1
|
Lin Q, Qiu M, Wei X, Xiang Z, Zhou Z, Ji I, Liang X, Zhou X, Wen Q, Liu Y, Yu H. Genetic variants of SOS2, MAP2K1 and RASGRF2 in the RAS pathway genes predict survival of HBV-related hepatocellular carcinoma patients. Arch Toxicol 2023; 97:1599-1611. [PMID: 37029817 DOI: 10.1007/s00204-023-03469-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/16/2023] [Indexed: 04/09/2023]
Abstract
The RAS pathway participates in the cascade of proliferation and cell division process, and the activated RAS pathway can lead to tumorigenesis including hepatocellular carcinoma (HCC). However, few studies have explored the effects of genetic variants in the RAS pathway-related genes on the survival of patients with HBV-related HCC. In the present study, we assessed the associations between 11,658 single-nucleotide polymorphisms (SNPs) in 62 RAS pathway genes and the overall survival (OS) of 866 HBV-related HCC individuals, which were randomly split (1:1) into discovery and validation datasets. As a result, three potentially functional SNPs were identified, based on multivariable cox proportional hazards regression analyses, in SOS Ras/Rho guanine nucleotide exchange factor 2 (SOS2, rs4632055 A > G), Ras protein-specific guanine nucleotide releasing factor 2 (RASGRF2, rs26418A > G) and mitogen-activated protein kinase 1 (MAP2K1,rs57120695 C > T), which were significantly and independently associated with OS of HBV-related HCC patients [adjusted hazards ratios (HRs) of 1.42, 1.32 and 1.50, respectively; 95% confidence intervals (CI), 1.14 to 1.76, 1.15 to 1.53 and 1.15 to 1.97, respectively; P = 0.001, < 0.001 and 0.003, respectively]. Additionally, the joint effects as the unfavorable genotypes of these three SNPs showed a significant association with the poor survival of HCC (trend test P < 0.001). The expression quantitative trait loci (eQTL) analysis further revealed that the rs4632055 G allele and the rs26418 A allele were associated with lower mRNA expression levels of SOS2 and RASGRF2, respectively. Collectively, these potentially functional SNPs of RASGRF2, SOS2 and M2PAK1 may become potential prognostic biomarkers for HBV-related HCC after hepatectomy.
Collapse
Affiliation(s)
- Qiuling Lin
- Department of Clinical Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Moqin Qiu
- Department of Respiratory Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xueyan Wei
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Zhouyun Xiang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Zihan Zhou
- Department of Cancer Prevention and Control, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Iiangyan Ji
- Department of Scientific Research Dept, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xiumei Liang
- Department of Disease Process Management, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xianguo Zhou
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Qiuping Wen
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China
| | - Yingchun Liu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
- Key Cultivated Laboratory of Cancer Molecular Medicine, Health Commission of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
| | - Hongping Yu
- Department of Experimental Research, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, China.
- Key Cultivated Laboratory of Cancer Molecular Medicine, Health Commission of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Guangxi Medical University, Ministry of Education, Nanning, China.
| |
Collapse
|
2
|
Balakrishnan R, Mohammed V, Veerabathiran R. The role of genetic mutation in alcoholic liver disease. EGYPTIAN LIVER JOURNAL 2022. [DOI: 10.1186/s43066-022-00175-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Alcoholic liver disease (ALD) is the world’s most common type of liver disease caused due to overconsumption of alcohol. The liver supports the best level of tissue damage by hefty drinking since it is the binding site of ethanol digestion. This disease can progress to alcoholic steatohepatitis from alcoholic fatty liver, which implies steatosis has become the most punctual reaction to hefty drinking and is portrayed by the deposition of fat hepatocytes. In addition, steatosis can advance to steatohepatitis, a more extreme, provocative sort of liver damage described by hepatic inflammation. Constant and unnecessary liquor utilization delivers a wide range of hepatic sores, fibrosis and cirrhosis, and sometimes hepatocellular carcinoma. Most people consuming > 40 g of liquor each day create alcoholic fatty liver (AFL); notwithstanding, just a subset of people will grow further developed infection. Hereditary, epigenetic, and non-hereditary components may clarify the impressive interindividual variety in the ALD phenotype.
Main body
This systematic review is to classify new candidate genes associated with alcoholic liver disorders, such as RASGRF2, ALDH2, NFE2L2, ADH1B, PNPLA3, DRD2, MTHFR, TM6SF2, IL1B, and CYP2E1, MBOAT7 as well as to revise the functions of each gene in its polymorphic sequence. The information obtained from the previously published articles revealed the crucial relationship between the genes and ALD and discussed each selected gene’s mechanism.
Conclusion
The aim of this review is to highlight the candidate genes associated with the ALD, and the evidence of this study is to deliberate the part of genetic alterations and modifications that can serve as an excellent biological maker, risk predictors, and therapeutic targets for this disease.
Collapse
|
3
|
An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021; 10:cells10123288. [PMID: 34943797 PMCID: PMC8699078 DOI: 10.3390/cells10123288] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.
Collapse
|
4
|
Du Y, Wang Z, Wan W. High Expression of ERK-related RASGRF2 predicts Poor prognosis in patients with Stomach Adenocarcinoma and correlates with M2 macrophage. J Cancer 2021; 12:7177-7189. [PMID: 34729119 PMCID: PMC8558656 DOI: 10.7150/jca.63029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/21/2021] [Indexed: 12/12/2022] Open
Abstract
Background: The role of RASGRF2 has been verified in the development of various cancers. However, its roles in stomach adenocarcinoma (STAD) are still under investigation. Methods: RASGRF2 transcript-level data and the associated clinical information from patients with STAD were extracted from The Cancer Genome Atlas (TCGA). Diagnostic and prognostic values of RASGRF2 were analyzed using receiver-operator characteristics (ROC) analysis, correlation analysis, and survival analysis in conjunction with a prognostic model. In addition, gene expression profiles, differentially-expressed genes for co-varying expression, and a differential expressed genes (DEG) protein-protein interaction network for influential nodes were also analyzed. To identify the molecular role of RASGRF2 in STAD, gene ontology (GO) term, Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway, and gene set enrichment analysis (GSEA)-mediated functional module enrichment analyses were conducted. The relationship between RASGRF2 and gene signature-based predicted immune cell infiltration patterns were also investigated. To validate the bioinformatic findings, RASGRF2 protein expression was investigated in vitro using western blot and immunohistochemistry. Furthermore, relationships among RASGRF2 protein expression, clinicopathologic characteristics, and patient survival were analyzed. Results: Bioinformatic analysis revealed a significantly higher RASGRF2 transcript level in STAD tissue, which was positively associated with the T stage, histological type, histological grade, and TP53 status. Moreover, the RASGRF2 transcript level indicated poor overall survival in STAD patients (hazard ratio = 1.47, P = 0.023). Multivariate Cox regression analysis showed that primary therapy outcome, age, and RASGRF2 transcript level were independent prognostic factors for survival, and the C-index of a nomogram was 0.695. Additionally, 159 genes were differentially expressed according to RASGRF2 transcript levels; 15 exhibited co-varying expression, and 13 were identified as influential nodes. The DEG-list was significantly enriched for several GO terms, biological pathways, and functional modules, including MAPK, RAS, ERK, and immunoregulatory pathways. RASGRF2 transcript levels were significantly positively correlated with infiltration levels of Tem, Macrophages, pDCs, and NK cells. Validation analysis showed similar results for the RASGRF2 protein expression level in both in vitro analyses. Conclusion: Bioinformatic predictions combined with in vitro validation suggest that RASGRF2 plays diagnostic and prognostic roles and serves as a negative protective molecular factor in STAD patients.
Collapse
Affiliation(s)
- Yaqi Du
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zhengguang Wang
- Department of Orthopedics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Weina Wan
- Department of Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
Powers AK, Boggs TE, Gross JB. An Asymmetric Genetic Signal Associated with Mechanosensory Expansion in Cave-Adapted Fish. Symmetry (Basel) 2020; 12:1951. [PMID: 33614165 PMCID: PMC7894647 DOI: 10.3390/sym12121951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A key challenge in contemporary biology is connecting genotypic variation to phenotypic diversity. Quantitative genetics provides a powerful technique for identifying regions of the genome that covary with phenotypic variation. Here, we present a quantitative trait loci (QTL) analysis of a natural freshwater fish system, Astyanax mexicanus, that harbors two morphs corresponding to a cave and surface fish. Following their divergence ~500 Kya, cavefish have adapted to the extreme pressures of the subterranean biome. As a consequence, cavefish have lost numerous features, but evolved gains for a variety of constructive features including behavior. Prior work found that sensory tissues (neuromasts) present in the "eye orbit" region of the skull associate with sensitivity to vibrations in water. This augmented sensation is believed to facilitate foraging behavior in the complete darkness of a cave, and may impact on evolved lateral swimming preference. To this point, however, it has remained unclear how morphological variation integrates with behavioral variation through heritable factors. Using a QTL approach, we discovered the genetic architecture of neuromasts present in the eye orbit region, demonstrating that this feature is under genetic control. Interestingly, linked loci were asymmetric-signals were detected using only data collected from the right, but not left, side of the face. This finding may explain enhanced sensitivity and/or feedback of water movements mediating a lateral swimming preference. The locus we discovered based on neuromast position maps near established QTL for eye size and a facial bone morphology, raising the intriguing possibility that eye loss, sensory expansion, and the cranial skeleton may be integrated for evolving adaptive behaviors. Thus, this work will further our understanding of the functional consequence of key loci that influence the evolutionary origin of changes impacting morphology, behavior, and adaptation.
Collapse
Affiliation(s)
- Amanda K. Powers
- Department of Genetics, Blavatnik Institute at Harvard Medical School, Boston, MA 02138, USA
| | - Tyler E. Boggs
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45227, USA
| | - Joshua B. Gross
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45227, USA
| |
Collapse
|
6
|
Korolkova OY, Widatalla SE, Williams SD, Whalen DS, Beasley HK, Ochieng J, Grewal T, Sakwe AM. Diverse Roles of Annexin A6 in Triple-Negative Breast Cancer Diagnosis, Prognosis and EGFR-Targeted Therapies. Cells 2020; 9:E1855. [PMID: 32784650 PMCID: PMC7465958 DOI: 10.3390/cells9081855] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
Abstract
The calcium (Ca2+)-dependent membrane-binding Annexin A6 (AnxA6), is a multifunctional, predominantly intracellular scaffolding protein, now known to play relevant roles in different cancer types through diverse, often cell-type-specific mechanisms. AnxA6 is differentially expressed in various stages/subtypes of several cancers, and its expression in certain tumor cells is also induced by a variety of pharmacological drugs. Together with the secretion of AnxA6 as a component of extracellular vesicles, this suggests that AnxA6 mediates distinct tumor progression patterns via extracellular and/or intracellular activities. Although it lacks enzymatic activity, some of the AnxA6-mediated functions involving membrane, nucleotide and cholesterol binding as well as the scaffolding of specific proteins or multifactorial protein complexes, suggest its potential utility in the diagnosis, prognosis and therapeutic strategies for various cancers. In breast cancer, the low AnxA6 expression levels in the more aggressive basal-like triple-negative breast cancer (TNBC) subtype correlate with its tumor suppressor activity and the poor overall survival of basal-like TNBC patients. In this review, we highlight the potential tumor suppressor function of AnxA6 in TNBC progression and metastasis, the relevance of AnxA6 in the diagnosis and prognosis of several cancers and discuss the concept of therapy-induced expression of AnxA6 as a novel mechanism for acquired resistance of TNBC to tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Olga Y. Korolkova
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Sarrah E. Widatalla
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Stephen D. Williams
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Diva S. Whalen
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Heather K. Beasley
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Josiah Ochieng
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| | - Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Amos M. Sakwe
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN 37208, USA; (O.Y.K.); (S.E.W.); (S.D.W.); (D.S.W.); (H.K.B.); (J.O.)
| |
Collapse
|
7
|
Korolkova OY, Widatalla SE, Whalen DS, Nangami GN, Abimbola A, Williams SD, Beasley HK, Reisenbichler E, Washington MK, Ochieng J, Mayer IA, Lehmann BD, Sakwe AM. Reciprocal expression of Annexin A6 and RasGRF2 discriminates rapidly growing from invasive triple negative breast cancer subsets. PLoS One 2020; 15:e0231711. [PMID: 32298357 PMCID: PMC7162501 DOI: 10.1371/journal.pone.0231711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
Actively growing tumors are often histologically associated with Ki67 positivity, while the detection of invasiveness relies on non-quantitative pathologic evaluation of mostly advanced tumors. We recently reported that reduced expression of the Ca2+-dependent membrane-binding annexin A6 (AnxA6) is associated with increased expression of the Ca2+ activated RasGRF2 (GRF2), and that the expression status of these proteins inversely influence the growth and motility of triple negative breast cancer (TNBC) cells. Here, we establish that the reciprocal expression of AnxA6 and GRF2 is at least in part, dependent on inhibition of non-selective Ca2+ channels in AnxA6-low but not AnxA6-high TNBC cells. Immunohistochemical staining of breast cancer tissues revealed that compared to non-TNBC tumors, TNBC tumors express lower levels of AnxA6 and higher Ki67 expression. GRF2 expression levels strongly correlated with high Ki67 in pretreatment biopsies from patients with residual disease and with residual tumor size following chemotherapy. Elevated AnxA6 expression more reliably identified patients who responded to chemotherapy, while low AnxA6 levels were significantly associated with shorter distant relapse-free survival. Finally, the reciprocal expression of AnxA6 and GRF2 can delineate GRF2-low/AnxA6-high invasive from GRF2-high/AnxA6-low rapidly growing TNBCs. These data suggest that AnxA6 may be a reliable biomarker for distant relapse-free survival and response of TNBC patients to chemotherapy, and that the reciprocal expression of AnxA6 and GRF2 can reliably delineate TNBCs into rapidly growing and invasive subsets which may be more relevant for subset-specific therapeutic interventions.
Collapse
Affiliation(s)
- Olga Y. Korolkova
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Sarrah E. Widatalla
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Diva S. Whalen
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Gladys N. Nangami
- Department of Pathology, Yale Medical School, New Haven, Connecticut, United States of America
| | - Adeniyi Abimbola
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Stephen D. Williams
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Heather K. Beasley
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Emily Reisenbichler
- Department of Pathology, Yale Medical School, New Haven, Connecticut, United States of America
| | - Mary Kay Washington
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Josiah Ochieng
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Ingrid A. Mayer
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Brian D. Lehmann
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Amos M. Sakwe
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| |
Collapse
|
8
|
Wu X, Han X, Li L, Fan S, Zhuang P, Yang Z, Zhang Y. iTRAQ-based quantitative proteomics and target-fishing strategies reveal molecular signatures on vasodilation of Compound Danshen Dripping Pills. Chem Biol Interact 2019; 316:108923. [PMID: 31838051 DOI: 10.1016/j.cbi.2019.108923] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 11/26/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Angina pectoris can be used as an early warning for coronary artery disease. Vasodilation is an important mechanism of angina pectoris. Traditional Chinese medicine - Compound Danshen Dripping Pill (CDDP) is widely used to improve the symptoms of cardiovascular diseases (CVDs). To investigate the influence of vasodilation effect and underlying mechanisms of CDDP, we determined the vasodilation effect of thoracic aorta ring on rat induced by norepinephrine (NE). Then targets-fishing method was used to predict the potential mechanism of CDDP on vasodilation, based on the structures of the main components. Then, iTRAQ-based quantitative proteomics analysis was used for verification of the candidate target proteins and pathways to illustrate the underlying mechanisms. Furthermore, the differentially expressed proteins in the enriched pathways were validated by western blotting. In this study, we found that CDDP could significantly inhibit NE induced aortic contraction tension, and the mechanism may be related to platelet activation, cGMP - PKG signaling pathway and vascular smooth muscle contraction. The method provides a new way to uncover the vasodilation mechanism of CDDP, as well as other multi-component herbal medicines.
Collapse
Affiliation(s)
- Xin Wu
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Xiujiang Han
- Department of Cardiology, Tianjin Hospital of ITCWM Nankai Hospital, Tianjin, 300100, China
| | - Lili Li
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Simiao Fan
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Zhen Yang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yanjun Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.
| |
Collapse
|
9
|
Bagnato A, Rosanò L. New Routes in GPCR/β-Arrestin-Driven Signaling in Cancer Progression and Metastasis. Front Pharmacol 2019; 10:114. [PMID: 30837880 PMCID: PMC6390811 DOI: 10.3389/fphar.2019.00114] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/29/2019] [Indexed: 12/25/2022] Open
Abstract
Tumor cells acquire invasive and metastatic behavior by sensing changes in the localization and activation of signaling pathways, which in turn determine changes in actin cytoskeleton. The core-scaffold machinery associated to β-arrestin (β-arr) is a key mechanism of G-protein coupled receptors (GPCR) to achieve spatiotemporal specificity of different signaling complexes driving cancer progression. Within different cellular contexts, the scaffold proteins β-arr1 or β-arr2 may now be considered organizers of protein interaction networks involved in tumor development and metastatic dissemination. Studies have uncovered the importance of the β-arr engagement with a growing number of receptors, signaling molecules, cytoskeleton regulators, epigenetic modifiers, and transcription factors in GPCR-driven tumor promoting pathways. In many of these molecular complexes, β-arrs might provide a physical link to active dynamic cytoskeleton, permitting cancer cells to adapt and modify the tumor microenvironment to promote the metastatic spread. Given the complexity and the multidirectional β-arr-driven signaling in cancer cells, therapeutic targeting of specific GPCR/β-arr molecular mechanisms is an important avenue to explore when considering future new therapeutic options. The focus of this review is to integrate the most recent developments and exciting findings of how highly connected components of β-arr-guided molecular connections to other pathways allow precise control over multiple signaling pathways in tumor progression, revealing ways of therapeutically targeting the convergent signals in patients.
Collapse
Affiliation(s)
- Anna Bagnato
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Rosanò
- Unit of Preclinical Models and New Therapeutic Agents, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
10
|
Whalen DS, Widatalla SE, Korolkova OY, Nangami GS, Beasley HK, Williams SD, Virgous C, Lehmann BD, Ochieng J, Sakwe AM. Implication of calcium activated RasGRF2 in Annexin A6-mediated breast tumor cell growth and motility. Oncotarget 2019; 10:133-151. [PMID: 30719209 PMCID: PMC6349432 DOI: 10.18632/oncotarget.26512] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 12/16/2018] [Indexed: 01/10/2023] Open
Abstract
The role of AnxA6 in breast cancer and in particular, the mechanisms underlying its contribution to tumor cell growth and/or motility remain poorly understood. In this study, we established the tumor suppressor function of AnxA6 in triple negative breast cancer (TNBC) cells by showing that loss of AnxA6 is associated with early onset and rapid growth of xenograft TNBC tumors in mice. We also identified the Ca2+ activated RasGRF2 as an effector of AnxA6 mediated TNBC cell growth and motility. Activation of Ca2+ mobilizing oncogenic receptors such as epidermal growth factor receptor (EGFR) in TNBC cells or pharmacological stimulation of Ca2+ influx led to activation, subsequent degradation and altered effector functions of RasGRF2. Inhibition of Ca2+ influx or overexpression of AnxA6 blocked the activation/degradation of RasGRF2. We also show that AnxA6 acts as a scaffold for RasGRF2 and Ras proteins and that its interaction with RasGRF2 is modulated by GTP and/or activation of Ras proteins. Meanwhile, down-regulation of RasGRF2 and treatment of cells with the EGFR-targeted tyrosine kinase inhibitor (TKI) lapatinib strongly attenuated the growth of otherwise EGFR-TKI resistant AnxA6 high TNBC cells. These data not only suggest that AnxA6 modulated Ca2+ influx and effector functions of RasGRF2 underlie at least in part, the AnxA6 mediated TNBC cell growth and/or motility, but also provide a rationale to target Ras-driven TNBC with EGFR targeted therapies in combination with inhibition of RasGRF2.
Collapse
Affiliation(s)
- Diva S Whalen
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Sarrah E Widatalla
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Olga Y Korolkova
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Gladys S Nangami
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Heather K Beasley
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Stephen D Williams
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Carlos Virgous
- Animal Care Facility, Meharry Medical College, Nashville, TN, USA
| | - Brian D Lehmann
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Josiah Ochieng
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| | - Amos M Sakwe
- Department of Biochemistry and Cancer Biology, School of Graduate Studies and Research, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
11
|
New insights into the regulation of the actin cytoskeleton dynamics by GPCR/β-arrestin in cancer invasion and metastasis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 346:129-155. [DOI: 10.1016/bs.ircmb.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Lu P, Chen J, Yan L, Yang L, Zhang L, Dai J, Hao Z, Bai T, Xi Y, Li Y, Kang Z, Xv J, Sun G, Yang T. RasGRF2 promotes migration and invasion of colorectal cancer cells by modulating expression of MMP9 through Src/Akt/NF-κB pathway. Cancer Biol Ther 2018; 20:435-443. [PMID: 30359168 DOI: 10.1080/15384047.2018.1529117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Ras-specific guanine nucleotide-releasing factor 2 (RasGRF2) is a member of the guanine nucleotide exchange factors family which is expressed in a variety of tissues and cancer. However, the role of RasGRF2 in cancer is less reported, especially in colorectal cancer(CRC). Hence, the present study aimed to investigated the function of RasGRF2 and ways in which it affects tumor progression in CRC samples and cell lines. We first measured RasGRF2 mRNA level in 26 paired tumor and nontumor colon tissues after colon cancer surgical resection, and determined RasGRF2 protein level in 97 paired paraffin-embedded colon cancer tissues, and found that levels of RasGRF2 mRNA and protein were increased in colorectal tumor tissues, compared with adjacent non-tumor tissues. We then examined the effects of RasGRF2 knockdown on proliferation, migration and invasion were analyzed in CRC cells (SW480, HCT116 and LS174T). HCT116 cells with RasGRF2 knockdown were injected into the tail vein in nude mice to yield metastatic model, and tumor metastasis was measured as well. We found that knockdown of RasGRF2 in CRC cells reduced their migration and invasion in vitro and metastasis in mice. Furthermore, we explored the underlying molecular mechanism for RasGRF2-mediated CRC migration and invasion. The results showed that knockdown of RasGRF2 in CRC cells impairing the expression of MMP9 and inhibiting the activation of Src/Akt and NF-κB signaling. We conclude that RasGRF2 plays a role in controlling migration and invasion of CRC and modulates the expression of MMP9 through Src/PI 3-kinase and the NF-κB pathways.
Collapse
Affiliation(s)
- Peifen Lu
- a Department of Biochemistry & Molecular Biology , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Junjun Chen
- a Department of Biochemistry & Molecular Biology , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Lihong Yan
- a Department of Biochemistry & Molecular Biology , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Lijun Yang
- a Department of Biochemistry & Molecular Biology , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Litao Zhang
- a Department of Biochemistry & Molecular Biology , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Jie Dai
- a Department of Biochemistry & Molecular Biology , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Zixuan Hao
- b Department of Optometry , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Tao Bai
- c Department of Pathology , First Affiliated Hospital of Shanxi Medical University , Taiyuan , Shanxi , China
| | - Yanfeng Xi
- d Department of Pathology , Shanxi Provincial Cancer Hospital , Taiyuan , Shanxi , China
| | - Yahui Li
- a Department of Biochemistry & Molecular Biology , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Zhiming Kang
- a Department of Biochemistry & Molecular Biology , Shanxi Medical University , Taiyuan , Shanxi , China
| | - Jun Xv
- e Department of General Surgery , Second Hospital of Shanxi Medical University , Taiyuan , Shanxi , China
| | - Gongqin Sun
- a Department of Biochemistry & Molecular Biology , Shanxi Medical University , Taiyuan , Shanxi , China.,f Department of Cell and Molecular Biology , University of Rhode Island , Kingston , RI , USA
| | - Tao Yang
- a Department of Biochemistry & Molecular Biology , Shanxi Medical University , Taiyuan , Shanxi , China
| |
Collapse
|
13
|
Human Endogenous Retrovirus-K HML-2 integration within RASGRF2 is associated with intravenous drug abuse and modulates transcription in a cell-line model. Proc Natl Acad Sci U S A 2018; 115:10434-10439. [PMID: 30249655 DOI: 10.1073/pnas.1811940115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
HERV-K HML-2 (HK2) has been proliferating in the germ line of humans at least as recently as 250,000 years ago, with some integrations that remain polymorphic in the modern human population. One of the solitary HK2 LTR polymorphic integrations lies between exons 17 and 18 of RASGRF2, a gene that affects dopaminergic activity and is thus related to addiction. Here we show that this antisense HK2 integration (namely RASGRF2-int) is found more frequently in persons who inject drugs compared with the general population. In a Greek HIV-1-positive population (n = 202), we found RASGRF2-int 2.5 times (14 versus 6%) more frequently in patients infected through i.v. drug use compared with other transmission route controls (P = 0.03). Independently, in a United Kingdom-based hepatitis C virus-positive population (n = 184), we found RASGRF2-int 3.6 times (34 versus 9.5%) more frequently in patients infected during chronic drug abuse compared with controls (P < 0.001). We then tested whether RASGRF2-int could be mechanistically responsible for this association by modulating transcription of RASGRF2 We show that the CRISPR/Cas9-mediated insertion of HK2 in HEK293 cells in the exact RASGRF2 intronic position found in the population resulted in significant transcriptional and phenotypic changes. We also explored mechanistic features of other intronic HK2 integrations and show that HK2 LTRs can be responsible for generation of cis-natural antisense transcripts, which could interfere with the transcription of nearby genes. Our findings suggest that RASGRF2-int is a strong candidate for dopaminergic manipulation, and emphasize the importance of accurate mapping of neglected HERV polymorphisms in human genomic studies.
Collapse
|
14
|
Gurevich VV, Chen Q, Gurevich EV. Arrestins: Introducing Signaling Bias Into Multifunctional Proteins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 160:47-61. [PMID: 30470292 DOI: 10.1016/bs.pmbts.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Arrestins were discovered as proteins that bind active phosphorylated G protein-coupled receptors (GPCRs) and block their interactions with G proteins, i.e., for their role in homologous desensitization of GPCRs. Mammals express only four arrestin subtypes, two of which are largely restricted to the retina. Two nonvisual arrestins are ubiquitous and interact with hundreds of different GPCRs and dozens of other binding partners. Changes of just a few residues on the receptor-binding surface were shown to dramatically affect GPCR preference of inherently promiscuous nonvisual arrestins. Mutations on the cytosol-facing side of arrestins modulate their interactions with individual downstream signaling molecules. Thus, it appears feasible to construct arrestin mutants specifically linking particular GPCRs with signaling pathways of choice or mutants that sever the links between selected GPCRs and unwanted pathways. Signaling-biased "designer arrestins" have the potential to become valuable molecular tools for research and therapy.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.
| | - Qiuyan Chen
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
15
|
|
16
|
hMENA is a key regulator in endothelin-1/β-arrestin1-induced invadopodial function and metastatic process. Proc Natl Acad Sci U S A 2018; 115:3132-3137. [PMID: 29439204 PMCID: PMC5866561 DOI: 10.1073/pnas.1715998115] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Discovering new targets and novel determinants of metastatic spread is an unmet need in ovarian cancer, which is plagued by high rates of recurrence. Endothelin-1 receptors (ET-1R), belonging to the G-protein–coupled receptor family, represent important targets critically involved in malignant progression. Here we identify a mechanistic link between ET-1R and the actin regulatory protein hMENA/hMENAΔv6 through the specific interaction with the multifunctional protein β-arrestin1 (β-arr1), which initiates signaling cascades as part of the molecular complex crucial for invadopodial maturation and malignant dissemination. Targeting ET-1R by using macitentan, a Food and Drug Administration-approved antipulmonary arterial hypertension drug, can impair the β-arr1–mediated signaling network controlling ovarian cancer progression and therefore represents a therapeutic option for ovarian cancer patients. Aberrant activation of endothelin-1 receptors (ET-1R) elicits pleiotropic effects relevant for tumor progression. The network activated by this receptor might be finely, spatially, and temporarily orchestrated by β-arrestin1 (β-arr1)–driven interactome. Here, we identify hMENA, a member of the actin-regulatory protein ENA/VASP family, as an interacting partner of β-arr1, necessary for invadopodial function downstream of ET-1R in serous ovarian cancer (SOC) progression. ET-1R activation by ET-1 up-regulates expression of hMENA/hMENAΔv6 isoforms through β-arr1, restricted to mesenchymal-like invasive SOC cells. The interaction of β-arr1 with hMENA/hMENAΔv6 triggered by ET-1 leads to activation of RhoC and cortactin, recruitment of membrane type 1-matrix metalloprotease, and invadopodia maturation, thereby enhancing cell plasticity, transendothelial migration, and the resulting spread of invasive cells. The treatment with the ET-1R antagonist macitentan impairs the interaction of β-arr1 with hMENA and inhibits invadopodial maturation and tumor dissemination in SOC orthotopic xenografts. Finally, high ETAR/hMENA/β-arr1 gene expression signature is associated with a poor prognosis in SOC patients. These data define a pivotal function of hMENA/hMENAΔv6 for ET-1/β-arr1–induced invadopodial activity and ovarian cancer progression.
Collapse
|
17
|
Cleghorn WM, Bulus N, Kook S, Gurevich VV, Zent R, Gurevich EV. Non-visual arrestins regulate the focal adhesion formation via small GTPases RhoA and Rac1 independently of GPCRs. Cell Signal 2018; 42:259-269. [PMID: 29133163 PMCID: PMC5732042 DOI: 10.1016/j.cellsig.2017.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 02/07/2023]
Abstract
Arrestins recruit a variety of signaling proteins to active phosphorylated G protein-coupled receptors in the plasma membrane and to the cytoskeleton. Loss of arrestins leads to decreased cell migration, altered cell shape, and an increase in focal adhesions. Small GTPases of the Rho family are molecular switches that regulate actin cytoskeleton and affect a variety of dynamic cellular functions including cell migration and cell morphology. Here we show that non-visual arrestins differentially regulate RhoA and Rac1 activity to promote cell spreading via actin reorganization, and focal adhesion formation via two distinct mechanisms. Arrestins regulate these small GTPases independently of G-protein-coupled receptor activation.
Collapse
Affiliation(s)
- Whitney M Cleghorn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Nada Bulus
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, United States
| | - Seunghyi Kook
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States
| | - Roy Zent
- Department of Medicine, Vanderbilt University, Nashville, TN 37232, United States; Department of Veterans Affairs Hospital, Nashville, TN, 37232, United States
| | - Eugenia V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
18
|
Niu S, Li H, Chen W, Zhao J, Gao L, Bo T. Beta-Arrestin 1 Mediates Liver Thyrotropin Regulation of Cholesterol Conversion Metabolism via the Akt-Dependent Pathway. Int J Endocrinol 2018; 2018:4371396. [PMID: 29853881 PMCID: PMC5954953 DOI: 10.1155/2018/4371396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/18/2018] [Accepted: 03/31/2018] [Indexed: 11/18/2022] Open
Abstract
After activation, G protein-coupled receptors (GPCRs) are desensitized by β-arrestins (ARRBs). Moreover, ARRBs can initiate a second wave of signaling independent of G proteins. Thyroid-stimulating hormone receptor (TSHR) is one of the GPCR members. In our previous study, TSHR was identified in the liver; the major role of TSHR in cholesterol metabolism was illustrated, as TSH could regulate hepatic cholesterol metabolism via cAMP/PKA/CREB/HMGCR and SREBP2/HNF4α/CYP7A1 pathways. It has been reported that ARRB2 predominates over ARRB1 in TSHR internalization. However, the significance of ARRBs in TSH-initiated cholesterol metabolism has not been illustrated. In our study, the effects of ARRBs on TSH-regulated cholesterol metabolism are investigated. ARRB1/2 was genetically inactivated in C57BL/6 mice and HepG2 cell line, respectively. Cholesterol levels in arrestin-knockout mice and arrestin-knockdown cells were measured. Molecules participating in cholesterol metabolism were analyzed. It turned out that deficiencies in ARRB1 led to decreased cholesterol levels and decreased TSH-stimulated AKT phosphorylation. Subsequently, the inhibitory effect on CYP7A1 by SREBP2 was reduced due to lowered mature SREBP2 level. Other than the failures of TSH in ARRB-knockdown cells, the AKT activator SC79 could enhance AKT phosphorylation and mature SREBP2 level. Our results demonstrate that ARRBs, especially ARRB1, are involved in TSH-regulated cholesterol metabolism through the AKT pathway.
Collapse
Affiliation(s)
- Shaona Niu
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Department of Endocrinology, Lin Yi People's Hospital Affiliated to Shandong University, Linyi, Shandong 276003, China
| | - Hui Li
- Medical College, Shandong University, Jinan, Shandong 250012, China
| | - Wenbin Chen
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Jiajun Zhao
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Ling Gao
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| | - Tao Bo
- Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong 250021, China
- Scientific Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, China
| |
Collapse
|
19
|
Alekhina O, Marchese A. β-Arrestin1 and Signal-transducing Adaptor Molecule 1 (STAM1) Cooperate to Promote Focal Adhesion Kinase Autophosphorylation and Chemotaxis via the Chemokine Receptor CXCR4. J Biol Chem 2016; 291:26083-26097. [PMID: 27789711 DOI: 10.1074/jbc.m116.757138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/26/2016] [Indexed: 01/14/2023] Open
Abstract
The chemokine receptor CXCR4 and its chemokine ligand CXCL12 mediate directed cell migration during organogenesis, immune responses, and metastatic disease. However, the mechanisms governing CXCL12/CXCR4-dependent chemotaxis remain poorly understood. Here, we show that the β-arrestin1·signal-transducing adaptor molecule 1 (STAM1) complex, initially identified to govern lysosomal trafficking of CXCR4, also mediates CXCR4-dependent chemotaxis. Expression of minigene fragments from β-arrestin1 or STAM1, known to disrupt the β-arrestin1·STAM1 complex, and RNAi against β-arrestin1 or STAM1, attenuates CXCL12-induced chemotaxis. The β-arrestin1·STAM1 complex is necessary for promoting autophosphorylation of focal adhesion kinase (FAK). FAK is necessary for CXCL12-induced chemotaxis and associates with and localizes with β-arrestin1 and STAM1 in a CXCL12-dependent manner. Our data reveal previously unknown roles in CXCR4-dependent chemotaxis for β-arrestin1 and STAM1, which we propose act in concert to regulate FAK signaling. The β-arrestin1·STAM1 complex is a promising target for blocking CXCR4-promoted FAK autophosphorylation and chemotaxis.
Collapse
Affiliation(s)
- Olga Alekhina
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Adriano Marchese
- From the Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
20
|
Zhou T, Wang CH, Yan H, Zhang R, Zhao JB, Qian CF, Xiao H, Liu HY. Inhibition of the Rac1-WAVE2-Arp2/3 signaling pathway promotes radiosensitivity via downregulation of cofilin-1 in U251 human glioma cells. Mol Med Rep 2016; 13:4414-20. [PMID: 27052944 DOI: 10.3892/mmr.2016.5088] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 03/16/2016] [Indexed: 11/05/2022] Open
Abstract
The Ras-related C3 botulinum toxin substrate 1 (Rac1)-WASP-family verprolin-homologous protein-2 (WAVE2)-actin-related protein 2/3 (Arp2/3) signaling pathway has been identified to be involved in cell migration and invasion in various types of cancer cell. Cofilin‑1 (CFL‑1), which is regulated by the Rac1‑WAVE2‑Arp2/3 signaling pathway, may promote radioresistance in glioma. Therefore, the present study aimed to investigate the potential role of the Rac1‑WAVE2‑Arp2/3 signaling pathway in radioresistance in U251 human glioma cells and elucidate its affect on CFL‑1 expression. Western blot analysis was performed to evaluate the protein expression of CFL‑1. In the present study, Rac1 was inhibited by NSC 23766, WAVE2 was inhibited by transfection with short hairpin (sh)RNA‑WAVE2 using Lipofectamine™ 2000 and Arp2/3 was inhibited by CK‑666. Cell viability was measured using the 3‑(4,5‑dimethylthiazol‑2‑yl)-2,5‑diphenyltetrazolium bromide assay, the cell migration ability was examined by a wound‑healing assay, and the cell invasion ability was assessed using a Transwell culture chamber system. The results showed that inhibition of the Rac1‑WAVE2‑Arp2/3 signaling pathway using NSC 23766, shRNA‑WAVE2 or CK‑666 reduced the cell viability, migration and invasion abilities in U251 human glioma cells, concordant with a reduced expression of CFL‑1. Furthermore, the expression of CFL‑1 was significantly increased in radioresistant U251 glioma cells when compared with normal U251 human glioma cells. These findings indicate that inhibition of the Rac1‑WAVE2‑Arp2/3 signaling pathway may promote radiosensitivity, which may partially result from the downregulation of CFL‑1 in U251 human glioma cells.
Collapse
Affiliation(s)
- Tao Zhou
- Department of Neurosurgery, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Chen-Han Wang
- Department of Neurosurgery, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Hua Yan
- Department of Neurosurgery, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Rui Zhang
- Department of Neurosurgery, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Jin-Bing Zhao
- Department of Neurosurgery, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Chun-Fa Qian
- Department of Neurosurgery, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Hong Xiao
- Neuropsychiatric Institute, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, P.R. China
| | - Hong-Yi Liu
- Department of Neurosurgery, Nanjing Medical University, Affiliated Nanjing Brain Hospital, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
21
|
|
22
|
Semprucci E, Tocci P, Cianfrocca R, Sestito R, Caprara V, Veglione M, Castro VD, Spadaro F, Ferrandina G, Bagnato A, Rosanò L. Endothelin A receptor drives invadopodia function and cell motility through the β-arrestin/PDZ-RhoGEF pathway in ovarian carcinoma. Oncogene 2015; 35:3432-42. [PMID: 26522724 DOI: 10.1038/onc.2015.403] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023]
Abstract
The endothelin-1 (ET-1)/ET A receptor (ETAR) signalling pathway is a well-established driver of epithelial ovarian cancer (EOC) progression. One key process promoted by ET-1 is tumor cell invasion, which requires the scaffolding functions of β-arrestin-1 (β-arr1) downstream of the receptor; however, the potential role of ET-1 in inducing invadopodia, which are crucial for cellular invasion and tumor metastasis, is completely unknown. We describe here that ET-1/ETAR, through β-arr1, activates RhoA and RhoC GTPase and downstream ROCK (Rho-associated coiled coil-forming kinase) kinase activity, promoting actin-based dynamic remodelling and enhanced cell invasion. This is accomplished by the direct interaction of β-arr1 with PDZ-RhoGEF (postsynaptic density protein 95/disc-large/zonula occludens-RhoGEF). Interestingly, ETAR-mediated invasive properties are related to the regulation of invadopodia, as evaluated by colocalization of actin with cortactin, as well as with TKS5 and MT1-MMP (membrane type 1-matrix metalloproteinase) with areas of matrix degradation, and activation of cofilin pathway, which is crucial for regulating invadopodia activity. Depletion of PDZ-RhoGEF, or β-arr1, or RhoC, as well as the treatment with the dual ET-1 receptor antagonist macitentan, significantly impairs invadopodia function, MMP activity and invasion, demonstrating that β-arr1/PDZ-RhoGEF interaction mediates ETAR-driven ROCK-LIMK-cofilin pathway through the control of RhoC activity. In vivo, macitentan is able to inhibit metastatic dissemination and cofilin phosphorylation. Collectively, our data unveil a noncanonical activation of the RhoC/ROCK pathway through the β-arr1/PDZ-RhoGEF complex as a regulator of ETAR-induced motility and metastasis, establishing ET-1 axis as a novel regulator of invadopodia protrusions through the RhoC/ROCK/LIMK/cofilin pathway during the initial steps of EOC invasion.
Collapse
Affiliation(s)
- E Semprucci
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - P Tocci
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - R Cianfrocca
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - R Sestito
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - V Caprara
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - M Veglione
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - V Di Castro
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - F Spadaro
- Section of Experimental Immunotherapy, Department of Haematology, Oncology and Molecular Medicine, Istituto Superiore di Sanita', Rome, Italy
| | - G Ferrandina
- Gynecologic Oncology Unit, Catholic University of Rome, Rome, Italy
| | - A Bagnato
- Regina Elena National Cancer Institute Rome, Rome, Italy
| | - L Rosanò
- Regina Elena National Cancer Institute Rome, Rome, Italy
| |
Collapse
|