1
|
Sutton TB, Sawyer DL, Naila T, Sweasy JB, Tomkinson AE, Delaney S. Global screening of base excision repair in nucleosome core particles. DNA Repair (Amst) 2024; 144:103777. [PMID: 39476546 DOI: 10.1016/j.dnarep.2024.103777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/13/2024]
Abstract
DNA damage is a fundamental molecular cause of genomic instability. Base excision repair (BER) is one line of defense to minimize the potential mutagenicity and/or toxicity derived from damaged nucleobase lesions. However, BER in the context of chromatin, in which eukaryotic genomic DNA is compacted through a hierarchy of DNA-histone protein interactions, is not fully understood. Here, we investigate the activity of BER enzymes at 27 unique geometric locations in a nucleosome core particle (NCP), which is the minimal unit of packaging in chromatin. The BER enzymes include uracil DNA glycosylase (UDG), AP endonuclease 1 (APE1), DNA polymerase β (Pol β), and DNA ligase IIIα complexed with X-ray repair cross complementing group 1 (LigIIIα/XRCC1). This global analysis of BER reveals that initiation of the repair event by UDG is dictated by the rotational position of the lesion. APE1 has robust activity at locations where repair is initiated whereas the repair event stalls at the Pol β nucleotide incorporation step within the central ∼45 bp of nucleosomal DNA. The final step of the repair, catalyzed by LigIIIα/XRCC1, is achieved only in the entry/exit regions of the NCP when nick sites are transiently exposed by unwrapping from the histones. Kinetic assays further elucidate that the location of the damaged lesion modulates enzymatic activity. Notably, these data indicate that some of the BER enzymes can act at a significant number of locations even in the absence of chromatin remodelers or other cellular factors. These results inform genome wide maps of DNA damage and mutations and contribute to our understanding of mutational hotspots and signatures.
Collapse
Affiliation(s)
- Treshaun B Sutton
- Department of Chemistry, Brown University, Providence, RI 02912, United States
| | - Danielle L Sawyer
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Tasmin Naila
- Departments of Internal Medicine, Molecular Genetics & Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Joann B Sweasy
- Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Alan E Tomkinson
- Departments of Internal Medicine, Molecular Genetics & Microbiology, and the University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, United States
| | - Sarah Delaney
- Department of Chemistry, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
2
|
Gulkis M, Martinez E, Almohdar D, Çağlayan M. Unfilled gaps by polβ lead to aberrant ligation by LIG1 at the downstream steps of base excision repair pathway. Nucleic Acids Res 2024; 52:3810-3822. [PMID: 38366780 DOI: 10.1093/nar/gkae104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/11/2024] [Accepted: 02/06/2024] [Indexed: 02/18/2024] Open
Abstract
Base excision repair (BER) involves the tightly coordinated function of DNA polymerase β (polβ) and DNA ligase I (LIG1) at the downstream steps. Our previous studies emphasize that defective substrate-product channeling, from gap filling by polβ to nick sealing by LIG1, can lead to interruptions in repair pathway coordination. Yet, the molecular determinants that dictate accurate BER remains largely unknown. Here, we demonstrate that a lack of gap filling by polβ leads to faulty repair events and the formation of deleterious DNA intermediates. We dissect how ribonucleotide challenge and cancer-associated mutations could adversely impact the ability of polβ to efficiently fill the one nucleotide gap repair intermediate which subsequently results in gap ligation by LIG1, leading to the formation of single-nucleotide deletion products. Moreover, we demonstrate that LIG1 is not capable of discriminating against nick DNA containing a 3'-ribonucleotide, regardless of base-pairing potential or damage. Finally, AP-Endonuclease 1 (APE1) shows distinct substrate specificity for the exonuclease removal of 3'-mismatched bases and ribonucleotides from nick repair intermediate. Overall, our results reveal that unfilled gaps result in impaired coordination between polβ and LIG1, defining a possible type of mutagenic event at the downstream steps where APE1 could provide a proofreading role to maintain BER efficiency.
Collapse
Affiliation(s)
- Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Ernesto Martinez
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Abstract
DNA polymerase beta (Pol β) is a 39 kD vertebrate polymerase that lacks proofreading ability, yet still maintains a moderate fidelity of DNA synthesis. Pol β is a key enzyme that functions in the base excision repair and non-homologous end joining pathways of DNA repair. Mechanisms of fidelity for Pol β are still being elucidated but are likely to involve dynamic conformational motions of the enzyme upon its binding to DNA and deoxynucleoside triphosphates. Recent studies have linked germline and somatic variants of Pol β with cancer and autoimmunity. These variants induce genomic instability by a number of mechanisms, including error-prone DNA synthesis and accumulation of single nucleotide gaps that lead to replication stress. Here, we review the structure and function of Pol β, and we provide insights into how structural changes in Pol β variants may contribute to genomic instability, mutagenesis, disease, cancer development, and impacts on treatment outcomes.
Collapse
Affiliation(s)
- Danielle L Sawyer
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
4
|
Smith MR, Alnajjar KS, Hoitsma NM, Sweasy JB, Freudenthal BD. Molecular and structural characterization of oxidized ribonucleotide insertion into DNA by human DNA polymerase β. J Biol Chem 2020; 295:1613-1622. [PMID: 31892517 PMCID: PMC7008369 DOI: 10.1074/jbc.ra119.011569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/29/2019] [Indexed: 01/07/2023] Open
Abstract
During oxidative stress, inflammation, or environmental exposure, ribo- and deoxyribonucleotides are oxidatively modified. 8-Oxo-7,8-dihydro-2'-guanosine (8-oxo-G) is a common oxidized nucleobase whose deoxyribonucleotide form, 8-oxo-dGTP, has been widely studied and demonstrated to be a mutagenic substrate for DNA polymerases. Guanine ribonucleotides are analogously oxidized to r8-oxo-GTP, which can constitute up to 5% of the rGTP pool. Because ribonucleotides are commonly misinserted into DNA, and 8-oxo-G causes replication errors, we were motivated to investigate how the oxidized ribonucleotide is utilized by DNA polymerases. To do this, here we employed human DNA polymerase β (pol β) and characterized r8-oxo-GTP insertion with DNA substrates containing either a templating cytosine (nonmutagenic) or adenine (mutagenic). Our results show that pol β has a diminished catalytic efficiency for r8-oxo-GTP compared with canonical deoxyribonucleotides but that r8-oxo-GTP is inserted mutagenically at a rate similar to those of other common DNA replication errors (i.e. ribonucleotide and mismatch insertions). Using FRET assays to monitor conformational changes of pol β with r8-oxo-GTP, we demonstrate impaired pol β closure that correlates with a reduced insertion efficiency. X-ray crystallographic analyses revealed that, similar to 8-oxo-dGTP, r8-oxo-GTP adopts an anti conformation opposite a templating cytosine and a syn conformation opposite adenine. However, unlike 8-oxo-dGTP, r8-oxo-GTP did not form a planar base pair with either templating base. These results suggest that r8-oxo-GTP is a potential mutagenic substrate for DNA polymerases and provide structural insights into how r8-oxo-GTP is processed by DNA polymerases.
Collapse
Affiliation(s)
- Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Khadijeh S Alnajjar
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona 85724
| | - Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160
| | - Joann B Sweasy
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, Tucson, Arizona 85724
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas 66160; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160.
| |
Collapse
|
5
|
Nelson SR, Kathe SD, Hilzinger TS, Averill AM, Warshaw DM, Wallace SS, Lee AJ. Single molecule glycosylase studies with engineered 8-oxoguanine DNA damage sites show functional defects of a MUTYH polyposis variant. Nucleic Acids Res 2019; 47:3058-3071. [PMID: 30698731 PMCID: PMC6451117 DOI: 10.1093/nar/gkz045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/03/2019] [Accepted: 01/17/2019] [Indexed: 01/09/2023] Open
Abstract
Proper repair of oxidatively damaged DNA bases is essential to maintain genome stability. 8-Oxoguanine (7,8-dihydro-8-oxoguanine, 8-oxoG) is a dangerous DNA lesion because it can mispair with adenine (A) during replication resulting in guanine to thymine transversion mutations. MUTYH DNA glycosylase is responsible for recognizing and removing the adenine from 8-oxoG:adenine (8-oxoG:A) sites. Biallelic mutations in the MUTYH gene predispose individuals to MUTYH-associated polyposis (MAP), and the most commonly observed mutation in some MAP populations is Y165C. Tyr165 is a ‘wedge’ residue that intercalates into the DNA duplex in the lesion bound state. Here, we utilize single molecule fluorescence microscopy to visualize the real-time search behavior of Escherichia coli and Mus musculus MUTYH WT and wedge variant orthologs on DNA tightropes that contain 8-oxoG:A, 8-oxoG:cytosine, or apurinic product analog sites. We observe that MUTYH WT is able to efficiently find 8-oxoG:A damage and form highly stable bound complexes. In contrast, MUTYH Y150C shows decreased binding lifetimes on undamaged DNA and fails to form a stable lesion recognition complex at damage sites. These findings suggest that MUTYH does not rely upon the wedge residue for damage site recognition, but this residue stabilizes the lesion recognition complex.
Collapse
Affiliation(s)
- Shane R Nelson
- Department of Molecular Physiology and Biophysics, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Scott D Kathe
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Thomas S Hilzinger
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - April M Averill
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - David M Warshaw
- Department of Molecular Physiology and Biophysics, Robert Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Andrea J Lee
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine and College of Agriculture and Life Sciences, University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
6
|
Smith MR, Shock DD, Beard WA, Greenberg MM, Freudenthal BD, Wilson SH. A guardian residue hinders insertion of a Fapy•dGTP analog by modulating the open-closed DNA polymerase transition. Nucleic Acids Res 2019; 47:3197-3207. [PMID: 30649431 PMCID: PMC6451102 DOI: 10.1093/nar/gkz002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/17/2018] [Accepted: 01/03/2019] [Indexed: 01/07/2023] Open
Abstract
4,6-Diamino-5-formamidopyrimidine (Fapy•dG) is an abundant form of oxidative DNA damage that is mutagenic and contributes to the pathogenesis of human disease. When Fapy•dG is in its nucleotide triphosphate form, Fapy•dGTP, it is inefficiently cleansed from the nucleotide pool by the responsible enzyme in Escherichia coli MutT and its mammalian homolog MTH1. Therefore, under oxidative stress conditions, Fapy•dGTP could become a pro-mutagenic substrate for insertion into the genome by DNA polymerases. Here, we evaluated insertion kinetics and high-resolution ternary complex crystal structures of a configurationally stable Fapy•dGTP analog, β-C-Fapy•dGTP, with DNA polymerase β. The crystallographic snapshots and kinetic data indicate that binding of β-C-Fapy•dGTP impedes enzyme closure, thus hindering insertion. The structures reveal that an active site residue, Asp276, positions β-C-Fapy•dGTP so that it distorts the geometry of critical catalytic atoms. Removal of this guardian side chain permits enzyme closure and increases the efficiency of β-C-Fapy•dG insertion opposite dC. These results highlight the stringent requirements necessary to achieve a closed DNA polymerase active site poised for efficient nucleotide incorporation and illustrate how DNA polymerase β has evolved to hinder Fapy•dGTP insertion.
Collapse
Affiliation(s)
- Mallory R Smith
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd Mail Stop #3030, Kansas City, KS 66160, USA
| | - David D Shock
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, and Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Blvd Mail Stop #3030, Kansas City, KS 66160, USA,Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA,To whom correspondence should be addressed. Tel: +1 913 588 5560;
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA,Correspondence may also be addressed to Samuel H. Wilson. Tel: +1 984 287 3451;
| |
Collapse
|
7
|
Mahmoud MM, Schechter A, Alnajjar KS, Huang J, Towle-Weicksel J, Eckenroth BE, Doublié S, Sweasy JB. Defective Nucleotide Release by DNA Polymerase β Mutator Variant E288K Is the Basis of Its Low Fidelity. Biochemistry 2017; 56:5550-5559. [PMID: 28945359 DOI: 10.1021/acs.biochem.7b00869] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
DNA polymerases synthesize new DNA during DNA replication and repair, and their ability to do so faithfully is essential to maintaining genomic integrity. DNA polymerase β (Pol β) functions in base excision repair to fill in single-nucleotide gaps, and variants of Pol β have been associated with cancer. Specifically, the E288K Pol β variant has been found in colon tumors and has been shown to display sequence-specific mutator activity. To probe the mechanism that may underlie E288K's loss of fidelity, a fluorescence resonance energy transfer system that utilizes a fluorophore on the fingers domain of Pol β and a quencher on the DNA substrate was employed. Our results show that E288K utilizes an overall mechanism similar to that of wild type (WT) Pol β when incorporating correct dNTP. However, when inserting the correct dNTP, E288K exhibits a faster rate of closing of the fingers domain combined with a slower rate of nucleotide release compared to those of WT Pol β. We also detect enzyme closure upon mixing with the incorrect dNTP for E288K but not WT Pol β. Taken together, our results suggest that E288K Pol β incorporates all dNTPs more readily than WT because of an inherent defect that results in rapid isomerization of dNTPs within its active site. Structural modeling implies that this inherent defect is due to interaction of E288K with DNA, resulting in a stable closed enzyme structure.
Collapse
Affiliation(s)
- Mariam M Mahmoud
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Allison Schechter
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Khadijeh S Alnajjar
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Ji Huang
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Jamie Towle-Weicksel
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont , Burlington, Vermont 05405, United States
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont , Burlington, Vermont 05405, United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine , New Haven, Connecticut 06520, United States.,Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
8
|
Alnajjar KS, Negahbani A, Nakhjiri M, Krylov IS, Kashemirov BA, McKenna CE, Goodman MF, Sweasy JB. DNA Polymerase β Cancer-Associated Variant I260M Exhibits Nonspecific Selectivity toward the β-γ Bridging Group of the Incoming dNTP. Biochemistry 2017; 56:5449-5456. [PMID: 28862868 DOI: 10.1021/acs.biochem.7b00713] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrophobic hinge region of DNA polymerase β (pol β) is located between the fingers and palm subdomains. The hydrophobicity of the hinge region is important for maintaining the geometry of the binding pocket and for the selectivity of the enzyme. Various cancer-associated pol β variants in the hinge region have reduced fidelity resulting from a decreased discrimination at the level of dNTP binding. Specifically, I260M, a prostate cancer-associated variant of pol β, has been shown to have a reduced discrimination during dNTP binding and also during nucleotidyl transfer. To test whether fidelity of the I260M variant is dependent on leaving group chemistry, we employed a toolkit comprising dNTP bisphosphonate analogues modified at the β-γ bridging methylene to modulate leaving group (pCXYp mimicking PPi) basicity. Construction of linear free energy relationship plots for the dependence of log(kpol) on leaving group pKa4 revealed that I260M catalyzes dNMP incorporation with a marked negative dependence on leaving group basicity, consistent with a chemical transition state, during both correct and incorrect incorporation. Additionally, we provide evidence that I260M fidelity is altered in the presence of some of the analogues, possibly resulting from a lack of coordination between the fingers and palm subdomains in the presence of the I260M mutation.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Amirsoheil Negahbani
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Ivan S Krylov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Boris A Kashemirov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Charles E McKenna
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Myron F Goodman
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
9
|
Eckenroth BE, Towle-Weicksel JB, Nemec AA, Murphy DL, Sweasy JB, Doublié S. Remote Mutations Induce Functional Changes in Active Site Residues of Human DNA Polymerase β. Biochemistry 2017; 56:2363-2371. [PMID: 28402631 DOI: 10.1021/acs.biochem.6b01287] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With the formidable growth in the volume of genetic information, it has become essential to identify and characterize mutations in macromolecules not only to predict contributions to disease processes but also to guide the design of therapeutic strategies. While mutations of certain residues have a predictable phenotype based on their chemical nature and known structural position, many types of mutations evade prediction based on current information. Described in this work are the crystal structures of two cancer variants located in the palm domain of DNA polymerase β (pol β), S229L and G231D, whose biological phenotype was not readily linked to a predictable structural implication. Structural results demonstrate that the mutations elicit their effect through subtle influences on secondary interactions with a residue neighboring the active site. Residues 229 and 231 are 7.5 and 12.5 Å, respectively, from the nearest active site residue, with a β-strand between them. A residue on this intervening strand, M236, appears to transmit fine structural perturbations to the catalytic metal-coordinating residue D256, affecting its conformational stability.
Collapse
Affiliation(s)
- Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont , Stafford Hall, 95 Carrigan Drive, Burlington, Vermont 05405, United States
| | - Jamie B Towle-Weicksel
- Department of Therapeutic Radiology, Yale University School of Medicine , 333 Cedar Street, P.O. Box 208040, New Haven, Connecticut 06520, United States
| | - Antonia A Nemec
- Department of Therapeutic Radiology, Yale University School of Medicine , 333 Cedar Street, P.O. Box 208040, New Haven, Connecticut 06520, United States
| | - Drew L Murphy
- Department of Therapeutic Radiology, Yale University School of Medicine , 333 Cedar Street, P.O. Box 208040, New Haven, Connecticut 06520, United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology, Yale University School of Medicine , 333 Cedar Street, P.O. Box 208040, New Haven, Connecticut 06520, United States
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont , Stafford Hall, 95 Carrigan Drive, Burlington, Vermont 05405, United States
| |
Collapse
|
10
|
Alnajjar KS, Garcia-Barboza B, Negahbani A, Nakhjiri M, Kashemirov B, McKenna C, Goodman MF, Sweasy JB. A Change in the Rate-Determining Step of Polymerization by the K289M DNA Polymerase β Cancer-Associated Variant. Biochemistry 2017; 56:2096-2105. [PMID: 28326765 DOI: 10.1021/acs.biochem.6b01230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
K289M is a variant of DNA polymerase β (pol β) that has previously been identified in colorectal cancer. The expression of this variant leads to a 16-fold increase in mutation frequency at a specific site in vivo and a reduction in fidelity in vitro in a sequence context-specific manner. Previous work shows that this reduction in fidelity results from a decreased level of discrimination against incorrect nucleotide incorporation at the level of polymerization. To probe the transition state of the K289M mutator variant of pol β, single-turnover kinetic experiments were performed using β,γ-CXY dGTP analogues with a wide range of leaving group monoacid dissociation constants (pKa4), including a corresponding set of novel β,γ-CXY dCTP analogues. Surprisingly, we found that the values of the log of the catalytic rate constant (kpol) for correct insertion by K289M, in contrast to those of wild-type pol β, do not decrease with increased leaving group pKa4 for analogues with pKa4 values of <11. This suggests that one of the relative rate constants differs for the K289M reaction in comparison to that of the wild type (WT). However, a plot of log(kpol) values for incorrect insertion by K289M versus pKa4 reveals a linear correlation with a negative slope, in this respect resembling kpol values for misincorporation by the WT enzyme. We also show that some of these analogues improve the fidelity of K289M. Taken together, our data show that Lys289 critically influences the catalytic pathway of pol β.
Collapse
Affiliation(s)
- Khadijeh S Alnajjar
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| | - Beatriz Garcia-Barboza
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Amirsoheil Negahbani
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Maryam Nakhjiri
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Boris Kashemirov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Charles McKenna
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Myron F Goodman
- Department of Chemistry, University of Southern California , Los Angeles, California 90089, United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology and Department of Genetics, Yale University School of Medicine , New Haven, Connecticut 06520, United States
| |
Collapse
|
11
|
Moscato B, Swain M, Loria JP. Induced Fit in the Selection of Correct versus Incorrect Nucleotides by DNA Polymerase β. Biochemistry 2016; 55:382-95. [PMID: 26678253 PMCID: PMC8259413 DOI: 10.1021/acs.biochem.5b01213] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DNA polymerase β (Pol β) repairs single-nucleotide gapped DNA (sngDNA) by enzymatic incorporation of the Watson-Crick partner nucleotide at the gapped position opposite the templating nucleotide. The process by which the matching nucleotide is incorporated into a sngDNA sequence has been relatively well-characterized, but the process of discrimination from nucleotide misincorporation remains unclear. We report here NMR spectroscopic characterization of full-length, uniformly labeled Pol β in apo, sngDNA-bound binary, and ternary complexes containing matching and mismatching nucleotide. Our data indicate that, while binding of the correct nucleotide to the binary complex induces chemical shift changes consistent with the process of enzyme closure, the ternary Pol β complex containing a mismatching nucleotide exhibits no such changes and appears to remain in an open, unstable, binary-like conformation. Our findings support an induced-fit mechanism for polymerases in which a closed ternary complex can only be achieved in the presence of matching nucleotide.
Collapse
Affiliation(s)
- Beth Moscato
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - Monalisa Swain
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
| | - J. Patrick Loria
- Department of Chemistry, Yale University, 225 Prospect Street, New Haven, Connecticut 06520, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, 260 Whitney Avenue, New Haven, Connecticut 06520, United States
| |
Collapse
|
12
|
Freudenthal BD, Beard WA, Wilson SH. New structural snapshots provide molecular insights into the mechanism of high fidelity DNA synthesis. DNA Repair (Amst) 2015; 32:3-9. [PMID: 26002198 DOI: 10.1016/j.dnarep.2015.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Time-lapse X-ray crystallography allows visualization of intermediate structures during the DNA polymerase catalytic cycle. Employing time-lapse crystallography with human DNA polymerase β has recently allowed us to capture and solve novel intermediate structures that are not stable enough to be analyzed by traditional crystallography. The structures of these intermediates reveals exciting surprises about active site metal ions and enzyme conformational changes as the reaction proceeds from the ground state to product release. In this perspective, we provide an overview of recent advances in understanding the DNA polymerase nucleotidyl transferase reaction and highlight both the significance and mysteries of enzyme efficiency and specificity that remain to be solved.
Collapse
Affiliation(s)
- Bret D Freudenthal
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
13
|
Beard WA, Shock DD, Batra VK, Prasad R, Wilson SH. Substrate-induced DNA polymerase β activation. J Biol Chem 2014; 289:31411-22. [PMID: 25261471 DOI: 10.1074/jbc.m114.607432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA polymerases and substrates undergo conformational changes upon forming protein-ligand complexes. These conformational adjustments can hasten or deter DNA synthesis and influence substrate discrimination. From structural comparison of binary DNA and ternary DNA-dNTP complexes of DNA polymerase β, several side chains have been implicated in facilitating formation of an active ternary complex poised for chemistry. Site-directed mutagenesis of these highly conserved residues (Asp-192, Arg-258, Phe-272, Glu-295, and Tyr-296) and kinetic characterization provides insight into the role these residues play during correct and incorrect insertion as well as their role in conformational activation. The catalytic efficiencies for correct nucleotide insertion for alanine mutants were wild type ∼ R258A > F272A ∼ Y296A > E295A > D192A. Because the efficiencies for incorrect insertion were affected to about the same extent for each mutant, the effects on fidelity were modest (<5-fold). The R258A mutant exhibited an increase in the single-turnover rate of correct nucleotide insertion. This suggests that the wild-type Arg-258 side chain generates a population of non-productive ternary complexes. Structures of binary and ternary substrate complexes of the R258A mutant and a mutant associated with gastric carcinomas, E295K, provide molecular insight into intermediate structural conformations not appreciated previously. Although the R258A mutant crystal structures were similar to wild-type enzyme, the open ternary complex structure of E295K indicates that Arg-258 stabilizes a non-productive conformation of the primer terminus that would decrease catalysis. Significantly, the open E295K ternary complex binds two metal ions indicating that metal binding cannot overcome the modified interactions that have interrupted the closure of the N-subdomain.
Collapse
Affiliation(s)
- William A Beard
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - David D Shock
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Vinod K Batra
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Rajendra Prasad
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Samuel H Wilson
- From the Laboratory of Structural Biology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
14
|
Abstract
This perspective reviews the many dimensions of base excision repair from a 10,000 foot vantage point and provides one person's view on where the field is headed. Enzyme function is considered under the lens of X-ray diffraction and single molecule studies. Base excision repair in chromatin and telomeres, regulation of expression and the role of posttranslational modifications are also discussed in the context of enzyme activities, cellular localization and interacting partners. The specialized roles that base excision repair play in transcriptional activation by active demethylation and targeted oxidation as well as how base excision repair functions in the immune processes of somatic hypermutation and class switch recombination and its possible involvement in retroviral infection are also discussed. Finally the complexities of oxidative damage and its repair and its link to neurodegenerative disorders, as well as the role of base excision repair as a tumor suppressor are examined in the context of damage, repair and aging. By outlining the many base excision repair-related mysteries that have yet to be unraveled, hopefully this perspective will stimulate further interest in the field.
Collapse
Affiliation(s)
- Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Stafford Hall, Burlington, VT 05405-0084, USA.
| |
Collapse
|
15
|
Towle-Weicksel JB, Dalal S, Sohl CD, Doublié S, Anderson KS, Sweasy JB. Fluorescence resonance energy transfer studies of DNA polymerase β: the critical role of fingers domain movements and a novel non-covalent step during nucleotide selection. J Biol Chem 2014; 289:16541-50. [PMID: 24764311 DOI: 10.1074/jbc.m114.561878] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During DNA repair, DNA polymerase β (Pol β) is a highly dynamic enzyme that is able to select the correct nucleotide opposite a templating base from a pool of four different deoxynucleoside triphosphates (dNTPs). To gain insight into nucleotide selection, we use a fluorescence resonance energy transfer (FRET)-based system to monitor movement of the Pol β fingers domain during catalysis in the presence of either correct or incorrect dNTPs. By labeling the fingers domain with ((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid (IAEDANS) and the DNA substrate with Dabcyl, we are able to observe rapid fingers closing in the presence of correct dNTPs as the IAEDANS comes into contact with a Dabcyl-labeled, one-base gapped DNA. Our findings show that not only do the fingers close after binding to the correct dNTP, but that there is a second conformational change associated with a non-covalent step not previously reported for Pol β. Further analyses suggest that this conformational change corresponds to the binding of the catalytic metal into the polymerase active site. FRET studies with incorrect dNTP result in no changes in fluorescence, indicating that the fingers do not close in the presence of incorrect dNTP. Together, our results show that nucleotide selection initially occurs in an open fingers conformation and that the catalytic pathways of correct and incorrect dNTPs differ from each other. Overall, this study provides new insight into the mechanism of substrate choice by a polymerase that plays a critical role in maintaining genome stability.
Collapse
Affiliation(s)
| | | | - Christal D Sohl
- Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Sylvie Doublié
- the Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont 05405
| | - Karen S Anderson
- Pharmacology, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | | |
Collapse
|
16
|
Eckenroth BE, Fleming AM, Sweasy JB, Burrows CJ, Doublié S. Crystal structure of DNA polymerase β with DNA containing the base lesion spiroiminodihydantoin in a templating position. Biochemistry 2014; 53:2075-7. [PMID: 24649945 PMCID: PMC3985455 DOI: 10.1021/bi500270e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
The
first high-resolution crystal structure of spiroiminodihydantoin
(dSp1) was obtained in the context of the DNA polymerase β active
site and reveals two areas of significance. First, the structure verifies
the recently determined S configuration at the spirocyclic
carbon. Second, the distortion of the DNA duplex is similar to that
of the single-oxidation product 8-oxoguanine. For both oxidized lesions,
adaptation of the syn conformation results in similar
backbone distortions in the DNA duplex. The resulting conformation
positions the dSp1 A-ring as the base-pairing face whereas the B-ring
of dSp1 protrudes into the major groove.
Collapse
Affiliation(s)
- Brian E Eckenroth
- Department of Microbiology and Molecular Genetics, University of Vermont , Stafford Hall, 95 Carrigan Drive, Burlington, Vermont 05405, United States
| | | | | | | | | |
Collapse
|