polymer PKM2 (tetramer) binds to the eleventh threonine on histone H3 that increases the phosphorylation of the eleventh threonine on histone H3 (pH3T11). Furthermore, pH3T11 blocks HDAC3 binding to H3K9Ac that prevents H3K9Ac from deacetylation and stabilizes the H3K9Ac modification. On the other hand, it also decreased tri-methylation of histone H3 on the ninth lysine (H3K9me3) and increases one methylation of histone H3 on the ninth lysine (H3K9me1). Moreover, the combination of H3K9me1 and HP1 α forms more H3K9me3-HP1α complex which binds to the promoter region of Pim1, enhancing the expression of Pim1 that enhances the expression of TERT, oncogenic lncRNA HOTAIR and reduces the TERRA expression. Ultimately, P53 (N340Q/L344R) accerlerates the growth of liver cancer cells Hep3B by activating telomerase and prolonging telomere through the cascade of P53 (N340Q/L344R)-CUDR-PKM2-pH3T11- (H3K9me1-HP1α)-Pim1- (TERT-HOTAIR-TERRA). Understanding the novel functions of P53 (N340Q/L344R) will help in the development of new liver cancer therapeutic approaches that may be useful in a broad range of cancer types.
Collapse
Affiliation(s)
- Mengying Wu
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Jiahui An
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Qidi Zheng
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaoru Xin
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Zhuojia Lin
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaonan Li
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Haiyan Li
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Dongdong Lu
- School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
34
|
Li J, Yang Z, Chen Z, Bao Y, Zhang H, Fang X, Yang W. ATF3 suppresses ESCC via downregulation of ID1. Oncol Lett 2016; 12:1642-1648. [PMID: 27602100 PMCID: PMC4998220 DOI: 10.3892/ol.2016.4832] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 06/07/2016] [Indexed: 12/15/2022] Open
Abstract
Esophageal cancer is one of the most prevalent forms of cancer and has a particularly high mortality rate due to early metastasis; however, the underlying mechanisms of its formation and progression remain unclear. The present study performed immunohistochemical analysis and observed that the expression of activating transcription factor 3 (ATF3) was reduced in esophageal squamous cell carcinoma (ESCC) in comparison with non-tumor adjacent tissues. By contrast, inhibitor of DNA binding 1 (ID1) was overexpressed in ESCC tissues, demonstrating an inverse correlation with ATF3 (P<0.01). In ESCC EC109 and KYSE450 cells lines, transfection with an ATF3-overexpression plasmid resulted in the inhibition of cell proliferation, motility and migration, which was associated with the induction of E-cadherin expression and inhibition of cyclin D1 and Twist. Notably, ATF3 exerted an inverse regulatory interaction with ID1. The results of the present study provide additional evidence of the tumor suppressive features of ATF3 and demonstrate a novel mechanism of ATF3-mediated inhibition of cancer metastasis in esophageal cancer.
Collapse
Affiliation(s)
- Jian Li
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450052, P.R. China
| | - Zishan Yang
- Laboratory for Cancer Signal Transduction, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Zhiuguo Chen
- Laboratory for Cancer Signal Transduction, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China; Department of Histology, School of Medicine, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Yonghua Bao
- Laboratory for Cancer Signal Transduction, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China; Department of Immunology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China
| | - Huijuan Zhang
- Department of Gastroenterology, Seventh People's Hospital of Zhengzhou City, Zhengzhou, Henan 45000, P.R. China
| | - Xinhui Fang
- Department of Gastroenterology, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, Henan 450052, P.R. China
| | - Wancai Yang
- Laboratory for Cancer Signal Transduction, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China; Department of Pathology, Xinxiang Medical University, Xinxiang, Henan 453003, P.R. China; Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
35
|
Zhao J, Li X, Guo M, Yu J, Yan C. The common stress responsive transcription factor ATF3 binds genomic sites enriched with p300 and H3K27ac for transcriptional regulation. BMC Genomics 2016; 17:335. [PMID: 27146783 PMCID: PMC4857411 DOI: 10.1186/s12864-016-2664-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 04/26/2016] [Indexed: 12/24/2022] Open
Abstract
Background Dysregulation of the common stress responsive transcription factor ATF3 has been causally linked to many important human diseases such as cancer, atherosclerosis, infections, and hypospadias. Although it is believed that the ATF3 transcription activity is central to its cellular functions, how ATF3 regulates gene expression remains largely unknown. Here, we employed ATF3 wild-type and knockout isogenic cell lines to carry out the first comprehensive analysis of global ATF3-binding profiles in the human genome under basal and stressed (DNA damage) conditions. Results Although expressed at a low basal level, ATF3 was found to bind a large number of genomic sites that are often associated with genes involved in cellular stress responses. Interestingly, ATF3 appears to bind a large portion of genomic sites distal to transcription start sites and enriched with p300 and H3K27ac. Global gene expression profiling analysis indicates that genes proximal to these genomic sites were often regulated by ATF3. While DNA damage elicited by camptothecin dramatically altered the ATF3 binding profile, most of the genes regulated by ATF3 upon DNA damage were pre-bound by ATF3 before the stress. Moreover, we demonstrated that ATF3 was co-localized with the major stress responder p53 at genomic sites, thereby collaborating with p53 to regulate p53 target gene expression upon DNA damage. Conclusions These results suggest that ATF3 likely bookmarks genomic sites and interacts with other transcription regulators to control gene expression. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2664-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jonathan Zhao
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xingyao Li
- Georgia Cancer Center, Augusta University, Augusta, GA, USA
| | - Mingxiong Guo
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - Jindan Yu
- Department of Medicine, Division of Hematology and Oncology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Chunhong Yan
- Georgia Cancer Center, Augusta University, Augusta, GA, USA. .,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, USA. .,Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
36
|
He J, Liang X, Luo F, Chen X, Xu X, Wang F, Zhang Z. P53 Is Involved in a Three-Dimensional Architecture-Mediated Decrease in Chemosensitivity in Colon Cancer. J Cancer 2016; 7:900-9. [PMID: 27313779 PMCID: PMC4910581 DOI: 10.7150/jca.14506] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/16/2016] [Indexed: 12/26/2022] Open
Abstract
Three-dimensional (3D) culture models represent a better approximation of solid tumor tissue architecture, especially cell adhesion, in vivo than two-dimensional (2D) cultures do. Here, we explored the role of architecture in chemosensitivity to platinum in colon cancer. Under the 3D culture condition, colon cancer cells formed multicellular spheroids, consisting of layers of cells. 3D cultures displayed significantly decreased sensitivity to platinum compared with 2D cultures. Platinum increased p53 in a dose-dependent and time-dependent manner. There was no detectable difference in basal p53 levels between 3D cultures and 2D cultures but cisplatin induced less p53 in both HCT116 3D cultures and LoVo 3D cultures. It was not due to cisplatin concentration because cisplatin induced similar γ-H2AX in 3D vs 2D. Knockdown of p53 significantly decreased sensitivity to platinum in 3D cultures. Knockdown of p53 decreased cleaved caspase 3 and apoptosis induced by cisplatin. These findings indicate that 3D architecture confers decreased chemosensitivity to platinum and p53 is involved in the mechanism. Knockdown of p53 decreased cisplatin's induction of c-Jun N-terminal kinase 1/2 (JNK1/2) activation, whereas inhibition of JNK1/2 activation increased chemosensitivity. Inhibition of p38 activation decreased cisplatin's induction of p53, but no difference in p38 activation by cisplatin was observed between 2D cultures and 3D cultures. Taken together, our results suggest that p53 is involved in a 3D architecture-mediated decrease in chemosensitivity to platinum in colon cancer. Mitogen-activated protein kinases (JNK1/2 and p38) do not play a dominant role in the mechanism.
Collapse
Affiliation(s)
- Jianming He
- 1. Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China
| | - Xi Liang
- 1. Department Of Oncology And Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing, 400038 China;; 2. Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Fen Luo
- 2. Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Xuedan Chen
- 3. Department Of Medical Genetics, Third Military Medical University, Chongqing, 400038 China
| | - Xueqing Xu
- 2. Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Third Military Medical University, Chongqing, 400042 China
| | - Fengchao Wang
- 4. Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical University, Chongqing, 400038 China
| | - Zhenping Zhang
- 5. Department Of Oncology, First Hospital of Shijiazhuang City, Shijiazhuang, Hebei Province, 050011 China
| |
Collapse
|
37
|
Cui H, Li X, Han C, Wang QE, Wang H, Ding HF, Zhang J, Yan C. The Stress-responsive Gene ATF3 Mediates Dichotomous UV Responses by Regulating the Tip60 and p53 Proteins. J Biol Chem 2016; 291:10847-57. [PMID: 26994140 DOI: 10.1074/jbc.m115.713099] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Indexed: 12/27/2022] Open
Abstract
The response to UV irradiation is important for a cell to maintain its genetic integrity when challenged by environmental genotoxins. An immediate early response to UV irradiation is the rapid induction of activating transcription factor 3 (ATF3) expression. Although emerging evidence has linked ATF3 to stress pathways regulated by the tumor suppressor p53 and the histone acetyltransferase Tip60, the role of ATF3 in the UV response remains largely unclear. Here, we report that ATF3 mediated dichotomous UV responses. Although UV irradiation enhanced the binding of ATF3 to Tip60, knockdown of ATF3 expression decreased Tip60 stability, thereby impairing Tip60 induction by UV irradiation. In line with the role of Tip60 in mediating UV-induced apoptosis, ATF3 promoted the death of p53-defective cells in response to UV irradiation. However, ATF3 could also activate p53 and promote p53-mediated DNA repair, mainly through altering histone modifications that could facilitate recruitment of DNA repair proteins (such as DDB2) to damaged DNA sites. As a result, ATF3 rather protected the p53 wild-type cells from UV-induced apoptosis. Our results thus indicate that ATF3 regulates cell fates upon UV irradiation in a p53-dependent manner.
Collapse
Affiliation(s)
| | | | - Chunhua Han
- the Department of Radiology, Ohio State University, Columbus, Ohio 43210
| | - Qi-En Wang
- the Department of Radiology, Ohio State University, Columbus, Ohio 43210
| | - Hongbo Wang
- the Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Yantai University, Yantai 264005, China, and
| | - Han-Fei Ding
- From the Georgia Cancer Center and Departments of Pathology and
| | - Junran Zhang
- the Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106
| | - Chunhong Yan
- From the Georgia Cancer Center and Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, Georgia 30912,
| |
Collapse
|
38
|
Cui H, Guo M, Xu D, Ding ZC, Zhou G, Ding HF, Zhang J, Tang Y, Yan C. The stress-responsive gene ATF3 regulates the histone acetyltransferase Tip60. Nat Commun 2015; 6:6752. [PMID: 25865756 PMCID: PMC4407828 DOI: 10.1038/ncomms7752] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 02/24/2015] [Indexed: 02/07/2023] Open
Abstract
Tat-interactive protein 60 (Tip60) is a MYST histone acetyltransferase that catalyzes acetylation of the major DNA damage kinase ATM, thereby triggering cellular signaling required for the maintenance of genomic stability upon genotoxic insults. The Tip60 activity is modulated by posttranslational modifications that alter its stability and its interactions with substrates. Here we report that activating transcription factor 3 (ATF3), a common stress mediator and a p53 activator, is a regulator of Tip60. ATF3 directly binds Tip60 at a region adjacent to the catalytic domain to promote the protein acetyltransferase activity. Moreover, the ATF3-Tip60 interaction increases the Tip60 stability by promoting USP7-mediated deubiquitination of Tip60. Consequently, knockdown of ATF3 expression leads to decreased Tip60 expression and suppression of ATM signaling as evidenced by accumulated DNA lesions and increased cell sensitivity to irradiation. Our findings thus reveal a previously unknown function of a common stress mediator in regulating Tip60 function.
Collapse
Affiliation(s)
- Hongmei Cui
- 1] GRU Cancer Center, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA [2] Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| | - Mingxiong Guo
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| | - Dong Xu
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| | - Zhi-Chun Ding
- GRU Cancer Center, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA
| | - Gang Zhou
- 1] GRU Cancer Center, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA [2] Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA
| | - Han-Fei Ding
- 1] GRU Cancer Center, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA [2] Department of Pathology, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA
| | - Junran Zhang
- Department of Radiation Oncology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Yi Tang
- Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA
| | - Chunhong Yan
- 1] GRU Cancer Center, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA [2] Center for Cell Biology and Cancer Research, Albany Medical College, 47 New Scotland Avenue, Albany, New York 12208, USA [3] Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, 1120 15th Street, Augusta, Georgia 30912, USA
| |
Collapse
|
39
|
Wang Z, Yan C. Emerging roles of ATF3 in the suppression of prostate cancer. Mol Cell Oncol 2015; 3:e1010948. [PMID: 27308526 PMCID: PMC4845162 DOI: 10.1080/23723556.2015.1010948] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 01/16/2015] [Accepted: 01/17/2015] [Indexed: 12/03/2022]
Abstract
Stress response mediator activating transcription factor 3 (ATF3) engages in diverse oncogenic pathways including the androgen receptor signaling essential for prostatic proliferation. In line with frequent downregulation of ATF3 expression in human prostate cancers, we have provided the first genetic evidence supporting the role of ATF3 as a tumor suppressor in a subset of prostate cancers with PTEN dysfunction.
Collapse
Affiliation(s)
| | - Chunhong Yan
- GRU Cancer Center; Department of Biochemistry and Molecular Biology; Medical College of Georgia; Georgia Regents University; Augusta, GA USA
| |
Collapse
|
40
|
Kim KH, Park B, Rhee DK, Pyo S. Acrylamide Induces Senescence in Macrophages through a Process Involving ATF3, ROS, p38/JNK, and a Telomerase-Independent Pathway. Chem Res Toxicol 2015; 28:71-86. [PMID: 25531190 DOI: 10.1021/tx500341z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Senescence, which is irreversible cell cycle arrest, is induced by various types of DNA damage, including genotoxic stress. Senescent cells show dysregulation of tumor suppressor genes and other regulators of cellular proliferation. Activating transcription factor 3 (ATF3) plays a pleiotropic role in biological processes through genotoxic stress. In this study, we examined the effects of acrylamide (ACR), a genotoxic carcinogen, on cellular senescence and the molecular mechanisms of ATF3 function in macrophages. Treatment of macrophages with ACR at low concentrations (<1.0 mM) resulted in senescence-like morphology and an increase in senescence-associated β-galactosidase (SA-β-gal) activity. Exposure of macrophages to ACR led to stress-induced, telomerase-independent senescence. In addition, ACR treatment for 1, 3, or 5 days showed a concentration-dependent increase in ATF3 expression and G0/G1 phase arrest. To better understand the role of ATF3 in controlling the senescence response to ACR, SA-β-gal activity was examined using ATF3 knockdown and overexpression. ACR-mediated senescence was significantly decreased by knockdown of ATF3, whereas it was increased with ATF3 overexpression. We found that ATF3 regulated p53 and p21 levels. ATF3 also played an important role in regulating intracellular reactive oxygen species (ROS) production in response to ACR treatment. Moreover, phosphorylation of p38 and JNK kinases, which were activated during ATF3-mediated senescence, was observed in ACR-treated macrophages. Taken together, these results suggest that ATF3 contributes to ACR-induced senescence by enhancing ROS production, activating p38 and JNK kinases, and promoting the ATF3-dependent expression of p53, resulting in regulation of cellular senescence in macrophages.
Collapse
Affiliation(s)
- Kyung-Ho Kim
- School of Pharmacy, Sungkyunkwan University , Suwon, Kyunggi-do, 440-746, Republic of Korea
| | - Bongkyun Park
- School of Pharmacy, Sungkyunkwan University , Suwon, Kyunggi-do, 440-746, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University , Suwon, Kyunggi-do, 440-746, Republic of Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University , Suwon, Kyunggi-do, 440-746, Republic of Korea
| |
Collapse
|
41
|
Li XL, Zhou J, Chen ZR, Chng WJ. p53 mutations in colorectal cancer- molecular pathogenesis and pharmacological reactivation. World J Gastroenterol 2015; 21:84-93. [PMID: 25574081 PMCID: PMC4284363 DOI: 10.3748/wjg.v21.i1.84] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 08/20/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies with high prevalence and low 5-year survival. CRC is a heterogeneous disease with a complex, genetic and biochemical background. It is now generally accepted that a few important intracellular signaling pathways, including Wnt/β-catenin signaling, Ras signaling, and p53 signaling are frequently dysregulated in CRC. Patients with mutant p53 gene are often resistant to current therapies, conferring poor prognosis. Tumor suppressor p53 protein is a transcription factor inducing cell cycle arrest, senescence, and apoptosis under cellular stress. Emerging evidence from laboratories and clinical trials shows that some small molecule inhibitors exert anti-cancer effect via reactivation and restoration of p53 function. In this review, we summarize the p53 function and characterize its mutations in CRC. The involvement of p53 mutations in pathogenesis of CRC and their clinical impacts will be highlighted. Moreover, we also describe the current achievements of using p53 modulators to reactivate this pathway in CRC, which may have great potential as novel anti-cancer therapy.
Collapse
|
42
|
Wang Z, Xu D, Ding HF, Kim J, Zhang J, Hai T, Yan C. Loss of ATF3 promotes Akt activation and prostate cancer development in a Pten knockout mouse model. Oncogene 2014; 34:4975-84. [PMID: 25531328 PMCID: PMC4476969 DOI: 10.1038/onc.2014.426] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 12/12/2022]
Abstract
Activating transcription factor 3 (ATF3) responds to diverse cellular stresses, and regulates oncogenic activities (for example, proliferation, survival and migration) through direct transcriptional regulation or protein-protein interactions. Although aberrant ATF3 expression is frequently found in human cancers, the role of ATF3 in tumorigenesis is poorly understood. Here, we demonstrate that ATF3 suppresses the development of prostate cancer induced by knockout of the tumor suppressor Pten in mouse prostates. Whereas the oncogenic stress elicited by Pten loss induced ATF3 expression in prostate epithelium, we found that ATF3 deficiency increased cell proliferation and promoted cell survival, leading to early onset of mouse prostatic intraepithelial neoplasia and the progression of prostate lesions to invasive adenocarcinoma. Importantly, the loss of ATF3 promoted activation of the oncogenic AKT signaling evidenced by high levels of phosphorylated AKT and S6 proteins in ATF3-null prostate lesions. In line with these in vivo results, knockdown of ATF3 expression in human prostate cancer cells by single guided RNA-mediated targeting activated AKT and increased matrix metalloproteinase-9 expression. Our results thus link ATF3 to the AKT signaling, and suggest that ATF3 is a tumor suppressor for the major subset of prostate cancers harboring dysfunctional Pten.
Collapse
Affiliation(s)
- Z Wang
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA.,Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - D Xu
- Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA
| | - H-F Ding
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA.,Department of Pathology, Georgia Regents University, Augusta, GA, USA
| | - J Kim
- Department of Biostatistics & Epidemiology, Georgia Regents University, Augusta, GA, USA
| | - J Zhang
- Department of Radiation Oncology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - T Hai
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, OH, USA
| | - C Yan
- GRU Cancer Center, Georgia Regents University, Augusta, GA, USA.,Center for Cell Biology and Cancer Research, Albany Medical College, Albany, NY, USA.,Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
43
|
Janaki Ramaiah M, Lavanya A, Honarpisheh M, Zarea M, Bhadra U, Bhadra MP. MiR-15/16 complex targets p70S6 kinase 1 and controls cell proliferation in MDA-MB-231 breast cancer cells. Gene 2014; 552:255-64. [PMID: 25261849 DOI: 10.1016/j.gene.2014.09.052] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/18/2014] [Accepted: 09/22/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND MicroRNAs are small non-coding RNAs that regulate post-transcriptional mRNA expression by binding to 3' untranslated region (3'-UTR) of the complementary mRNA sequence resulting in translational repression and gene silencing. They act as negative regulators of gene expression and play a pivotal role in regulating apoptosis and cell proliferation. Studies have shown that miRNAs interact with p53 by regulating the activity and function of p53 through direct repression or its regulators. Mammalian target of rapamycin (mTOR) is an evolutionary conserved check point protein kinase that plays a major effect in the control of cell division via protein synthesis regulation. mTOR regulates protein synthesis through phosphorylation and inactivation of 4E-BP1 and through phosphorylation and activation of S6 kinase 1 (S6K1). These two downstream effectors of mTOR control cell growth and metabolism. In mammals, mTOR protein kinase is the central node in the nutrient and growth factor signaling and p53 plays a critical role in sensing genotoxic stress. Activation of p53 inhibits mTOR activity, which in turn regulates its downstream targets providing a cross talk among both the signaling machinery. MicroRNA-15 and 16 belong to a common precursor family and are highly conserved. Deletion or downregulation of these two microRNAs has been shown to accelerate cell division by modulating the expression of the genes involved in controlling cell cycle progression. These microRNAs may function as tumor suppressors and act on the downstream targets of p53 signaling pathway. To have a better insight of the role of miR-15/16 in regulating the cross talk of p53 and mTOR, we performed an in depth study in MDA-MB-231 breast cancer cells by performing a gain-of-function analysis with lentiviral plasmids expressing microRNA-15 and 16. METHODS The effect of individual microRNAs on RPS6KB1 was examined by using 3'-UTR clones via luciferase based assays. The cell cycle effects were observed by flow-cytometric analysis. Reverse transcription PCR was used to explore the expression of mTOR and RPS6KB1 in cells transfected with miR-15/16. RESULTS Overexpression of miR-15/16 led to inhibition of cell proliferation causing G1 cell cycle arrest as well as caspase-3 dependent apoptosis. Forced expression of miR-15/16 might lead to decrease in mRNA level of RPS6KB1, mTOR. The effect was a complete reversal after treatment with anti-miRs against miR-15/16 proving the specificity of the expression. In addition, the dual luciferase reporter assays indicated a clear decrease in luciferase gene expression in cells transfected with lentiviral based miR-15 and 16 plasmids indicating that miR-15/16 directly targets RPS6KB1 through its 3'-UTR binding. Further, these microRNAs also inhibit epithelial to mesenchymal transition (EMT) by targeting key proteins such as Twist1 and EZH2 clearly demonstrating its crucial role in controlling cell proliferation. CONCLUSION This study suggests that exogenous microRNA-15/16 can target RPS6KB1, control cell proliferation and cause apoptosis in caspase-dependent manner even in the absence of functional p53.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India; School of Chemical and Biotechnology, SASTRA University, Tirumalaisamudram, Thanjavur, India.
| | - A Lavanya
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India.
| | - Mohsen Honarpisheh
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India.
| | - Mojtaba Zarea
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India.
| | - Utpal Bhadra
- Centre For Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, India.
| | - Manika Pal Bhadra
- Centre for Chemical Biology, Indian Institute of Chemical Technology (IICT), Tarnaka, Hyderabad, India.
| |
Collapse
|