1
|
Sheng Z, Beck P, Gabby M, Habte-Mariam S, Mitkos K. Molecular Basis of Oncogenic PI3K Proteins. Cancers (Basel) 2024; 17:77. [PMID: 39796708 PMCID: PMC11720314 DOI: 10.3390/cancers17010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The dysregulation of phosphatidylinositol 3-kinase (PI3K) signaling plays a pivotal role in driving neoplastic transformation by promoting uncontrolled cell survival and proliferation. This oncogenic activity is primarily caused by mutations that are frequently found in PI3K genes and constitutively activate the PI3K signaling pathway. However, tumorigenesis can also arise from nonmutated PI3K proteins adopting unique active conformations, further complicating the understanding of PI3K-driven cancers. Recent structural studies have illuminated the functional divergence among highly homologous PI3K proteins, revealing how subtle structural alterations significantly impact their activity and contribute to tumorigenesis. In this review, we summarize current knowledge of Class I PI3K proteins and aim to unravel the complex mechanism underlying their oncogenic traits. These insights will not only enhance our understanding of PI3K-mediated oncogenesis but also pave the way for the design of novel PI3K-based therapies to combat cancers driven by this signaling pathway.
Collapse
Affiliation(s)
- Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Faculty of Health Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Patrick Beck
- Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maegan Gabby
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | | | - Katherine Mitkos
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| |
Collapse
|
2
|
Alfaifi A, Bahashwan S, Alsaadi M, Ageel AH, Ahmed HH, Fatima K, Malhan H, Qadri I, Almehdar H. Advancements in B-Cell Non-Hodgkin's Lymphoma: From Signaling Pathways to Targeted Therapies. Adv Hematol 2024; 2024:5948170. [PMID: 39563886 PMCID: PMC11576080 DOI: 10.1155/2024/5948170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 06/27/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
Lymphoma is the sixth most prevalent cancer globally. Non-Hodgkin's lymphomas are the majority group of lymphomas, with B cells accounting for approximately 95% of these lymphomas. A key feature of B-cell lymphoma is the functional perturbations of essential biological pathways caused by genetic aberrations. These lead to atypical gene expression, providing cells with a selective growth advantage. Molecular analysis reveals that each lymphoma subtype has unique molecular mutations, which pose challenges in disease management and treatment. Substantial efforts over the last decade have led to the integration of this information into clinical applications, resulting in crucial insights into clinical diagnosis and targeted therapies. However, with the growing need for more effective medication development, we anticipate a deeper understanding of signaling pathways and their interactions to emerge. This review aims to demonstrate how the BCR, specific signaling pathways like PI3K/AKT/mTOR, NF-kB, and JAK/STAT are diverse in common types of B-cell lymphoma. Furthermore, it offers a detailed examination of each pathway and a synopsis of the approved or in-development targeted therapies. In conclusion, finding the activated signaling pathways is crucial for developing effective treatment plans to improve the prognosis of patients with relapsed or refractory lymphoma. Trial Registration: ClinicalTrials.gov identifier: NCT02180724, NCT02029443, NCT02477696, NCT03836261, NCT02343120, NCT04440059, NCT01882803, NCT01258998, NCT01742988, NCT02055820, NCT02285062, NCT01855750, NCT03422679, NCT01897571.
Collapse
Affiliation(s)
- Abdullah Alfaifi
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Fayfa General Hospital, Ministry of Health, Jazan 83581, Saudi Arabia
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Salem Bahashwan
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
- Department of Hematology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed Alsaadi
- Hematology Research Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Ali H Ageel
- Eradah Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Hamzah H Ahmed
- Department of Radiologic Sciences, Faculty of Applied Medical Sciences, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Kaneez Fatima
- IQ Institute of Infection and Immunity, Lahore, Punjab, Pakistan
| | - Hafiz Malhan
- Prince Mohammed Bin Nasser Hospital, Ministry of Health, Jazan 82943, Saudi Arabia
| | - Ishtiaq Qadri
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Science, Faculty of Science, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
3
|
Kelly LM, Rutter JC, Lin KH, Ling F, Duchmann M, Latour E, Arang N, Pasquer H, Ho Nhat D, Charles J, Killarney ST, Ang HX, Namor F, Culeux C, Lombard B, Loew D, Swaney DL, Krogan NJ, Brunel L, Carretero É, Verdié P, Amblard M, Fodil S, Huynh T, Sebert M, Adès L, Raffoux E, Fenouille N, Itzykson R, Lobry C, Benajiba L, Forget A, Martin AR, Wood KC, Puissant A. Targeting a lineage-specific PI3Kɣ-Akt signaling module in acute myeloid leukemia using a heterobifunctional degrader molecule. NATURE CANCER 2024; 5:1082-1101. [PMID: 38816660 PMCID: PMC11778622 DOI: 10.1038/s43018-024-00782-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 05/13/2024] [Indexed: 06/01/2024]
Abstract
Dose-limiting toxicity poses a major limitation to the clinical utility of targeted cancer therapies, often arising from target engagement in nonmalignant tissues. This obstacle can be minimized by targeting cancer dependencies driven by proteins with tissue-restricted and/or tumor-restricted expression. In line with another recent report, we show here that, in acute myeloid leukemia (AML), suppression of the myeloid-restricted PIK3CG/p110γ-PIK3R5/p101 axis inhibits protein kinase B/Akt signaling and compromises AML cell fitness. Furthermore, silencing the genes encoding PIK3CG/p110γ or PIK3R5/p101 sensitizes AML cells to established AML therapies. Importantly, we find that existing small-molecule inhibitors against PIK3CG are insufficient to achieve a sustained long-term antileukemic effect. To address this concern, we developed a proteolysis-targeting chimera (PROTAC) heterobifunctional molecule that specifically degrades PIK3CG and potently suppresses AML progression alone and in combination with venetoclax in human AML cell lines, primary samples from patients with AML and syngeneic mouse models.
Collapse
Affiliation(s)
- Lois M Kelly
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Justine C Rutter
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Frank Ling
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Matthieu Duchmann
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Emmanuelle Latour
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Nadia Arang
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Hélène Pasquer
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Duong Ho Nhat
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Juliette Charles
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Shane T Killarney
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Hazel X Ang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Federica Namor
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Cécile Culeux
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Bérangère Lombard
- Curie Institute, Mass Spectrometry and Proteomics Facility, PSL Research University, Paris, France
| | - Damarys Loew
- Curie Institute, Mass Spectrometry and Proteomics Facility, PSL Research University, Paris, France
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, California, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Gladstone Institutes, San Francisco, California, USA
| | - Luc Brunel
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Élodie Carretero
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Pascal Verdié
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Muriel Amblard
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Sofiane Fodil
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Tony Huynh
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Marie Sebert
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Lionel Adès
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Emmanuel Raffoux
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Nina Fenouille
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Raphaël Itzykson
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Department of Hematology and Immunology, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Camille Lobry
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
| | - Lina Benajiba
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France
- Clinical Investigation Center, Saint-Louis Hospital, AP-HP, Paris Cité University, Paris, France
| | - Antoine Forget
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Anthony R Martin
- IBMM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA.
| | - Alexandre Puissant
- INSERM UMR 944, IRSL, Saint-Louis Hospital, Paris Cité University, Paris, France.
| |
Collapse
|
4
|
Karatrasoglou EA, Dimou M, Piperidou A, Lakiotaki E, Korkolopoulou P, Vassilakopoulos TP. The Role of mTOR in B Cell Lymphoid Malignancies: Biologic and Therapeutic Aspects. Int J Mol Sci 2023; 24:14110. [PMID: 37762410 PMCID: PMC10531792 DOI: 10.3390/ijms241814110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Non-Hodgkin lymphoma's (NHL) incidence is rising over time, and B cell lymphomas comprise the majority of lymphomas. The phosphoinositide 3-kinase (PI3K)/v-akt murine thymoma viral oncogene homologue 1 (Akt)/mammalian target of the rapamycin (mTOR) signaling pathway plays a critical role in a variety of cellular processes, such as cell proliferation and survival. Its role in lymphomagenesis is confirmed in many different types of B cell lymphomas. This review is mainly focused on the PI3K/v-akt/mTOR pathway-related oncogenic mechanisms in B cell NHLs with an emphasis on common B cell lymphoma types [diffuse large B cell lymphoma (DLBCL) and mantle cell lymphoma (MCL)]. Furthermore, it summarizes the literature regarding the clinical applications of the mTOR inhibitors temsirolimus and everolimus in B cell NHLs, which have been tested in a range of clinical trials enrolling patients with B cell malignancies, either as monotherapy or in combination with other agents or regimens.
Collapse
Affiliation(s)
- Eleni A. Karatrasoglou
- First Department of Pathology, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (E.L.); (P.K.)
| | - Maria Dimou
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (M.D.); (A.P.); (T.P.V.)
| | - Alexia Piperidou
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (M.D.); (A.P.); (T.P.V.)
| | - Eleftheria Lakiotaki
- First Department of Pathology, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (E.L.); (P.K.)
| | - Penelope Korkolopoulou
- First Department of Pathology, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (E.L.); (P.K.)
| | - Theodoros P. Vassilakopoulos
- Department of Hematology and Bone Marrow Transplantation, National and Kapodistrian University of Athens, Laikon General Hospital, 15773 Athens, Greece; (M.D.); (A.P.); (T.P.V.)
| |
Collapse
|
5
|
Harris NJ, Jenkins ML, Nam SE, Rathinaswamy MK, Parson MAH, Ranga-Prasad H, Dalwadi U, Moeller BE, Sheeky E, Hansen SD, Yip CK, Burke JE. Allosteric activation or inhibition of PI3Kγ mediated through conformational changes in the p110γ helical domain. eLife 2023; 12:RP88058. [PMID: 37417733 PMCID: PMC10392983 DOI: 10.7554/elife.88058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
PI3Kγ is a critical immune signaling enzyme activated downstream of diverse cell surface molecules, including Ras, PKCβ activated by the IgE receptor, and Gβγ subunits released from activated GPCRs. PI3Kγ can form two distinct complexes, with the p110γ catalytic subunit binding to either a p101 or p84 regulatory subunit, with these complexes being differentially activated by upstream stimuli. Here, using a combination of cryo electron microscopy, HDX-MS, and biochemical assays, we have identified novel roles of the helical domain of p110γ in regulating lipid kinase activity of distinct PI3Kγ complexes. We defined the molecular basis for how an allosteric inhibitory nanobody potently inhibits kinase activity through rigidifying the helical domain and regulatory motif of the kinase domain. The nanobody did not block either p110γ membrane recruitment or Ras/Gβγ binding, but instead decreased ATP turnover. We also identified that p110γ can be activated by dual PKCβ helical domain phosphorylation leading to partial unfolding of an N-terminal region of the helical domain. PKCβ phosphorylation is selective for p110γ-p84 compared to p110γ-p101, driven by differential dynamics of the helical domain of these different complexes. Nanobody binding prevented PKCβ-mediated phosphorylation. Overall, this work shows an unexpected allosteric regulatory role of the helical domain of p110γ that is distinct between p110γ-p84 and p110γ-p101 and reveals how this can be modulated by either phosphorylation or allosteric inhibitory binding partners. This opens possibilities of future allosteric inhibitor development for therapeutic intervention.
Collapse
Affiliation(s)
- Noah J Harris
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Sung-Eun Nam
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| | - Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Harish Ranga-Prasad
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Udit Dalwadi
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| | - Brandon E Moeller
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Eleanor Sheeky
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, Institute of Molecular Biology, University of OregonEugeneUnited States
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of VictoriaVictoriaCanada
- Department of Biochemistry and Molecular Biology, The University of British ColumbiaVancouverCanada
| |
Collapse
|
6
|
Harris NJ, Jenkins ML, Nam SE, Rathinaswamy MK, Parson MA, Ranga-Prasad H, Dalwadi U, Moeller BE, Sheekey E, Hansen SD, Yip CK, Burke JE. Allosteric activation or inhibition of PI3Kγ mediated through conformational changes in the p110γ helical domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.12.536585. [PMID: 37090531 PMCID: PMC10120615 DOI: 10.1101/2023.04.12.536585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
PI3Kγ is a critical immune signaling enzyme activated downstream of diverse cell surface molecules, including Ras, PKCβ activated by the IgE receptor, and Gβγ subunits released from activated GPCRs. PI3Kγ can form two distinct complexes, with the p110γ catalytic subunit binding to either a p101 or p84 regulatory subunit, with these complexes being differentially activated by upstream stimuli. Here using a combination of Cryo electron microscopy, HDX-MS, and biochemical assays we have identified novel roles of the helical domain of p110γ in regulating lipid kinase activity of distinct PI3Kγ complexes. We defined the molecular basis for how an allosteric inhibitory nanobody potently inhibits kinase activity through rigidifying the helical domain and regulatory motif of the kinase domain. The nanobody did not block either p110γ membrane recruitment or Ras/Gβγ binding, but instead decreased ATP turnover. We also identified that p110γ can be activated by dual PKCβ helical domain phosphorylation leading to partial unfolding of an N-terminal region of the helical domain. PKCβ phosphorylation is selective for p110γ-p84 compared to p110γ-p101, driven by differential dynamics of the helical domain of these different complexes. Nanobody binding prevented PKCβ mediated phosphorylation. Overall, this works shows an unexpected allosteric regulatory role of the helical domain of p110γ that is distinct between p110γ-p84 and p110γ-p101, and reveals how this can be modulated by either phosphorylation or allosteric inhibitory binding partners. This opens possibilities of future allosteric inhibitor development for therapeutic intervention.
Collapse
|
7
|
Rathinaswamy MK, Jenkins ML, Duewell BR, Zhang X, Harris NJ, Evans JT, Stariha JTB, Dalwadi U, Fleming KD, Ranga-Prasad H, Yip CK, Williams RL, Hansen SD, Burke JE. Molecular basis for differential activation of p101 and p84 complexes of PI3Kγ by Ras and GPCRs. Cell Rep 2023; 42:112172. [PMID: 36842083 PMCID: PMC10068899 DOI: 10.1016/j.celrep.2023.112172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/21/2022] [Accepted: 02/13/2023] [Indexed: 02/27/2023] Open
Abstract
Class IB phosphoinositide 3-kinase (PI3Kγ) is activated in immune cells and can form two distinct complexes (p110γ-p84 and p110γ-p101), which are differentially activated by G protein-coupled receptors (GPCRs) and Ras. Using a combination of X-ray crystallography, hydrogen deuterium exchange mass spectrometry (HDX-MS), electron microscopy, molecular modeling, single-molecule imaging, and activity assays, we identify molecular differences between p110γ-p84 and p110γ-p101 that explain their differential membrane recruitment and activation by Ras and GPCRs. The p110γ-p84 complex is dynamic compared with p110γ-p101. While p110γ-p101 is robustly recruited by Gβγ subunits, p110γ-p84 is weakly recruited to membranes by Gβγ subunits alone and requires recruitment by Ras to allow for Gβγ activation. We mapped two distinct Gβγ interfaces on p101 and the p110γ helical domain, with differences in the C-terminal domain of p84 and p101 conferring sensitivity of p110γ-p101 to Gβγ activation. Overall, our work provides key insight into the molecular basis for how PI3Kγ complexes are activated.
Collapse
Affiliation(s)
- Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Benjamin R Duewell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | - Xuxiao Zhang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - John T Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Jordan T B Stariha
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Udit Dalwadi
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Harish Ranga-Prasad
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Scott D Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
8
|
Quintanilha JCF, Racioppi A, Wang J, Etheridge AS, Denning S, Peña CE, Skol AD, Crona DJ, Lin D, Innocenti F. PIK3R5 genetic predictors of hypertension induced by VEGF-pathway inhibitors. THE PHARMACOGENOMICS JOURNAL 2022; 22:82-88. [PMID: 34775477 PMCID: PMC8799524 DOI: 10.1038/s41397-021-00261-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 02/07/2023]
Abstract
No biomarkers are available to predict patients at risk of developing hypertension induced by VEGF-pathway inhibitors. This study aimed to identify predictive biomarkers of hypertension induced by these drugs using a discovery-replication approach. The discovery set included 140 sorafenib-treated patients (TARGET study) genotyped for 973 SNPs in 56 genes. The most statistically significant SNPs associated with grade ≥2 hypertension were tested for association with grade ≥2 hypertension in the replication set of a GWAS of 1039 bevacizumab-treated patients from four clinical trials (CALGB/Alliance). In the discovery set, rs444904 (G > A) in PIK3R5 was associated with an increased risk of sorafenib-induced hypertension (p = 0.006, OR = 3.88 95% CI 1.54-9.81). In the replication set, rs427554 (G > A) in PIK3R5 (in complete linkage disequilibrium with rs444904) was associated with an increased risk of bevacizumab-induced hypertension (p = 0.008, OR = 1.39, 95% CI 1.09-1.78). This study identified a predictive marker of drug-induced hypertension that should be evaluated for other VEGF-pathway inhibitors.ClinicalTrials.gov Identifier:NCT00073307 (TARGET).
Collapse
Affiliation(s)
- Julia C F Quintanilha
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Alessandro Racioppi
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jin Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Amy S Etheridge
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stefanie Denning
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Carol E Peña
- Bayer Health Care Pharmaceuticals, Whippany, NJ, USA
| | - Andrew D Skol
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Daniel J Crona
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacy, University of North Carolina Medical Center, Chapel Hill, NC, USA
| | - Danyu Lin
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Federico Innocenti
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
9
|
PI3K and AKT at the Interface of Signaling and Metabolism. Curr Top Microbiol Immunol 2022; 436:311-336. [DOI: 10.1007/978-3-031-06566-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Class I PI3K Biology. Curr Top Microbiol Immunol 2022; 436:3-49. [DOI: 10.1007/978-3-031-06566-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Rathinaswamy MK, Dalwadi U, Fleming KD, Adams C, Stariha JTB, Pardon E, Baek M, Vadas O, DiMaio F, Steyaert J, Hansen SD, Yip CK, Burke JE. Structure of the phosphoinositide 3-kinase (PI3K) p110γ-p101 complex reveals molecular mechanism of GPCR activation. SCIENCE ADVANCES 2021; 7:7/35/eabj4282. [PMID: 34452907 PMCID: PMC8397274 DOI: 10.1126/sciadv.abj4282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/06/2021] [Indexed: 05/04/2023]
Abstract
The class IB phosphoinositide 3-kinase (PI3K), PI3Kγ, is a master regulator of immune cell function and a promising drug target for both cancer and inflammatory diseases. Critical to PI3Kγ function is the association of the p110γ catalytic subunit to either a p101 or p84 regulatory subunit, which mediates activation by G protein-coupled receptors. Here, we report the cryo-electron microscopy structure of a heterodimeric PI3Kγ complex, p110γ-p101. This structure reveals a unique assembly of catalytic and regulatory subunits that is distinct from other class I PI3K complexes. p101 mediates activation through its Gβγ-binding domain, recruiting the heterodimer to the membrane and allowing for engagement of a secondary Gβγ-binding site in p110γ. Mutations at the p110γ-p101 and p110γ-adaptor binding domain interfaces enhanced Gβγ activation. A nanobody that specifically binds to the p101-Gβγ interface blocks activation, providing a novel tool to study and target p110γ-p101-specific signaling events in vivo.
Collapse
Affiliation(s)
- Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Udit Dalwadi
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Carson Adams
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jordan T B Stariha
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Minkyung Baek
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Oscar Vadas
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Scott D Hansen
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, OR, USA
| | - Calvin K Yip
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
12
|
Rathinaswamy MK, Fleming KD, Dalwadi U, Pardon E, Harris NJ, Yip CK, Steyaert J, Burke JE. HDX-MS-optimized approach to characterize nanobodies as tools for biochemical and structural studies of class IB phosphoinositide 3-kinases. Structure 2021; 29:1371-1381.e6. [PMID: 34348129 DOI: 10.1016/j.str.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
There is considerable interest in developing antibodies as modulators of signaling pathways. One of the most important signaling pathways in higher eukaryotes is the phosphoinositide 3-kinase (PI3K) pathway, which plays fundamental roles in growth, metabolism, and immunity. The class IB PI3K, PI3Kγ, is a heterodimeric complex composed of a catalytic p110γ subunit bound to a p101 or p84 regulatory subunit. PI3Kγ is a critical component in multiple immune signaling processes and is dependent on activation by Ras and G protein-coupled receptors (GPCRs) to mediate its cellular roles. Here we describe the rapid and efficient characterization of multiple PI3Kγ binding single-chain camelid nanobodies using hydrogen-deuterium exchange (HDX) mass spectrometry (MS) for structural and biochemical studies. We identify nanobodies that stimulated lipid kinase activity, block Ras activation, and specifically inhibited p101-mediated GPCR activation. Overall, our work reveals insight into PI3Kγ regulation and identifies sites that may be exploited for therapeutic development.
Collapse
Affiliation(s)
- Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Kaelin D Fleming
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Udit Dalwadi
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Calvin K Yip
- Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel (VUB), Brussels, Belgium; VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada; Life Sciences Institute, Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
13
|
Cuesta C, Arévalo-Alameda C, Castellano E. The Importance of Being PI3K in the RAS Signaling Network. Genes (Basel) 2021; 12:1094. [PMID: 34356110 PMCID: PMC8303222 DOI: 10.3390/genes12071094] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/06/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Ras proteins are essential mediators of a multitude of cellular processes, and its deregulation is frequently associated with cancer appearance, progression, and metastasis. Ras-driven cancers are usually aggressive and difficult to treat. Although the recent Food and Drug Administration (FDA) approval of the first Ras G12C inhibitor is an important milestone, only a small percentage of patients will benefit from it. A better understanding of the context in which Ras operates in different tumor types and the outcomes mediated by each effector pathway may help to identify additional strategies and targets to treat Ras-driven tumors. Evidence emerging in recent years suggests that both oncogenic Ras signaling in tumor cells and non-oncogenic Ras signaling in stromal cells play an essential role in cancer. PI3K is one of the main Ras effectors, regulating important cellular processes such as cell viability or resistance to therapy or angiogenesis upon oncogenic Ras activation. In this review, we will summarize recent advances in the understanding of Ras-dependent activation of PI3K both in physiological conditions and cancer, with a focus on how this signaling pathway contributes to the formation of a tumor stroma that promotes tumor cell proliferation, migration, and spread.
Collapse
Affiliation(s)
| | | | - Esther Castellano
- Tumour-Stroma Signalling Laboratory, Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain; (C.C.); (C.A.-A.)
| |
Collapse
|
14
|
Ghosh S, Keretsu S, Cho SJ. Computational Modeling of Novel Phosphoinositol‐3‐kinase γ Inhibitors Using Molecular Docking, Molecular Dynamics, and
3D‐QSAR. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12305] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Suparna Ghosh
- Department of Biomedical Sciences, College of Medicine Chosun University Gwangju 501‐759 Republic of Korea
| | - Seketoulie Keretsu
- Department of Biomedical Sciences, College of Medicine Chosun University Gwangju 501‐759 Republic of Korea
| | - Seung Joo Cho
- Department of Biomedical Sciences, College of Medicine Chosun University Gwangju 501‐759 Republic of Korea
- Department of Cellular and Molecular Medicine, College of Medicine Chosun University Gwangju 501‐759 Republic of Korea
| |
Collapse
|
15
|
Sala V, Della Sala A, Ghigo A, Hirsch E. Roles of phosphatidyl inositol 3 kinase gamma (PI3Kγ) in respiratory diseases. Cell Stress 2021; 5:40-51. [PMID: 33821232 PMCID: PMC8012884 DOI: 10.15698/cst2021.04.246] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Phosphatidyl inositol 3 kinase gamma (PI3Kγ) is expressed in all the cell types that are involved in airway inflammation and disease, including not only leukocytes, but also structural cells, where it is expressed at very low levels under physiological conditions, while is significantly upregulated after stress. In the airways, PI3Kγ behaves as a trigger or a controller, depending on the pathological context. In this review, the contribution of PI3Kγ in a plethora of respiratory diseases, spanning from acute lung injury, pulmonary fibrosis, asthma, cystic fibrosis and response to both bacterial and viral pathogens, will be commented.
Collapse
Affiliation(s)
- Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.,Kither Biotech S.r.l. Via Nizza 52, 10126, Torino, Italy.,Equal contribution to senior authorship
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126, Torino, Italy.,Kither Biotech S.r.l. Via Nizza 52, 10126, Torino, Italy.,Equal contribution to senior authorship
| |
Collapse
|
16
|
An C, Wen J, Hu Z, Mitch WE, Wang Y. Phosphoinositide 3-kinase γ deficiency attenuates kidney injury and fibrosis in angiotensin II-induced hypertension. Nephrol Dial Transplant 2021; 35:1491-1500. [PMID: 32500132 DOI: 10.1093/ndt/gfaa062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/04/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND We have shown that the CXCL16/CXCR6 axis plays a critical role in recruiting inflammatory cells and bone marrow-derived fibroblasts into the kidney leading to renal injury and fibrosis. However, the underlying signaling mechanisms are not known. METHODS In the present study, we examined the role of phosphoinositide-3 kinase γ (PI3Kγ) signaling in the recruitment of inflammatory cells and bone marrow-derived fibroblasts into the kidney and development of renal injury and fibrosis in an experimental model of hypertension induced by angiotensin II. RESULTS Blood pressure was comparable between wild-type (WT) and PI3Kγ knockout (KO) mice at baseline. Angiotensin II treatment led to an increase in blood pressure that was similar between WT and PI3Kγ KO mice. Compared with WT mice, PI3Kγ KO mice were protected from angiotensin II-induced renal dysfunction and injury and developed less proteinuria. PI3Kγ deficiency suppressed bone marrow-derived fibroblast accumulation and myofibroblast formation in the kidney and inhibited total collagen deposition and extracellular matrix protein production in the kidney in response to angiotensin II. PI3Kγ deficiency inhibited the infiltration of F4/80+ macrophages and CD3+ T cells into the kidney and reduced gene expression levels of pro-inflammatory cytokines in the kidney following angiotensin II treatment. Finally, inhibition of PI3Kγ suppressed CXCL16-induced monocyte migration in vitro. CONCLUSION These results indicate that PI3Kγ mediates the influx of macrophages, T cells and bone marrow-derived fibroblasts into the kidney resulting in kidney injury and fibrosis.
Collapse
Affiliation(s)
- Changlong An
- Division of Nephrology, Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Jia Wen
- Division of Nephrology, Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA
| | - Zhaoyong Hu
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - William E Mitch
- Section of Nephrology, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Yanlin Wang
- Division of Nephrology, Department of Medicine, University of Connecticut Health Center, Farmington, CT, USA.,Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.,Institute for Systems Genomics, University of Connecticut Health Center, Farmington, CT, USA.,Renal Section, Veterans Affairs Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
17
|
Rynkiewicz NK, Anderson KE, Suire S, Collins DM, Karanasios E, Vadas O, Williams R, Oxley D, Clark J, Stephens LR, Hawkins PT. Gβγ is a direct regulator of endogenous p101/p110γ and p84/p110γ PI3Kγ complexes in mouse neutrophils. Sci Signal 2020; 13:13/656/eaaz4003. [PMID: 33144519 DOI: 10.1126/scisignal.aaz4003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The PI3Kγ isoform is activated by Gi-coupled GPCRs in myeloid cells, but the extent to which the two endogenous complexes of PI3Kγ, p101/p110γ and p84/p110γ, receive direct regulation through Gβγ or indirect regulation through RAS and the sufficiency of those inputs is controversial or unclear. We generated mice with point mutations that prevent Gβγ binding to p110γ (RK552DD) or to p101 (VVKR777AAAA) and investigated the effects of these mutations in primary neutrophils and in mouse models of neutrophilic inflammation. Loss of Gβγ binding to p110γ substantially reduced the activation of both p101/p110γ and p84/p110γ in neutrophils by various GPCR agonists. Loss of Gβγ binding to p101 caused more variable effects, depending on both the agonist and cellular response, with the biggest reductions seen in PIP3 production by primary neutrophils in response to LTB4 and MIP-2 and in the migration of neutrophils during thioglycolate-induced peritonitis or MIP2-induced ear pouch inflammation. We also observed that p101VVKR777AAAA neutrophils showed enhanced p84-dependent ROS responses to fMLP and C5a, suggesting that competition may exist between p101/p110γ and p84/p110γ for Gβγ subunits downstream of GPCR activation. GPCRs did not activate p110γ in neutrophils from mice lacking both the p101 and p84 regulatory subunits, indicating that RAS binding to p110γ is insufficient to support GPCR activation in this cell type. These findings define a direct role for Gβγ subunits in activating both of the endogenous PI3Kγ complexes and indicate that the regulatory PI3Kγ subunit biases activation toward different GPCRs.
Collapse
Affiliation(s)
- Natalie K Rynkiewicz
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Karen E Anderson
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Sabine Suire
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Daniel M Collins
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Eleftherios Karanasios
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Oscar Vadas
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Roger Williams
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - David Oxley
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Jonathan Clark
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Len R Stephens
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | - Phillip T Hawkins
- Signalling Programme, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| |
Collapse
|
18
|
Jin JR, Gogvadze E, Xavier AR, Bohnacker T, Voelzmann J, Wymann MP. PI3K γ Regulatory Protein p84 Determines Mast Cell Sensitivity to Ras Inhibition-Moving Towards Cell Specific PI3K Targeting? Front Immunol 2020; 11:585070. [PMID: 33193405 PMCID: PMC7655736 DOI: 10.3389/fimmu.2020.585070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/30/2020] [Indexed: 12/21/2022] Open
Abstract
Mast cells are the major effector cells in immunoglobulin E (IgE)-mediated allergy. The high affinity IgE receptor FcεRI, as well as G protein-coupled receptors (GPCRs) on the mast cell surface signals to phosphoinositide 3-kinase γ (PI3Kγ) to initiate degranulation, cytokine release, and chemotaxis. PI3Kγ is therefore considered as a target for treatment of allergic disorders. However, leukocyte PI3Kγ is key to many functions in innate and adaptive immunity, and attenuation of host defense mechanisms is an expected adverse effect that complicates treatment of chronic illnesses. PI3Kγ operates as a p110γ/p84 or p110γ/p101 complex, where p110γ/p84 requires Ras activation. Here we investigated if modulation of Ras-isoprenylation could target PI3Kγ activity to attenuate PI3Kγ-dependent mast cell responses without impairment of macrophage functions. In murine bone marrow-derived mast cells, GPCR stimulation triggers activation of N-Ras and H-Ras isoforms, which is followed by the phosphorylation of protein kinase B (PKB/Akt) relayed through PI3Kγ. Although K-Ras is normally not activated in Ras wild-type cells, it is able to compensate for genetically deleted N- and H-Ras isoforms. Inhibition of Ras isoprenylation with farnesyltransferase inhibitor FTI-277 leads to a significant reduction of mast cell degranulation, cytokine production, and migration. Complementation experiments expressing PI3Kγ adaptor proteins p84 or p101 demonstrated a differential sensitivity towards Ras-inhibition depending on PI3Kγ complex composition. Mast cell responses are exclusively p84-dependent and were effectively controlled by FTI-277. Similar results were obtained when GTP-Ras was inactivated by overexpression of the GAP-domain of Neurofibromin-1 (NF-1). Unlike mast cells, macrophages express p84 and p101 but are p101-dominated and thus remain functional under treatment with FTI-277. Our work demonstrates that p101 and p84 have distinct physiological roles, and that Ras dependence of PI3Kγ signaling differs between cell types. FTI-277 reduces GPCR-activated PI3Kγ responses in p84-expressing but not p101-containing bone marrow derived cells. However, prenylation inhibitors have pleiotropic effects beyond Ras and non-tolerable side-effects that disfavor further clinical validation. Statins are, however, clinically well-established drugs that have previously been proposed to block mast cell degranulation by interference with protein prenylation. We show here that Simvastatin inhibits mast cell degranulation, but that this does not occur via Ras-PI3Kγ pathway alterations.
Collapse
|
19
|
Frustaci AM, Tedeschi A, Deodato M, Zamprogna G, Cairoli R, Montillo M. Duvelisib for the treatment of chronic lymphocytic leukemia. Expert Opin Pharmacother 2020; 21:1299-1309. [PMID: 32292084 DOI: 10.1080/14656566.2020.1751123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Duvelisib, a first in class, oral, dual PI3 k-delta/gamma inhibitor recently received FDA approval for previously treated CLL (chronic lymphocytic leukemia)/SLL (small lymphocytic lymphoma) and follicular lymphoma. Data coming from the phase III 'DUO' trial, in fact, showed a superior progression-free survival (PFS) in CLL patients treated with duvelisib compared to ofatumumab. AREAS COVERED This review provides analysis of the mechanism of action of duvelisib and includes the rationale for the use of double inhibition. The authors also give their clinical experience with duvelisib. Overall, despite the high efficacy of the drug, some concern remains on duvelisib-related adverse events leading to treatment interruption in a significant proportion of patients. EXPERT OPINION Considering the unmet need of salvage therapies in patients failing BTK and/or Bcl2 inhibitors, treatment with duvelisib represents a new valid option in the CLL therapeutic armamentarium. Therefore, the correct management of adverse events with early treatment suspension, dose reductions and prompt supportive treatment could help to manage treatment, thus improving patient outcome. Finally, the association of duvelisib with other targeted therapies, such as ibrutinib or venetoclax, could allow clinicians to capitalize on the synergistic activity of these agents.
Collapse
Affiliation(s)
- Anna Maria Frustaci
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3 , Milano, Italy
| | - Alessandra Tedeschi
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3 , Milano, Italy
| | - Marina Deodato
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3 , Milano, Italy
| | - Giulia Zamprogna
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3 , Milano, Italy
| | - Roberto Cairoli
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3 , Milano, Italy
| | - Marco Montillo
- Dept of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3 , Milano, Italy
| |
Collapse
|
20
|
TLR Crosstalk Activates LRP1 to Recruit Rab8a and PI3Kγ for Suppression of Inflammatory Responses. Cell Rep 2019; 24:3033-3044. [PMID: 30208326 DOI: 10.1016/j.celrep.2018.08.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/28/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
The multi-ligand endocytic receptor, low-density lipoprotein-receptor-related protein 1 (LRP1), has anti-inflammatory roles in disease. Here, we reveal that pathogen-activated Toll-like receptors (TLRs) activate LRP1 in human and mouse primary macrophages, resulting in phosphorylation of LRP1 at Y4507. In turn, this allows LRP1 to activate and recruit the guanosine triphosphatase (GTPase), Rab8a, with p110γ/p101 as its phosphatidylinositol 3-kinase (PI3K) effector complex. PI3Kγ is a known regulator of TLR signaling and macrophage reprogramming. LRP1 coincides with Rab8a at signaling sites on macropinosomal membranes. In LRP1-deficient cells, TLR-induced Rab8 activation is abolished. CRISPR-mediated knockout of LRP1 in macrophages alters Akt/mTOR signaling and produces a pro-inflammatory bias in cytokine outputs, mimicking the Rab8a knockout and PI3Kγ-null phenotype. Thus, TLR-LRP1 crosstalk activates the Rab8a/PI3Kγ complex for reprogramming macrophages, revealing this as a key mechanism through which LRP1 helps to suppress inflammation.
Collapse
|
21
|
Rathinaswamy MK, Burke JE. Class I phosphoinositide 3-kinase (PI3K) regulatory subunits and their roles in signaling and disease. Adv Biol Regul 2019; 75:100657. [PMID: 31611073 DOI: 10.1016/j.jbior.2019.100657] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 02/06/2023]
Abstract
The Class I phosphoinositide 3-kinases (PI3Ks) are a group of heterodimeric lipid kinases that regulate crucial cellular processes including proliferation, survival, growth, and metabolism. The diversity in functions controlled by the various catalytic isoforms (p110α, p110β, p110δ, and p110γ) depends on their abilities to be activated by distinct stimuli such as receptor tyrosine kinases (RTKs), G-protein coupled receptors (GPCRs), and the Ras family of small G-proteins. A major factor determining the ability of each p110 enzyme to be activated is the presence of regulatory binding partners. Given the overwhelming evidence for the involvement of PI3Ks in diseases such as cancer, inflammation, immunodeficiency and diabetes, an understanding of how these regulatory proteins influence PI3K function is essential. This article highlights research deciphering the role of regulatory subunits in PI3K signaling and their involvement in human disease.
Collapse
Affiliation(s)
- Manoj K Rathinaswamy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada.
| |
Collapse
|
22
|
Wang D, Zhou W, Chen J, Wei W. Upstream regulators of phosphoinositide 3-kinase and their role in diseases. J Cell Physiol 2019; 234:14460-14472. [PMID: 30710358 DOI: 10.1002/jcp.28215] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/15/2019] [Indexed: 01/24/2023]
Abstract
Phosphoinositide 3-kinase (PI3K), a crucial signaling molecule, is regulated by various upstream regulators. Traditionally, receptor tyrosine kinases and G protein-coupled receptor are regarded as its principle upstream regulators; however, recent reports have indicated that spleen tyrosine kinase, β-arrestin2, Janus kinase, and RAS can also perform this role. Dysregulation of PI3K is common in the progression of various diseases, including, but not limited to, tumors, Alzheimer's disease, Parkinson's disease, rheumatoid arthritis, and acute myelogenous leukemia. The aim of this review is to provide a perspective on PI3K-related diseases examining both the classical and nonclassical upstream regulators of PI3K in detail.
Collapse
Affiliation(s)
- Dandan Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Weijie Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jingyu Chen
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| | - Wei Wei
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, China.,Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, China
| |
Collapse
|
23
|
Function, Regulation and Biological Roles of PI3Kγ Variants. Biomolecules 2019; 9:biom9090427. [PMID: 31480354 PMCID: PMC6770443 DOI: 10.3390/biom9090427] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/19/2022] Open
Abstract
Phosphatidylinositide 3-kinase (PI3K) γ is the only class IB PI3K member playing significant roles in the G-protein-dependent regulation of cell signaling in health and disease. Originally found in the immune system, increasing evidence suggest a wide array of functions in the whole organism. PI3Kγ occur as two different heterodimeric variants: PI3Kγ (p87) and PI3Kγ (p101), which share the same p110γ catalytic subunit but differ in their associated non-catalytic subunit. Here we concentrate on specific PI3Kγ features including its regulation and biological functions. In particular, the roles of its non-catalytic subunits serving as the main regulators determining specificity of class IB PI3Kγ enzymes are highlighted.
Collapse
|
24
|
Frustaci AM, Tedeschi A, Deodato M, Zamprogna G, Cairoli R, Montillo M. Duvelisib: a new phosphoinositide-3-kinase inhibitor in chronic lymphocytic leukemia. Future Oncol 2019; 15:2227-2239. [DOI: 10.2217/fon-2018-0881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
P110-γ and -δ act in lymphocytes chemotaxis, presenting distinct, nonredundant roles in B- and T-cell migration and adhesion to stromal cells. Moreover, phosphoinositide-3-kinase-γ inhibition contributes to regulate macrophage polarization inhibiting cancer growth. Duvelisib (IPI-145) is an oral first-in-class, dual phosphoinositide-3-kinase inhibitor targeting p110-δ/γ exerting its activity in preclinical studies across different prognostic groups. In a large Phase III study, duvelisib showed superior progression-free survival and overall response rate compared with ofatumumab, thus leading to its approval for relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma. Immune-related effects are the main reason for treatment suspension, thus affecting survival benefit. Nevertheless, the correct management of adverse events, eventually including dose modification, allows patients to remain on treatment. In conclusion, duvelisib represents a promising treatment in chronic lymphocytic leukemia and a salvage therapy after ibrutinib.
Collapse
Affiliation(s)
- Anna M Frustaci
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Alessandra Tedeschi
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Marina Deodato
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Giulia Zamprogna
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Roberto Cairoli
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milano, Italy
| | - Marco Montillo
- Department of Hematology, Niguarda Cancer Center, ASST Grande Ospedale Metropolitano Niguarda, Piazza Ospedale Maggiore 3, Milano, Italy
| |
Collapse
|
25
|
The therapeutic potential of targeting the PI3K pathway in pediatric brain tumors. Oncotarget 2018; 8:2083-2095. [PMID: 27926496 PMCID: PMC5356782 DOI: 10.18632/oncotarget.13781] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/22/2016] [Indexed: 01/12/2023] Open
Abstract
Central nervous system tumors are the most common cancer type in children and the leading cause of cancer related deaths. There is therefore a need to develop novel treatments. Large scale profiling studies have begun to identify alterations that could be targeted therapeutically, including the phosphoinositide 3-kinase (PI3K) signaling pathway, which is one of the most commonly activated pathways in cancer with many inhibitors under clinical development. PI3K signaling has been shown to be aberrantly activated in many pediatric CNS neoplasms. Pre-clinical analysis supports a role for PI3K signaling in the control of tumor growth, survival and migration as well as enhancing the cytotoxic effects of current treatments. Based on this evidence agents targeting PI3K signaling have begun to be tested in clinical trials of pediatric cancer patients. Overall, targeting the PI3K pathway presents as a promising strategy for the treatment of pediatric CNS tumors. In this review we examine the genetic alterations found in the PI3K pathway in pediatric CNS tumors and the pathological role it plays, as well as summarizing the current pre-clinical and clinical data supporting the use of PI3K pathway inhibitors for the treatment of these tumors.
Collapse
|
26
|
Ali AY, Wu X, Eissa N, Hou S, Ghia JE, Murooka TT, Banerji V, Johnston JB, Lin F, Gibson SB, Marshall AJ. Distinct roles for phosphoinositide 3-kinases γ and δ in malignant B cell migration. Leukemia 2018; 32:1958-1969. [PMID: 29479062 PMCID: PMC6127087 DOI: 10.1038/s41375-018-0012-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/19/2022]
Abstract
The PI 3-kinases (PI3K) are essential mediators of chemokine receptor signaling necessary for migration of chronic lymphocytic leukemia (CLL) cells and their interaction with tissue-resident stromal cells. While the PI3Kδ-specific inhibitor idelalisib shows efficacy in treatment of CLL and other B cell malignancies, the function of PI3Kγ has not been extensively studied in B cells. Here, we assess whether PI3Kγ has non-redundant functions in CLL migration and adhesion to stromal cells. We observed that pharmaceutical PI3Kγ inhibition with CZC24832 significantly impaired CLL cell migration, while dual PI3Kδ/γ inhibitor duvelisib had a greater impact than single isoform-selective inhibitors. Knockdown of PI3Kγ reduced migration of CLL cells and cell lines. Expression of the PI3Kγ subunits increased in CLL cells in response to CD40L/IL-4, whereas BCR cross-linking had no effect. Overexpression of PI3Kγ subunits enhanced cell migration in response to SDF1α/CXCL12, with the strongest effect observed within ZAP70 + CLL samples. Microscopic tracking of cell migration within chemokine gradients revealed that PI3Kγ functions in gradient sensing and impacts cell morphology and F-actin polarization. PI3Kγ inhibition also reduced CLL adhesion to stromal cells to a similar extent as idelalisib. These findings provide the first evidence that PI3Kγ has unique functions in malignant B cells.
Collapse
Affiliation(s)
- Ahmed Y Ali
- Department of Immunology, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave., Winnipeg, MB, R3E 0V9, Canada
| | - Xun Wu
- Department of Immunology, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada
| | - Nour Eissa
- Department of Immunology, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada
| | - Sen Hou
- Department of Immunology, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada
| | - Jean-Eric Ghia
- Department of Immunology, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada.,Department of Internal Medicine, Section of Gastroenterology, University of Manitoba, 820 Sherbrooke St., Winnipeg, MB, R3A 1R9, Canada
| | - Thomas T Murooka
- Department of Immunology, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB, R3E 0J9, Canada
| | - Versha Banerji
- Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave., Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB, R3E 0J9, Canada
| | - James B Johnston
- Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave., Winnipeg, MB, R3E 0V9, Canada
| | - Francis Lin
- Department of Immunology, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada.,Department of Physics and Astronomy, University of Manitoba, Allen Building, Winnipeg, MB, R3T 2N2, Canada
| | - Spencer B Gibson
- Department of Immunology, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave., Winnipeg, MB, R3E 0V9, Canada.,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB, R3E 0J9, Canada
| | - Aaron J Marshall
- Department of Immunology, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB, R3E 0T5, Canada. .,Research Institute in Oncology and Hematology, CancerCare Manitoba, 675 McDermot Ave., Winnipeg, MB, R3E 0V9, Canada. .,Department of Biochemistry and Medical Genetics, University of Manitoba, 745 Bannatyne Ave., Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
27
|
Design and purification of active truncated phosphoinositide 3-kinase gamma protein constructs for structural studies. Protein Expr Purif 2017; 135:1-7. [DOI: 10.1016/j.pep.2017.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 11/19/2022]
|
28
|
Scaffolding Function of PI3Kgamma Emerges from Enzyme's Shadow. J Mol Biol 2017; 429:763-772. [PMID: 28179187 DOI: 10.1016/j.jmb.2017.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/12/2017] [Accepted: 01/31/2017] [Indexed: 11/20/2022]
Abstract
Traditionally, an enzyme is a protein that mediates biochemical action by binding to the substrate and by catalyzing the reaction that translates external cues into biological responses. Sequential dissemination of information from one enzyme to another facilitates signal transduction in biological systems providing for feed-forward and feed-back mechanisms. Given this viewpoint, an enzyme without its catalytic activity is generally considered to be an inert organizational protein without catalytic function and has classically been termed as pseudo-enzymes. However, pseudo-enzymes still have biological function albeit non-enzymatic like serving as a chaperone protein or an interactive platform between proteins. In this regard, majority of the studies have focused solely on the catalytic role of enzymes in biological function, overlooking the potentially critical non-enzymatic roles. Increasing evidence from recent studies implicate that the scaffolding function of enzymes could be as important in signal transduction as its catalytic activity, which is an antithesis to the definition of enzymes. Recognition of non-enzymatic functions could be critical, as these unappreciated roles may hold clues to the ineffectiveness of kinase inhibitors in pathology, which is characteristically associated with increased enzyme expression. Using an established enzyme phosphoinositide 3-kinase γ, we discuss the insights obtained from the scaffolding function and how this non-canonical role could contribute to/alter the outcomes in pathology like cancer and heart failure. Also, we hope that with this review, we provide a forum and a starting point to discuss the idea that catalytic function alone may not account for all the actions observed with increased expression of the enzyme.
Collapse
|
29
|
Schneble N, Schmidt C, Bauer R, Müller JP, Monajembashi S, Wetzker R. Phosphoinositide 3-kinase γ ties chemoattractant- and adrenergic control of microglial motility. Mol Cell Neurosci 2016; 78:1-8. [PMID: 27825984 DOI: 10.1016/j.mcn.2016.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/15/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Microglial motility is tightly controlled by multitude of agonistic and antagonistic factors. Chemoattractants, released after infection or damage of the brain, provoke directed migration of microglia to the pathogenic incident. In contrast, noradrenaline and other stress hormones have been shown to suppress microglial movement. Here we asked for the signaling reactions involved in the positive and negative control of microglial motility. Using pharmacological and genetic approaches we identified the lipid kinase activity of phosphoinositide 3-kinase species γ (PI3Kγ) as an essential mediator of microglial migration provoked by the complement component C5a and other chemoattractants. Inhibition of PI3Kγ lipid kinase activity by protein kinase A was disclosed as mechanism causing suppression of microglial migration by noradrenaline. Together these data characterize PI3Kγ as a nodal point in the control of microglial motility.
Collapse
Affiliation(s)
- Nadine Schneble
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital of Jena, Hans -Knöll -Straße 2, 07745 Jena, Germany.
| | - Caroline Schmidt
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital of Jena, Hans -Knöll -Straße 2, 07745 Jena, Germany.
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital of Jena, Hans -Knöll -Straße 2, 07745 Jena, Germany.
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital of Jena, Hans -Knöll -Straße 2, 07745 Jena, Germany.
| | - Shamci Monajembashi
- Leibnitz Institute for Age Research, Fritz Lipmann Institute (FLI), Beutenberg-Straße 11, 07745 Jena, Germany.
| | - Reinhard Wetzker
- Institute of Molecular Cell Biology, Center for Molecular Biomedicine (CMB), University Hospital of Jena, Hans -Knöll -Straße 2, 07745 Jena, Germany.
| |
Collapse
|
30
|
Vázquez-Prado J, Bracho-Valdés I, Cervantes-Villagrana RD, Reyes-Cruz G. Gβγ Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Mol Pharmacol 2016; 90:573-586. [PMID: 27638873 DOI: 10.1124/mol.116.105338] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 02/14/2025] Open
Abstract
Cancer cells and stroma cells in tumors secrete chemotactic agonists that exacerbate invasive behavior, promote tumor-induced angiogenesis, and recruit protumoral bone marrow-derived cells. In response to shallow gradients of chemotactic stimuli recognized by G protein-coupled receptors (GPCRs), Gβγ-dependent signaling cascades contribute to specifying the spatiotemporal assembly of cytoskeletal structures that can dynamically alter cell morphology. This sophisticated process is intrinsically linked to the activation of Rho GTPases and their cytoskeletal-remodeling effectors. Thus, Rho guanine nucleotide exchange factors, the activators of these molecular switches, and their upstream signaling partners are considered participants of tumor progression. Specifically, phosphoinositide-3 kinases (class I PI3Ks, β and γ) and P-Rex1, a Rac-specific guanine nucleotide exchange factor, are fundamental Gβγ effectors in the pathways controlling directionally persistent motility. In addition, GPCR-dependent chemotactic responses often involve endosomal trafficking of signaling proteins; coincidently, endosomes serve as signaling platforms for Gβγ In preclinical murine models of cancer, inhibition of Gβγ attenuates tumor growth, whereas in cancer patients, aberrant overexpression of chemotactic Gβγ effectors and recently identified mutations in Gβ correlate with poor clinical outcome. Here we discuss emerging paradigms of Gβγ signaling in cancer, which are essential for chemotactic cell migration and represent novel opportunities to develop pathway-specific pharmacologic treatments.
Collapse
Affiliation(s)
- José Vázquez-Prado
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Ismael Bracho-Valdés
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Rodolfo Daniel Cervantes-Villagrana
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Guadalupe Reyes-Cruz
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| |
Collapse
|
31
|
Probing the dynamic regulation of peripheral membrane proteins using hydrogen deuterium exchange-MS (HDX-MS). Biochem Soc Trans 2016; 43:773-86. [PMID: 26517882 DOI: 10.1042/bst20150065] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Many cellular signalling events are controlled by the selective recruitment of protein complexes to membranes. Determining the molecular basis for how lipid signalling complexes are recruited, assembled and regulated on specific membrane compartments has remained challenging due to the difficulty of working in conditions mimicking native biological membrane environments. Enzyme recruitment to membranes is controlled by a variety of regulatory mechanisms, including binding to specific lipid species, protein-protein interactions, membrane curvature, as well as post-translational modifications. A powerful tool to study the regulation of membrane signalling enzymes and complexes is hydrogen deuterium exchange-MS (HDX-MS), a technique that allows for the interrogation of protein dynamics upon membrane binding and recruitment. This review will highlight the theory and development of HDX-MS and its application to examine the molecular basis of lipid signalling enzymes, specifically the regulation and activation of phosphoinositide 3-kinases (PI3Ks).
Collapse
|
32
|
Barrows D, Schoenfeld SM, Hodakoski C, Silkov A, Honig B, Couvillon A, Shymanets A, Nürnberg B, Asara JM, Parsons R. p21-activated Kinases (PAKs) Mediate the Phosphorylation of PREX2 Protein to Initiate Feedback Inhibition of Rac1 GTPase. J Biol Chem 2015; 290:28915-31. [PMID: 26438819 DOI: 10.1074/jbc.m115.668244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 11/06/2022] Open
Abstract
Phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent Rac exchanger 2 (PREX2) is a guanine nucleotide exchange factor (GEF) for the Ras-related C3 botulinum toxin substrate 1 (Rac1) GTPase, facilitating the exchange of GDP for GTP on Rac1. GTP-bound Rac1 then activates its downstream effectors, including p21-activated kinases (PAKs). PREX2 and Rac1 are frequently mutated in cancer and have key roles within the insulin-signaling pathway. Rac1 can be inactivated by multiple mechanisms; however, negative regulation by insulin is not well understood. Here, we show that in response to being activated after insulin stimulation, Rac1 initiates its own inactivation by decreasing PREX2 GEF activity. Following PREX2-mediated activation of Rac1 by the second messengers PIP3 or Gβγ, we found that PREX2 was phosphorylated through a PAK-dependent mechanism. PAK-mediated phosphorylation of PREX2 reduced GEF activity toward Rac1 by inhibiting PREX2 binding to PIP3 and Gβγ. Cell fractionation experiments also revealed that phosphorylation prevented PREX2 from localizing to the cellular membrane. Furthermore, the onset of insulin-induced phosphorylation of PREX2 was delayed compared with AKT. Altogether, we propose that second messengers activate the Rac1 signal, which sets in motion a cascade whereby PAKs phosphorylate and negatively regulate PREX2 to decrease Rac1 activation. This type of regulation would allow for transient activation of the PREX2-Rac1 signal and may be relevant in multiple physiological processes, including diseases such as diabetes and cancer when insulin signaling is chronically activated.
Collapse
Affiliation(s)
- Douglas Barrows
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, the Department of Pharmacology, Columbia University, New York, New York 10032
| | - Sarah M Schoenfeld
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Cindy Hodakoski
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Antonina Silkov
- the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| | - Barry Honig
- the Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, New York 10032
| | | | - Aliaksei Shymanets
- the Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research, University of Tübingen, 72074 Tübingen, Germany
| | - Bernd Nürnberg
- the Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Pharmaceutical Research, University of Tübingen, 72074 Tübingen, Germany
| | - John M Asara
- the Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115
| | - Ramon Parsons
- From the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029,
| |
Collapse
|
33
|
Different inhibition of Gβγ-stimulated class IB phosphoinositide 3-kinase (PI3K) variants by a monoclonal antibody. Specific function of p101 as a Gβγ-dependent regulator of PI3Kγ enzymatic activity. Biochem J 2015; 469:59-69. [PMID: 26173259 DOI: 10.1042/bj20150099] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Class IB phosphoinositide 3-kinases γ (PI3Kγ) are second-messenger-generating enzymes downstream of signalling cascades triggered by G-protein-coupled receptors (GPCRs). PI3Kγ variants have one catalytic p110γ subunit that can form two different heterodimers by binding to one of a pair of non-catalytic subunits, p87 or p101. Growing experimental data argue for a different regulation of p87-p110γ and p101-p110γ allowing integration into distinct signalling pathways. Pharmacological tools enabling distinct modulation of the two variants are missing. The ability of an anti-p110γ monoclonal antibody [mAb(A)p110γ] to block PI3Kγ enzymatic activity attracted us to characterize this tool in detail using purified proteins. In order to get insight into the antibody-p110γ interface, hydrogen-deuterium exchange coupled to MS (HDX-MS) measurements were performed demonstrating binding of the monoclonal antibody to the C2 domain in p110γ, which was accompanied by conformational changes in the helical domain harbouring the Gβγ-binding site. We then studied the modulation of phospholipid vesicles association of PI3Kγ by the antibody. p87-p110γ showed a significantly reduced Gβγ-mediated phospholipid recruitment as compared with p101-p110γ. Concomitantly, in the presence of mAb(A)p110γ, Gβγ did not bind to p87-p110γ. These data correlated with the ability of the antibody to block Gβγ-stimulated lipid kinase activity of p87-p110γ 30-fold more potently than p101-p110γ. Our data argue for differential regulatory functions of the non-catalytic subunits and a specific Gβγ-dependent regulation of p101 in PI3Kγ activation. In this scenario, we consider the antibody as a valuable tool to dissect the distinct roles of the two PI3Kγ variants downstream of GPCRs.
Collapse
|
34
|
Zhang Y, Li H, Pu Y, Gong S, Liu C, Jiang X, Tao J. Melatonin-mediated inhibition of Purkinje neuron P-type Ca²⁺ channels in vitro induces neuronal hyperexcitability through the phosphatidylinositol 3-kinase-dependent protein kinase C delta pathway. J Pineal Res 2015; 58:321-34. [PMID: 25707622 DOI: 10.1111/jpi.12218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/20/2015] [Indexed: 12/18/2022]
Abstract
Although melatonin receptors are widely expressed in the mammalian central nervous system and peripheral tissues, there are limited data regarding the functions of melatonin in cerebellar Purkinje cells. Here, we identified a novel functional role of melatonin in modulating P-type Ca(2+) channels and action-potential firing in rat Purkinje neurons. Melatonin at 0.1 μm reversibly decreased peak currents (I(Ba)) by 32.9%. This effect was melatonin receptor 1 (MT(R1)) dependent and was associated with a hyperpolarizing shift in the voltage dependence of inactivation. Pertussis toxin pretreatment, intracellular application of QEHA peptide, and a selective antibody raised against the Gβ subunit prevented the inhibitory effects of melatonin. Pretreatment with phosphatidylinositol 3-kinase (PI3K) inhibitors abolished the melatonin-induced decrease in I(Ba). Surprisingly, melatonin responses were not regulated by Akt, a common downstream target of PI3K. Melatonin treatment significantly increased protein kinase C (PKC) activity 2.1-fold. Antagonists of PKC, but not of protein kinase A, abolished the melatonin-induced decrease in I(Ba). Melatonin application increased the membrane abundance of PKCδ, and PKCδ inhibition (either pharmacologically or genetically) abolished the melatonin-induced IBa response. Functionally, melatonin increased spontaneous action-potential firing by 53.0%; knockdown of MT(R1) and blockade of P-type channels abolished this effect. Thus, our results suggest that melatonin inhibits P-type channels through MT(R1) activation, which is coupled sequentially to the βγ subunits of G(i/o)-protein and to downstream PI3K-dependent PKCδ signaling. This likely contributes to its physiological functions, including spontaneous firing of cerebellar Purkinje neurons.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurobiology, Medical College of Soochow University, Suzhou, China; Department of Geriatrics and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Turvey ME, Klingler-Hoffmann M, Hoffmann P, McColl SR. p84 forms a negative regulatory complex with p110γ to control PI3Kγ signalling during cell migration. Immunol Cell Biol 2015; 93:735-43. [PMID: 25753393 DOI: 10.1038/icb.2015.35] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/23/2015] [Accepted: 02/23/2015] [Indexed: 02/05/2023]
Abstract
Phosphoinositide 3-kinase γ (PI3Kγ) consists of the catalytic subunit p110γ that forms a mutually exclusive heterodimer with one of the two adaptor subunits, p101 or p84. Although activation of PI3Kγ is necessary for cell migration downstream of G-protein-coupled receptor engagement, particularly within the immune system, aberrant PI3Kγ signalling has been associated with transformation, increased migration and the progression of multiple cancer types. Regulation of PI3Kγ signal activation and duration is critical to controlling and maintaining coordinated cellular migration; however, the mechanistic basis for this is not well understood. We have recently demonstrated that, in contrast to the tumour-promoting potential of p110γ and p101, p84 possesses tumour-suppressor activity, suggesting a negative regulatory role within PI3Kγ signalling. The present study investigated the role of p84 phosphorylation in the context of PI3Kγ signalling, cell migration and p84-mediated tumour suppression. Two putative phosphorylation sites were characterised within p84, Ser358 and Thr607. Expression of wild-type p84 reduced the oncogenic potential of MDA.MB.231 cells and inhibited metastatic lung colonisation in vivo, effects that were dependent on Thr607. Furthermore, loss of Thr607 enhanced migration of MDA.MB.231 cells in vitro and prevented the induction of p84/p110γ dimers. The dimerisation of wild-type p84 with p110γ was not detected at the plasma membrane, indicating an inhibitory interaction preventing PI3Kγ lipid-kinase activity. In contrast, Ser358 phosphorylation was not determined to be critical for p84 activity in the context of migration. Our findings suggest that p84 binding to p110γ may represent a novel negative feedback signal that terminates PI3Kγ activity.
Collapse
Affiliation(s)
- Michelle E Turvey
- Chemokine Biology Laboratory, School of Molecular and Biomedical Sciences, The University of Adelaide and Centre for Molecular Pathology, Adelaide, South Australia, Australia
| | | | - Peter Hoffmann
- Adelaide Proteomics Centre, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shaun R McColl
- Chemokine Biology Laboratory, School of Molecular and Biomedical Sciences, The University of Adelaide and Centre for Molecular Pathology, Adelaide, South Australia, Australia
| |
Collapse
|
36
|
Burke JE, Williams RL. Synergy in activating class I PI3Ks. Trends Biochem Sci 2015; 40:88-100. [PMID: 25573003 DOI: 10.1016/j.tibs.2014.12.003] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/03/2014] [Accepted: 12/05/2014] [Indexed: 12/20/2022]
Abstract
The class I phosphoinositide 3-kinases (PI3Ks) are lipid kinases that transduce a host of cellular signals and regulate a broad range of essential functions including growth, proliferation, and migration. As such, PI3Ks have pivotal roles in diseases such as cancer, diabetes, primary immune disorders, and inflammation. These enzymes are activated downstream of numerous activating stimuli including receptor tyrosine kinases, G protein-coupled receptors (GPCRs), and the Ras superfamily of small G proteins. A major challenge is to decipher how each PI3K isoform is able to successfully synergize these inputs into their intended signaling function. This article highlights recent progress in characterizing the molecular mechanisms of PI3K isoform-specific activation pathways, as well as novel roles for PI3Ks in human diseases, specifically cancer and immune diseases.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, 3800 Finnerty Drive, Victoria BC, V8P 5C2, Canada.
| | - Roger L Williams
- Medical Research Council (MRC) Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK
| |
Collapse
|
37
|
Thorpe LM, Yuzugullu H, Zhao JJ. PI3K in cancer: divergent roles of isoforms, modes of activation and therapeutic targeting. Nat Rev Cancer 2015; 15:7-24. [PMID: 25533673 PMCID: PMC4384662 DOI: 10.1038/nrc3860] [Citation(s) in RCA: 1015] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Phosphatidylinositol 3-kinases (PI3Ks) are crucial coordinators of intracellular signalling in response to extracellular stimuli. Hyperactivation of PI3K signalling cascades is one of the most common events in human cancers. In this Review, we discuss recent advances in our knowledge of the roles of specific PI3K isoforms in normal and oncogenic signalling, the different ways in which PI3K can be upregulated, and the current state and future potential of targeting this pathway in the clinic.
Collapse
Affiliation(s)
- Lauren M. Thorpe
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Program in Virology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Haluk Yuzugullu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Jean J. Zhao
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
- Correspondence to J.J.Z. by
| |
Collapse
|
38
|
Majchrzak A, Witkowska M, Smolewski P. Inhibition of the PI3K/Akt/mTOR signaling pathway in diffuse large B-cell lymphoma: current knowledge and clinical significance. Molecules 2014; 19:14304-15. [PMID: 25215588 PMCID: PMC6271242 DOI: 10.3390/molecules190914304] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/03/2014] [Accepted: 09/09/2014] [Indexed: 12/22/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is one of the most common non-Hodgkin lymphomas in adults. The disease is very heterogeneous in its presentation, that is DLBCL patients may differ from each other not only in regard to histology of tissue infiltration, clinical course or response to treatment, but also in respect to diversity in gene expression profiling. A growing body of knowledge on the biology of DLBCL, including abnormalities in intracellular signaling, has allowed the development of new treatment strategies, specifically directed against lymphoma cells. The phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway plays an important role in controlling proliferation and survival of tumor cells in various types of malignancies, including DLBCL, and therefore it may be a promising target for therapeutic intervention. Currently, novel anticancer drugs are undergoing assessment in different phases of clinical trials in aggressive lymphomas, with promising outcomes. In this review we present a state of art review on various classes of small molecule inhibitors selectively involving PI3K/Akt/mTOR pathway and their clinical potential in this disease.
Collapse
Affiliation(s)
- Agata Majchrzak
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| | - Magdalena Witkowska
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland
| | - Piotr Smolewski
- Department of Experimental Hematology, Medical University of Lodz, 93-510 Lodz, Poland.
| |
Collapse
|
39
|
Molecular determinants of PI3Kγ-mediated activation downstream of G-protein-coupled receptors (GPCRs). Proc Natl Acad Sci U S A 2013; 110:18862-7. [PMID: 24190998 DOI: 10.1073/pnas.1304801110] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Phosphoinositide 3-kinase gamma (PI3Kγ) has profound roles downstream of G-protein-coupled receptors in inflammation, cardiac function, and tumor progression. To gain insight into how the enzyme's activity is shaped by association with its p101 adaptor subunit, lipid membranes, and Gβγ heterodimers, we mapped these regulatory interactions using hydrogen-deuterium exchange mass spectrometry. We identify residues in both the p110γ and p101 subunits that contribute critical interactions with Gβγ heterodimers, leading to PI3Kγ activation. Mutating Gβγ-interaction sites of either p110γ or p101 ablates G-protein-coupled receptor-mediated signaling to p110γ/p101 in cells and severely affects chemotaxis and cell transformation induced by PI3Kγ overexpression. Hydrogen-deuterium exchange mass spectrometry shows that association with the p101 regulatory subunit causes substantial protection of the RBD-C2 linker as well as the helical domain of p110γ. Lipid interaction massively exposes that same helical site, which is then stabilized by Gβγ. Membrane-elicited conformational change of the helical domain could help prepare the enzyme for Gβγ binding. Our studies and others identify the helical domain of the class I PI3Ks as a hub for diverse regulatory interactions that include the p101, p87 (also known as p84), and p85 adaptor subunits; Rab5 and Gβγ heterodimers; and the β-adrenergic receptor kinase.
Collapse
|