1
|
Mesnard CS, Hays CL, Townsend LE, Barta CL, Gurumurthy CB, Thoreson WB. Synaptotagmin-9 in mouse retina. Vis Neurosci 2024; 41:E003. [PMID: 39291699 PMCID: PMC11417998 DOI: 10.1017/s0952523824000026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/18/2024] [Accepted: 05/14/2024] [Indexed: 09/19/2024]
Abstract
Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-Cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.
Collapse
Affiliation(s)
- Chris S. Mesnard
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cassandra L. Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Medical Education, Creighton University, Omaha, NE, USA
| | - Lou E. Townsend
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Cody L. Barta
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | | | - Wallace B. Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
2
|
Niklaus S, Glasauer SMK, Kovermann P, Farshori KF, Cadetti L, Früh S, Rieser NN, Gesemann M, Zang J, Fahlke C, Neuhauss SCF. Glutamate transporters are involved in direct inhibitory synaptic transmission in the vertebrate retina. Open Biol 2024; 14:240140. [PMID: 39079673 PMCID: PMC11288666 DOI: 10.1098/rsob.240140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/12/2024] [Indexed: 08/03/2024] Open
Abstract
In the central nervous system of vertebrates, glutamate serves as the primary excitatory neurotransmitter. However, in the retina, glutamate released from photoreceptors causes hyperpolarization in post-synaptic ON-bipolar cells through a glutamate-gated chloride current, which seems paradoxical. Our research reveals that this current is modulated by two excitatory glutamate transporters, EAAT5b and EAAT7. In the zebrafish retina, these transporters are located at the dendritic tips of ON-bipolar cells and interact with all four types of cone photoreceptors. The absence of these transporters leads to a decrease in ON-bipolar cell responses, with eaat5b mutants being less severely affected than eaat5b/eaat7 double mutants, which also exhibit altered response kinetics. Biophysical investigations establish that EAAT7 is an active glutamate transporter with a predominant anion conductance. Our study is the first to demonstrate the direct involvement of post-synaptic glutamate transporters in inhibitory direct synaptic transmission at a central nervous system synapse.
Collapse
Affiliation(s)
- Stephanie Niklaus
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Stella M. K. Glasauer
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Peter Kovermann
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Leo-Brandt-Strasse, 52425 Jülich, Germany
| | - Kulsum F. Farshori
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Lucia Cadetti
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Simon Früh
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Nicolas N. Rieser
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Matthias Gesemann
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jingjing Zang
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Leo-Brandt-Strasse, 52425 Jülich, Germany
| | - Stephan C. F. Neuhauss
- Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
Feng Y, Zhang M, Jia SY, Guo YX, Jia X. Dexamethasone alleviates etomidate-induced myoclonus by reversing the inhibition of excitatory amino acid transporters. Front Neurosci 2024; 18:1399653. [PMID: 38979126 PMCID: PMC11228700 DOI: 10.3389/fnins.2024.1399653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/27/2024] [Indexed: 07/10/2024] Open
Abstract
Background Etomidate can induce myoclonus with an incidence of 50 ~ 85% during anesthesia induction. Dexamethasone, as a long-acting synthetic glucocorticoid, has neuroprotective effects. However, the effects of dexamethasone on the etomidate-induced myoclonus remain uncertain. Methods Adult male Sprague-Dawley rats were randomly assigned to receive etomidate (1.5 mg/kg) plus dexamethasone (4 mg/kg) (etomidate plus dexamethasone group) or etomidate (1.5 mg/kg) plus the same volume of normal saline (NS) (etomidate plus NS group). The mean behavioral scores, local field potentials and muscular tension were recorded to explore the effects of dexamethasone on etomidate-induced myoclonus. Liquid chromatography coupled with tandem mass spectrometric system (LC-MS/MS), quantitative real-time polymerase chain reaction (qRT-PCR), and western blotting were applied to analyze the levels of glutamate and γ-aminobutyric acid (GABA), the mRNA and protein expression of excitatory amino acid transporters (EAATs), and plasma corticosterone levels at different time points after anesthesia. Results Compared with the etomidate plus NS treatment, the etomidate plus dexamethasone treatment significantly decreased the mean behavioral score at 1, 3, 4, and 5 min after administration; the peak power spectral density (PSD) (p = 0.0197) in the analysis of ripple waves; and the glutamate level (p = 0.0139) in the neocortex. However, compared with etomidate plus NS, etomidate plus dexamethasone increased the expression of the neocortical proteins of EAAT1 (p = 0.0207) and EAAT2 (p = 0.0022) and aggravated the inhibition of corticosterone at 4 h (p = 0.0019), 5 h (p = 0.0041), and 6 h (p = 0.0009) after administration. Conclusion Dexamethasone can attenuate the myoclonus, inhibit the glutamate accumulation, and reverse the suppression of EAATs in the neocortex induced by etomidate following myoclonus, while conversely aggravating etomidate-induced adrenal suppression.
Collapse
Affiliation(s)
- Yan Feng
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Anesthesiology, Sichuan Integrative Medicine Hospital, Chengdu, China
| | - Min Zhang
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Shuai-Ying Jia
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yan-Xia Guo
- Department of Anesthesiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xue Jia
- Department of Anesthesiology, Sichuan Integrative Medicine Hospital, Chengdu, China
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Mesnard CS, Hays CL, Townsend LE, Barta CL, Gurumurthy CB, Thoreson WB. SYNAPTOTAGMIN-9 IN MOUSE RETINA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.27.546758. [PMID: 37425946 PMCID: PMC10327071 DOI: 10.1101/2023.06.27.546758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Synaptotagmin-9 (Syt9) is a Ca2+ sensor mediating fast synaptic release expressed in various parts of the brain. The presence and role of Syt9 in retina is unknown. We found evidence for Syt9 expression throughout the retina and created mice to conditionally eliminate Syt9 in a cre-dependent manner. We crossed Syt9fl/fl mice with Rho-iCre, HRGP-Cre, and CMV-cre mice to generate mice in which Syt9 was eliminated from rods (rodSyt9CKO), cones (coneSyt9CKO), or whole animals (CMVSyt9). CMVSyt9 mice showed an increase in scotopic electroretinogram (ERG) b-waves evoked by bright flashes with no change in a-waves. Cone-driven photopic ERG b-waves were not significantly different in CMVSyt9 knockout mice and selective elimination of Syt9 from cones had no effect on ERGs. However, selective elimination from rods decreased scotopic and photopic b-waves as well as oscillatory potentials. These changes occurred only with bright flashes where cone responses contribute. Synaptic release was measured in individual rods by recording anion currents activated by glutamate binding to presynaptic glutamate transporters. Loss of Syt9 from rods had no effect on spontaneous or depolarization-evoked release. Our data show that Syt9 is acts at multiple sites in the retina and suggest that it may play a role in regulating transmission of cone signals by rods.
Collapse
Affiliation(s)
- Chris S. Mesnard
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Cassandra L. Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Department of Medical Education, Creighton University, Omaha, NE 68178
| | - Lou E. Townsend
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | - Cody L. Barta
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
| | | | - Wallace B. Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE 68106, USA
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68106, USA
| |
Collapse
|
5
|
Thoreson WB, Chhunchha B. EAAT5 glutamate transporter rapidly binds glutamate with micromolar affinity in mouse rods. J Gen Physiol 2023; 155:e202313349. [PMID: 37477643 PMCID: PMC10359920 DOI: 10.1085/jgp.202313349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/17/2023] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
Light responses of rod photoreceptor cells in the retina are encoded by changes in synaptic glutamate release that is in turn shaped by reuptake involving EAAT5 plasma membrane glutamate transporters. Heterologously expressed EAAT5 activates too slowly upon glutamate binding to support significant uptake. We tested EAAT5 activation in mouse rods in vivo by stimulating glutamate transporter anion currents (IA(glu)) with UV flash photolysis of MNI-glutamate, varying flash intensity to vary glutamate levels. Responses to uncaging rose rapidly with time constants of 2-3 ms, similar to IA(glu) events arising from spontaneous release. Spontaneous release events and IA(glu) evoked by weak flashes also declined with similar time constants of 40-50 ms. Stronger flashes evoked responses that decayed more slowly. Time constants were twofold faster at 35°C, suggesting that they reflect transporter kinetics, not diffusion. Selective EAAT1 and EAAT2 inhibitors had no significant effect, suggesting IA(glu) in rods arises solely from EAAT5. We calibrated glutamate levels attained during flash photolysis by expressing a fluorescent glutamate sensor iGluSnFr in cultured epithelial cells. We compared fluorescence at different glutamate concentrations to fluorescence evoked by photolytic uncaging of MNI-glutamate. The relationship between flash intensity and glutamate yielded EC50 values for EAAT5 amplitude, decay time, and rise time of ∼10 μM. Micromolar affinity and rapid activation of EAAT5 in rods show it can rapidly bind synaptic glutamate. However, we also found that EAAT5 currents are saturated by the synchronous release of only a few vesicles, suggesting limited capacity and a role for glial uptake at higher release rates.
Collapse
Affiliation(s)
- Wallace B. Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, Omaha, NE, USA
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, Omaha, NE, USA
| |
Collapse
|
6
|
Suslova M, Kortzak D, Machtens JP, Kovermann P, Fahlke C. Apo state pore opening as functional basis of increased EAAT anion channel activity in episodic ataxia 6. Front Physiol 2023; 14:1147216. [PMID: 37538371 PMCID: PMC10394623 DOI: 10.3389/fphys.2023.1147216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/07/2023] [Indexed: 08/05/2023] Open
Abstract
SLC1A2 and SLC1A3 encode the glial glutamate transporters EAAT2 and EAAT1, which are not only the predominant glutamate uptake carriers in our brain, but also function as anion channels. Two homologous mutations, which predict substitutions of prolines in the center of the fifth transmembrane helix by arginine (P289R EAAT2, P290R EAAT1), have been identified in patients with epileptic encephalopathy (SLC1A2) or with episodic ataxia type 6 (SLC1A3). Both mutations have been shown to impair glutamate uptake and to increase anion conduction. The molecular processes that link the disease-causing mutations to two major alterations of glutamate transporter function remain insufficiently understood. The mutated proline is conserved in every EAAT. Since the pathogenic changes mainly affect the anion channel function, we here study the functional consequences of the homologous P312R mutation in the neuronal glutamate transporter EAAT4, a low capacity glutamate transporter with predominant anion channel function. To assess the impact of charge and structure of the inserted amino acid for the observed functional changes, we generated and functionally evaluated not only P312R, but also substitutions of P312 with all other amino acids. However, only exchange of proline by arginine, lysine, histidine and asparagine were functionally tolerated. We compared WT, P312R and P312N EAAT4 using a combination of cellular electrophysiology, fast substrate application and kinetic modelling. We found that WT and mutant EAAT4 anion currents can be described with a 11-state model of the transport cycle, in which several states are connected to branching anion channel states to account for the EAAT anion channel function. Substitutions of P312 modify various transitions describing substrate binding/unbinding, translocation or anion channel opening. Most importantly, P312R generates a new anion conducting state that is accessible in the outward facing apo state and that is the main determinant of the increased anion conduction of EAAT transporters carrying this mutation. Our work provides a quantitative description how a naturally occurring mutation changes glutamate uptake and anion currents in two genetic diseases.
Collapse
|
7
|
Mesnard CS, Hays CL, Barta CL, Sladek AL, Grassmeyer JJ, Hinz KK, Quadros RM, Gurumurthy CB, Thoreson WB. Synaptotagmins 1 and 7 in vesicle release from rods of mouse retina. Exp Eye Res 2022; 225:109279. [PMID: 36280223 PMCID: PMC9830644 DOI: 10.1016/j.exer.2022.109279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 01/13/2023]
Abstract
Synaptotagmins are the primary Ca2+ sensors for synaptic exocytosis. Previous work suggested synaptotagmin-1 (Syt1) mediates evoked vesicle release from cone photoreceptor cells in the vertebrate retina whereas release from rods may involve another sensor in addition to Syt1. We found immunohistochemical evidence for syntaptotagmin-7 (Syt7) in mouse rod terminals and so performed electroretinograms (ERG) and single-cell recordings using mice in which Syt1 and/or Syt7 were conditionally removed from rods and/or cones. Synaptic release was measured in mouse rods by recording presynaptic anion currents activated during glutamate re-uptake and from exocytotic membrane capacitance changes. Deleting Syt1 from rods reduced glutamate release evoked by short depolarizing steps but not long steps whereas deleting Syt7 from rods reduced release evoked by long but not short steps. Deleting both sensors completely abolished depolarization-evoked release from rods. Effects of various intracellular Ca2+ buffers showed that Syt1-mediated release from rods involves vesicles close to ribbon-associated Ca2+ channels whereas Syt7-mediated release evoked by longer steps involves more distant release sites. Spontaneous release from rods was unaffected by eliminating Syt7. While whole animal knockout of Syt7 slightly reduced ERG b-waves and oscillatory potentials, selective elimination of Syt7 from rods had no effect on ERGs. Furthermore, eliminating Syt1 from rods and cones abolished ERG b-waves and additional elimination of Syt7 had no further effect. These results show that while Syt7 contributes to slow non-ribbon release from rods, Syt1 is the principal sensor shaping rod and cone inputs to bipolar cells in response to light flashes.
Collapse
Affiliation(s)
- C S Mesnard
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA; Pharmacology and Experimental Neuroscience, USA
| | - C L Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
| | - C L Barta
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
| | - A L Sladek
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
| | - J J Grassmeyer
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA; Pharmacology and Experimental Neuroscience, USA
| | - K K Hinz
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA
| | - R M Quadros
- Pharmacology and Experimental Neuroscience, USA; Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - C B Gurumurthy
- Pharmacology and Experimental Neuroscience, USA; Mouse Genome Engineering Core Facility, Vice Chancellor for Research Office, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68106, USA
| | - W B Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, USA; Pharmacology and Experimental Neuroscience, USA.
| |
Collapse
|
8
|
Mesnard CS, Barta CL, Sladek AL, Zenisek D, Thoreson WB. Eliminating Synaptic Ribbons from Rods and Cones Halves the Releasable Vesicle Pool and Slows Down Replenishment. Int J Mol Sci 2022; 23:6429. [PMID: 35742873 PMCID: PMC9223732 DOI: 10.3390/ijms23126429] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/05/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamate release from rod and cone photoreceptor cells involves presynaptic ribbons composed largely of the protein RIBEYE. To examine roles of ribbons in rods and cones, we studied mice in which GCamP3 replaced the B-domain of RIBEYE. We discovered that ribbons were absent from rods and cones of both knock-in mice possessing GCamP3 and conditional RIBEYE knockout mice. The mice lacking ribbons showed reduced temporal resolution and contrast sensitivity assessed with optomotor reflexes. ERG recordings showed 50% reduction in scotopic and photopic b-waves. The readily releasable pool (RRP) of vesicles in rods and cones measured using glutamate transporter anion currents (IA(glu)) was also halved. We also studied the release from cones by stimulating them optogenetically with ChannelRhodopsin2 (ChR2) while recording postsynaptic currents in horizontal cells. Recovery of the release from paired pulse depression was twofold slower in the rods and cones lacking ribbons. The release from rods at -40 mV in darkness involves regularly spaced multivesicular fusion events. While the regular pattern of release remained in the rods lacking ribbons, the number of vesicles comprising each multivesicular event was halved. Our results support conclusions that synaptic ribbons in rods and cones expand the RRP, speed up vesicle replenishment, and augment some forms of multivesicular release. Slower replenishment and a smaller RRP in photoreceptors lacking ribbons may contribute to diminished temporal frequency responses and weaker contrast sensitivity.
Collapse
Affiliation(s)
- Chris S. Mesnard
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.S.M.); (C.L.B.); (A.L.S.)
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Cody L. Barta
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.S.M.); (C.L.B.); (A.L.S.)
| | - Asia L. Sladek
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.S.M.); (C.L.B.); (A.L.S.)
| | - David Zenisek
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06510, USA;
| | - Wallace B. Thoreson
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA; (C.S.M.); (C.L.B.); (A.L.S.)
- Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
9
|
Tang FS, Yuan HL, Liu JB, Zhang G, Chen SY, Ke JB. Glutamate Transporters EAAT2 and EAAT5 Differentially Shape Synaptic Transmission from Rod Bipolar Cell Terminals. eNeuro 2022; 9:ENEURO.0074-22.2022. [PMID: 35523583 PMCID: PMC9121915 DOI: 10.1523/eneuro.0074-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 11/21/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) control visual signal transmission in the retina by rapidly removing glutamate released from photoreceptors and bipolar cells (BCs). Although it has been reported that EAAT2 and EAAT5 are expressed at presynaptic terminals of photoreceptors and some BCs in mammals, the distinct functions of these two glutamate transporters in retinal synaptic transmission, especially at a single synapse, remain elusive. In this study, we found that EAAT2 was expressed in all BC types while coexisting with EAAT5 in rod bipolar (RB) cells and several types of cone BCs from mice of either sex. Our immunohistochemical study, together with a recently published literature (Gehlen et al., 2021), showed that EAAT2 and EAAT5 were both located in RB axon terminals near release sites. Optogenetic, electrophysiological and pharmacological analyses, however, demonstrated that EAAT2 and EAAT5 regulated neurotransmission at RB→AII amacrine cell synapses in significantly different ways: EAAT5 dramatically affected both the peak amplitude and kinetics of postsynaptic responses in AIIs, whereas EAAT2 had either relatively small or opposite effects. By contrast, blockade of EAAT1/GLAST, which was exclusively expressed in Müller cells, showed no obvious effect on AII responses, indicating that glutamate uptake by Müller cells did not influence synaptic transmission from RB terminals. Furthermore, we found that temporal resolution at RB→AII synapses was reduced substantially by blockade of EAAT5 but not EAAT2. Taken together, our work reveals the distinct functions of EAAT2 and EAAT5 in signal transmission at RB ribbon synapses.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiang-Bin Ke
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| |
Collapse
|
10
|
Pant S, Wu Q, Ryan R, Tajkhorshid E. Microscopic Characterization of the Chloride Permeation Pathway in the Human Excitatory Amino Acid Transporter 1 (EAAT1). ACS Chem Neurosci 2022; 13:776-785. [PMID: 35192345 PMCID: PMC9725111 DOI: 10.1021/acschemneuro.1c00769] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are glutamate transporters that belong to the solute carrier 1A (SLC1A) family. They couple glutamate transport to the cotransport of three sodium (Na+) ions and one proton (H+) and the counter-transport of one potassium (K+) ion. In addition to this coupled transport, binding of cotransported species to EAATs activates a thermodynamically uncoupled chloride (Cl-) conductance. Structures of SLC1A family members have revealed that these transporters use a twisting elevator mechanism of transport, where a mobile transport domain carries substrate and coupled ions across the membrane, while a static scaffold domain anchors the transporter in the membrane. We recently demonstrated that the uncoupled Cl- conductance is activated by the formation of an aqueous pore at the domain interface during the transport cycle in archaeal GltPh. However, a pathway for the uncoupled Cl- conductance has not been reported for the EAATs, and it is unclear if such a pathway is conserved. Here, we employ all-atom molecular dynamics (MD) simulations combined with enhanced sampling, free-energy calculations, and experimental mutagenesis to approximate large-scale conformational changes during the transport process and identified a Cl--conducting conformation in human EAAT1 (hEAAT1). Sampling the large-scale structural transitions in hEAAT1 allowed us to capture an intermediate conformation formed during the transport cycle with a continuous aqueous pore at the domain interface. The free-energy calculations performed for the conduction of Cl- and Na+ ions through the captured conformation highlight the presence of two hydrophobic gates that control low-barrier movement of Cl- through the aqueous pathway. Overall, our findings provide insights into the mechanism by which a human neurotransmitter transporter supports functional duality of active transport and passive Cl- permeation and confirm the commonality of this mechanism in different members of the SLC1A family.
Collapse
Affiliation(s)
- Shashank Pant
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Qianyi Wu
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Renae Ryan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales 2006, Australia
| | - Emad Tajkhorshid
- Theoretical and Computational Biophysics Group, NIH Center for Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and Technology, Department of Biochemistry, and Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Kovermann P, Engels M, Müller F, Fahlke C. Cellular Physiology and Pathophysiology of EAAT Anion Channels. Front Cell Neurosci 2022; 15:815279. [PMID: 35087380 PMCID: PMC8787812 DOI: 10.3389/fncel.2021.815279] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) optimize the temporal resolution and energy demand of mammalian excitatory synapses by quickly removing glutamate from the synaptic cleft into surrounding neuronal and glial cells and ensuring low resting glutamate concentrations. In addition to secondary active glutamate transport, EAATs also function as anion channels. The channel function of these transporters is conserved in all homologs ranging from archaebacteria to mammals; however, its physiological roles are insufficiently understood. There are five human EAATs, which differ in their glutamate transport rates. Until recently the high-capacity transporters EAAT1, EAAT2, and EAAT3 were believed to conduct only negligible anion currents, with no obvious function in cell physiology. In contrast, the low-capacity glutamate transporters EAAT4 and EAAT5 are thought to regulate neuronal signaling as glutamate-gated channels. In recent years, new experimental approaches and novel animal models, together with the discovery of a human genetic disease caused by gain-of-function mutations in EAAT anion channels have enabled identification of the first physiological and pathophysiological roles of EAAT anion channels.
Collapse
|
12
|
Danbolt NC, López-Corcuera B, Zhou Y. Reconstitution of GABA, Glycine and Glutamate Transporters. Neurochem Res 2022; 47:85-110. [PMID: 33905037 PMCID: PMC8763731 DOI: 10.1007/s11064-021-03331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 10/25/2022]
Abstract
In contrast to water soluble enzymes which can be purified and studied while in solution, studies of solute carrier (transporter) proteins require both that the protein of interest is situated in a phospholipid membrane and that this membrane forms a closed compartment. An additional challenge to the study of transporter proteins has been that the transport depends on the transmembrane electrochemical gradients. Baruch I. Kanner understood this early on and first developed techniques for studying plasma membrane vesicles. This advanced the field in that the experimenter could control the electrochemical gradients. Kanner, however, did not stop there, but started to solubilize the membranes so that the transporter proteins were taken out of their natural environment. In order to study them, Kanner then had to find a way to reconstitute them (reinsert them into phospholipid membranes). The scope of the present review is both to describe the reconstitution method in full detail as that has never been done, and also to reveal the scientific impact that this method has had. Kanner's later work is not reviewed here although that also deserves a review because it too has had a huge impact.
Collapse
Affiliation(s)
- Niels Christian Danbolt
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Yun Zhou
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| |
Collapse
|
13
|
Excitatory Amino Acid Transporter EAAT5 Improves Temporal Resolution in the Retina. eNeuro 2021; 8:ENEURO.0406-21.2021. [PMID: 34772693 PMCID: PMC8670604 DOI: 10.1523/eneuro.0406-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/16/2021] [Indexed: 11/21/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) remove glutamate from the synaptic cleft. In the retina, EAAT1 and EAAT2 are considered the major glutamate transporters. However, it has not yet been possible to determine how EAAT5 shapes the retinal light responses because of the lack of a selective EAAT5 blocker or EAAT5 knock-out (KO) animal model. In this study, EAAT5 was found to be expressed in a punctate manner close to release sites of glutamatergic synapses in the mouse retina. Light responses from retinae of wild-type (WT) and of a newly generated model with a targeted deletion of EAAT5 (EAAT5-/-) were recorded in vitro using multielectrode arrays (MEAs). Flicker resolution was considerably lower in EAAT5-/- retinae than in WT retinae. The close proximity to the glutamate release site makes EAAT5 an ideal tool to improve temporal information processing in the retina by controlling information transfer at glutamatergic synapses.
Collapse
|
14
|
Hays CL, Sladek AL, Thoreson WB. Resting and stimulated mouse rod photoreceptors show distinct patterns of vesicle release at ribbon synapses. J Gen Physiol 2021; 152:211528. [PMID: 33175961 PMCID: PMC7664508 DOI: 10.1085/jgp.202012716] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/01/2020] [Accepted: 10/19/2020] [Indexed: 01/04/2023] Open
Abstract
The vertebrate visual system can detect and transmit signals from single photons. To understand how single-photon responses are transmitted, we characterized voltage-dependent properties of glutamate release in mouse rods. We measured presynaptic glutamate transporter anion current and found that rates of synaptic vesicle release increased with voltage-dependent Ca2+ current. Ca2+ influx and release rate also rose with temperature, attaining a rate of ∼11 vesicles/s/ribbon at -40 mV (35°C). By contrast, spontaneous release events at hyperpolarized potentials (-60 to -70 mV) were univesicular and occurred at random intervals. However, when rods were voltage clamped at -40 mV for many seconds to simulate maintained darkness, release occurred in coordinated bursts of 17 ± 7 quanta (mean ± SD; n = 22). Like fast release evoked by brief depolarizing stimuli, these bursts involved vesicles in the readily releasable pool of vesicles and were triggered by the opening of nearby ribbon-associated Ca2+ channels. Spontaneous release rates were elevated and bursts were absent after genetic elimination of the Ca2+ sensor synaptotagmin 1 (Syt1). This study shows that at the resting potential in darkness, rods release glutamate-filled vesicles from a pool at the base of synaptic ribbons at low rates but in Syt1-dependent bursts. The absence of bursting in cones suggests that this behavior may have a role in transmitting scotopic responses.
Collapse
Affiliation(s)
- Cassandra L Hays
- Cellular and Integrative Physiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE.,Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Asia L Sladek
- Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Wallace B Thoreson
- Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE.,Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| |
Collapse
|
15
|
Lukasiewcz PD, Bligard GW, DeBrecht JD. EAAT5 Glutamate Transporter-Mediated Inhibition in the Vertebrate Retina. Front Cell Neurosci 2021; 15:662859. [PMID: 34025361 PMCID: PMC8134652 DOI: 10.3389/fncel.2021.662859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/19/2021] [Indexed: 12/29/2022] Open
Abstract
Glutamate transporters typically remove glutamate from the synaptic cleft. In addition, all glutamate transporters have a chloride channel, which is opened upon glutamate binding to the transporter. There are five types of glutamate transporter (EAATs 1–5, excitatory amino acid transporters), which have distinct chloride conductances. Some EAATs that have low chloride conductances, remove glutamate from the synaptic cleft most effectively (e.g., EAAT1). By contrast, EAATs that have high chloride conductances, remove glutamate less effectively (e.g., EAAT5). We have studied EAAT5 in the retina. In the retina, light activates a chloride current, mediated by the glutamate activation of EAAT5. EAAT5 is not a significant contributor to lateral inhibition in the retina. Instead, it is the main source of autoinhibition to rod bipolar cells (RBCs). EAAT5-mediated inhibition has a substantial effect on synaptic transmission from RBCs to downstream retinal neurons.
Collapse
Affiliation(s)
- Peter D Lukasiewcz
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.,Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Gregory W Bligard
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - James D DeBrecht
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| |
Collapse
|
16
|
Hays CL, Sladek AL, Field GD, Thoreson WB. Properties of multivesicular release from mouse rod photoreceptors support transmission of single-photon responses. eLife 2021; 10:67446. [PMID: 33769285 PMCID: PMC8032395 DOI: 10.7554/elife.67446] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 03/20/2021] [Indexed: 01/18/2023] Open
Abstract
Vision under starlight requires rod photoreceptors to transduce and transmit single-photon responses to the visual system. Small single-photon voltage changes must therefore cause detectable reductions in glutamate release. We found that rods achieve this by employing mechanisms that enhance release regularity and its sensitivity to small voltage changes. At the resting membrane potential in darkness, mouse rods exhibit coordinated and regularly timed multivesicular release events, each consisting of ~17 vesicles and occurring two to three times more regularly than predicted by Poisson statistics. Hyperpolarizing rods to mimic the voltage change produced by a single photon abruptly reduced the probability of multivesicular release nearly to zero with a rebound increase at stimulus offset. Simulations of these release dynamics indicate that this regularly timed, multivesicular release promotes transmission of single-photon responses to post-synaptic rod-bipolar cells. Furthermore, the mechanism is efficient, requiring lower overall release rates than uniquantal release governed by Poisson statistics.
Collapse
Affiliation(s)
- Cassandra L Hays
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, United States.,Cellular and Integrative Physiology, Omaha, United States
| | - Asia L Sladek
- Pharmacology and Experimental Neuroscience, Omaha, United States
| | - Greg D Field
- Department of Neurobiology, Duke University School of Medicine, Durham, United States
| | - Wallace B Thoreson
- Truhlsen Eye Institute and Department of Ophthalmology and Visual Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, United States.,Pharmacology and Experimental Neuroscience, Omaha, United States
| |
Collapse
|
17
|
Brymer KJ, Barnes JR, Parsons MP. Entering a new era of quantifying glutamate clearance in health and disease. J Neurosci Res 2021; 99:1598-1617. [PMID: 33618436 DOI: 10.1002/jnr.24810] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Glutamate transporter proteins, expressed on both neurons and glia, serve as the main gatekeepers that dictate the spatial and temporal actions of extracellular glutamate. Glutamate is essential to the function of the healthy brain yet paradoxically contributes to the toxicity associated with many neurodegenerative diseases. Rapid transporter-mediated glutamate uptake, primarily occurring at astrocytic processes, tightens the efficiency of excitatory network activity and prevents toxic glutamate build-up in the extracellular space. Glutamate transporter dysfunction is thought to underlie myriad central nervous system (CNS) diseases including Alzheimer and Huntington disease. Over the past few decades, techniques such as biochemical uptake assays and electrophysiological recordings of transporter currents from individual astrocytes have revealed the remarkable ability of the CNS to efficiently clear extracellular glutamate. In more recent years, the rapidly evolving glutamate-sensing "sniffers" now allow researchers to visualize real-time glutamate transients on a millisecond time scale with single synapse spatial resolution in defined cell populations. As we transition to an increased reliance on optical-based methods of glutamate visualization and quantification, it is of utmost importance to understand not only the advantages that glutamate biosensors bring to the table but also the associated caveats and their implications for data interpretation. In this review, we summarize the strengths and limitations of the commonly used methods to quantify glutamate uptake. We then discuss what these techniques, when viewed as a complementary whole, have told us about the brain's ability to regulate glutamate levels, in both health and in the context of neurodegenerative disease.
Collapse
Affiliation(s)
- Kyle J Brymer
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Jocelyn R Barnes
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Matthew P Parsons
- Faculty of Medicine, Division of Biomedical Sciences, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
18
|
Alleva C, Machtens JP, Kortzak D, Weyand I, Fahlke C. Molecular Basis of Coupled Transport and Anion Conduction in Excitatory Amino Acid Transporters. Neurochem Res 2021; 47:9-22. [PMID: 33587237 PMCID: PMC8763778 DOI: 10.1007/s11064-021-03252-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 12/15/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After its release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by excitatory amino acid transporters (EAATs) 1–5, a subfamily of glutamate transporters. The five proteins utilize a complex transport stoichiometry that couples glutamate transport to the symport of three Na+ ions and one H+ in exchange with one K+ to accumulate glutamate against up to 106-fold concentration gradients. They are also anion-selective channels that open and close during transitions along the glutamate transport cycle. EAATs belong to a larger family of secondary-active transporters, the SLC1 family, which also includes purely Na+- or H+-coupled prokaryotic transporters and Na+-dependent neutral amino acid exchangers. In recent years, molecular cloning, heterologous expression, cellular electrophysiology, fluorescence spectroscopy, structural approaches, and molecular simulations have uncovered the molecular mechanisms of coupled transport, substrate selectivity, and anion conduction in EAAT glutamate transporters. Here we review recent findings on EAAT transport mechanisms, with special emphasis on the highly conserved hairpin 2 gate, which has emerged as the central processing unit in many of these functions.
Collapse
Affiliation(s)
- Claudia Alleva
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Jan-Philipp Machtens
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany.,Institute of Clinical Pharmacology, RWTH Aachen University, Aachen, Germany
| | - Daniel Kortzak
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Ingo Weyand
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Institute of Biological Information Processing, Molekular- und Zellphysiologie (IBI-1), Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
19
|
Sears SM, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med (Maywood) 2021; 246:1069-1083. [PMID: 33554649 DOI: 10.1177/1535370221989263] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An optimally functional brain requires both excitatory and inhibitory inputs that are regulated and balanced. A perturbation in the excitatory/inhibitory balance-as is the case in some neurological disorders/diseases (e.g. traumatic brain injury Alzheimer's disease, stroke, epilepsy and substance abuse) and disorders of development (e.g. schizophrenia, Rhett syndrome and autism spectrum disorder)-leads to dysfunctional signaling, which can result in impaired cognitive and motor function, if not frank neuronal injury. At the cellular level, transmission of glutamate and GABA, the principle excitatory and inhibitory neurotransmitters in the central nervous system control excitatory/inhibitory balance. Herein, we review the synthesis, release, and signaling of GABA and glutamate followed by a focused discussion on the importance of their transport systems to the maintenance of excitatory/inhibitory balance.
Collapse
Affiliation(s)
- Sheila Ms Sears
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
20
|
Todd AC, Hardingham GE. The Regulation of Astrocytic Glutamate Transporters in Health and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:E9607. [PMID: 33348528 PMCID: PMC7766851 DOI: 10.3390/ijms21249607] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 12/24/2022] Open
Abstract
The astrocytic glutamate transporters excitatory amino acid transporters 1 and 2 (EAAT1 and EAAT2) play a key role in nervous system function to maintain extracellular glutamate levels at low levels. In physiology, this is essential for the rapid uptake of synaptically released glutamate, maintaining the temporal fidelity of synaptic transmission. However, EAAT1/2 hypo-expression or hypo-function are implicated in several disorders, including epilepsy and neurodegenerative diseases, as well as being observed naturally with aging. This not only disrupts synaptic information transmission, but in extremis leads to extracellular glutamate accumulation and excitotoxicity. A key facet of EAAT1/2 expression in astrocytes is a requirement for signals from other brain cell types in order to maintain their expression. Recent evidence has shown a prominent role for contact-dependent neuron-to-astrocyte and/or endothelial cell-to-astrocyte Notch signalling for inducing and maintaining the expression of these astrocytic glutamate transporters. The relevance of this non-cell-autonomous dependence to age- and neurodegenerative disease-associated decline in astrocytic EAAT expression is discussed, plus the implications for disease progression and putative therapeutic strategies.
Collapse
Affiliation(s)
- Alison C. Todd
- UK Dementia Research Institute at the University of Edinburgh, Chancellor’s Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK;
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute at the University of Edinburgh, Chancellor’s Building, Edinburgh Medical School, Edinburgh EH16 4SB, UK;
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
21
|
Cao X, Soleimani M, Hughes BA. SLC26A7 constitutes the thiocyanate-selective anion conductance of the basolateral membrane of the retinal pigment epithelium. Am J Physiol Cell Physiol 2020; 319:C641-C656. [PMID: 32726161 DOI: 10.1152/ajpcell.00027.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anion channels in the retinal pigment epithelium (RPE) play an essential role in the transport of Cl- between the outer retina and the choroidal blood to regulate the ionic composition and volume of the subretinal fluid that surrounds the photoreceptor outer segments. Recently, we reported that the anion conductance of the mouse RPE basolateral membrane is highly selective for the biologically active anion thiocyanate (SCN-), a property that does not correspond with any of the Cl- channels that have been found to be expressed in the RPE to date. The purpose of this study was to determine the extent to which SLC26A7, a SCN- permeable-anion exchanger/channel that was reported to be expressed in human RPE, contributes to the RPE basolateral anion conductance. We show by quantitative RT-PCR that Slc26a7 is highly expressed in mouse RPE compared with other members of the Slc26 gene family and Cl- channel genes known to be expressed in the RPE. By applying immunofluorescence microscopy to mouse retinal sections and isolated cells, we localized SLC26A7 to the RPE basolateral membrane. Finally, we performed whole cell and excised patch recordings from RPE cells acutely isolated from Slc26a7 knockout mice to show that the SCN- conductance and permeability of its basolateral membrane are dramatically smaller relative to wild-type mouse RPE cells. These findings establish SLC26A7 as the SCN--selective conductance of the RPE basolateral membrane and provide new insight into the physiology of an anion channel that may participate in anion transport and pH regulation by the RPE.
Collapse
Affiliation(s)
- Xu Cao
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan
| | | | - Bret A Hughes
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
22
|
Kolen B, Kortzak D, Franzen A, Fahlke C. An amino-terminal point mutation increases EAAT2 anion currents without affecting glutamate transport rates. J Biol Chem 2020; 295:14936-14947. [PMID: 32820048 DOI: 10.1074/jbc.ra120.013704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 08/03/2020] [Indexed: 12/16/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) are prototypical dual function proteins that function as coupled glutamate/Na+/H+/K+ transporters and as anion-selective channels. Both transport functions are intimately intertwined at the structural level: Secondary active glutamate transport is based on elevator-like movements of the mobile transport domain across the membrane, and the lateral movement of this domain results in anion channel opening. This particular anion channel gating mechanism predicts the existence of mutant transporters with changed anion channel properties, but without alteration in glutamate transport. We here report that the L46P mutation in the human EAAT2 transporter fulfills this prediction. L46 is a pore-forming residue of the EAAT2 anion channels at the cytoplasmic entrance into the ion conduction pathway. In whole-cell patch clamp recordings, we observed larger macroscopic anion current amplitudes for L46P than for WT EAAT2. Rapid l-glutamate application under forward transport conditions demonstrated that L46P does not reduce the transport rate of individual transporters. In contrast, changes in selectivity made gluconate permeant in L46P EAAT2, and nonstationary noise analysis revealed slightly increased unitary current amplitudes in mutant EAAT2 anion channels. We used unitary current amplitudes and individual transport rates to quantify absolute open probabilities of EAAT2 anion channels from ratios of anion currents by glutamate uptake currents. This analysis revealed up to 7-fold increased absolute open probability of L46P EAAT2 anion channels. Our results reveal an important determinant of the diameter of EAAT2 anion pore and demonstrate the existence of anion channel gating processes outside the EAAT uptake cycle.
Collapse
Affiliation(s)
- Bettina Kolen
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Daniel Kortzak
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Arne Franzen
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany
| | - Christoph Fahlke
- Molekular- und Zellphysiologie (IBI-1), Institute of Biological Information Processing, Forschungszentrum Jülich, Jülich, Germany.
| |
Collapse
|
23
|
Lee A, Balcar VJ, McCombe P, Pow DV. Human brain neurons express a novel splice variant of excitatory amino acid transporter 5 (hEAAT5v). J Comp Neurol 2020; 528:3134-3142. [PMID: 32173860 DOI: 10.1002/cne.24907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 11/08/2022]
Abstract
Excitatory amino acid transporter 5 (EAAT5) is a protein that is known to be alternately spliced and to be abundantly expressed in the retina by populations of neurons including photoreceptors and bipolar cells. EAAT5 acts as a slow glutamate transporter and also as glutamate-gated chloride channel, the chloride conductance being large enough for EAAT5 to serve functionally as an "inhibitory" glutamate receptor. However, there has been a long-standing view that the classically spliced form of EAAT5 is not abundant or widespread in the brain and so it has not been extensively investigated in the literature. We recently identified a human-specific splicing form of EAAT5 that was not expressed by rodents but was shown to be a functional glutamate transporter. We have examined the expression of this form of EAAT5, hEAAT5v at the mRNA, and protein level in human brain, and show that populations of human cortical pyramidal neurons and cerebellar Purkinje cells show significant expression of hEAAT5v. Accordingly, we infer that EAAT5 may well be a player in modulating neuronal function in the human brain and propose that its localization in both glutamatergic and GABAergic neurons could be compatible with a role in influencing intracellular chloride and thereby neuronal parameters such as membrane potential rather than acting as a presynaptic glutamate transporter.
Collapse
Affiliation(s)
- Aven Lee
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - Vladimir J Balcar
- Discipline of Anatomy and Histology, School of Medical Sciences and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia.,Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
| | - Pamela McCombe
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| | - David V Pow
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Bligard GW, DeBrecht J, Smith RG, Lukasiewicz PD. Light-evoked glutamate transporter EAAT5 activation coordinates with conventional feedback inhibition to control rod bipolar cell output. J Neurophysiol 2020; 123:1828-1837. [PMID: 32233906 DOI: 10.1152/jn.00527.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the retina, modulation of the amplitude of dim visual signals primarily occurs at axon terminals of rod bipolar cells (RBCs). GABA and glycine inhibitory neurotransmitter receptors and the excitatory amino acid transporter 5 (EAAT5) modulate the RBC output. EAATs clear glutamate from the synapse, but they also have a glutamate-gated chloride conductance. EAAT5 acts primarily as an inhibitory glutamate-gated chloride channel. The relative role of visually evoked EAAT5 inhibition compared with GABA and glycine inhibition has not been addressed. In this study, we determine the contribution of EAAT5-mediated inhibition onto RBCs in response to light stimuli in mouse retinal slices. We find differences and similarities in the two forms of inhibition. Our results show that GABA and glycine mediate nearly all lateral inhibition onto RBCs, as EAAT5 is solely a mediator of RBC feedback inhibition. We also find that EAAT5 and conventional GABA inhibition both contribute to feedback inhibition at all stimulus intensities. Finally, our in silico modeling compares and contrasts EAAT5-mediated to GABA- and glycine-mediated feedback inhibition. Both forms of inhibition have a substantial impact on synaptic transmission to the postsynaptic AII amacrine cell. Our results suggest that the late phase EAAT5 inhibition acts with the early phase conventional, reciprocal GABA inhibition to modulate the rod signaling pathway between rod bipolar cells and their downstream synaptic targets.NEW & NOTEWORTHY Excitatory amino acid transporter 5 (EAAT5) glutamate transporters have a chloride channel that is strongly activated by glutamate, which modulates excitatory signaling. We found that EAAT5 is a major contributor to feedback inhibition on rod bipolar cells. Inhibition to rod bipolar cells is also mediated by GABA and glycine. GABA and glycine mediate the early phase of feedback inhibition, and EAAT5 mediates a more delayed inhibition. Together, inhibitory transmitters and EAAT5 coordinate to mediate feedback inhibition, controlling neuronal output.
Collapse
Affiliation(s)
- Gregory W Bligard
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri
| | - James DeBrecht
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri
| | - Robert G Smith
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Peter D Lukasiewicz
- Department of Ophthalmology and Visual Sciences, Washington University, St. Louis, Missouri.,Department of Neuroscience, Washington University, St. Louis, Missouri
| |
Collapse
|
25
|
Malik AR, Willnow TE. Excitatory Amino Acid Transporters in Physiology and Disorders of the Central Nervous System. Int J Mol Sci 2019; 20:ijms20225671. [PMID: 31726793 PMCID: PMC6888459 DOI: 10.3390/ijms20225671] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022] Open
Abstract
Excitatory amino acid transporters (EAATs) encompass a class of five transporters with distinct expression in neurons and glia of the central nervous system (CNS). EAATs are mainly recognized for their role in uptake of the amino acid glutamate, the major excitatory neurotransmitter. EAATs-mediated clearance of glutamate released by neurons is vital to maintain proper glutamatergic signalling and to prevent toxic accumulation of this amino acid in the extracellular space. In addition, some EAATs also act as chloride channels or mediate the uptake of cysteine, required to produce the reactive oxygen speciesscavenger glutathione. Given their central role in glutamate homeostasis in the brain, as well as their additional activities, it comes as no surprise that EAAT dysfunctions have been implicated in numerous acute or chronic diseases of the CNS, including ischemic stroke and epilepsy, cerebellar ataxias, amyotrophic lateral sclerosis, Alzheimer’s disease and Huntington’s disease. Here we review the studies in cellular and animal models, as well as in humans that highlight the roles of EAATs in the pathogenesis of these devastating disorders. We also discuss the mechanisms regulating EAATs expression and intracellular trafficking and new exciting possibilities to modulate EAATs and to provide neuroprotection in course of pathologies affecting the CNS.
Collapse
Affiliation(s)
- Anna R. Malik
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
- Correspondence:
| | | |
Collapse
|
26
|
Wang W, Zeng F, Hu Y, Li X. A Mini-Review of the Role of Glutamate Transporter in Drug Addiction. Front Neurol 2019; 10:1123. [PMID: 31695674 PMCID: PMC6817614 DOI: 10.3389/fneur.2019.01123] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 10/08/2019] [Indexed: 12/29/2022] Open
Abstract
Goals: The development of new treatment for drug abuse requires identification of targetable molecular mechanisms. The pathology of glutamate neurotransmission system in the brain reward circuit is related to the relapse of multiple drugs. Glutamate transporter regulates glutamate signaling by removing excess glutamate from the synapse. And the mechanisms between glutamate transporter and drug addiction are still unclear. Methods: A systematic review of the literature searched in Pubmed and reporting drug addiction in relation to glutamate transporter. Studies were screened by title, abstract, and full text. Results: This review is to highlight the effects of drug addiction on glutamate transporter and glutamate uptake, and targeting glutamate transporter as an addictive drug addiction treatment. We focus on the roles of glutamate transporter in different brain regions in drug addiction. More importantly, we suggest the functional roles of glutamate transporter may prove beneficial in the treatment of drug addiction. Conclusion: Overall, understanding how glutamate transporter impacts central nervous system may provide a new insight for treatment of drug addiction.
Collapse
Affiliation(s)
- Wenjun Wang
- Institute for Cancer Medicine and School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Fancai Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yingying Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| |
Collapse
|
27
|
Wen X, Thoreson WB. Contributions of glutamate transporters and Ca 2+-activated Cl - currents to feedback from horizontal cells to cone photoreceptors. Exp Eye Res 2019; 189:107847. [PMID: 31628905 DOI: 10.1016/j.exer.2019.107847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023]
Abstract
Lateral inhibitory feedback from horizontal cells (HCs) to cones establishes center-surround receptive fields and color opponency in the retina. When HCs hyperpolarize to light, inhibitory feedback to cones increases activation of cone Ca2+ currents (ICa) that can in turn activate additional currents. We recorded simultaneously from cones and HCs to analyze cone currents activated by HC feedback in salamander retina. Depolarization-activated inward tail currents in cones were inhibited by CaCCinh-A01 that inhibits both Ano1 and Ano2 Ca2+-activated Cl- currents (ICl(Ca)). An Ano1-selective inhibitor Ani9 was less effective suggesting that Ano2 is the predominant ICl(Ca) subtype in cones. CaCCinh-A01 inhibited feedback currents more strongly when intracellular Ca2+ in cones was buffered with 0.05 mM EGTA compared to stronger buffering with 5 mM EGTA. By contrast, blocking glutamate transporter anion currents (ICl(Glu)) with TBOA had stronger inhibitory effects on cone feedback currents when Ca2+ buffering was strong. Inward feedback currents ran down at rates intermediate between rundown of glutamate release and ICl(Ca), consistent with contributions to feedback from both ICl(Ca) and ICl(Glu). These results suggest that Cl- channels coupled to glutamate transporters help to speed inward feedback currents initiated by local changes in intracellular [Ca2+] close to synaptic ribbons of cones whereas Ano2 Ca2+-activated Cl- channels contribute to slower components of feedback regulated by spatially extensive changes in intracellular [Ca2+].
Collapse
Affiliation(s)
- Xiangyi Wen
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Department of Optometry and Visual Science, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology & Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
28
|
Liu Y, Ding XF, Wang XX, Zou XJ, Li XJ, Liu YY, Li J, Qian XY, Chen JX. Xiaoyaosan exerts antidepressant-like effects by regulating the functions of astrocytes and EAATs in the prefrontal cortex of mice. Altern Ther Health Med 2019; 19:215. [PMID: 31412844 PMCID: PMC6694586 DOI: 10.1186/s12906-019-2613-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
Background Mounting evidence indicates that the cerebral cortex is an important physiological system of emotional activity, and its dysfunction may be the main cause of stress. Glutamate is the primary excitatory neurotransmitter in the central nervous system (CNS), which initiates rapid signal transmission in the synapse before its reuptake into the surrounding glia, specifically astrocytes (ASTs). The astrocytic excitatory amino acid transporters 1 (EAAT1) and 2 (EAAT2) are the major transporters that take up synaptic glutamate to maintain optimal extracellular glutamic levels, thus preventing accumulation in the synaptic cleft and ensuing excitotoxicity. Growing evidence has shown that excitotoxicity is associated with depression. Therefore, we hypothesized that the underlying antidepressant-like mechanism of Xiaoyaosan (XYS), a Chinese herbal formula, may be related to the regulation of astrocytic EAATs. Therefore, we studied the antidepressant mechanism of XYS on the basis of EAAT dysfunction in ASTs. Methods Eighty adult C57BL/6 J mice were randomly divided into 4 groups: a control group, a chronic unpredictable mild stress (CUMS) group, a Xiaoyaosan (XYS) treatment group and a fluoxetine hydrochloride (Flu) treatment group. Except for the control group, mice in the other groups all received chronic unpredictable mild stress for 21 days. Mice in the control and CUMS groups received gavage administration with 0.5 mL of normal saline (NS) for 21 days, and mice in the XYS and Flu treatment groups were administered dosages of 0.25 g/kg/d and 2.6 mg/kg/d by gavage. The effects of XYS on the depressive-like behavioral tests, including the open field test (OFT), forced swimming test (FST) and sucrose preference test (SPT), were examined. The glutamate (Glu) concentrations of the prefrontal cortex (PFC) were detected with colorimetry. The morphology of neurons in the PFC was observed by Nissl staining. The expression of glial fibrillary acidic protein (GFAP), NeuN, EAAT1 and EAAT2 proteins in the PFC of mice was detected by using Western blotting and immunohistochemistry. Quantitative real-time PCR (qPCR) was used to detect the expression of the GFAP, NeuN, EAAT1 and EAAT2 genes in the PFC of mice. Results The results of behavioral tests showed that CUMS-induced mice exhibited depressive-like behavior, which could be improved in some tests with XYS and Flu treatment. Immunohistochemistry and Western blot analysis showed that the protein levels of GFAP, NeuN, EAAT1 and EAAT2 in the PFC of CUMS mice were significantly lower than those in the control group, and these changes could be reversed by XYS and Flu. The results of qPCR analysis showed that the expression of GFAP, NeuN, EAAT1 and EAAT2 mRNAs in the PFC of CUMS mice was not significantly changed, with the exception of EAAT2, compared with that of the control group, while the expression of the above mRNAs was significantly higher in the XYS and Flu groups than that in the CUMS group. Conclusion XYS may exert antidepressant-like effects by improving the functions of AST and EAATs and attenuating glutamate-induced neuronal damage in the frontal cortex.
Collapse
|
29
|
Grassmeyer JJ, Cahill AL, Hays CL, Barta C, Quadros RM, Gurumurthy CB, Thoreson WB. Ca 2+ sensor synaptotagmin-1 mediates exocytosis in mammalian photoreceptors. eLife 2019; 8:e45946. [PMID: 31172949 PMCID: PMC6588344 DOI: 10.7554/elife.45946] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/06/2019] [Indexed: 11/24/2022] Open
Abstract
To encode light-dependent changes in membrane potential, rod and cone photoreceptors utilize synaptic ribbons to sustain continuous exocytosis while making rapid, fine adjustments to release rate. Release kinetics are shaped by vesicle delivery down ribbons and by properties of exocytotic Ca2+ sensors. We tested the role for synaptotagmin-1 (Syt1) in photoreceptor exocytosis by using novel mouse lines in which Syt1 was conditionally removed from rods or cones. Photoreceptors lacking Syt1 exhibited marked reductions in exocytosis as measured by electroretinography and single-cell recordings. Syt1 mediated all evoked release in cones, whereas rods appeared capable of some slow Syt1-independent release. Spontaneous release frequency was unchanged in cones but increased in rods lacking Syt1. Loss of Syt1 did not alter synaptic anatomy or reduce Ca2+ currents. These results suggest that Syt1 mediates both phasic and tonic release at photoreceptor synapses, revealing unexpected flexibility in the ability of Syt1 to regulate Ca2+-dependent synaptic transmission.
Collapse
Affiliation(s)
- Justin J Grassmeyer
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUnited States
| | - Asia L Cahill
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
| | - Cassandra L Hays
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Cellular and Integrative PhysiologyUniversity of Nebraska Medical CenterOmahaUnited States
| | - Cody Barta
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
| | - Rolen M Quadros
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research OfficeUniversity of Nebraska Medical CenterOmahaUnited States
| | - Channabasavaiah B Gurumurthy
- Mouse Genome Engineering Core Facility, Vice Chancellor for Research OfficeUniversity of Nebraska Medical CenterOmahaUnited States
- Developmental Neuroscience, Munroe Meyer Institute for Genetics and RehabilitationUniversity of Nebraska Medical CenterOmahaUnited States
| | - Wallace B Thoreson
- Truhlsen Eye Institute, Department of Ophthalmology and Visual SciencesUniversity of Nebraska Medical CenterOmahaUnited States
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUnited States
| |
Collapse
|
30
|
Valtcheva S, Venance L. Control of Long-Term Plasticity by Glutamate Transporters. Front Synaptic Neurosci 2019; 11:10. [PMID: 31024287 PMCID: PMC6465798 DOI: 10.3389/fnsyn.2019.00010] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/12/2019] [Indexed: 12/11/2022] Open
Abstract
Activity-dependent long-term changes in synaptic strength constitute key elements for learning and memory formation. Long-term plasticity can be induced in vivo and ex vivo by various physiologically relevant activity patterns. Depending on their temporal statistics, such patterns can induce long-lasting changes in the synaptic weight by potentiating or depressing synaptic transmission. At excitatory synapses, glutamate uptake operated by excitatory amino acid transporters (EAATs) has a critical role in regulating the strength and the extent of receptor activation by afferent activity. EAATs tightly control synaptic transmission and glutamate spillover. EAATs activity can, therefore, determine the polarity and magnitude of long-term plasticity by regulating the spatiotemporal profile of the glutamate transients and thus, the glutamate access to pre- and postsynaptic receptors. Here, we summarize compelling evidence that EAATs regulate various forms of long-term synaptic plasticity and the consequences of such regulation for behavioral output. We speculate that experience-dependent plasticity of EAATs levels can determine the sensitivity of synapses to frequency- or time-dependent plasticity paradigms. We propose that EAATs contribute to the gating of relevant inputs eligible to induce long-term plasticity and thereby select the operating learning rules that match the physiological function of the synapse adapted to the behavioral context.
Collapse
Affiliation(s)
- Silvana Valtcheva
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241/INSERM U1050, Paris, France
| | - Laurent Venance
- Dynamics and Pathophysiology of Neuronal Networks Team, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241/INSERM U1050, Paris, France
| |
Collapse
|
31
|
Olivares-Bañuelos TN, Chí-Castañeda D, Ortega A. Glutamate transporters: Gene expression regulation and signaling properties. Neuropharmacology 2019; 161:107550. [PMID: 30822498 DOI: 10.1016/j.neuropharm.2019.02.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/22/2019] [Accepted: 02/24/2019] [Indexed: 12/24/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the vertebrate central nervous system. During synaptic activity, glutamate is released and binds to specific membrane receptors and transporters activating, in the one hand, a wide variety of signal transduction cascades, while in the other hand, its removal from the synaptic cleft. Extracellular glutamate concentrations are maintained within physiological levels mainly by glia glutamate transporters. Inefficient clearance of this amino acid is neurotoxic due to a prolonged hyperactivation of its postsynaptic receptors, exacerbating a wide array of intracellular events linked to an ionic imbalance, that results in neuronal cell death. This process is known as excitotoxicity and is the underlying mechanisms of an important number of neurodegenerative diseases. Therefore, it is important to understand the regulation of glutamate transporters function. The transporter activity can be regulated at different levels: gene expression, transporter protein targeting and trafficking, and post-translational modifications of the transporter protein. The identification of these mechanisms has paved the way to our current understanding the role of glutamate transporters in brain physiology and will certainly provide the needed biochemical information for the development of therapeutic strategies towards the establishment of novel therapeutic approaches for the treatment and/or prevention of pathologies associated with excitotoxicity insults. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Tatiana N Olivares-Bañuelos
- Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, Carretera Tijuana-Ensenada No. 3917, Fraccionamiento Playitas, 22860, Ensenada, Baja California, Mexico
| | - Donají Chí-Castañeda
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico
| | - Arturo Ortega
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Apartado Postal 14-740, Ciudad de México, 07000, Mexico.
| |
Collapse
|
32
|
Cao X, Pattnaik BR, Hughes BA. Mouse retinal pigment epithelial cells exhibit a thiocyanate-selective conductance. Am J Physiol Cell Physiol 2018; 315:C457-C473. [PMID: 29874109 DOI: 10.1152/ajpcell.00231.2017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The basolateral membrane anion conductance of the retinal pigment epithelium (RPE) is a key component of the transepithelial Cl- transport pathway. Although multiple Cl- channels have been found to be expressed in the RPE, the components of the resting Cl- conductance have not been identified. In this study, we used the patch-clamp method to characterize the ion selectivity of the anion conductance in isolated mouse RPE cells and in excised patches of RPE basolateral and apical membranes. Relative permeabilities ( PA/ PCl) calculated from reversal potentials measured in intact cells under bi-ionic conditions were as follows: SCN- >> ClO4- > [Formula: see text] > I- > Br- > Cl- >> gluconate. Relative conductances ( GA/ GCl) followed a similar trend of SCN- >> ClO4- > [Formula: see text] > I- > Br- ≈Cl- >> gluconate. Whole cell currents were highly time-dependent in 10 mM external SCN-, reflecting collapse of the electrochemical potential gradient due to SCN- accumulation or depletion intracellularly. When the membrane potential was held at -120 mV to minimize SCN- accumulation in cells exposed to 10 mM SCN-, the instantaneous current reversed at -90 mV, revealing that PSCN/ PCl is approximately 500. Macroscopic current recordings from outside-out patches demonstrated that both the basolateral and apical membranes exhibit SCN- conductances, with the basolateral membrane having a larger SCN- current density and higher relative permeability for SCN-. Our results suggest that the RPE basolateral and apical membranes contain previously unappreciated anion channels or electrogenic transporters that may mediate the transmembrane fluxes of SCN- and Cl-.
Collapse
Affiliation(s)
- Xu Cao
- Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | - Bikash R Pattnaik
- Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan
| | - Bret A Hughes
- Department of Ophthalmology and Visual Sciences, University of Michigan , Ann Arbor, Michigan.,Department of Molecular and Integrative Physiology, University of Michigan , Ann Arbor, Michigan
| |
Collapse
|
33
|
Kandasamy P, Gyimesi G, Kanai Y, Hediger MA. Amino acid transporters revisited: New views in health and disease. Trends Biochem Sci 2018; 43:752-789. [PMID: 30177408 DOI: 10.1016/j.tibs.2018.05.003] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/23/2018] [Accepted: 05/25/2018] [Indexed: 02/09/2023]
Abstract
Amino acid transporters (AATs) are membrane-bound transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs have diverse functional roles ranging from neurotransmission to acid-base balance, intracellular energy metabolism, and anabolic and catabolic reactions. In cancer cells and diabetes, dysregulation of AATs leads to metabolic reprogramming, which changes intracellular amino acid levels, contributing to the pathogenesis of cancer, obesity and diabetes. Indeed, the neutral amino acid transporters (NATs) SLC7A5/LAT1 and SLC1A5/ASCT2 are likely involved in several human malignancies. However, a clinical therapy that directly targets AATs has not yet been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, their diverse physiological roles in different tissues and organs, their wide-ranging implications in human diseases and the emerging strategies and tools that will be necessary to target AATs therapeutically.
Collapse
Affiliation(s)
- Palanivel Kandasamy
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Gergely Gyimesi
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | - Yoshikatsu Kanai
- Division of Bio-system Pharmacology, Graduate School of Medicine, Osaka University, Osaka, Japan.
| | - Matthias A Hediger
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland.
| |
Collapse
|
34
|
Divito CB, Borowski JE, Glasgow NG, Gonzalez-Suarez AD, Torres-Salazar D, Johnson JW, Amara SG. Glial and Neuronal Glutamate Transporters Differ in the Na + Requirements for Activation of the Substrate-Independent Anion Conductance. Front Mol Neurosci 2017; 10:150. [PMID: 28611584 PMCID: PMC5447070 DOI: 10.3389/fnmol.2017.00150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/04/2017] [Indexed: 01/12/2023] Open
Abstract
Excitatory amino acid transporters (EAATs) are secondary active transporters of L-glutamate and L- or D-aspartate. These carriers also mediate a thermodynamically uncoupled anion conductance that is gated by Na+ and substrate binding. The activation of the anion channel by binding of Na+ alone, however, has only been demonstrated for mammalian EAAC1 (EAAT3) and EAAT4. To date, no difference has been observed for the substrate dependence of anion channel gating between the glial, EAAT1 and EAAT2, and the neuronal isoforms EAAT3, EAAT4 and EAAT5. Here we describe a difference in the Na+-dependence of anion channel gating between glial and neuronal isoforms. Chloride flux through transporters without glutamate binding has previously been described as substrate-independent or "leak" channel activity. Choline or N-methyl-D-glucamine replacement of external Na+ ions significantly reduced or abolished substrate-independent EAAT channel activity in EAAT3 and EAAT4 yet has no effect on EAAT1 or EAAT2. The interaction of Na+ with the neuronal carrier isoforms was concentration dependent, consistent with previous data. The presence of substrate and Na+-independent open states in the glial EAAT isoforms is a novel finding in the field of EAAT function. Our results reveal an important divergence in anion channel function between glial and neuronal glutamate transporters and highlight new potential roles for the EAAT-associated anion channel activity based on transporter expression and localization in the central nervous system.
Collapse
Affiliation(s)
- Christopher B Divito
- Center for Neuroscience, Department of Neurobiology, University of PittsburghPittsburgh, PA, United States
| | - Jenna E Borowski
- Center for Neuroscience, Department of Neurobiology, University of PittsburghPittsburgh, PA, United States
| | - Nathan G Glasgow
- Center for Neuroscience, Department of Neuroscience, University of PittsburghPittsburgh, PA, United States
| | - Aneysis D Gonzalez-Suarez
- Laboratory of Cellular and Molecular Neurobiology, National Institute of Mental Health, National Institutes of HealthBethesda, MD, United States
| | - Delany Torres-Salazar
- Laboratory of Cellular and Molecular Neurobiology, National Institute of Mental Health, National Institutes of HealthBethesda, MD, United States
| | - Jon W Johnson
- Center for Neuroscience, Department of Neuroscience, University of PittsburghPittsburgh, PA, United States
| | - Susan G Amara
- Laboratory of Cellular and Molecular Neurobiology, National Institute of Mental Health, National Institutes of HealthBethesda, MD, United States
| |
Collapse
|
35
|
Rose CR, Ziemens D, Untiet V, Fahlke C. Molecular and cellular physiology of sodium-dependent glutamate transporters. Brain Res Bull 2016; 136:3-16. [PMID: 28040508 DOI: 10.1016/j.brainresbull.2016.12.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 02/04/2023]
Abstract
Glutamate is the major excitatory transmitter in the vertebrate brain. After its release from presynaptic nerve terminals, it is rapidly taken up by high-affinity sodium-dependent plasma membrane transporters. While both neurons and glial cells express these excitatory amino acid transporters (EAATs), the majority of glutamate uptake is accomplished by astrocytes, which convert synaptically-released glutamate to glutamine or feed it into their own metabolism. Glutamate uptake by astrocytes not only shapes synaptic transmission by regulating the availability of glutamate to postsynaptic neuronal receptors, but also protects neurons from hyper-excitability and subsequent excitotoxic damage. In the present review, we provide an overview of the molecular and cellular characteristics of sodium-dependent glutamate transporters and their associated anion permeation pathways, with a focus on astrocytic glutamate transport. We summarize their functional properties and roles within tripartite synapses under physiological and pathophysiological conditions, exemplifying the intricate interactions and interrelationships between neurons and glial cells in the brain.
Collapse
Affiliation(s)
- Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany.
| | - Daniel Ziemens
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Germany
| | - Verena Untiet
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| |
Collapse
|
36
|
Lee A, Stevens MG, Anderson AR, Kwan A, Balcar VJ, Pow DV. A novel splice variant of the Excitatory Amino Acid Transporter 5: Cloning, immunolocalization and functional characterization of hEAAT5v in human retina. Neurochem Int 2016; 101:S0197-0186(16)30404-1. [PMID: 27984169 DOI: 10.1016/j.neuint.2016.10.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/24/2016] [Accepted: 10/26/2016] [Indexed: 11/15/2022]
Abstract
Excitatory Amino Acid Transporter 5 (EAAT5) is abundantly expressed by retinal photoreceptors and bipolar cells, where it acts as a slow glutamate transporter and a glutamate-gated chloride channel. The chloride conductance is large enough for EAAT5 to serve as an "inhibitory" glutamate receptor. Our recent work in rodents has shown that EAAT5 is differentially spliced and exists in many variant forms. The chief aim of the present study was to examine whether EAAT5 is also alternately spliced in human retina and, if so, what significance this might have for retinal function in health and disease. Retinal tissues from human donor eyes were used in RT-PCR to amplify the entire coding region of EAAT5. Amplicons of differing sizes were sub-cloned and analysis of sequenced data revealed the identification of wild-type human EAAT5 (hEAAT5) and an abundant alternately spliced form, referred to as hEAAT5v, where the open reading frame is expanded by insertion of an additional exon. hEAAT5v encodes a protein of 619 amino acids and when expressed in COS7 cells, the protein functioned as a glutamate transporter. We raised antibodies that selectively recognized the hEAAT5v protein and have performed immunocytochemistry to demonstrate expression in photoreceptors in human retina. We noted that in retinas afflicted by dry aged-related macular degeneration (AMD), there was a loss of hEAAT5v from the lesioned area and from photoreceptors adjacent to the lesion. We conclude that hEAAT5v protein expression may be perturbed in peri-lesional areas of AMD-afflicted retinas that do not otherwise exhibit evidence of damage. The loss of hEAAT5v could, therefore, represent an early pathological change in the development of AMD and might be involved in its aetiology.
Collapse
Affiliation(s)
- A Lee
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia.
| | - M G Stevens
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia
| | - A R Anderson
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia
| | - A Kwan
- Queensland Eye Institute, South Brisbane, QLD 4101, Australia
| | - V J Balcar
- Laboratory of Neurochemistry, School of Medical Sciences (Discipline of Anatomy and Neurochemistry) and Bosch Institute, Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - D V Pow
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD 4029, Australia; School of Medical Sciences, RMIT University, Melbourne, Australia
| |
Collapse
|
37
|
Danbolt NC, Zhou Y, Furness DN, Holmseth S. Strategies for immunohistochemical protein localization using antibodies: What did we learn from neurotransmitter transporters in glial cells and neurons. Glia 2016; 64:2045-2064. [PMID: 27458697 DOI: 10.1002/glia.23027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/19/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
Immunocytochemistry and Western blotting are still major methods for protein localization, but they rely on the specificity of the antibodies. Validation of antibody specificity remains challenging mostly because ideal negative controls are often unavailable. Further, immunochemical labeling patterns are also influenced by a number of other factors such as postmortem changes, fixation procedures and blocking agents as well as the general assay conditions (e.g., buffers, temperature, etc.). Western blotting similarly depends on tissue collection and sample preparation as well as the electrophoretic separation, transfer to blotting membranes and the immunochemical probing of immobilized molecules. Publication of inaccurate information on protein distribution has downstream consequences for other researchers because the interpretation of physiological and pharmacological observations depends on information on where ion channels, receptors, enzymes or transporters are located. Despite numerous reports, some of which are strongly worded, erroneous localization data are being published. Here we describe the extent of the problem and illustrate the nature of the pitfalls with examples from studies of neurotransmitter transporters. We explain the importance of supplementing immunochemical observations with other measurements (e.g., mRNA levels and distribution, protein activity, mass spectrometry, electrophysiological recordings, etc.) and why quantitative considerations are integral parts of the quality control. Further, we propose a practical strategy for researchers who plan to embark on a localization study. We also share our thoughts about guidelines for quality control. GLIA 2016;64:2045-2064.
Collapse
Affiliation(s)
- Niels Christian Danbolt
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Yun Zhou
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - David N Furness
- School of Life Sciences, Keele University, Keele, Staffs, United Kingdom
| | - Silvia Holmseth
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
38
|
Danbolt NC, Furness DN, Zhou Y. Neuronal vs glial glutamate uptake: Resolving the conundrum. Neurochem Int 2016; 98:29-45. [PMID: 27235987 DOI: 10.1016/j.neuint.2016.05.009] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/03/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022]
Abstract
Neither normal brain function nor the pathological processes involved in neurological diseases can be adequately understood without knowledge of the release, uptake and metabolism of glutamate. The reason for this is that glutamate (a) is the most abundant amino acid in the brain, (b) is at the cross-roads between several metabolic pathways, and (c) serves as the major excitatory neurotransmitter. In fact most brain cells express glutamate receptors and are thereby influenced by extracellular glutamate. In agreement, brain cells have powerful uptake systems that constantly remove glutamate from the extracellular fluid and thereby limit receptor activation. It has been clear since the 1970s that both astrocytes and neurons express glutamate transporters. However the relative contribution of neuronal and glial transporters to the total glutamate uptake activity, however, as well as their functional importance, has been hotly debated ever since. The present short review provides (a) an overview of what we know about neuronal glutamate uptake as well as an historical description of how we got there, and (b) a hypothesis reconciling apparently contradicting observations thereby possibly resolving the paradox.
Collapse
Affiliation(s)
- N C Danbolt
- The Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - D N Furness
- School of Life Sciences, Keele University, Keele, Staffs. ST5 5BG, UK
| | - Y Zhou
- The Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
39
|
Astroglial glutamate transporters coordinate excitatory signaling and brain energetics. Neurochem Int 2016; 98:56-71. [PMID: 27013346 DOI: 10.1016/j.neuint.2016.03.014] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/15/2016] [Accepted: 03/17/2016] [Indexed: 12/22/2022]
Abstract
In the mammalian brain, a family of sodium-dependent transporters maintains low extracellular glutamate and shapes excitatory signaling. The bulk of this activity is mediated by the astroglial glutamate transporters GLT-1 and GLAST (also called EAAT2 and EAAT1). In this review, we will discuss evidence that these transporters co-localize with, form physical (co-immunoprecipitable) interactions with, and functionally couple to various 'energy-generating' systems, including the Na(+)/K(+)-ATPase, the Na(+)/Ca(2+) exchanger, glycogen metabolizing enzymes, glycolytic enzymes, and mitochondria/mitochondrial proteins. This functional coupling is bi-directional with many of these systems both being regulated by glutamate transport and providing the 'fuel' to support glutamate uptake. Given the importance of glutamate uptake to maintaining synaptic signaling and preventing excitotoxicity, it should not be surprising that some of these systems appear to 'redundantly' support the energetic costs of glutamate uptake. Although the glutamate-glutamine cycle contributes to recycling of neurotransmitter pools of glutamate, this is an over-simplification. The ramifications of co-compartmentalization of glutamate transporters with mitochondria for glutamate metabolism are discussed. Energy consumption in the brain accounts for ∼20% of the basal metabolic rate and relies almost exclusively on glucose for the production of ATP. However, the brain does not possess substantial reserves of glucose or other fuels. To ensure adequate energetic supply, increases in neuronal activity are matched by increases in cerebral blood flow via a process known as 'neurovascular coupling'. While the mechanisms for this coupling are not completely resolved, it is generally agreed that astrocytes, with processes that extend to synapses and endfeet that surround blood vessels, mediate at least some of the signal that causes vasodilation. Several studies have shown that either genetic deletion or pharmacologic inhibition of glutamate transport impairs neurovascular coupling. Together these studies strongly suggest that glutamate transport not only coordinates excitatory signaling, but also plays a pivotal role in regulating brain energetics.
Collapse
|
40
|
Eid T, Gruenbaum SE, Dhaher R, Lee TSW, Zhou Y, Danbolt NC. The Glutamate-Glutamine Cycle in Epilepsy. ADVANCES IN NEUROBIOLOGY 2016; 13:351-400. [PMID: 27885637 DOI: 10.1007/978-3-319-45096-4_14] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epilepsy is a complex, multifactorial disease characterized by spontaneous recurrent seizures and an increased incidence of comorbid conditions such as anxiety, depression, cognitive dysfunction, and sudden unexpected death. About 70 million people worldwide are estimated to suffer from epilepsy, and up to one-third of all people with epilepsy are expected to be refractory to current medications. Development of more effective and specific antiepileptic interventions is therefore requisite. Perturbations in the brain's glutamate-glutamine cycle, such as increased extracellular levels of glutamate, loss of astroglial glutamine synthetase, and changes in glutaminase and glutamate dehydrogenase, are frequently encountered in patients with epilepsy. Hence, manipulations of discrete glutamate-glutamine cycle components may represent novel approaches to treat the disease. The goal of his review is to discuss some of the glutamate-glutamine cycle components that are altered in epilepsy, particularly neurotransmitters and metabolites, enzymes, amino acid transporters, and glutamate receptors. We will also review approaches that potentially could be used in humans to target the glutamate-glutamine cycle. Examples of such approaches are treatment with glutamate receptor blockers, glutamate scavenging, dietary intervention, and hypothermia.
Collapse
Affiliation(s)
- Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar Street, 208035, New Haven, CT, 06520-8035, USA.
| | - Shaun E Gruenbaum
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar Street, 208035, New Haven, CT, 06520-8035, USA
| | - Tih-Shih W Lee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Yun Zhou
- Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niels Christian Danbolt
- Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
41
|
Fahlke C, Kortzak D, Machtens JP. Molecular physiology of EAAT anion channels. Pflugers Arch 2015; 468:491-502. [PMID: 26687113 DOI: 10.1007/s00424-015-1768-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 12/25/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. After release from presynaptic nerve terminals, glutamate is quickly removed from the synaptic cleft by a family of five glutamate transporters, the so-called excitatory amino acid transporters (EAAT1-5). EAATs are prototypic members of the growing number of dual-function transport proteins: they are not only glutamate transporters, but also anion channels. Whereas the mechanisms underlying secondary active glutamate transport are well understood at the functional and at the structural level, mechanisms and cellular roles of EAAT anion conduction have remained elusive for many years. Recently, molecular dynamics simulations combined with simulation-guided mutagenesis and experimental analysis identified a novel anion-conducting conformation, which accounts for all experimental data on EAAT anion currents reported so far. We here review recent findings on how EAATs accommodate a transporter and a channel in one single protein.
Collapse
Affiliation(s)
- Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany.
| | - Daniel Kortzak
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Jan-Philipp Machtens
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
42
|
Impaired surface membrane insertion of homo- and heterodimeric human muscle chloride channels carrying amino-terminal myotonia-causing mutations. Sci Rep 2015; 5:15382. [PMID: 26502825 PMCID: PMC4621517 DOI: 10.1038/srep15382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 09/23/2015] [Indexed: 12/03/2022] Open
Abstract
Mutations in the muscle chloride channel gene (CLCN1) cause myotonia congenita, an inherited condition characterized by muscle stiffness upon sudden forceful movement. We here studied the functional consequences of four disease-causing mutations that predict amino acid substitutions Q43R, S70L, Y137D and Q160H. Wild-type (WT) and mutant hClC-1 channels were heterologously expressed as YFP or CFP fusion protein in HEK293T cells and analyzed by whole-cell patch clamp and fluorescence recordings on individual cells. Q43R, Y137D and Q160H, but not S70L reduced macroscopic current amplitudes, but left channel gating and unitary current amplitudes unaffected. We developed a novel assay combining electrophysiological and fluorescence measurements at the single-cell level in order to measure the probability of ion channel surface membrane insertion. With the exception of S70L, all tested mutations significantly reduced the relative number of homodimeric hClC-1 channels in the surface membrane. The strongest effect was seen for Q43R that reduced the surface insertion probability by more than 99% in Q43R homodimeric channels and by 92 ± 3% in heterodimeric WT/Q43R channels compared to homodimeric WT channels. The new method offers a sensitive approach to investigate mutations that were reported to cause channelopathies, but display only minor changes in ion channel function.
Collapse
|
43
|
3-aminoglutarate is a “silent” false transmitter for glutamate neurons. Neuropharmacology 2015; 97:436-46. [DOI: 10.1016/j.neuropharm.2015.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 04/25/2015] [Accepted: 05/08/2015] [Indexed: 11/27/2022]
|
44
|
The Split Personality of Glutamate Transporters: A Chloride Channel and a Transporter. Neurochem Res 2015; 41:593-9. [DOI: 10.1007/s11064-015-1699-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/21/2015] [Accepted: 08/13/2015] [Indexed: 02/07/2023]
|
45
|
Torres-Salazar D, Jiang J, Divito CB, Garcia-Olivares J, Amara SG. A Mutation in Transmembrane Domain 7 (TM7) of Excitatory Amino Acid Transporters Disrupts the Substrate-dependent Gating of the Intrinsic Anion Conductance and Drives the Channel into a Constitutively Open State. J Biol Chem 2015. [PMID: 26203187 DOI: 10.1074/jbc.m115.660860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the mammalian central nervous system, excitatory amino acid transporters (EAATs) are responsible for the clearance of glutamate after synaptic release. This energetically demanding activity is crucial for precise neuronal communication and for maintaining extracellular glutamate concentrations below neurotoxic levels. In addition to their ability to recapture glutamate from the extracellular space, EAATs exhibit a sodium- and glutamate-gated anion conductance. Here we show that substitution of a conserved positively charged residue (Arg-388, hEAAT1) in transmembrane domain 7 with a negatively charged amino acid eliminates the ability of glutamate to further activate the anion conductance. When expressed in oocytes, R388D or R388E mutants show large anion currents that display no further increase in amplitude after application of saturating concentrations of Na(+) and glutamate. They also show a substantially reduced transport activity. The mutant transporters appear to exist preferentially in a sodium- and glutamate-independent constitutive open channel state that rarely transitions to complete the transport cycle. In addition, the accessibility of cytoplasmic residues to membrane-permeant modifying reagents supports the idea that this substrate-independent open state correlates with an intermediate outward facing conformation of the transporter. Our data provide additional insights into the mechanism by which substrates gate the anion conductance in EAATs and suggest that in EAAT1, Arg-388 is a critical element for the structural coupling between the substrate translocation and the gating mechanisms of the EAAT-associated anion channel.
Collapse
Affiliation(s)
| | - Jie Jiang
- the Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Christopher B Divito
- the Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | | | - Susan G Amara
- From the National Institute of Mental Health, Bethesda, Maryland 20892 and the Department of Neurobiology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
46
|
Jensen AA, Fahlke C, Bjørn-Yoshimoto WE, Bunch L. Excitatory amino acid transporters: recent insights into molecular mechanisms, novel modes of modulation and new therapeutic possibilities. Curr Opin Pharmacol 2014; 20:116-23. [PMID: 25466154 DOI: 10.1016/j.coph.2014.10.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Revised: 10/05/2014] [Accepted: 10/21/2014] [Indexed: 11/24/2022]
Abstract
The five excitatory amino acid transporters (EAAT1-5) mediating the synaptic uptake of the major excitatory neurotransmitter glutamate are differently expressed throughout the CNS and at the synaptic level. Although EAATs are crucial for normal excitatory neurotransmission, explorations into the physiological functions mediated by the different transporter subtypes and their respective therapeutic potential have so far been sparse, in no small part due to the limited selection of pharmacological tools available. In the present update, we outline important new insights into the molecular compositions of EAATs and their intricate transport process, the novel approaches to pharmacological modulation of the transporters that have emerged, and interesting new perspectives in EAAT as drug targets proposed in recent years.
Collapse
Affiliation(s)
- Anders A Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen OE, Denmark.
| | - Christoph Fahlke
- Institute of Complex Systems, Zelluläre Biophysik (ICS-4), Forschungszentrum Jülich, Germany
| | - Walden E Bjørn-Yoshimoto
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| | - Lennart Bunch
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2100 Copenhagen OE, Denmark
| |
Collapse
|
47
|
Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 2014; 121:799-817. [PMID: 24578174 PMCID: PMC4133642 DOI: 10.1007/s00702-014-1180-8] [Citation(s) in RCA: 545] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
Abstract
Glutamate is the most abundant free amino acid in the brain and is at the crossroad between multiple metabolic pathways. Considering this, it was a surprise to discover that glutamate has excitatory effects on nerve cells, and that it can excite cells to their death in a process now referred to as "excitotoxicity". This effect is due to glutamate receptors present on the surface of brain cells. Powerful uptake systems (glutamate transporters) prevent excessive activation of these receptors by continuously removing glutamate from the extracellular fluid in the brain. Further, the blood-brain barrier shields the brain from glutamate in the blood. The highest concentrations of glutamate are found in synaptic vesicles in nerve terminals from where it can be released by exocytosis. In fact, glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. It took, however, a long time to realize that. The present review provides a brief historical description, gives a short overview of glutamate as a transmitter in the healthy brain, and comments on the so-called glutamate-glutamine cycle. The glutamate transporters responsible for the glutamate removal are described in some detail.
Collapse
Affiliation(s)
- Y. Zhou
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| | - N. C. Danbolt
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| |
Collapse
|
48
|
Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 160:542-53. [PMID: 15652477 DOI: 10.1016/j.cell.2014.12.035] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/27/2014] [Accepted: 12/19/2014] [Indexed: 12/12/2022]
Abstract
We predict regulatory targets of vertebrate microRNAs (miRNAs) by identifying mRNAs with conserved complementarity to the seed (nucleotides 2-7) of the miRNA. An overrepresentation of conserved adenosines flanking the seed complementary sites in mRNAs indicates that primary sequence determinants can supplement base pairing to specify miRNA target recognition. In a four-genome analysis of 3' UTRs, approximately 13,000 regulatory relationships were detected above the estimate of false-positive predictions, thereby implicating as miRNA targets more than 5300 human genes, which represented 30% of our gene set. Targeting was also detected in open reading frames. In sum, well over one third of human genes appear to be conserved miRNA targets.
Collapse
|