1
|
Ho QY, Phang CY, Liew IT, Lai ML, Tien CSY, Thangaraju S, Chan M, Kee T. Unrepresented human leucocyte antigen alleles in single-antigen bead assays: A single-centre cohort study. Int J Immunogenet 2023; 50:306-315. [PMID: 37776087 DOI: 10.1111/iji.12639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/25/2023] [Accepted: 09/22/2023] [Indexed: 10/01/2023]
Abstract
Human leucocyte antigen (HLA) alleles may generate antibodies that are undetectable by routine single-antigen beads (SABs) assays if their unique epitopes are unrepresented. We aimed to describe the prevalence and explore the potential impact of unrepresented HLA alleles in standard SAB kits in our cohort. All individuals who had undergone two-field HLA typing (HLA-A/B/C/DRB1/DQA1/-DQB1/-DPA1/-DPB1) from February 2021 to July 2023 were included. Two-field HLA-DRB3/4/5 typing was imputed. Each unrepresented allele was compared with the most similar represented allele in the standard LABScreen, LABScreen ExPlex (One Lambda) and the LIFECODES (Immucor) SAB kits. Differences in eplet expression (HLA Eplet Registry) were identified. Differences in three-dimensional molecular structures were visualized using generated models (SWISS-MODEL). Two-field HLA typing was performed for 116 individuals. Overall, 16.7% of all HLA alleles, found in 36.2% of individuals, were unrepresented by all SAB test kits. Four eplets, found in 12.9% of individuals, were unrepresented in at least 1 SAB kit. Non-Chinese individuals were more likely to have unrepresented HLA alleles and eplets than Chinese individuals. There were differences in HLA allele and eplet representation amongst the different SAB test kits. Use of supplementary SAB test kits may improve HLA allele and eplet representation. Although some HLA alleles were unrepresented, most epitopes were represented in current SAB kits. However, some unrepresented alleles may contain epitopes which may generate undetectable antibodies. Further studies may be needed to investigate the potential clinical impact of these unrepresented alleles and eplets, especially in certain ethnic populations or at-risk individuals.
Collapse
Affiliation(s)
- Quan Yao Ho
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore, Singapore
| | - Chew Yen Phang
- Blood Services Group, Health Sciences Authority, Singapore, Singapore
| | - Ian Tatt Liew
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore, Singapore
| | - May Ling Lai
- Blood Services Group, Health Sciences Authority, Singapore, Singapore
| | - Carolyn Shan-Yeu Tien
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore, Singapore
| | - Sobhana Thangaraju
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore, Singapore
| | - Marieta Chan
- Blood Services Group, Health Sciences Authority, Singapore, Singapore
| | - Terence Kee
- Department of Renal Medicine, Singapore General Hospital, Singapore, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore, Singapore
| |
Collapse
|
2
|
Reth M. Discovering immunoreceptor coupling and organization motifs. Front Immunol 2023; 14:1253412. [PMID: 37731510 PMCID: PMC10507400 DOI: 10.3389/fimmu.2023.1253412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 09/22/2023] Open
Abstract
The recently determined cryo-EM structures of the T cell antigen receptor (TCR) and B cell antigen receptor (BCR) show in molecular details the interactions of the ligand-binding part with the signaling subunits but they do not reveal the signaling mechanism of these antigen receptors. Without knowing the molecular basis of antigen sensing by these receptors, a rational design of optimal vaccines is not possible. The existence of conserved amino acids (AAs) that are not involved in the subunit interaction suggests that antigen receptors form higher complexes and/or have lateral interactors that control their activity. Here, I describe evolutionary conserved leucine zipper (LZ) motifs within the transmembrane domains (TMD) of antigen and coreceptor components that are likely to be involved in the oligomerization and lateral interaction of antigen receptor complexes on T and B cells. These immunoreceptor coupling and organization motifs (ICOMs) are also found within the TMDs of other important receptor types and viral envelope proteins. This discovery suggests that antigen receptors do not function as isolated entities but rather as part of an ICOM-based interactome that controls their nanoscale organization on resting cells and their dynamic remodeling on activated lymphocytes.
Collapse
Affiliation(s)
- Michael Reth
- Department of Molecular Immunology, Biology III, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signaling Research Centers CIBSS and BIOSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Drake LA, Hahn AB, Dixon AM, Drake JR. Differential pairing of transmembrane domain GxxxG dimerization motifs defines two HLA-DR MHC class II conformers. J Biol Chem 2023; 299:104869. [PMID: 37247758 PMCID: PMC10320510 DOI: 10.1016/j.jbc.2023.104869] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
MHC class II molecules function to present exogenous antigen-derived peptides to CD4 T cells to both drive T cell activation and to provide signals back into the class II antigen-presenting cell. Previous work established the presence of multiple GxxxG dimerization motifs within the transmembrane domains of MHC class II α and β chains across a wide range of species and revealed a role for differential GxxxG motif pairing in the formation of two discrete mouse class II conformers with distinct functional properties (i.e., M1-and M2-paired I-Ak class II). Biochemical and mutagenesis studies detailed herein extend this model to human class II by identifying an anti-HLA-DR mAb (Tü36) that selectively binds M1-paired HLA-DR molecules. Analysis of the HLA-DR allele reactivity of the Tü36 mAb helped define other HLA-DR residues involved in mAb binding. In silico modeling of both TM domain interactions and whole protein structure is consistent with the outcome of biochemical/mutagenesis studies and provides insight into the possible structural differences between the two HLA-DR conformers. Cholesterol depletion studies indicate a role for cholesterol-rich membrane domains in the formation/maintenance of Tü36 mAb reactive DR molecules. Finally, phylogenetic analysis of the amino acid sequences of Tü36-reactive HLA-DR β chains reveals a unique pattern of both Tü36 mAb reactivity and key amino acid polymorphisms. In total, these studies bring the paradigm M1/M2-paired MHC class II molecules to the human HLA-DR molecule and suggest that the functional differences between these conformers defined in mouse class II extend to the human immune system.
Collapse
Affiliation(s)
- Lisa A Drake
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Amy B Hahn
- Transplant Immunology Laboratory, Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry, United Kingdom
| | - James R Drake
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
4
|
Salnikov E, Bechinger B. Effect of lipid saturation on the topology and oligomeric state of helical membrane polypeptides. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184001. [PMID: 35817122 DOI: 10.1016/j.bbamem.2022.184001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Natural liquid crystalline membranes are made up of many different lipids carrying a mixture of saturated and unsaturated fatty acyl chains. Whereas in the past considerable attention has been paid to cholesterol content, the phospholipid head groups and the membrane surface charge the detailed fatty acyl composition was often considered less important. However, recent investigations indicate that the detailed fatty acyl chain composition has pronounced effects on the oligomerization of the transmembrane helical anchoring domains of the MHC II receptor or the membrane alignment of the cationic antimicrobial peptide PGLa. In contrast the antimicrobial peptides magainin 2 and alamethicin are less susceptible to lipid saturation. Using histidine-rich LAH4 designer peptides the high energetic contributions of lipid saturation in stabilizing transmembrane helical alignments are quantitatively evaluated. These observations can have important implications for the biological regulation of membrane proteins and should be taken into considerations during biophysical or structural experiments.
Collapse
Affiliation(s)
- Evgeniy Salnikov
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France
| | - Burkhard Bechinger
- University of Strasbourg/CNRS, UMR7177 Chemistry Institute, Membrane Biophysics and NMR, Strasbourg, France; Institut Universitaire de France, France.
| |
Collapse
|
5
|
Challenges for the standardized reporting of NGS HLA genotyping: Surveying gaps between clinical and research laboratories. Hum Immunol 2021; 82:820-828. [PMID: 34479742 DOI: 10.1016/j.humimm.2021.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 11/21/2022]
Abstract
Next generation sequencing (NGS) is being applied for HLA typing in research and clinical settings. NGS HLA typing has made it feasible to sequence exons, introns and untranslated regions simultaneously, with significantly reduced labor and reagent cost per sample, rapid turnaround time, and improved HLA genotype accuracy. NGS technologies bring challenges for cost-effective computation, data processing and exchange of NGS-based HLA data. To address these challenges, guidelines and specifications such as Genotype List (GL) String, Minimum Information for Reporting Immunogenomic NGS Genotyping (MIRING), and Histoimmunogenetics Markup Language (HML) were proposed to streamline and standardize reporting of HLA genotypes. As part of the 17th International HLA and Immunogenetics Workshop (IHIW), we implemented standards and systems for HLA genotype reporting that included GL String, MIRING and HML, and found that misunderstanding or misinterpretations of these standards led to inconsistencies in the reporting of NGS HLA genotyping results. This may be due in part to a historical lack of centralized data reporting standards in the histocompatibility and immunogenetics community. We have worked with software and database developers, clinicians and scientists to address these issues in a collaborative fashion as part of the Data Standard Hackathons (DaSH) for NGS. Here we report several categories of challenges to the consistent exchange of NGS HLA genotyping data we have observed. We hope to address these challenges in future DaSH for NGS efforts.
Collapse
|
6
|
Osoegawa K, Creary LE, Montero-Martín G, Mallempati KC, Gangavarapu S, Caillier SJ, Santaniello A, Isobe N, Hollenbach JA, Hauser SL, Oksenberg JR, Fernández-Viňa MA. High Resolution Haplotype Analyses of Classical HLA Genes in Families With Multiple Sclerosis Highlights the Role of HLA-DP Alleles in Disease Susceptibility. Front Immunol 2021; 12:644838. [PMID: 34211458 PMCID: PMC8240666 DOI: 10.3389/fimmu.2021.644838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) susceptibility shows strong genetic associations with HLA alleles and haplotypes. We genotyped 11 HLA genes in 477 non-Hispanic European MS patients and their 954 unaffected parents using a validated next-generation sequencing (NGS) methodology. HLA haplotypes were assigned unequivocally by tracing HLA allele transmissions. We explored HLA haplotype/allele associations with MS using the genotypic transmission disequilibrium test (gTDT) and multiallelic TDT (mTDT). We also conducted a case-control (CC) study with all patients and 2029 healthy unrelated ethnically matched controls. We performed separate analyses of 54 extended multi-case families by reviewing transmission of haplotype blocks. The haplotype fragment including DRB5*01:01:01~DRB1*15:01:01:01 was significantly associated with predisposition (gTDT: p < 2.20e-16; mTDT: p =1.61e-07; CC: p < 2.22e-16) as reported previously. A second risk allele, DPB1*104:01 (gTDT: p = 3.69e-03; mTDT: p = 2.99e-03; CC: p = 1.00e-02), independent from the haplotype bearing DRB1*15:01 was newly identified. The allele DRB1*01:01:01 showed significant protection (gTDT: p = 8.68e-06; mTDT: p = 4.50e-03; CC: p = 1.96e-06). Two DQB1 alleles, DQB1*03:01 (gTDT: p = 2.86e-03; mTDT: p = 5.56e-02; CC: p = 4.08e-05) and DQB1*03:03 (gTDT: p = 1.17e-02; mTDT: p = 1.16e-02; CC: p = 1.21e-02), defined at two-field level also showed protective effects. The HLA class I block, A*02:01:01:01~C*03:04:01:01~B*40:01:02 (gTDT: p = 5.86e-03; mTDT: p = 3.65e-02; CC: p = 9.69e-03) and the alleles B*27:05 (gTDT: p = 6.28e-04; mTDT: p = 2.15e-03; CC: p = 1.47e-02) and B*38:01 (gTDT: p = 3.20e-03; mTDT: p = 6.14e-03; CC: p = 1.70e-02) showed moderately protective effects independently from each other and from the class II associated factors. By comparing statistical significance of 11 HLA loci and 19 haplotype segments with both untruncated and two-field allele names, we precisely mapped MS candidate alleles/haplotypes while eliminating false signals resulting from 'hitchhiking' alleles. We assessed genetic burden for the HLA allele/haplotype identified in this study. This family-based study including the highest-resolution of HLA alleles proved to be powerful and efficient for precise identification of HLA genotypes associated with both, susceptibility and protection to development of MS.
Collapse
Affiliation(s)
- Kazutoyo Osoegawa
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Lisa E. Creary
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Gonzalo Montero-Martín
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Kalyan C. Mallempati
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Sridevi Gangavarapu
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
| | - Stacy J. Caillier
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Adam Santaniello
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Noriko Isobe
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Jill A. Hollenbach
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Stephen L. Hauser
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Jorge R. Oksenberg
- Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, United States
| | - Marcelo A. Fernández-Viňa
- Histocompatibility & Immunogenetics Laboratory, Stanford Blood Center, Palo Alto, CA, United States
- Department of Pathology, Stanford University School of Medicine, Palo Alto, CA, United States
| |
Collapse
|
7
|
Leddon SA, Fettis MM, Abramo K, Kelly R, Oleksyn D, Miller J. The CD28 Transmembrane Domain Contains an Essential Dimerization Motif. Front Immunol 2020; 11:1519. [PMID: 32765524 PMCID: PMC7378745 DOI: 10.3389/fimmu.2020.01519] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/09/2020] [Indexed: 12/13/2022] Open
Abstract
CD28 plays a critical role in regulating immune responses both by enhancing effector T cell activation and differentiation and controlling the development and function of regulatory T cells. CD28 is expressed at the cell surface as a disulfide linked homodimer that is thought to bind ligand monovalently. How ligand binding triggers CD28 to induce intracellular signaling as well as the proximal signaling pathways that are induced are not well-understood. In addition, recent data suggest inside-out signaling initiated by the T cell antigen receptor can enhance CD28 ligand binding, possibly by inducing a rearrangement of the CD28 dimer interface to allow for bivalent binding. To understand how possible conformational changes during ligand-induced receptor triggering and inside-out signaling are mediated, we examined the CD28 transmembrane domain. We identified an evolutionarily conserved YxxxxT motif that is shared with CTLA-4 and resembles the transmembrane dimerization motif within CD3ζ. We show that the CD28 transmembrane domain can drive protein dimerization in a bacterial expression system at levels equivalent to the well-known glycophorin A transmembrane dimerization motif. In addition, ectopic expression of the CD28 transmembrane domain into monomeric human CD25 can drive dimerization in murine T cells as detected by an increase in FRET by flow cytometry. Mutation of the polar YxxxxT motif to hydrophobic leucine residues (Y145L/T150L) attenuated CD28 transmembrane mediated dimerization in both the bacterial and mammalian assays. Introduction of the Y145L/T150L mutation of the CD28 transmembrane dimerization motif into the endogenous CD28 locus by CRISPR resulted in a dramatic loss in CD28 cell surface expression. These data suggest that under physiological conditions the YxxxxT dimerization motif within the CD28 transmembrane domain plays a critical role in the assembly and/or expression of stable CD28 dimers at the cell surface.
Collapse
Affiliation(s)
- Scott A Leddon
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Margaret M Fettis
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Kristin Abramo
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Ryan Kelly
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - David Oleksyn
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| | - Jim Miller
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
8
|
Zhao LP, Papadopoulos GK, Kwok WW, Moustakas AK, Bondinas GP, Larsson HE, Ludvigsson J, Marcus C, Samuelsson U, Wang R, Pyo CW, Nelson WC, Geraghty DE, Lernmark Å. Motifs of Three HLA-DQ Amino Acid Residues (α44, β57, β135) Capture Full Association With the Risk of Type 1 Diabetes in DQ2 and DQ8 Children. Diabetes 2020; 69:1573-1587. [PMID: 32245799 PMCID: PMC7306123 DOI: 10.2337/db20-0075] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022]
Abstract
HLA-DQA1 and -DQB1 are strongly associated with type 1 diabetes (T1D), and DQ8.1 and DQ2.5 are major risk haplotypes. Next-generation targeted sequencing of HLA-DQA1 and -DQB1 in Swedish newly diagnosed 1- to 18 year-old patients (n = 962) and control subjects (n = 636) was used to construct abbreviated DQ haplotypes, converted into amino acid (AA) residues, and assessed for their associations with T1D. A hierarchically organized haplotype (HOH) association analysis allowed 45 unique DQ haplotypes to be categorized into seven clusters. The DQ8/9 cluster included two DQ8.1 risk and the DQ9 resistant haplotypes, and the DQ2 cluster included the DQ2.5 risk and DQ2.2 resistant haplotypes. Within each cluster, HOH found residues α44Q (odds ratio [OR] 3.29, P = 2.38 * 10-85) and β57A (OR 3.44, P = 3.80 * 10-84) to be associated with T1D in the DQ8/9 cluster representing all ten residues (α22, α23, α44, α49, α51, α53, α54, α73, α184, β57) due to complete linkage disequilibrium (LD) of α44 with eight such residues. Within the DQ2 cluster and due to LD, HOH analysis found α44C and β135D to share the risk for T1D (OR 2.10, P = 1.96 * 10-20). The motif "QAD" of α44, β57, and β135 captured the T1D risk association of DQ8.1 (OR 3.44, P = 3.80 * 10-84), and the corresponding motif "CAD" captured the risk association of DQ2.5 (OR 2.10, P = 1.96 * 10-20). Two risk associations were related to GAD65 autoantibody (GADA) and IA-2 autoantibody (IA-2A) but in opposite directions. CAD was positively associated with GADA (OR 1.56, P = 6.35 * 10-8) but negatively with IA-2A (OR 0.59, P = 6.55 * 10-11). QAD was negatively associated with GADA (OR 0.88; P = 3.70 * 10-3) but positively with IA-2A (OR 1.64; P = 2.40 * 10-14), despite a single difference at α44. The residues are found in and around anchor pockets 1 and 9, as potential T-cell receptor contacts, in the areas for CD4 binding and putative homodimer formation. The identification of three HLA-DQ AAs (α44, β57, β135) conferring T1D risk should sharpen functional and translational studies.
Collapse
Affiliation(s)
- Lue Ping Zhao
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - George K Papadopoulos
- Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | - William W Kwok
- Benaroya Research Institute at Virginia Mason, Seattle, WA
| | - Antonis K Moustakas
- Department of Food Science and Technology, Faculty of Environmental Sciences, Ionian University, Argostoli, Cephalonia, Greece
| | - George P Bondinas
- Laboratory of Biophysics, Biochemistry, Biomaterials and Bioprocessing, Faculty of Agricultural Technology, Technological Educational Institute of Epirus, Arta, Greece
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| | - Johnny Ludvigsson
- Crown Princess Victoria Children's Hospital, Region Östergötland, and Division of Pediatrics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Samuelsson
- Crown Princess Victoria Children's Hospital, Region Östergötland, and Division of Pediatrics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Ruihan Wang
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Chul-Woo Pyo
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Wyatt C Nelson
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Daniel E Geraghty
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University CRC, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
9
|
An evolutionarily conserved motif is required for Plasmodesmata-located protein 5 to regulate cell-to-cell movement. Commun Biol 2020; 3:291. [PMID: 32504045 PMCID: PMC7275062 DOI: 10.1038/s42003-020-1007-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 05/04/2020] [Indexed: 11/24/2022] Open
Abstract
Numerous cell surface receptors and receptor-like proteins (RLPs) undergo activation or deactivation via a transmembrane domain (TMD). A subset of plant RLPs distinctively localizes to the plasma membrane-lined pores called plasmodesmata. Those RLPs include the Arabidopsis thaliana Plasmodesmata-located protein (PDLP) 5, which is well known for its vital function regulating plasmodesmal gating and molecular movement between cells. In this study, we report that the TMD, although not a determining factor for the plasmodesmal targeting, serves essential roles for the PDLP5 function. In addition to its role for membrane anchoring, the TMD mediates PDLP5 self-interaction and carries an evolutionarily conserved motif that is essential for PDLP5 to regulate cell-to-cell movement. Computational modeling-based analyses suggest that PDLP TMDs have high propensities to dimerize. We discuss how a specific mode(s) of TMD dimerization might serve as a common mechanism for PDLP5 and other PDLP members to regulate cell-to-cell movement. Wang, Robles-Luna et al demonstrate that in Arabidopsis, the transmembrane domain (TMD) of plasmodesmata-located protein 5 (PDLP5) is required for PDPL5 dimerisation and membrane anchoring. This study suggests the importance of the TMD in the role for PDPL5 in regulating pasmodesmal opening.
Collapse
|
10
|
Salnikov ES, Aisenbrey C, Pokrandt B, Brügger B, Bechinger B. Structure, Topology, and Dynamics of Membrane-Inserted Polypeptides and Lipids by Solid-State NMR Spectroscopy: Investigations of the Transmembrane Domains of the DQ Beta-1 Subunit of the MHC II Receptor and of the COP I Protein p24. Front Mol Biosci 2019; 6:83. [PMID: 31608287 PMCID: PMC6769064 DOI: 10.3389/fmolb.2019.00083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/23/2019] [Indexed: 01/04/2023] Open
Abstract
MHC class II receptors carry important function in adaptive immunity and their malfunctioning is associated with diabetes type I, chronic inflammatory diseases and other autoimmune diseases. The protein assembles from the DQ alpha-1 and DQ beta-1 subunits where the transmembrane domains of these type I membrane proteins have been shown to be involved in homo- and heterodimer formation. Furthermore, the DQ alpha 1 chain carries a sequence motif that has been first identified in the context of p24, a protein involved in the formation of COPI vesicles of the intracellular transport machinery, to specifically interact with sphingomyelin-C18 (SM-C18). Here we investigated the membrane interactions and dynamics of DQ beta-1 in liquid crystalline POPC phospholipid bilayers by oriented 15N solid-state NMR spectroscopy. The 15N resonances are indicative of a helical tilt angle of the membrane anchor sequence around 20°. Two populations can be distinguished by their differential dynamics probably corresponding the DQ beta-1 mono- and homodimer. Whereas, this equilibrium is hardly affected by the addition of 5 mole% SM-C18 a single population is visible in DMPC lipid bilayers suggesting that the lipid saturation is an important parameter. Furthermore, the DQ alpha-1, DQ beta-1 and p24 transmembrane helical domains were reconstituted into POPC or POPC/SM-C18 lipid bilayers where the fatty acyl chain of either the phosphatidylcholine or of the sphingolipid have been deuterated. Interestingly in the presence of both sphingolipid and polypeptide a strong decrease in the innermost membrane order of the POPC palmitoyl chain is observed, an effect that is strongest for DQ beta-1. In contrast, for the first time the polypeptide interactions were monitored by deuteration of the stearoyl chain of SM-C18. The resulting 2H solid-state NMR spectra show an increase in order for p24 and DQ alpha-1 which both carry the SM recognition motif. Thereby the data are suggestive that SM-C18 together with the transmembrane domains form structures imposing positive curvature strain on the surrounding POPC lipids. This effect is attenuated when SM-C18 is recognized by the protein.
Collapse
Affiliation(s)
- Evgeniy S Salnikov
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France
| | | | - Bianca Pokrandt
- Biochemiezentrum der Universität Heidelberg, Heidelberg, Germany
| | - Britta Brügger
- Biochemiezentrum der Universität Heidelberg, Heidelberg, Germany
| | - Burkhard Bechinger
- Université de Strasbourg/CNRS, UMR7177, Institut de Chimie, Strasbourg, France
| |
Collapse
|
11
|
Aisenbrey C, Salnikov ES, Bechinger B. Solid-State NMR Investigations of the MHC II Transmembrane Domains: Topological Equilibria and Lipid Interactions. J Membr Biol 2019; 252:371-384. [PMID: 31187155 DOI: 10.1007/s00232-019-00071-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
Abstract
The major histocompatibility complex class II (MHC II) membrane proteins are key players in the adaptive immune response. An aberrant function of these molecules is associated with a large number of autoimmune diseases such as diabetes type I and chronic inflammatory diseases. The MHC class II is assembled from DQ alpha 1 and DQ beta 1 which come together as a heterodimer through GXXXG-mediated protein-protein interactions and a highly specific protein-sphingomyelin-C18 interaction motif located on DQA1. This association can have important consequences in regulating the function of these membrane proteins. Here, we investigated the structure and topology of the DQA1 and DQB1 transmembrane helical domains by CD-, oriented 2H and 15N solid-state NMR spectroscopies. The spectra at peptide-to-lipid ratios of 0.5 to 2 mol% are indicative of a topological equilibrium involving a helix crossing the membrane with a tilt angle of about 20° and another transmembrane topology with around 30° tilt. The latter is probably representing a dimer. Furthermore, at the lowest peptide-to-lipid ratio, a third polypeptide population becomes obvious. Interestingly, the DQB1 and to a lesser extent the DQA1 transmembrane helical domains exhibit a strong fatty acyl chain disordering effect on the inner segments of the 2H-labelled palmitoyl chain of POPC bilayers. This phosphatidylcholine disordering requires the presence of sphingomyelin-C18 suggesting that the ensemble of transmembrane polypeptide and sphingolipid exerts positive curvature strain.
Collapse
Affiliation(s)
- Christopher Aisenbrey
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Evgeniy S Salnikov
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, 4, Rue Blaise Pascal, 67070, Strasbourg, France
| | - Burkhard Bechinger
- Institut de Chimie, Université de Strasbourg/CNRS, UMR7177, 4, Rue Blaise Pascal, 67070, Strasbourg, France.
| |
Collapse
|
12
|
Dixon AM, Roy S. Role of membrane environment and membrane-spanning protein regions in assembly and function of the Class II Major Histocompatibility complex. Hum Immunol 2019; 80:5-14. [PMID: 30102939 DOI: 10.1016/j.humimm.2018.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/19/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Class II Major Histocompatibility complex (MHC-II) is a polymorphic heterodimer that binds antigen-derived peptides and presents them on the surface of antigen presenting cells. This mechanism of antigen presentation leads to recognition by CD4 T-cells and T-cell activation, making it a critical element of adaptive immune response. For this reason, the structural determinants of MHC-II function have been of great interest for the past 30 years, resulting in a robust structural understanding of the extracellular regions of the complex. However, the membrane-localized regions have also been strongly implicated in protein-protein and protein-lipid interactions that facilitate Class II assembly, transport and function, and it is these regions that are the focus of this review. Here we describe studies that reveal the strong and selective interactions between the transmembrane domains of the MHC α, and invariant chains which, when altered, have broad reaching impacts on antigen presentation and Class II function. We also summarize work that clearly demonstrates the link between membrane lipid composition (particularly the presence of cholesterol) and MHC-II conformation, subsequent peptide binding, and downstream T-cell activation. We have integrated these studies into a comprehensive view of Class II transmembrane domain biology.
Collapse
Affiliation(s)
- Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Syamal Roy
- National Institute of Pharmaceutical Education and Research-Kolkata, 4 Raja SC, Mullick Road, Kolkata 700032, India
| |
Collapse
|
13
|
Thibodeau J, Moulefera MA, Balthazard R. On the structure–function of MHC class II molecules and how single amino acid polymorphisms could alter intracellular trafficking. Hum Immunol 2019; 80:15-31. [DOI: 10.1016/j.humimm.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/25/2018] [Accepted: 10/01/2018] [Indexed: 12/01/2022]
|
14
|
Ancient features of the MHC class II presentation pathway, and a model for the possible origin of MHC molecules. Immunogenetics 2018; 71:233-249. [DOI: 10.1007/s00251-018-1090-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/06/2018] [Indexed: 10/28/2022]
|
15
|
Drake JR. The immunobiology of ubiquitin-dependent B cell receptor functions. Mol Immunol 2018; 101:146-154. [PMID: 29940407 DOI: 10.1016/j.molimm.2018.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/29/2018] [Accepted: 05/24/2018] [Indexed: 02/01/2023]
Abstract
MHC class II-restricted antigen presentation by dendritic cells is necessary for activation of naïve CD4 T cells, whereas class II-restricted antigen presentation by B lymphocytes and macrophages is important for the recruitment of CD4+ helper and regulatory T cells. Antigen presentation by B cells is also important for induction of T cell tolerance. B cells are unique among these three types of MHC class II-expressing antigen presenting cells (APC) as they constitutively express high levels of cell surface class II molecules and express a clonally restricted antigen specific receptor, the B cell receptor (BCR). Here, I review our current understanding of three major steps that underlie the processing and presentation of BCR-bound cognate antigen: (1) endocytosis of antigen-BCR (Ag-BCR) complexes, (2) Ag-BCR trafficking to intracellular antigen processing compartments and (3) generation of antigenic peptide-MHC class II complexes, with a particular focus on the role of BCR ubiquitination in each. I will highlight potential topics for future research and briefly discuss the impact of the cell biology of BCR-mediated antigen processing on the response of the B cell and T cell to the cell-cell interactions mediated by B cell-expressed peptide-class II complexes.
Collapse
Affiliation(s)
- James R Drake
- Albany Medical College, Department of Immunology and Microbial Disease, 47 New Scotland Ave., MC-151, Albany, NY 12208-3479, United States.
| |
Collapse
|
16
|
Kaufman J. Unfinished Business: Evolution of the MHC and the Adaptive Immune System of Jawed Vertebrates. Annu Rev Immunol 2018; 36:383-409. [DOI: 10.1146/annurev-immunol-051116-052450] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jim Kaufman
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB2 0ES, United Kingdom
| |
Collapse
|
17
|
Anderson SM, Mueller BK, Lange EJ, Senes A. Combination of Cα-H Hydrogen Bonds and van der Waals Packing Modulates the Stability of GxxxG-Mediated Dimers in Membranes. J Am Chem Soc 2017; 139:15774-15783. [PMID: 29028318 PMCID: PMC5927632 DOI: 10.1021/jacs.7b07505] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The GxxxG motif is frequently found at the dimerization interface of a transmembrane structural motif called GASright, which is characterized by a short interhelical distance and a right-handed crossing angle between the helices. In GASright dimers, such as glycophorin A (GpA), BNIP3, and members of the ErbB family, the backbones of the helices are in contact, and they invariably display networks of 4 to 8 weak hydrogen bonds between Cα-H carbon donors and carbonyl acceptors on opposing helices (Cα-H···O═C hydrogen bonds). These networks of weak hydrogen bonds at the helix-helix interface are presumably stabilizing, but their energetic contribution to dimerization has yet to be determined experimentally. Here, we present a computational and experimental structure-based analysis of GASright dimers of different predicted stabilities, which show that a combination of van der Waals packing and Cα-H hydrogen bonding predicts the experimental trend of dimerization propensities. This finding provides experimental support for the hypothesis that the networks of Cα-H hydrogen bonds are major contributors to the free energy of association of GxxxG-mediated dimers. The structural comparison between groups of GASright dimers of different stabilities reveals distinct sequence as well as conformational preferences. Stability correlates with shorter interhelical distances, narrower crossing angles, better packing, and the formation of larger networks of Cα-H hydrogen bonds. The identification of these structural rules provides insight on how nature could modulate stability in GASright and finely tune dimerization to support biological function.
Collapse
Affiliation(s)
- Samantha M Anderson
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Benjamin K Mueller
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Evan J Lange
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin-Madison , 433 Babcock Drive, Madison, Wisconsin 53706, United States
| |
Collapse
|
18
|
Bauer J, Bakke O, Morth JP. Overview of the membrane-associated RING-CH (MARCH) E3 ligase family. N Biotechnol 2017; 38:7-15. [DOI: 10.1016/j.nbt.2016.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/05/2016] [Accepted: 12/13/2016] [Indexed: 12/17/2022]
|
19
|
Adler LN, Jiang W, Bhamidipati K, Millican M, Macaubas C, Hung SC, Mellins ED. The Other Function: Class II-Restricted Antigen Presentation by B Cells. Front Immunol 2017; 8:319. [PMID: 28386257 PMCID: PMC5362600 DOI: 10.3389/fimmu.2017.00319] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/07/2017] [Indexed: 12/31/2022] Open
Abstract
Mature B lymphocytes (B cells) recognize antigens using their B cell receptor (BCR) and are activated to become antibody-producing cells. In addition, and integral to the development of a high-affinity antibodies, B cells utilize the specialized major histocompatibility complex class II (MHCII) antigen presentation pathway to process BCR-bound and internalized protein antigens and present selected peptides in complex with MHCII to CD4+ T cells. This interaction influences the fate of both types of lymphocytes and shapes immune outcomes. Specific, effective, and optimally timed antigen presentation by B cells requires well-controlled intracellular machinery, often regulated by the combined effects of several molecular events. Here, we delineate and summarize these events in four steps along the antigen presentation pathway: (1) antigen capture and uptake by B cells; (2) intersection of internalized antigen/BCRs complexes with MHCII in peptide-loading compartments; (3) generation and regulation of MHCII/peptide complexes; and (4) exocytic transport for presentation of MHCII/peptide complexes at the surface of B cells. Finally, we discuss modulation of the MHCII presentation pathway across B cell development and maturation to effector cells, with an emphasis on the shaping of the MHCII/peptide repertoire by two key antigen presentation regulators in B cells: HLA-DM and HLA-DO.
Collapse
Affiliation(s)
- Lital N Adler
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Wei Jiang
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | | | | | - Claudia Macaubas
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Shu-Chen Hung
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| | - Elizabeth D Mellins
- Department of Pediatrics, Stanford University, Stanford, CA, USA; Program in Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
20
|
Kaul S, Xu H, Zabalawi M, Maruko E, Fulp BE, Bluemn T, Brzoza-Lewis KL, Gerelus M, Weerasekera R, Kallinger R, James R, Zhang YS, Thomas MJ, Sorci-Thomas MG. Lipid-Free Apolipoprotein A-I Reduces Progression of Atherosclerosis by Mobilizing Microdomain Cholesterol and Attenuating the Number of CD131 Expressing Cells: Monitoring Cholesterol Homeostasis Using the Cellular Ester to Total Cholesterol Ratio. J Am Heart Assoc 2016; 5:JAHA.116.004401. [PMID: 27821400 PMCID: PMC5210328 DOI: 10.1161/jaha.116.004401] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disorder whose development is inversely correlated with high-density lipoprotein concentration. Current therapies involve pharmaceuticals that significantly elevate plasma high-density lipoprotein cholesterol concentrations. Our studies were conducted to investigate the effects of low-dose lipid-free apolipoprotein A-I (apoA-I) on chronic inflammation. The aims of these studies were to determine how subcutaneously injected lipid-free apoA-I reduces accumulation of lipid and immune cells within the aortic root of hypercholesterolemic mice without sustained elevations in plasma high-density lipoprotein cholesterol concentrations. METHODS AND RESULTS Ldlr-/- and Ldlr-/- apoA-I-/- mice were fed a Western diet for a total of 12 weeks. After 6 weeks, a subset of mice from each group received subcutaneous injections of 200 μg of lipid-free human apoA-I 3 times a week, while the other subset received 200 μg of albumin, as a control. Mice treated with lipid-free apoA-I showed a decrease in cholesterol deposition and immune cell retention in the aortic root compared with albumin-treated mice, regardless of genotype. This reduction in atherosclerosis appeared to be directly related to a decrease in the number of CD131 expressing cells and the esterified cholesterol to total cholesterol content in several immune cell compartments. In addition, apoA-I treatment altered microdomain cholesterol composition that shifted CD131, the common β subunit of the interleukin 3 receptor, from lipid raft to nonraft fractions of the plasma membrane. CONCLUSIONS ApoA-I treatment reduced lipid and immune cell accumulation within the aortic root by systemically reducing microdomain cholesterol content in immune cells. These data suggest that lipid-free apoA-I mediates beneficial effects through attenuation of immune cell lipid raft cholesterol content, which affects numerous types of signal transduction pathways that rely on microdomain integrity for assembly and activation.
Collapse
Affiliation(s)
- Sushma Kaul
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Hao Xu
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Manal Zabalawi
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Elisa Maruko
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Brian E Fulp
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Theresa Bluemn
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| | - Kristina L Brzoza-Lewis
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Mark Gerelus
- Section of Molecular Medicine, and Biochemistry, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Rachel Kallinger
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Roland James
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI.,TOPS Obesity and Metabolic Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Yi Sherry Zhang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI.,Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI.,TOPS Obesity and Metabolic Research Center, Medical College of Wisconsin, Milwaukee, WI
| | - Michael J Thomas
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| | - Mary G Sorci-Thomas
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI .,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
21
|
Abstract
Elevated levels of cholesteryl ester (CE)-enriched apoB containing plasma lipoproteins lead to increased foam cell formation, the first step in the development of atherosclerosis. Unregulated uptake of low-density lipoprotein cholesterol by circulating monocytes and other peripheral blood cells takes place through scavenger receptors and over time causes disruption in cellular cholesterol homeostasis. As lipoproteins are taken up, their CE core is hydrolyzed by liposomal lipases to generate free cholesterol (FC). FC can be either re-esterified and stored as CE droplets or shuttled to the plasma membrane for ATP-binding cassette transporter A1-mediated efflux. Because cholesterol is an essential component of all cellular membranes, some FC may be incorporated into microdomains or lipid rafts. These platforms are essential for receptor signaling and transduction, requiring rapid assembly and disassembly. ATP-binding cassette transporter A1 plays a major role in regulating microdomain cholesterol and is most efficient when lipid-poor apolipoprotein AI (apoAI) packages raft cholesterol into soluble particles that are eventually catabolized by the liver. If FC is not effluxed from the cell, it becomes esterified, CE droplets accumulate and microdomain cholesterol content becomes poorly regulated. This dysregulation leads to prolonged activation of immune cell signaling pathways, resulting in receptor oversensitization. The availability of apoAI or other amphipathic α-helix-rich apoproteins relieves the burden of excess microdomain cholesterol in immune cells allowing a reduction in immune cell proliferation and infiltration, thereby stimulating regression of foam cells in the artery. Therefore, cellular balance between FC and CE is essential for proper immune cell function and prevents chronic immune cell overstimulation and proliferation.
Collapse
Affiliation(s)
- Mary G Sorci-Thomas
- From the Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine and Senior Investigator, Blood Research Institute, BloodCenter of Wisconsin (M.G.S.-T.) and Department of Pharmacology and Toxicology (M.J.T.), Medical College of Wisconsin, Milwaukee, WI.
| | - Michael J Thomas
- From the Division of Endocrinology, Metabolism and Clinical Nutrition, Department of Medicine and Senior Investigator, Blood Research Institute, BloodCenter of Wisconsin (M.G.S.-T.) and Department of Pharmacology and Toxicology (M.J.T.), Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
22
|
Drake LA, Drake JR. A triad of molecular regions contribute to the formation of two distinct MHC class II conformers. Mol Immunol 2016; 74:59-70. [PMID: 27148821 DOI: 10.1016/j.molimm.2016.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/18/2016] [Accepted: 04/18/2016] [Indexed: 02/07/2023]
Abstract
MHC class II molecules present antigen-derived peptides to CD4T cells to drive the adaptive immune response. Previous work has established that class II αβ dimers can adopt two distinct conformations, driven by the differential pairing of transmembrane domain GxxxG dimerization motifs. These class II conformers differ in their ability to be loaded with antigen-derived peptide and to effectively engage CD4T cells. Motif 1 (M1) paired I-A(k) class II molecules are efficiently loaded with peptides derived from the processing of B cell receptor-bound antigen, have unique B cell signaling properties and high T cell stimulation activity. The 11-5.2mAb selectively binds M1 paired I-A(k) class II molecules. However, the molecular determinants of 11-5.2 binding are currently unclear. Here, we report the ability of a human class II transmembrane domain to drive both M1 and M2 class II conformer formation. Protease sensitivity analysis further strengthens the idea that there are conformational differences between the extracellular domains of M1 and M2 paired class II. Finally, MHC class II chain alignments and site directed mutagenesis reveals a triad of molecular regions that contributes to 11-5.2mAb binding. In addition to transmembrane GxxxG motif domain pairing, 11-5.2 binding is influenced directly by α chain residue Glu-71 and indirectly by the region around the inter-chain salt bridge formed by α chain Arg-52 and β chain Glu-86. These findings provide insight into the complexity of 11-5.2mAb recognition of the M1 paired I-A(k) class II conformer and further highlight the molecular heterogeneity of peptide-MHC class II complexes that drive T cell antigen recognition.
Collapse
Affiliation(s)
- Lisa A Drake
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Ave, MC-151, Albany, NY 12208, United States
| | - James R Drake
- Center for Immunology and Microbial Disease, Albany Medical College, 47 New Scotland Ave, MC-151, Albany, NY 12208, United States.
| |
Collapse
|
23
|
Harton J, Jin L, Hahn A, Drake J. Immunological Functions of the Membrane Proximal Region of MHC Class II Molecules. F1000Res 2016; 5. [PMID: 27006762 PMCID: PMC4798158 DOI: 10.12688/f1000research.7610.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2016] [Indexed: 12/30/2022] Open
Abstract
Major histocompatibility complex (MHC) class II molecules present exogenously derived antigen peptides to CD4 T cells, driving activation of naïve T cells and supporting CD4-driven immune functions. However, MHC class II molecules are not inert protein pedestals that simply bind and present peptides. These molecules also serve as multi-functional signaling molecules delivering activation, differentiation, or death signals (or a combination of these) to B cells, macrophages, as well as MHC class II-expressing T cells and tumor cells. Although multiple proteins are known to associate with MHC class II, interaction with STING (stimulator of interferon genes) and CD79 is essential for signaling. In addition, alternative transmembrane domain pairing between class II α and β chains influences association with membrane lipid sub-domains, impacting both signaling and antigen presentation. In contrast to the membrane-distal region of the class II molecule responsible for peptide binding and T-cell receptor engagement, the membrane-proximal region (composed of the connecting peptide, transmembrane domain, and cytoplasmic tail) mediates these "non-traditional" class II functions. Here, we review the literature on the function of the membrane-proximal region of the MHC class II molecule and discuss the impact of this aspect of class II immunobiology on immune regulation and human disease.
Collapse
Affiliation(s)
- Jonathan Harton
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, 12208-3479, USA
| | - Lei Jin
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, 12208-3479, USA
| | - Amy Hahn
- Transplantation Immunology Laboratory, Albany Medical College, Albany, New York, 12208-3479, USA
| | - Jim Drake
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York, 12208-3479, USA
| |
Collapse
|
24
|
Monos D, Maiers MJ. Progressing towards the complete and thorough characterization of the HLA genes by NGS (or single-molecule DNA sequencing): Consequences, opportunities and challenges. Hum Immunol 2015; 76:883-6. [PMID: 26455298 DOI: 10.1016/j.humimm.2015.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Dimitri Monos
- Immunogenetics Laboratory, The Children's Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, 707A Abramson Research Bldg., 3615 Civic Center Blvd., Philadelphia, PA 19104, United States.
| | - Martin J Maiers
- Bioinformatics Research, National Marrow Donor Program
- Be The Match, Minneapolis, MN, United States
| |
Collapse
|
25
|
Barroso M, Tucker H, Drake L, Nichol K, Drake JR. Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules. J Biol Chem 2015; 290:27101-27112. [PMID: 26400081 DOI: 10.1074/jbc.m115.649582] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 01/09/2023] Open
Abstract
Antigen processing and MHC class II-restricted antigen presentation by antigen-presenting cells such as dendritic cells and B cells allows the activation of naïve CD4+ T cells and cognate interactions between B cells and effector CD4+ T cells, respectively. B cells are unique among class II-restricted antigen-presenting cells in that they have a clonally restricted antigen-specific receptor, the B cell receptor (BCR), which allows the cell to recognize and respond to trace amounts of foreign antigen present in a sea of self-antigens. Moreover, engagement of peptide-class II complexes formed via BCR-mediated processing of cognate antigen has been shown to result in a unique pattern of B cell activation. Using a combined biochemical and imaging/FRET approach, we establish that internalized antigen-BCR complexes associate with intracellular class II molecules. We demonstrate that the M1-paired MHC class II conformer, shown previously to be critical for CD4 T cell activation, is incorporated selectively into these complexes and loaded selectively with peptide derived from BCR-internalized cognate antigen. These results demonstrate that, in B cells, internalized antigen-BCR complexes associate with intracellular MHC class II molecules, potentially defining a site of class II peptide acquisition, and reveal a selective role for the M1-paired class II conformer in the presentation of cognate antigen. These findings provide key insights into the molecular mechanisms used by B cells to control the source of peptides charged onto class II molecules, allowing the immune system to mount an antibody response focused on BCR-reactive cognate antigen.
Collapse
Affiliation(s)
- Margarida Barroso
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Heidi Tucker
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208
| | - Lisa Drake
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208
| | - Kathleen Nichol
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208
| | - James R Drake
- Center for Immunology and Microbial Disease, Albany Medical College, Albany, New York 12208.
| |
Collapse
|
26
|
Abstract
Transmembrane (TM) helices of integral membrane proteins can facilitate strong and specific noncovalent protein-protein interactions. Mutagenesis and structural analyses have revealed numerous examples in which the interaction between TM helices of single-pass membrane proteins is dependent on a GxxxG or (small)xxx(small) motif. It is therefore tempting to use the presence of these simple motifs as an indicator of TM helix interactions. In this Current Topic review, we point out that these motifs are quite common, with more than 50% of single-pass TM domains containing a (small)xxx(small) motif. However, the actual interaction strength of motif-containing helices depends strongly on sequence context and membrane properties. In addition, recent studies have revealed several GxxxG-containing TM domains that interact via alternative interfaces involving hydrophobic, polar, aromatic, or even ionizable residues that do not form recognizable motifs. In multipass membrane proteins, GxxxG motifs can be important for protein folding, and not just oligomerization. Our current knowledge thus suggests that the presence of a GxxxG motif alone is a weak predictor of protein dimerization in the membrane.
Collapse
Affiliation(s)
- Mark G Teese
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München , 85354 Freising, Germany.,Center for Integrated Protein Science Munich (CIPSM) , 81377 Munich, Germany
| | - Dieter Langosch
- Lehrstuhl für Chemie der Biopolymere, Technische Universität München , 85354 Freising, Germany.,Center for Integrated Protein Science Munich (CIPSM) , 81377 Munich, Germany
| |
Collapse
|
27
|
Parrish HL, Glassman CR, Keenen MM, Deshpande NR, Bronnimann MP, Kuhns MS. A Transmembrane Domain GGxxG Motif in CD4 Contributes to Its Lck-Independent Function but Does Not Mediate CD4 Dimerization. PLoS One 2015; 10:e0132333. [PMID: 26147390 PMCID: PMC4493003 DOI: 10.1371/journal.pone.0132333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 06/14/2015] [Indexed: 12/24/2022] Open
Abstract
CD4 interactions with class II major histocompatibility complex (MHC) molecules are essential for CD4+ T cell development, activation, and effector functions. While its association with p56lck (Lck), a Src kinase, is important for these functions CD4 also has an Lck-independent role in TCR signaling that is incompletely understood. Here, we identify a conserved GGxxG motif in the CD4 transmembrane domain that is related to the previously described GxxxG motifs of other proteins and predicted to form a flat glycine patch in a transmembrane helix. In other proteins, these patches have been reported to mediate dimerization of transmembrane domains. Here we show that introducing bulky side-chains into this patch (GGxxG to GVxxL) impairs the Lck-independent role of CD4 in T cell activation upon TCR engagement of agonist and weak agonist stimulation. However, using Forster’s Resonance Energy Transfer (FRET), we saw no evidence that these mutations decreased CD4 dimerization either in the unliganded state or upon engagement of pMHC concomitantly with the TCR. This suggests that the CD4 transmembrane domain is either mediating interactions with an unidentified partner, or mediating some other function such as membrane domain localization that is important for its role in T cell activation.
Collapse
Affiliation(s)
- Heather L. Parrish
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Caleb R. Glassman
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Madeline M. Keenen
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Neha R. Deshpande
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Matthew P. Bronnimann
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
| | - Michael S. Kuhns
- Department of Immunobiology, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- The Arizona Center on Aging, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- The BIO-5 Institute, The University of Arizona College of Medicine, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|