1
|
Calheiros-Lobo M, Silva JPN, Delgado L, Pinto B, Monteiro L, Lopes C, Silva PMA, Bousbaa H. Targeting the EGFR and Spindle Assembly Checkpoint Pathways in Oral Cancer: A Plausible Alliance to Enhance Cell Death. Cancers (Basel) 2024; 16:3732. [PMID: 39594688 PMCID: PMC11591835 DOI: 10.3390/cancers16223732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: Head and neck cancer (HNC) is among the most common cancer types globally, with its incidence expected to increase significantly in the coming years. Oral squamous cell carcinoma (OSCC), the predominant subtype, exhibits significant heterogeneity and resistance to treatment. Current therapies, including surgery, radiation, and chemotherapy, often result in poor outcomes for advanced stages. Cetuximab, an EGFR inhibitor, is widely used but faces limitations. This study explores the combined inhibition of EGFR and mitotic proteins to enhance treatment efficacy. Methods: We analyzed the effects of co-treating OSCC cells with small molecules targeting MPS-1 (BAY1217389), Aurora-B (Barasertib), or KSP (Ispinesib), alongside Cetuximab. The rationale is based on targeting EGFR-mediated survival pathways and the mitotic checkpoint, addressing multiple cell cycle phases and reducing resistance. Results: Our findings indicate that inhibiting MPS-1, Aurora-B, or KSP enhances Cetuximab's therapeutic potential, promoting increased cancer cell death. Additionally, we examined EGFR, MPS-1, Aurora-B, and KSP expression in OSCC patient samples, revealing their clinicopathologic significance. Conclusions: This combinatorial approach suggests a promising strategy to improve treatment outcomes in OSCC.
Collapse
Affiliation(s)
- Mafalda Calheiros-Lobo
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (L.D.); (B.P.); (L.M.); (C.L.)
| | - João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (L.D.); (B.P.); (L.M.); (C.L.)
| | - Leonor Delgado
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (L.D.); (B.P.); (L.M.); (C.L.)
- Pathology Department, INNO Serviços Especializados em Veterinária, 4710-503 Braga, Portugal
| | - Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (L.D.); (B.P.); (L.M.); (C.L.)
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil
| | - Luís Monteiro
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (L.D.); (B.P.); (L.M.); (C.L.)
- Medicine and Oral Surgery Department, University Institute of Health Sciences—CESPU (IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Carlos Lopes
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (L.D.); (B.P.); (L.M.); (C.L.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (L.D.); (B.P.); (L.M.); (C.L.)
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (M.C.-L.); (J.P.N.S.); (L.D.); (B.P.); (L.M.); (C.L.)
| |
Collapse
|
2
|
Pleuger R, Cozma C, Hohoff S, Denkhaus C, Dudziak A, Kaschani F, Kaiser M, Musacchio A, Vetter IR, Westermann S. Microtubule end-on attachment maturation regulates Mps1 association with its kinetochore receptor. Curr Biol 2024; 34:2279-2293.e6. [PMID: 38776902 DOI: 10.1016/j.cub.2024.03.062] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/23/2024] [Accepted: 03/27/2024] [Indexed: 05/25/2024]
Abstract
Faithful chromosome segregation requires that sister chromatids establish bi-oriented kinetochore-microtubule attachments. The spindle assembly checkpoint (SAC) prevents premature anaphase onset with incomplete attachments. However, how microtubule attachment and checkpoint signaling are coordinated remains unclear. The conserved kinase Mps1 initiates SAC signaling by localizing transiently to kinetochores in prometaphase and is released upon bi-orientation. Using biochemistry, structure predictions, and cellular assays, we shed light on this dynamic behavior in Saccharomyces cerevisiae. A conserved N-terminal segment of Mps1 binds the neck region of Ndc80:Nuf2, the main microtubule receptor of kinetochores. Mutational disruption of this interface, located at the backside of the paired CH domains and opposite the microtubule-binding site, prevents Mps1 localization, eliminates SAC signaling, and impairs growth. The same interface of Ndc80:Nuf2 binds the microtubule-associated Dam1 complex. We demonstrate that the error correction kinase Ipl1/Aurora B controls the competition between Dam1 and Mps1 for the same binding site. Thus, binding of the Dam1 complex to Ndc80:Nuf2 may release Mps1 from the kinetochore to promote anaphase onset.
Collapse
Affiliation(s)
- Richard Pleuger
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Christian Cozma
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Simone Hohoff
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Christian Denkhaus
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Alexander Dudziak
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Farnusch Kaschani
- Department of Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Markus Kaiser
- Department of Chemical Biology and ACE Analytical Core Facility Essen, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany
| | - Ingrid R Vetter
- Department of Mechanistic Cell Biology, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
| | - Stefan Westermann
- Department of Molecular Genetics, Faculty of Biology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany; Center of Medical Biotechnology, University of Duisburg-Essen, Universitätsstrasse 5, 45117 Essen, Germany.
| |
Collapse
|
3
|
Pinto B, Silva JPN, Silva PMA, Barbosa DJ, Sarmento B, Tavares JC, Bousbaa H. Maximizing Anticancer Response with MPS1 and CENPE Inhibition Alongside Apoptosis Induction. Pharmaceutics 2023; 16:56. [PMID: 38258067 PMCID: PMC10818680 DOI: 10.3390/pharmaceutics16010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Antimitotic compounds, targeting key spindle assembly checkpoint (SAC) components (e.g., MPS1, Aurora kinase B, PLK1, KLP1, CENPE), are potential alternatives to microtubule-targeting antimitotic agents (e.g., paclitaxel) to circumvent resistance and side effects associated with their use. They can be classified into mitotic blockers, causing SAC-induced mitotic arrest, or mitotic drivers, pushing cells through aberrant mitosis by overriding SAC. These drugs, although advancing to clinical trials, exhibit unsatisfactory cancer treatment outcomes as monotherapy, probably due to variable cell fate responses driven by cyclin B degradation and apoptosis signal accumulation networks. We investigated the impact of inhibiting anti-apoptotic signals with the BH3-mimetic navitoclax in lung cancer cells treated with the selective CENPE inhibitor GSK923295 (mitotic blocker) or the MPS1 inhibitor BAY1217389 (mitotic driver). Our aim was to steer treated cancer cells towards cell death. BH3-mimetics, in combination with both mitotic blockers and drivers, induced substantial cell death, mainly through apoptosis, in 2D and 3D cultures. Crucially, these synergistic concentrations were less toxic to non-tumor cells. This highlights the significance of combining BH3-mimetics with antimitotics, either blockers or drivers, which have reached the clinical trial phase, to enhance their effectiveness.
Collapse
Affiliation(s)
- Bárbara Pinto
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (B.P.); (J.P.N.S.)
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil;
| | - João P. N. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (B.P.); (J.P.N.S.)
| | - Patrícia M. A. Silva
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (B.P.); (J.P.N.S.)
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
| | - Daniel José Barbosa
- 1H-TOXRUN—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, 4585-116 Gandra, Portugal;
- i3S—Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
| | - Bruno Sarmento
- i3S—Institute for Research and Innovation in Health, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal;
- INEB—Institute of Biomedical Engineering, University of Porto, Rua Alfredo Allen 208, 4200-393 Porto, Portugal
| | - Juliana Carvalho Tavares
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Av. Pres. Antônio Carlos, 6627, Belo Horizonte 31270-901, Brazil;
| | - Hassan Bousbaa
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (IUCS), Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal; (B.P.); (J.P.N.S.)
| |
Collapse
|
4
|
Zhou KD, Zhang CX, Niu FR, Bai HC, Wu DD, Deng JC, Qian HY, Jiang YL, Ma W. Exploring Plant Meiosis: Insights from the Kinetochore Perspective. Curr Issues Mol Biol 2023; 45:7974-7995. [PMID: 37886947 PMCID: PMC10605258 DOI: 10.3390/cimb45100504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/12/2023] [Accepted: 09/20/2023] [Indexed: 10/28/2023] Open
Abstract
The central player for chromosome segregation in both mitosis and meiosis is the macromolecular kinetochore structure, which is assembled by >100 structural and regulatory proteins on centromere DNA. Kinetochores play a crucial role in cell division by connecting chromosomal DNA and microtubule polymers. This connection helps in the proper segregation and alignment of chromosomes. Additionally, kinetochores can act as a signaling hub, regulating the start of anaphase through the spindle assembly checkpoint, and controlling the movement of chromosomes during anaphase. However, the role of various kinetochore proteins in plant meiosis has only been recently elucidated, and these proteins differ in their functionality from those found in animals. In this review, our current knowledge of the functioning of plant kinetochore proteins in meiosis will be summarized. In addition, the functional similarities and differences of core kinetochore proteins in meiosis between plants and other species are discussed, and the potential applications of manipulating certain kinetochore genes in meiosis for breeding purposes are explored.
Collapse
Affiliation(s)
- Kang-Di Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Cai-Xia Zhang
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
| | - Fu-Rong Niu
- College of Forestry, Gansu Agricultural University, Lanzhou 730070, China;
| | - Hao-Chen Bai
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Dan-Dan Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China;
| | - Jia-Cheng Deng
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Hong-Yuan Qian
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Yun-Lei Jiang
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (H.-C.B.); (J.-C.D.); (H.-Y.Q.); (Y.-L.J.)
| | - Wei Ma
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (K.-D.Z.); (C.-X.Z.)
| |
Collapse
|
5
|
Bruno S, Ghelli Luserna di Rorà A, Napolitano R, Soverini S, Martinelli G, Simonetti G. CDC20 in and out of mitosis: a prognostic factor and therapeutic target in hematological malignancies. J Exp Clin Cancer Res 2022; 41:159. [PMID: 35490245 PMCID: PMC9055704 DOI: 10.1186/s13046-022-02363-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/11/2022] [Indexed: 12/31/2022] Open
Abstract
Cell division cycle 20 homologue (CDC20) is a well-known regulator of cell cycle, as it controls the correct segregation of chromosomes during mitosis. Many studies have focused on the biological role of CDC20 in cancer development, as alterations of its functionality have been linked to genomic instability and evidence demonstrated that high CDC20 expression levels are associated with poor overall survival in solid cancers. More recently, novel CDC20 functions have been demonstrated or suggested, including the regulation of apoptosis and stemness properties and a correlation with immune cell infiltration. Here, we here summarize and discuss the role of CDC20 inside and outside mitosis, starting from its network of interacting proteins. In the last years, CDC20 has also attracted more interest in the blood cancer field, being overexpressed and showing an association with prognosis both in myeloid and lymphoid malignancies. Preclinical findings showed that selective CDC20 and APC/CCDC20/APC/CCDH1 inhibitors, namely Apcin and proTAME, are effective against lymphoma and multiple myeloma cells, resulting in mitotic arrest and apoptosis and synergizing with clinically-relevant drugs. The evidence and hypothesis presented in this review provide the input for further biological and chemical studies aiming to dissect novel potential CDC20 roles and targeting strategies in hematological malignancies.
Collapse
Affiliation(s)
- Samantha Bruno
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy.
| | - Roberta Napolitano
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Simona Soverini
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna and Institute of Hematology "L. e A. Seràgnoli", Bologna, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", via Piero Maroncelli 40, 47014, Meldola, FC, Italy
| |
Collapse
|
6
|
Roy B, Han SJY, Fontan AN, Jema S, Joglekar AP. Aurora B phosphorylates Bub1 to promote spindle assembly checkpoint signaling. Curr Biol 2022; 32:237-247.e6. [PMID: 34861183 PMCID: PMC8752509 DOI: 10.1016/j.cub.2021.10.049] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 01/12/2023]
Abstract
Accurate chromosome segregation during cell division requires amphitelic chromosome attachment to the spindle apparatus. It is ensured by the combined activity of the spindle assembly checkpoint (SAC),1 a signaling mechanism that delays anaphase onset in response to unattached chromosomes, and an error correction mechanism that eliminates syntelic attachments.2 The SAC becomes active when Mps1 kinase sequentially phosphorylates the kinetochore protein Spc105/KNL1 and the signaling proteins that Spc105/KNL1 recruits to facilitate the production of the mitotic checkpoint complex (MCC).3-8 The error correction mechanism is regulated by the Aurora B kinase, but Aurora B also promotes SAC signaling via indirect mechanisms.9-12 Here we present evidence that Aurora B kinase activity directly promotes MCC production by working downstream of Mps1 in budding yeast and human cells. Using the ectopic SAC activation (eSAC) system, we find that the conditional dimerization of Aurora B in budding yeast and an Aurora B recruitment domain in HeLa cells with either Bub1 or Mad1, but not the phosphodomain of Spc105/KNL1, leads to ectopic MCC production and mitotic arrest.13-16 Importantly, Bub1 must recruit both Mad1 and Cdc20 for this ectopic signaling activity. These and other data show that Aurora B cooperates with Bub1 to promote MCC production, but only after Mps1 licenses Bub1 recruitment to the kinetochore. This direct involvement of Aurora B in SAC signaling may maintain SAC signaling even after Mps1 activity in the kinetochore is lowered.
Collapse
Affiliation(s)
- Babhrubahan Roy
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA
| | - Simon J. Y. Han
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA,present address: Medical Scientist Training Program, University of Cincinnati College of Medicine, 3230 Eden Ave, Cincinnati, OH 45267, USA
| | - Adrienne N. Fontan
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA,present address: Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 455 Main St, Cambridge, MA 02142
| | - Soubhagyalaxmi Jema
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA
| | - Ajit P. Joglekar
- Cell & Developmental Biology, University of Michigan Medical School, 109 Zina Pitcher Pl., Ann Arbor, MI-48109, USA,corresponding author, lead contact: , Twitter handle: @AjitJoglekar1
| |
Collapse
|
7
|
Bolanos-Garcia VM. On the Regulation of Mitosis by the Kinetochore, a Macromolecular Complex and Organising Hub of Eukaryotic Organisms. Subcell Biochem 2022; 99:235-267. [PMID: 36151378 DOI: 10.1007/978-3-031-00793-4_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The kinetochore is the multiprotein complex of eukaryotic organisms that is assembled on mitotic or meiotic centromeres to connect centromeric DNA with microtubules. Its function involves the coordinated action of more than 100 different proteins. The kinetochore acts as an organiser hub that establishes physical connections with microtubules and centromere-associated proteins and recruits central protein components of the spindle assembly checkpoint (SAC), an evolutionarily conserved surveillance mechanism of eukaryotic organisms that detects unattached kinetochores and destabilises incorrect kinetochore-microtubule attachments. The molecular communication between the kinetochore and the SAC is highly dynamic and tightly regulated to ensure that cells can progress towards anaphase until each chromosome is properly bi-oriented on the mitotic spindle. This is achieved through an interplay of highly cooperative interactions and concerted phosphorylation/dephosphorylation events that are organised in time and space.This contribution discusses our current understanding of the function, structure and regulation of the kinetochore, in particular, how its communication with the SAC results in the amplification of specific signals to exquisitely control the eukaryotic cell cycle. This contribution also addresses recent advances in machine learning approaches, cell imaging and proteomics techniques that have enhanced our understanding of the molecular mechanisms that ensure the high fidelity and timely segregation of the genetic material every time a cell divides as well as the current challenges in the study of this fascinating molecular machine.
Collapse
Affiliation(s)
- Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, UK.
| |
Collapse
|
8
|
Cunningham CE, MacAuley MJ, Vizeacoumar FS, Abuhussein O, Freywald A, Vizeacoumar FJ. The CINs of Polo-Like Kinase 1 in Cancer. Cancers (Basel) 2020; 12:cancers12102953. [PMID: 33066048 PMCID: PMC7599805 DOI: 10.3390/cancers12102953] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Many alterations specific to cancer cells have been investigated as targets for targeted therapies. Chromosomal instability is a characteristic of nearly all cancers that can limit response to targeted therapies by ensuring the tumor population is not genetically homogenous. Polo-like Kinase 1 (PLK1) is often up regulated in cancers and it regulates chromosomal instability extensively. PLK1 has been the subject of much pre-clinical and clinical studies, but thus far, PLK1 inhibitors have not shown significant improvement in cancer patients. We discuss the numerous roles and interactions of PLK1 in regulating chromosomal instability, and how these may provide an avenue for identifying targets for targeted therapies. As selective inhibitors of PLK1 showed limited clinical success, we also highlight how genetic interactions of PLK1 may be exploited to tackle these challenges. Abstract Polo-like kinase 1 (PLK1) is overexpressed near ubiquitously across all cancer types and dysregulation of this enzyme is closely tied to increased chromosomal instability and tumor heterogeneity. PLK1 is a mitotic kinase with a critical role in maintaining chromosomal integrity through its function in processes ranging from the mitotic checkpoint, centrosome biogenesis, bipolar spindle formation, chromosome segregation, DNA replication licensing, DNA damage repair, and cytokinesis. The relation between dysregulated PLK1 and chromosomal instability (CIN) makes it an attractive target for cancer therapy. However, clinical trials with PLK1 inhibitors as cancer drugs have generally displayed poor responses or adverse side-effects. This is in part because targeting CIN regulators, including PLK1, can elevate CIN to lethal levels in normal cells, affecting normal physiology. Nevertheless, aiming at related genetic interactions, such as synthetic dosage lethal (SDL) interactions of PLK1 instead of PLK1 itself, can help to avoid the detrimental side effects associated with increased levels of CIN. Since PLK1 overexpression contributes to tumor heterogeneity, targeting SDL interactions may also provide an effective strategy to suppressing this malignant phenotype in a personalized fashion.
Collapse
Affiliation(s)
- Chelsea E. Cunningham
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Mackenzie J. MacAuley
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Frederick S. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
| | - Omar Abuhussein
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
| | - Andrew Freywald
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| | - Franco J. Vizeacoumar
- Department of Pathology, College of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada; (M.J.M.); (F.S.V.)
- College of Pharmacy, University of Saskatchewan, 104 Clinic Place, Saskatoon, SK S7N 2Z4, Canada;
- Cancer Research, Saskatchewan Cancer Agency, 107 Wiggins Road, Saskatoon, SK S7N 5E5, Canada
- Correspondence: (C.E.C.); (A.F.); (F.J.V.); Tel.: +1-(306)-327-7864 (C.E.C.); +1-(306)-966-5248 (A.F.); +1-(306)-966-7010 (F.J.V.)
| |
Collapse
|
9
|
Roy B, Han SJ, Fontan AN, Joglekar AP. The copy-number and varied strengths of MELT motifs in Spc105 balance the strength and responsiveness of the spindle assembly checkpoint. eLife 2020; 9:55096. [PMID: 32479259 PMCID: PMC7292645 DOI: 10.7554/elife.55096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/29/2020] [Indexed: 12/15/2022] Open
Abstract
During mitosis, the Spindle Assembly Checkpoint (SAC) maintains genome stability while also ensuring timely anaphase onset. To maintain genome stability, the SAC must be strong to delay anaphase even if just one chromosome is unattached, but for timely anaphase onset, it must promptly respond to silencing mechanisms. How the SAC meets these potentially antagonistic requirements is unclear. Here we show that the balance between SAC strength and responsiveness is determined by the number of ‘MELT’ motifs in the kinetochore protein Spc105/KNL1 and their Bub3-Bub1 binding affinities. Many strong MELT motifs per Spc105/KNL1 minimize chromosome missegregation, but too many delay anaphase onset. We demonstrate this by constructing a Spc105 variant that trades SAC responsiveness for much more accurate chromosome segregation. We propose that the necessity of balancing SAC strength and responsiveness drives the dual evolutionary trend of the amplification of MELT motif number, but degeneration of their functionally optimal amino acid sequence.
Collapse
Affiliation(s)
- Babhrubahan Roy
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Simon Jy Han
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Adrienne Nicole Fontan
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| | - Ajit P Joglekar
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
10
|
Pirani V, Métivier M, Gallaud E, Thomas A, Ku S, Chretien D, Ettari R, Giet R, Corsi L, Benaud C. A novel benzodiazepine derivative that suppresses microtubule dynamics and impairs mitotic progression. J Cell Sci 2020; 133:jcs239244. [PMID: 32094264 DOI: 10.1242/jcs.239244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 02/17/2020] [Indexed: 11/20/2022] Open
Abstract
A novel 2,3-benzodiazepine-4 derivative, named 1g, has recently been shown to function as an anti-proliferative compound. We now show that it perturbs the formation of a functional mitotic spindle, inducing a spindle assembly checkpoint (SAC)-dependent arrest in human cells. Live analysis of individual microtubules indicates that 1g promotes a rapid and reversible reduction in microtubule growth. Unlike most anti-mitotic compounds, we found that 1g does not interfere directly with tubulin or perturb microtubule assembly in vitro The observation that 1g also triggers a SAC-dependent mitotic delay associated with chromosome segregation in Drosophila neural stem cells, suggests that it targets a conserved microtubule regulation module in humans and flies. Altogether, our results indicate that 1g is a novel promising anti-mitotic drug with the unique properties of altering microtubule growth and mitotic spindle organization.
Collapse
Affiliation(s)
- Vittoria Pirani
- University of Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 35000 Rennes, France
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Mathieu Métivier
- University of Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 35000 Rennes, France
| | - Emmanuel Gallaud
- University of Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 35000 Rennes, France
| | - Alexandre Thomas
- University of Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 35000 Rennes, France
| | - Siou Ku
- University of Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 35000 Rennes, France
| | - Denis Chretien
- University of Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 35000 Rennes, France
| | - Roberta Ettari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Regis Giet
- University of Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 35000 Rennes, France
| | - Lorenzo Corsi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Christelle Benaud
- University of Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, 35000 Rennes, France
| |
Collapse
|
11
|
Zhao Z, Kurimchak A, Nikonova AS, Feiser F, Wasserman JS, Fowle H, Varughese T, Connors M, Johnson K, Makhov P, Lindskog C, Kolenko VM, Golemis EA, Duncan JS, Graña X. PPP2R2A prostate cancer haploinsufficiency is associated with worse prognosis and a high vulnerability to B55α/PP2A reconstitution that triggers centrosome destabilization. Oncogenesis 2019; 8:72. [PMID: 31822657 PMCID: PMC6904742 DOI: 10.1038/s41389-019-0180-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022] Open
Abstract
The PPP2R2A gene encodes the B55α regulatory subunit of PP2A. Here, we report that PPP2R2A is hemizygously lost in ~42% of prostate adenocarcinomas, correlating with reduced expression, poorer prognosis, and an increased incidence of hemizygous loss (>75%) in metastatic disease. Of note, PPP2R2A homozygous loss is less common (5%) and not increased at later tumor stages. Reduced expression of B55α is also seen in prostate tumor tissue and cell lines. Consistent with the possibility that complete loss of PPP2R2A is detrimental in prostate tumors, PPP2R2A deletion in cells with reduced but present B55α reduces cell proliferation by slowing progression through the cell cycle. Remarkably, B55α-low cells also appear addicted to lower B55α expression, as even moderate increases in B55α expression are toxic. Reconstitution of B55α expression in prostate cancer (PCa) cell lines with low B55α expression reduces proliferation, inhibits transformation and blocks xenograft tumorigenicity. Mechanistically, we show B55α reconstitution reduces phosphorylation of proteins essential for centrosomal maintenance, and induces centrosome collapse and chromosome segregation failure; a first reported link between B55α/PP2A and the vertebrate centrosome. These effects are dependent on a prolonged metaphase/anaphase checkpoint and are lethal to PCa cells addicted to low levels of B55α. Thus, we propose the reduction in B55α levels associated with hemizygous loss is necessary for centrosomal integrity in PCa cells, leading to selective lethality of B55α reconstitution. Such a vulnerability could be targeted therapeutically in the large pool of patients with hemizygous PPP2R2A deletions, using pharmacologic approaches that enhance PP2A/B55α activity.
Collapse
Affiliation(s)
- Ziran Zhao
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Alison Kurimchak
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.,Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | | | - Felicity Feiser
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Jason S Wasserman
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Holly Fowle
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Tinsa Varughese
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Megan Connors
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | | | - Petr Makhov
- Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Uppsala University, 752 36, Uppsala, Sweden
| | | | | | | | - Xavier Graña
- Fels Institute for Cancer Research and Molecular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
12
|
Masnadi-Shirazi M, Maurya MR, Pao G, Ke E, Verma IM, Subramaniam S. Time varying causal network reconstruction of a mouse cell cycle. BMC Bioinformatics 2019; 20:294. [PMID: 31142274 PMCID: PMC6542064 DOI: 10.1186/s12859-019-2895-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 12/21/2022] Open
Abstract
Background Biochemical networks are often described through static or time-averaged measurements of the component macromolecules. Temporal variation in these components plays an important role in both describing the dynamical nature of the network as well as providing insights into causal mechanisms. Few methods exist, specifically for systems with many variables, for analyzing time series data to identify distinct temporal regimes and the corresponding time-varying causal networks and mechanisms. Results In this study, we use well-constructed temporal transcriptional measurements in a mammalian cell during a cell cycle, to identify dynamical networks and mechanisms describing the cell cycle. The methods we have used and developed in part deal with Granger causality, Vector Autoregression, Estimation Stability with Cross Validation and a nonparametric change point detection algorithm that enable estimating temporally evolving directed networks that provide a comprehensive picture of the crosstalk among different molecular components. We applied our approach to RNA-seq time-course data spanning nearly two cell cycles from Mouse Embryonic Fibroblast (MEF) primary cells. The change-point detection algorithm is able to extract precise information on the duration and timing of cell cycle phases. Using Least Absolute Shrinkage and Selection Operator (LASSO) and Estimation Stability with Cross Validation (ES-CV), we were able to, without any prior biological knowledge, extract information on the phase-specific causal interaction of cell cycle genes, as well as temporal interdependencies of biological mechanisms through a complete cell cycle. Conclusions The temporal dependence of cellular components we provide in our model goes beyond what is known in the literature. Furthermore, our inference of dynamic interplay of multiple intracellular mechanisms and their temporal dependence on one another can be used to predict time-varying cellular responses, and provide insight on the design of precise experiments for modulating the regulation of the cell cycle. Electronic supplementary material The online version of this article (10.1186/s12859-019-2895-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maryam Masnadi-Shirazi
- Department of Electrical and Computer Engineering and Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Mano R Maurya
- Department of Bioengineering and San Diego Supercomputer center, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| | - Gerald Pao
- Salk institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Eugene Ke
- Salk institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Inder M Verma
- Salk institute for Biological Studies, 10010 N Torrey Pines Rd, La Jolla, CA, 92037, USA
| | - Shankar Subramaniam
- Department of Bioengineering, Departments of Computer Science and Engineering, Cellular and Molecular Medicine, and the Graduate Program in Bioinformatics, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA.
| |
Collapse
|
13
|
Daldello EM, Luong XG, Yang CR, Kuhn J, Conti M. Cyclin B2 is required for progression through meiosis in mouse oocytes. Development 2019; 146:dev172734. [PMID: 30952665 PMCID: PMC6503990 DOI: 10.1242/dev.172734] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/01/2019] [Indexed: 12/20/2022]
Abstract
Cyclins associate with cyclin-dependent serine/threonine kinase 1 (CDK1) to generate the M phase-promoting factor (MPF) activity essential for progression through mitosis and meiosis. Although cyclin B1 (CCNB1) is required for embryo development, previous studies concluded that CCNB2 is dispensable for cell cycle progression. Given previous findings of high Ccnb2 mRNA translation rates in prophase-arrested oocytes, we re-evaluated the role of this cyclin during meiosis. Ccnb2-/- oocytes underwent delayed germinal vesicle breakdown and showed defects during the metaphase-to-anaphase transition. This defective maturation was associated with compromised Ccnb1 and Moloney sarcoma oncogene (Mos) mRNA translation, delayed spindle assembly and increased errors in chromosome segregation. Given these defects, a significant percentage of oocytes failed to complete meiosis I because the spindle assembly checkpoint remained active and anaphase-promoting complex/cyclosome function was inhibited. In vivo, CCNB2 depletion caused ovulation of immature oocytes, premature ovarian failure, and compromised female fecundity. These findings demonstrate that CCNB2 is required to assemble sufficient pre-MPF for timely meiosis re-entry and progression. Although endogenous cyclins cannot compensate, overexpression of CCNB1/2 rescues the meiotic phenotypes, indicating similar molecular properties but divergent modes of regulation of these cyclins.
Collapse
Affiliation(s)
- Enrico Maria Daldello
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Xuan G Luong
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Cai-Rong Yang
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Jonathan Kuhn
- Cell and Tissue Biology Department, University of California, San Francisco, CA 94143, USA
| | - Marco Conti
- Center for Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
- Department of Obstetrics and Gynecology and Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Small-Molecule Ferroptotic Agents with Potential to Selectively Target Cancer Stem Cells. Sci Rep 2019; 9:5926. [PMID: 30976078 PMCID: PMC6459861 DOI: 10.1038/s41598-019-42251-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 03/22/2019] [Indexed: 02/07/2023] Open
Abstract
Effective management of advanced cancer requires systemic treatment including small molecules that target unique features of aggressive tumor cells. At the same time, tumors are heterogeneous and current evidence suggests that a subpopulation of tumor cells, called tumor initiating or cancer stem cells, are responsible for metastatic dissemination, tumor relapse and possibly drug resistance. Classical apoptotic drugs are less effective against this critical subpopulation. In the course of generating a library of open-chain epothilones, we discovered a new class of small molecule anticancer agents that has no effect on tubulin but instead kills selected cancer cell lines by harnessing reactive oxygen species to induce ferroptosis. Interestingly, we find that drug sensitivity is highest in tumor cells with a mesenchymal phenotype. Furthermore, these compounds showed enhanced toxicity towards mesenchymal breast cancer populations with cancer stem cell properties in vitro. In summary, we have identified a new class of small molecule ferroptotic agents that warrant further investigation.
Collapse
|
15
|
Curtis NL, Bolanos-Garcia VM. The Anaphase Promoting Complex/Cyclosome (APC/C): A Versatile E3 Ubiquitin Ligase. Subcell Biochem 2019; 93:539-623. [PMID: 31939164 DOI: 10.1007/978-3-030-28151-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
In the present chapter we discuss the essential roles of the human E3 ubiquitin ligase Anaphase Promoting Complex/Cyclosome (APC/C) in mitosis as well as the emerging evidence of important APC/C roles in cellular processes beyond cell division control such as regulation of genomic integrity and cell differentiation of the nervous system. We consider the potential incipient role of APC/C dysregulation in the pathophysiology of the neurological disorder Alzheimer's disease (AD). We also discuss how certain Deoxyribonucleic Acid (DNA) and Ribonucleic Acid (RNA) viruses take control of the host's cell division regulatory system through harnessing APC/C ubiquitin ligase activity and hypothesise the plausible molecular mechanisms underpinning virus manipulation of the APC/C. We also examine how defects in the function of this multisubunit protein assembly drive abnormal cell proliferation and lastly argue the potential of APC/C as a promising therapeutic target for the development of innovative therapies for the treatment of chronic malignancies such as cancer.
Collapse
Affiliation(s)
- Natalie L Curtis
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK
| | - Victor M Bolanos-Garcia
- Faculty of Health and Life Sciences, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, England, UK.
| |
Collapse
|
16
|
Chen C, Whitney IP, Banerjee A, Sacristan C, Sekhri P, Kern DM, Fontan A, Kops GJPL, Tyson JJ, Cheeseman IM, Joglekar AP. Ectopic Activation of the Spindle Assembly Checkpoint Signaling Cascade Reveals Its Biochemical Design. Curr Biol 2018; 29:104-119.e10. [PMID: 30595520 DOI: 10.1016/j.cub.2018.11.054] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/13/2018] [Accepted: 11/21/2018] [Indexed: 11/27/2022]
Abstract
Switch-like activation of the spindle assembly checkpoint (SAC) is critical for accurate chromosome segregation and for cell division in a timely manner. To determine the mechanisms that achieve this, we engineered an ectopic, kinetochore-independent SAC activator: the "eSAC." The eSAC stimulates SAC signaling by artificially dimerizing Mps1 kinase domain and a cytosolic KNL1 phosphodomain, the kinetochore signaling scaffold. By exploiting variable eSAC expression in a cell population, we defined the dependence of the eSAC-induced mitotic delay on eSAC concentration in a cell to reveal the dose-response behavior of the core signaling cascade of the SAC. These quantitative analyses and subsequent mathematical modeling of the dose-response data uncover two crucial properties of the core SAC signaling cascade: (1) a cellular limit on the maximum anaphase-inhibitory signal that the cascade can generate due to the limited supply of SAC proteins and (2) the ability of the KNL1 phosphodomain to produce the anaphase-inhibitory signal synergistically, when it recruits multiple SAC proteins simultaneously. We propose that these properties together achieve inverse, non-linear scaling between the signal output per kinetochore and the number of signaling kinetochores. When the number of kinetochores is low, synergistic signaling by KNL1 enables each kinetochore to produce a disproportionately strong signal output. However, when many kinetochores signal concurrently, they compete for a limited supply of SAC proteins. This frustrates synergistic signaling and lowers their signal output. Thus, the signaling activity of unattached kinetochores will adapt to the changing number of signaling kinetochores to enable the SAC to approximate switch-like behavior.
Collapse
Affiliation(s)
- Chu Chen
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ian P Whitney
- Whitehead Institute for Biomedical Research and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Anand Banerjee
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Carlos Sacristan
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), and Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Palak Sekhri
- Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David M Kern
- Whitehead Institute for Biomedical Research and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Adrienne Fontan
- Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Geert J P L Kops
- Hubrecht Institute - KNAW (Royal Netherlands Academy of Arts and Sciences), and Molecular Cancer Research, University Medical Center Utrecht, Utrecht, the Netherlands
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute & State University, Blacksburg, VA 24061, USA
| | - Iain M Cheeseman
- Whitehead Institute for Biomedical Research and Department of Biology, MIT, Nine Cambridge Center, Cambridge, MA 02142, USA
| | - Ajit P Joglekar
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA; Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
17
|
Abstract
The mitotic checkpoint ensures proper chromosome segregation; defects in this checkpoint can lead to aneuploidy, a hallmark of cancer. The mitotic checkpoint blocks progression through mitosis as long as chromosomes remain unattached to spindle microtubules. Unattached kinetochores induce the formation of a mitotic checkpoint complex (MCC) composed of Mad2, BubR1, Bub1 and Bub3 which inhibits anaphase onset. Spindle toxins induce prolonged mitotic arrest by creating persistently unattached kinetochores which trigger MCC formation. We find that the multifunctional ser/thr kinase, glycogen synthase kinase 3 (GSK3) is required for a strong mitotic checkpoint. Spindle toxin-induced mitotic arrest is relieved by GSK3 inhibitors SB 415286 (SB), RO 318220 (RO) and lithium chloride. Similarly, targeting GSK3β with knockout or RNAi reduced mitotic arrest in the presence of Taxol. GSK3 was required for optimal localization of Mad2, BubR1, and Bub1 at kinetochores and for optimal assembly of the MCC in spindle toxin-arrested cells. The WNT- and PI3K/Akt signaling pathways negatively regulate GSK3β activity. Inhibition of WNT and PI3K/Akt signaling, in the presence of Taxol, induced a longer mitotic arrest compared to Taxol alone. Our observations provide novel insight into the regulation of the mitotic checkpoint and its connection to growth-signaling pathways.
Collapse
|
18
|
Luo Y, Ahmad E, Liu ST. MAD1: Kinetochore Receptors and Catalytic Mechanisms. Front Cell Dev Biol 2018; 6:51. [PMID: 29868582 PMCID: PMC5949338 DOI: 10.3389/fcell.2018.00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/18/2018] [Indexed: 12/22/2022] Open
Abstract
The mitotic checkpoint monitors kinetochore-microtubule attachment, delays anaphase onset and prevents aneuploidy when unattached or tensionless kinetochores are present in cells. Mitotic arrest deficiency 1 (MAD1) is one of the evolutionarily conserved core mitotic checkpoint proteins. MAD1 forms a cell cycle independent complex with MAD2 through its MAD2 interaction motif (MIM) in the middle region. Such a complex is enriched at unattached kinetochores and functions as an unusual catalyst to promote conformational change of additional MAD2 molecules, constituting a crucial signal amplifying mechanism for the mitotic checkpoint. Only MAD2 in its active conformation can be assembled with BUBR1 and CDC20 to form the Mitotic Checkpoint Complex (MCC), which is a potent inhibitor of anaphase onset. Recent research has shed light on how MAD1 is recruited to unattached kinetochores, and how it carries out its catalytic activity. Here we review these advances and discuss their implications for future research.
Collapse
Affiliation(s)
- Yibo Luo
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Ejaz Ahmad
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| | - Song-Tao Liu
- Department of Biological Sciences, University of Toledo, Toledo, OH, United States
| |
Collapse
|
19
|
Skowyra A, Allan LA, Saurin AT, Clarke PR. USP9X Limits Mitotic Checkpoint Complex Turnover to Strengthen the Spindle Assembly Checkpoint and Guard against Chromosomal Instability. Cell Rep 2018; 23:852-865. [PMID: 29669289 PMCID: PMC5917450 DOI: 10.1016/j.celrep.2018.03.100] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 02/04/2018] [Accepted: 03/21/2018] [Indexed: 02/09/2023] Open
Abstract
Faithful chromosome segregation during mitosis depends on the spindle assembly checkpoint (SAC), which delays progression through mitosis until every chromosome has stably attached to spindle microtubules via the kinetochore. We show here that the deubiquitinase USP9X strengthens the SAC by antagonizing the turnover of the mitotic checkpoint complex produced at unattached kinetochores. USP9X thereby opposes activation of anaphase-promoting complex/cyclosome (APC/C) and specifically inhibits the mitotic degradation of SAC-controlled APC/C substrates. We demonstrate that depletion or loss of USP9X reduces the effectiveness of the SAC, elevates chromosome segregation defects, and enhances chromosomal instability (CIN). These findings provide a rationale to explain why loss of USP9X could be either pro- or anti-tumorigenic depending on the existing level of CIN.
Collapse
Affiliation(s)
- Agnieszka Skowyra
- Division of Cancer Research, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Lindsey A Allan
- Division of Cancer Research, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK
| | - Adrian T Saurin
- Division of Cancer Research, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK.
| | - Paul R Clarke
- Division of Cancer Research, School of Medicine, University of Dundee, Jacqui Wood Cancer Centre, Ninewells Hospital and Medical School, Dundee DD1 9SY, UK; The University of Queensland Diamantina Institute, Faculty of Medicine, Translational Research Institute, 37 Kent Street, Woolloongabba QLD 4102, Australia.
| |
Collapse
|
20
|
Combes G, Barysz H, Garand C, Gama Braga L, Alharbi I, Thebault P, Murakami L, Bryne DP, Stankovic S, Eyers PA, Bolanos-Garcia VM, Earnshaw WC, Maciejowski J, Jallepalli PV, Elowe S. Mps1 Phosphorylates Its N-Terminal Extension to Relieve Autoinhibition and Activate the Spindle Assembly Checkpoint. Curr Biol 2018; 28:872-883.e5. [PMID: 29502948 PMCID: PMC5863767 DOI: 10.1016/j.cub.2018.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/15/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022]
Abstract
Monopolar spindle 1 (Mps1) is a conserved apical kinase in the spindle assembly checkpoint (SAC) that ensures accurate segregation of chromosomes during mitosis. Mps1 undergoes extensive auto- and transphosphorylation, but the regulatory and functional consequences of these modifications remain unclear. Recent findings highlight the importance of intermolecular interactions between the N-terminal extension (NTE) of Mps1 and the Hec1 subunit of the NDC80 complex, which control Mps1 localization at kinetochores and activation of the SAC. Whether the NTE regulates other mitotic functions of Mps1 remains unknown. Here, we report that phosphorylation within the NTE contributes to Mps1 activation through relief of catalytic autoinhibition that is mediated by the NTE itself. Moreover, we find that this regulatory NTE function is independent of its role in Mps1 kinetochore recruitment. We demonstrate that the NTE autoinhibitory mechanism impinges most strongly on Mps1-dependent SAC functions and propose that Mps1 activation likely occurs sequentially through dimerization of a “prone-to-autophosphorylate” Mps1 conformer followed by autophosphorylation of the NTE prior to maximal kinase activation segment trans-autophosphorylation. Our observations underline the importance of autoregulated Mps1 activity in generation and maintenance of a robust SAC in human cells. Mps1 autophosphorylation at the NTE promotes activity independent of localization NTE phosphorylation relieves an NTE-dependent autoinhibition Mps1 autophosphorylation at its NTE is essential for the SAC, but not congression
Collapse
Affiliation(s)
- Guillaume Combes
- Programme in Molecular and Cellular Biology, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Bureau 4633, Université Laval, Québec, QC G1V0A6, Canada; Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Helena Barysz
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Chantal Garand
- Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Luciano Gama Braga
- Programme in Molecular and Cellular Biology, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Bureau 4633, Université Laval, Québec, QC G1V0A6, Canada; Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Ibrahim Alharbi
- Programme in Molecular and Cellular Biology, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Bureau 4633, Université Laval, Québec, QC G1V0A6, Canada; Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Philippe Thebault
- Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Luc Murakami
- Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada
| | - Dominic P Bryne
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Stasa Stankovic
- Department of Biological and Medical Sciences - Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Patrick A Eyers
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | - Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences - Faculty of Health and Life Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - John Maciejowski
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Prasad V Jallepalli
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sabine Elowe
- Programme in Molecular and Cellular Biology, Faculty of Medicine, Université Laval, 1050 Avenue de la Médecine, Bureau 4633, Université Laval, Québec, QC G1V0A6, Canada; Axe of Reproduction, Mother and Youth Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec, QC G1V 4G2, Canada.
| |
Collapse
|
21
|
Ji W, Luo Y, Ahmad E, Liu ST. Direct interactions of mitotic arrest deficient 1 (MAD1) domains with each other and MAD2 conformers are required for mitotic checkpoint signaling. J Biol Chem 2017; 293:484-496. [PMID: 29162720 DOI: 10.1074/jbc.ra117.000555] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/15/2017] [Indexed: 11/06/2022] Open
Abstract
As a sensitive signaling system, the mitotic checkpoint ensures faithful chromosome segregation by delaying anaphase onset even when a single kinetochore is unattached to mitotic spindle microtubules. The key signal amplification reaction for the checkpoint is the conformational conversion of "open" mitotic arrest deficient 2 (O-MAD2) into "closed" MAD2 (C-MAD2). The reaction has been suggested to be catalyzed by an unusual catalyst, a MAD1:C-MAD2 tetramer, but how the catalysis is executed and regulated remains elusive. Here, we report that in addition to the well-characterized middle region of MAD1 containing the MAD2-interaction motif (MIM), both N- and C-terminal domains (NTD and CTD) of MAD1 also contribute to mitotic checkpoint signaling. Unlike the MIM, which stably associated only with C-MAD2, the NTD and CTD in MAD1 surprisingly bound both O- and C-MAD2, suggesting that these two domains interact with both substrates and products of the O-to-C conversion. MAD1NTD and MAD1CTD also interacted with each other and with the MPS1 protein kinase, which phosphorylated both NTD and CTD. This phosphorylation decreased the NTD:CTD interaction and also CTD's interaction with MPS1. Of note, mutating the phosphorylation sites in the MAD1CTD, including Thr-716, compromised MAD2 binding and the checkpoint responses. We further noted that Ser-610 and Tyr-634 also contribute to the mitotic checkpoint signaling. Our results have uncovered that the MAD1NTD and MAD1CTD directly interact with each other and with MAD2 conformers and are regulated by MPS1 kinase, providing critical insights into mitotic checkpoint signaling.
Collapse
Affiliation(s)
- Wenbin Ji
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Yibo Luo
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Ejaz Ahmad
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Song-Tao Liu
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| |
Collapse
|
22
|
Delayed APC/C activation extends the first mitosis of mouse embryos. Sci Rep 2017; 7:9682. [PMID: 28851945 PMCID: PMC5575289 DOI: 10.1038/s41598-017-09526-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/29/2017] [Indexed: 02/02/2023] Open
Abstract
The correct temporal regulation of mitosis underpins genomic stability because it ensures the alignment of chromosomes on the mitotic spindle that is required for their proper segregation to the two daughter cells. Crucially, sister chromatid separation must be delayed until all the chromosomes have attached to the spindle; this is achieved by the Spindle Assembly Checkpoint (SAC) that inhibits the Anaphase Promoting Complex/Cyclosome (APC/C) ubiquitin ligase. In many species the first embryonic M-phase is significantly prolonged compared to the subsequent divisions, but the reason behind this has remained unclear. Here, we show that the first M-phase in the mouse embryo is significantly extended due to a delay in APC/C activation. Unlike in somatic cells, where the APC/C first targets cyclin A2 for degradation at nuclear envelope breakdown (NEBD), we find that in zygotes cyclin A2 remains stable for a significant period of time after NEBD. Our findings that the SAC prevents cyclin A2 degradation, whereas over-expressed Plk1 stimulates it, support our conclusion that the delay in cyclin A2 degradation is caused by low APC/C activity. As a consequence of delayed APC/C activation cyclin B1 stability in the first mitosis is also prolonged, leading to the unusual length of the first M-phase.
Collapse
|
23
|
Alcaraz-Sanabria A, Nieto-Jiménez C, Corrales-Sánchez V, Serrano-Oviedo L, Andrés-Pretel F, Montero JC, Burgos M, Llopis J, Galán-Moya EM, Pandiella A, Ocaña A. Synthetic Lethality Interaction Between Aurora Kinases and CHEK1 Inhibitors in Ovarian Cancer. Mol Cancer Ther 2017; 16:2552-2562. [PMID: 28847989 DOI: 10.1158/1535-7163.mct-17-0223] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 07/25/2017] [Accepted: 07/31/2017] [Indexed: 11/16/2022]
Abstract
Ovarian cancer is characterized by frequent mutations at TP53. These tumors also harbor germline mutations at homologous recombination repair genes, so they rely on DNA-damage checkpoint proteins, like the checkpoint kinase 1 (CHEK1) to induce G2 arrest. In our study, by using an in silico approach, we identified a synthetic lethality interaction between CHEK1 and mitotic aurora kinase A (AURKA) inhibitors. Gene expression analyses were used for the identification of relevant biological functions. OVCAR3, OVCAR8, IGROV1, and SKOV3 were used for proliferation studies. Alisertib was tested as AURKA inhibitor and LY2603618 as CHEK1 inhibitor. Analyses of cell cycle and intracellular mediators were performed by flow cytometry and Western blot analysis. Impact on stem cell properties was evaluated by flow cytometry analysis of surface markers and sphere formation assays. Gene expression analyses followed by functional annotation identified a series of deregulated genes that belonged to cell cycle, including AURKA/B, TTK kinase, and CHEK1. AURKA and CHEK1 were amplified in 8.7% and 3.9% of ovarian cancers, respectively. AURKA and CHEK1 inhibitors showed a synergistic interaction in different cellular models. Combination of alisertib and LY2603618 triggered apoptosis, reduced the stem cell population, and increased the effect of taxanes and platinum compounds. Finally, expression of AURKA and CHEK1 was linked with detrimental outcome in patients. Our data describe a synthetic lethality interaction between CHEK1 and AURKA inhibitors with potential translation to the clinical setting. Mol Cancer Ther; 16(11); 2552-62. ©2017 AACR.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Miguel Burgos
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, Albacete, Spain
| | - Juan Llopis
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, Albacete, Spain
| | - Eva María Galán-Moya
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, Albacete, Spain
| | | | - Alberto Ocaña
- Translational Research Unit, Albacete University Hospital, Albacete, Spain.
- Cancer Research Center, CSIC-University of Salamanca, Salamanca, Spain
- Translational Oncology Laboratory, Centro Regional de Investigaciones Biomédicas (CRIB), Universidad de Castilla La Mancha, Albacete, Spain
| |
Collapse
|
24
|
Choi M, Min YH, Pyo J, Lee CW, Jang CY, Kim JE. TC Mps1 12, a novel Mps1 inhibitor, suppresses the growth of hepatocellular carcinoma cells via the accumulation of chromosomal instability. Br J Pharmacol 2017; 174:1810-1825. [PMID: 28299790 DOI: 10.1111/bph.13782] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/01/2017] [Accepted: 03/05/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Chromosomal instability is not only a hallmark of cancer but also an attractive therapeutic target. A diverse set of mitotic kinases maintains chromosomal stability. One of these is monopolar spindle 1 (Mps1, also known as TTK), which is essential for chromosome alignment and for the spindle assembly checkpoint (SAC). Pharmacological inhibition of Mps1 has been suggested as a cancer therapeutic; however, despite the existence of a novel Mps1 inhibitor, TC Mps1 12, no such studies have been performed. EXPERIMENTAL APPROACH The effects of TC Mps1 12 on cell viability, chromosome alignment, centrosome number, mitotic duration, apoptosis and SAC were determined in hepatocellular carcinoma (HCC) cells. In addition, the association of Mps1 expression with the overall survival of HCC patients was analysed. KEY RESULTS Treatment of human HCC cells with TC Mps1 12 led to chromosome misalignment and missegregation, and disorganization of centrosomes. Even in the presence of these errors, TC Mps1 12-treated cells overrode the SAC, resulting in a shortened mitotic duration and mitotic slippage. This mitotic catastrophe triggered apoptosis and, finally, inhibited the growth of HCC cells. In addition, the expression of the Mps1-encoding TTK gene was associated with poor overall survival of HCC patients. CONCLUSION AND IMPLICATIONS TC Mps1 12 results in the accumulation of chromosomal instabilities and mitotic catastrophe in HCC cells. Overall, these data demonstrate that the inhibition of Mps1 kinase using TC Mps1 12 is a promising therapeutic approach for liver cancer.
Collapse
Affiliation(s)
- Minji Choi
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Yoo Hong Min
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Jaehyuk Pyo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Chang-Young Jang
- College of Pharmacy, Sookmyung Women's University, Seoul, Republic of Korea
| | - Ja-Eun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea.,East-West Medical Research Institute, Kyung Hee University, Seoul, Republic of Korea.,Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
25
|
Wheelock MS, Wynne DJ, Tseng BS, Funabiki H. Dual recognition of chromatin and microtubules by INCENP is important for mitotic progression. J Cell Biol 2017; 216:925-941. [PMID: 28314740 PMCID: PMC5379950 DOI: 10.1083/jcb.201609061] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/11/2017] [Accepted: 02/07/2017] [Indexed: 12/23/2022] Open
Abstract
The chromosomal passenger complex (CPC), composed of inner centromere protein (INCENP), Survivin, Borealin, and the kinase Aurora B, contributes to the activation of the mitotic checkpoint. The regulation of CPC function remains unclear. Here, we reveal that in addition to Survivin and Borealin, the single α-helix (SAH) domain of INCENP supports CPC localization to chromatin and the mitotic checkpoint. The INCENP SAH domain also mediates INCENP's microtubule binding, which is negatively regulated by Cyclin-dependent kinase-mediated phosphorylation of segments flanking the SAH domain. The microtubule-binding capacity of the SAH domain is important for mitotic arrest in conditions of suppressed microtubule dynamics, and the duration of mitotic arrest dictates the probability, but not the timing, of cell death. Although independent targeting of INCENP to microtubules or the kinetochore/centromere promotes the mitotic checkpoint, it is insufficient for a robust mitotic arrest. Altogether, our results demonstrate that dual recognition of chromatin and microtubules by CPC is important for checkpoint maintenance and determination of cell fate in mitosis.
Collapse
Affiliation(s)
- Michael S Wheelock
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| | - David J Wynne
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065.,Department of Biology, The College of New Jersey, Ewing, NJ 08628
| | - Boo Shan Tseng
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065.,The School of Life Sciences, The University of Nevada Las Vegas, Las Vegas, NV 89154
| | - Hironori Funabiki
- Laboratory of Chromosome and Cell Biology, The Rockefeller University, New York, NY 10065
| |
Collapse
|
26
|
Li J, Dang N, Wood DJ, Huang JY. The kinetochore-dependent and -independent formation of the CDC20-MAD2 complex and its functions in HeLa cells. Sci Rep 2017; 7:41072. [PMID: 28112196 PMCID: PMC5253641 DOI: 10.1038/srep41072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/12/2016] [Indexed: 11/09/2022] Open
Abstract
The mitotic checkpoint complex (MCC) is formed from two sub-complexes of CDC20-MAD2 and BUBR1-BUB3, and current models suggest that it is generated exclusively by the kinetochores after nuclear envelope breakdown (NEBD). However, neither sub-complex has been visualised in vivo, and when and where they are formed during the cell cycle and their response to different SAC conditions remains elusive. Using single cell analysis in HeLa cells, we show that the CDC20-MAD2 complex is cell cycle regulated with a “Bell” shaped profile and peaks at prometaphase. Its formation begins in early prophase before NEBD when the SAC has not been activated. The complex prevents the premature degradation of cyclin B1. Tpr, a component of the NPCs (nuclear pore complexes), facilitates the formation of this prophase form of the CDC20-MAD2 complex but is inactive later in mitosis. Thus, we demonstrate that the CDC20-MAD2 complex could also be formed independently of the SAC. Moreover, in prolonged arrest caused by nocodazole treatment, the overall levels of the CDC20-MAD2 complex are gradually, but significantly, reduced and this is associated with lower levels of cyclin B1, which brings a new insight into the mechanism of mitotic “slippage” of the arrested cells.
Collapse
Affiliation(s)
- Jianquan Li
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Nanmao Dang
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Daniel James Wood
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Jun-Yong Huang
- Institute for Cell and Molecular Biosciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
27
|
Joglekar AP. A Cell Biological Perspective on Past, Present and Future Investigations of the Spindle Assembly Checkpoint. BIOLOGY 2016; 5:biology5040044. [PMID: 27869759 PMCID: PMC5192424 DOI: 10.3390/biology5040044] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 12/04/2022]
Abstract
The spindle assembly checkpoint (SAC) is a quality control mechanism that ensures accurate chromosome segregation during cell division. It consists of a mechanochemical signal transduction mechanism that senses the attachment of chromosomes to the spindle, and a signaling cascade that inhibits cell division if one or more chromosomes are not attached. Extensive investigations of both these component systems of the SAC have synthesized a comprehensive understanding of the underlying molecular mechanisms. This review recounts the milestone results that elucidated the SAC, compiles a simple model of the complex molecular machinery underlying the SAC, and highlights poorly understood facets of the biochemical design and cell biological operation of the SAC that will drive research forward in the near future.
Collapse
Affiliation(s)
- Ajit P Joglekar
- Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
28
|
Abstract
The mitotic checkpoint is a specialized signal transduction pathway that contributes to the fidelity of chromosome segregation. The signaling of the checkpoint originates from defective kinetochore-microtubule interactions and leads to formation of the mitotic checkpoint complex (MCC), a highly potent inhibitor of the Anaphase Promoting Complex/Cyclosome (APC/C)—the E3 ubiquitin ligase essential for anaphase onset. Many important questions concerning the MCC and its interaction with APC/C have been intensively investigated and debated in the past 15 years, such as the exact composition of the MCC, how it is assembled during a cell cycle, how it inhibits APC/C, and how the MCC is disassembled to allow APC/C activation. These efforts have culminated in recently reported structure models for human MCC:APC/C supra-complexes at near-atomic resolution that shed light on multiple aspects of the mitotic checkpoint mechanisms. However, confusing statements regarding the MCC are still scattered in the literature, making it difficult for students and scientists alike to obtain a clear picture of MCC composition, structure, function and dynamics. This review will comb through some of the most popular concepts or misconceptions about the MCC, discuss our current understandings, present a synthesized model on regulation of CDC20 ubiquitination, and suggest a few future endeavors and cautions for next phase of MCC research.
Collapse
Affiliation(s)
- Song-Tao Liu
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| | - Hang Zhang
- Department of Biological Sciences, University of Toledo, 2801 West Bancroft St., Toledo, OH 43606, USA
| |
Collapse
|
29
|
Manic G, Corradi F, Sistigu A, Siteni S, Vitale I. Molecular Regulation of the Spindle Assembly Checkpoint by Kinases and Phosphatases. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 328:105-161. [PMID: 28069132 DOI: 10.1016/bs.ircmb.2016.08.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The spindle assembly checkpoint (SAC) is a surveillance mechanism contributing to the preservation of genomic stability by monitoring the microtubule attachment to, and/or the tension status of, each kinetochore during mitosis. The SAC halts metaphase to anaphase transition in the presence of unattached and/or untensed kinetochore(s) by releasing the mitotic checkpoint complex (MCC) from these improperly-oriented kinetochores to inhibit the anaphase-promoting complex/cyclosome (APC/C). The reversible phosphorylation of a variety of substrates at the kinetochore by antagonistic kinases and phosphatases is one major signaling mechanism for promptly turning on or turning off the SAC. In such a complex network, some kinases act at the apex of the SAC cascade by either generating (monopolar spindle 1, MPS1/TTK and likely polo-like kinase 1, PLK1), or contributing to generate (Aurora kinase B) kinetochore phospho-docking sites for the hierarchical recruitment of the SAC proteins. Aurora kinase B, MPS1 and budding uninhibited by benzimidazoles 1 (BUB1) also promote sister chromatid biorientation by modulating kinetochore microtubule stability. Moreover, MPS1, BUB1, and PLK1 seem to play key roles in APC/C inhibition by mechanisms dependent and/or independent on MCC assembly. The protein phosphatase 1 and 2A (PP1 and PP2A) are recruited to kinetochores to oppose kinase activity. These phosphatases reverse the phosphorylation of kinetochore targets promoting the microtubule attachment stabilization, sister kinetochore biorientation and SAC silencing. The kinase-phosphatase network is crucial as it renders the SAC a dynamic, graded-signaling, high responsive, and robust process thereby ensuring timely anaphase onset and preventing the generation of proneoplastic aneuploidy.
Collapse
Affiliation(s)
- G Manic
- Regina Elena National Cancer Institute, Rome, Italy.
| | - F Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - A Sistigu
- Regina Elena National Cancer Institute, Rome, Italy
| | - S Siteni
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Roma Tre", Rome, Italy
| | - I Vitale
- Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
30
|
Abstract
The spindle assembly checkpoint (SAC) is a key mechanism to regulate the timing of mitosis and ensure that chromosomes are correctly segregated to daughter cells. The recruitment of the Mad1 and Mad2 proteins to the kinetochore is normally necessary for SAC activation. This recruitment is coordinated by the SAC kinase Mps1, which phosphorylates residues at the kinetochore to facilitate binding of Bub1, Bub3, Mad1, and Mad2. There is evidence that the essential function of Mps1 is to direct recruitment of Mad1/2. To test this model, we have systematically recruited Mad1, Mad2, and Mps1 to most proteins in the yeast kinetochore, and find that, while Mps1 is sufficient for checkpoint activation, recruitment of either Mad1 or Mad2 is not. These data indicate an important role for Mps1 phosphorylation in SAC activation, beyond the direct recruitment of Mad1 and Mad2.
Collapse
|
31
|
Parmar MB, Arteaga Ballesteros BE, Fu T, K C RB, Montazeri Aliabadi H, Hugh JC, Löbenberg R, Uludağ H. Multiple siRNA delivery against cell cycle and anti-apoptosis proteins using lipid-substituted polyethylenimine in triple-negative breast cancer and nonmalignant cells. J Biomed Mater Res A 2016; 104:3031-3044. [PMID: 27465922 DOI: 10.1002/jbm.a.35846] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/28/2016] [Accepted: 07/26/2016] [Indexed: 11/07/2022]
Abstract
Conventional breast cancer therapies have significant limitations that warrant a search for alternative therapies. Short-interfering RNA (siRNA), delivered by polymeric biomaterials and capable of silencing specific genes critical for growth of cancer cells, holds great promise as an effective, and more specific therapy. Here, we employed amphiphilic polymers and silenced the expression of two cell cycle proteins, TTK and CDC20, and the anti-apoptosis protein survivin to determine the efficacy of polymer-mediated siRNA treatment in breast cancer cells as well as side effects in nonmalignant cells in vitro. We first identified effective siRNA carriers by screening a library of lipid-substituted polyethylenimines (PEI), and PEI substituted with linoleic acid (LA) emerged as the most effective carrier for selected siRNAs. Combinations of TTK/CDC20 and CDC20/Survivin siRNAs decreased the growth of MDA-MB-231 cells significantly, while only TTK/CDC20 combination inhibited MCF7 cell growth. The effects of combinational siRNA therapy was higher when complexes were formulated at lower siRNA:polymer ratio (1:2) compared to higher ratio (1:8) in nonmalignant cells. The lead polymer (1.2PEI-LA6) showed differential transfection efficiency based on the cell-type transfected. We conclude that the lipid-substituted polymers could serve as a viable platform for delivery of multiple siRNAs against critical targets in breast cancer therapy. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 3031-3044, 2016.
Collapse
Affiliation(s)
- Manoj B Parmar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Bárbara E Arteaga Ballesteros
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Timothy Fu
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Remant Bahadur K C
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | - Judith C Hugh
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Raimar Löbenberg
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hasan Uludağ
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada. .,Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada. .,Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
32
|
Modular elements of the TPR domain in the Mps1 N terminus differentially target Mps1 to the centrosome and kinetochore. Proc Natl Acad Sci U S A 2016; 113:7828-33. [PMID: 27339139 DOI: 10.1073/pnas.1607421113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Faithful segregation of chromosomes to two daughter cells is regulated by the formation of a bipolar mitotic spindle and the spindle assembly checkpoint, ensuring proper spindle function. Here we show that the proper localization of the kinase Mps1 (monopolar spindle 1) is critical to both these processes. Separate elements in the Mps1 N-terminal extension (NTE) and tetratricopeptide repeat (TPR) domains govern localization to either the kinetochore or the centrosome. The third TPR (TPR3) and the TPR-capping helix (C-helix) are each sufficient to target Mps1 to the centrosome. TPR3 binds to voltage-dependent anion channel 3, but although this is sufficient for centrosome targeting of Mps1, it is not necessary because of the presence of the C-helix. A version of Mps1 lacking both elements cannot localize to or function at the centrosome, but maintains kinetochore localization and spindle assembly checkpoint function, indicating that TPR3 and the C-helix define a bipartite localization determinant that is both necessary and sufficient to target Mps1 to the centrosome but dispensable for kinetochore targeting. In contrast, elements required for kinetochore targeting (the NTE and first two TPRs) are dispensable for centrosomal localization and function. These data are consistent with a separation of Mps1 function based on localization determinants within the N terminus.
Collapse
|
33
|
OTSSP167 Abrogates Mitotic Checkpoint through Inhibiting Multiple Mitotic Kinases. PLoS One 2016; 11:e0153518. [PMID: 27082996 PMCID: PMC4833387 DOI: 10.1371/journal.pone.0153518] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/30/2016] [Indexed: 12/16/2022] Open
Abstract
OTSSP167 was recently characterized as a potent inhibitor for maternal embryonic leucine zipper kinase (MELK) and is currently tested in Phase I clinical trials for solid tumors that have not responded to other treatment. Here we report that OTSSP167 abrogates the mitotic checkpoint at concentrations used to inhibit MELK. The abrogation is not recapitulated by RNAi mediated silencing of MELK in cells. Although OTSSP167 indeed inhibits MELK, it exhibits off-target activity against Aurora B kinase in vitro and in cells. Furthermore, OTSSP167 inhibits BUB1 and Haspin kinases, reducing phosphorylation at histones H2AT120 and H3T3 and causing mislocalization of Aurora B and associated chromosomal passenger complex from the centromere/kinetochore. The results suggest that OTSSP167 may have additional mechanisms of action for cancer cell killing and caution the use of OTSSP167 as a MELK specific kinase inhibitor in biochemical and cellular assays.
Collapse
|
34
|
Mps1 (Monopolar Spindle 1) Protein Inhibition Affects Cellular Growth and Pro-Embryogenic Masses Morphology in Embryogenic Cultures of Araucaria angustifolia (Araucariaceae). PLoS One 2016; 11:e0153528. [PMID: 27064899 PMCID: PMC4827878 DOI: 10.1371/journal.pone.0153528] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 03/30/2016] [Indexed: 11/20/2022] Open
Abstract
Somatic embryogenesis has been shown to be an efficient tool for studying processes based on cell growth and development. The fine regulation of the cell cycle is essential for proper embryo formation during the process of somatic embryogenesis. The aims of the present work were to identify and perform a structural and functional characterization of Mps1 and to analyze the effects of the inhibition of this protein on cellular growth and pro-embryogenic mass (PEM) morphology in embryogenic cultures of A. angustifolia. A single-copy Mps1 gene named AaMps1 was retrieved from the A. angustifolia transcriptome database, and through a mass spectrometry approach, AaMps1 was identified and quantified in embryogenic cultures. The Mps1 inhibitor SP600125 (10 μM) inhibited cellular growth and changed PEMs, and these effects were accompanied by a reduction in AaMps1 protein levels in embryogenic cultures. Our work has identified the Mps1 protein in a gymnosperm species for the first time, and we have shown that inhibiting Mps1 affects cellular growth and PEM differentiation during A. angustifolia somatic embryogenesis. These data will be useful for better understanding cell cycle control during somatic embryogenesis in plants.
Collapse
|
35
|
Zhao Y, Li L, Wu C, Jiang X, Ge B, Ren H, Huang F. Stable folding intermediates prevent fast interconversion between the closed and open states of Mad2 through its denatured state. Protein Eng Des Sel 2015; 29:23-9. [PMID: 26489879 DOI: 10.1093/protein/gzv056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 09/25/2015] [Indexed: 01/02/2023] Open
Abstract
Different states of metamorphic proteins can interconvert under physiological conditions to realize corresponding functions. The mechanism behind the conversion is critical for understanding how these proteins work. We report a combined thermodynamic and kinetic study on the folding/unfolding process of the open and closed conformers of mitotic arrest deficient protein 2 (Mad2), a metamorphic protein. It has been observed that open Mad2 (O-Mad2) can convert to closed Mad2 (C-Mad2). Our results show that O-Mad2 and C-Mad2 have similar thermodynamic stability, which explains the presence of metamorphosis. The folding/unfolding kinetics suggest that the conversion between O-Mad2 and C-Mad2 would be much faster than that reported previously if this conversion goes through the denatured state (U) directly, i.e. through an O-Mad2-denatured state (U)-C-Mad2 (O-U-C) pathway. This inconsistency implies that there exist stable intermediates in between the native and denatured states of Mad2, which would either slow down the O-U-C interconversion or prevent it going through the denatured state.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Huadong), Qingdao 266580, PR China Center for Bioengineering and Biotechnology, China University of Petroleum (Huadong), Qingdao 266580, PR China
| | - Lianghui Li
- Huangdao Community Health Service, Qingdao 266500, PR China
| | - Chunfei Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Huadong), Qingdao 266580, PR China Center for Bioengineering and Biotechnology, China University of Petroleum (Huadong), Qingdao 266580, PR China
| | - Xiaoyong Jiang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Huadong), Qingdao 266580, PR China Center for Bioengineering and Biotechnology, China University of Petroleum (Huadong), Qingdao 266580, PR China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Huadong), Qingdao 266580, PR China Center for Bioengineering and Biotechnology, China University of Petroleum (Huadong), Qingdao 266580, PR China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Huadong), Qingdao 266580, PR China Center for Bioengineering and Biotechnology, China University of Petroleum (Huadong), Qingdao 266580, PR China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Huadong), Qingdao 266580, PR China Center for Bioengineering and Biotechnology, China University of Petroleum (Huadong), Qingdao 266580, PR China
| |
Collapse
|
36
|
Aravamudhan P, Goldfarb AA, Joglekar AP. The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling. Nat Cell Biol 2015; 17:868-79. [PMID: 26053220 PMCID: PMC4630029 DOI: 10.1038/ncb3179] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 04/23/2015] [Indexed: 12/14/2022]
Abstract
The spindle assembly checkpoint (SAC) is a unique signalling mechanism that responds to the state of attachment of the kinetochore to spindle microtubules. SAC signalling is activated by unattached kinetochores, and it is silenced after these kinetochores form end-on microtubule attachments. Although the biochemical cascade of SAC signalling is well understood, how kinetochore-microtubule attachment disrupts it remained unknown. Here we show that, in budding yeast, end-on microtubule attachment to the kinetochore physically separates the Mps1 kinase, which probably binds to the calponin homology domain of Ndc80, from the kinetochore substrate of Mps1, Spc105 (KNL1 orthologue). This attachment-mediated separation disrupts the phosphorylation of Spc105, and enables SAC silencing. Additionally, the Dam1 complex may act as a barrier that shields Spc105 from Mps1. Together these data suggest that the protein architecture of the kinetochore encodes a mechanical switch. End-on microtubule attachment to the kinetochore turns this switch off to silence the SAC.
Collapse
Affiliation(s)
| | - Alan A. Goldfarb
- Cell and developmental biology, University of Michigan, 109 Zina Pitcher Place, 3067 BSRB, Ann Arbor, MI-48109, USA
| | - Ajit P. Joglekar
- Biophysics, University of Michigan, Ann Arbor, MI-48109, USA
- Cell and developmental biology, University of Michigan, 109 Zina Pitcher Place, 3067 BSRB, Ann Arbor, MI-48109, USA
| |
Collapse
|
37
|
Kapanidou M, Lee S, Bolanos-Garcia VM. BubR1 kinase: protection against aneuploidy and premature aging. Trends Mol Med 2015; 21:364-72. [DOI: 10.1016/j.molmed.2015.04.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 11/28/2022]
|
38
|
Tamura N, Simon JE, Nayak A, Shenoy RT, Hiroi N, Boilot V, Funahashi A, Draviam VM. A proteomic study of mitotic phase-specific interactors of EB1 reveals a role for SXIP-mediated protein interactions in anaphase onset. Biol Open 2015; 4:155-69. [PMID: 25596275 PMCID: PMC4365484 DOI: 10.1242/bio.201410413] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 11/07/2014] [Indexed: 12/12/2022] Open
Abstract
Microtubules execute diverse mitotic events that are spatially and temporally separated; the underlying regulation is poorly understood. By combining drug treatments, large-scale immunoprecipitation and mass spectrometry, we report the first comprehensive map of mitotic phase-specific protein interactions of the microtubule-end binding protein, EB1. EB1 interacts with some, but not all, of its partners throughout mitosis. We show that the interaction of EB1 with Astrin-SKAP complex, a key regulator of chromosome segregation, is enhanced during prometaphase, compared to anaphase. We find that EB1 and EB3, another EB family member, can interact directly with SKAP, in an SXIP-motif dependent manner. Using an SXIP defective mutant that cannot interact with EB, we uncover two distinct pools of SKAP at spindle microtubules and kinetochores. We demonstrate the importance of SKAP's SXIP-motif in controlling microtubule growth rates and anaphase onset, without grossly disrupting spindle function. Thus, we provide the first comprehensive map of temporal changes in EB1 interactors during mitosis and highlight the importance of EB protein interactions in ensuring normal mitosis.
Collapse
Affiliation(s)
- Naoka Tamura
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Judith E Simon
- Department of Genetics, University of Cambridge, Cambridge, UK Present address: European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
| | - Arnab Nayak
- Department of Genetics, University of Cambridge, Cambridge, UK Present address: Institute for Biochemistry II, Goethe University Frankfurt am Main, Germany
| | - Rajesh T Shenoy
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Viviane Boilot
- Department of Genetics, University of Cambridge, Cambridge, UK
| | | | - Viji M Draviam
- Department of Genetics, University of Cambridge, Cambridge, UK
| |
Collapse
|
39
|
Chen T, Sun Y, Ji P, Kopetz S, Zhang W. Topoisomerase IIα in chromosome instability and personalized cancer therapy. Oncogene 2014; 34:4019-31. [PMID: 25328138 PMCID: PMC4404185 DOI: 10.1038/onc.2014.332] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/08/2014] [Accepted: 09/08/2014] [Indexed: 12/29/2022]
Abstract
Genome instability is a hallmark of cancer cells. Chromosome instability (CIN), which is often mutually exclusive from hypermutation genotypes, represents a distinct subtype of genome instability. Hypermutations in cancer cells are due to defects in DNA repair genes, but the cause of CIN is still elusive. However, because of the extensive chromosomal abnormalities associated with CIN, its cause is likely a defect in a network of genes that regulate mitotic checkpoints and chromosomal organization and segregation. Emerging evidence has shown that the chromosomal decatenation checkpoint, which is critical for chromatin untangling and packing during genetic material duplication, is defective in cancer cells with CIN. The decatenation checkpoint is known to be regulated by a family of enzymes called topoisomerases. Among them, the gene encoding topoisomerase IIα (TOP2A) is commonly altered at both gene copy number and gene expression level in cancer cells. Thus, abnormal alterations of TOP2A, its interacting proteins, and its modifications may play a critical role in CIN in human cancers. Clinically, a large arsenal of topoisomerase inhibitors have been used to suppress DNA replication in cancer. However, they often lead to the secondary development of leukemia because of their effect on the chromosomal decatenation checkpoint. Therefore, topoisomerase drugs must be used judiciously and administered on an individual basis. In this review, we highlight the biological function of TOP2A in chromosome segregation and the mechanisms that regulate this enzyme's expression and activity. We also review the roles of TOP2A and related proteins in human cancers, and raise a perspective for how to target TOP2A in personalized cancer therapy.
Collapse
Affiliation(s)
- T Chen
- 1] Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA [2] Department of Endoscopy Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Y Sun
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - P Ji
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - S Kopetz
- Department of Gastrointestinal Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W Zhang
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
40
|
London N, Biggins S. Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 2014; 15:736-47. [PMID: 25303117 DOI: 10.1038/nrm3888] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The spindle checkpoint ensures proper chromosome segregation during cell division. Unravelling checkpoint signalling has been a long-standing challenge owing to the complexity of the structures and forces that regulate chromosome segregation. New reports have now substantially advanced our understanding of checkpoint signalling mechanisms at the kinetochore, the structure that connects microtubules and chromatin. In contrast to the traditional view of a binary checkpoint response - either completely on or off - new findings indicate that the checkpoint response strength is variable. This revised perspective provides insight into how checkpoint bypass can lead to aneuploidy and informs strategies to exploit these errors for cancer treatments.
Collapse
Affiliation(s)
- Nitobe London
- 1] Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., PO Box 19024, Seattle, Washington 98109, USA. [2] Molecular and Cellular Biology Program, University of Washington/Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Sue Biggins
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., PO Box 19024, Seattle, Washington 98109, USA
| |
Collapse
|
41
|
Methamphetamine alters the normal progression by inducing cell cycle arrest in astrocytes. PLoS One 2014; 9:e109603. [PMID: 25290377 PMCID: PMC4188627 DOI: 10.1371/journal.pone.0109603] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/11/2014] [Indexed: 12/20/2022] Open
Abstract
Methamphetamine (MA) is a potent psychostimulant with a high addictive capacity, which induces many deleterious effects on the brain. Chronic MA abuse leads to cognitive dysfunction and motor impairment. MA affects many cells in the brain, but the effects on astrocytes of repeated MA exposure is not well understood. In this report, we used Gene chip array to analyze the changes in the gene expression profile of primary human astrocytes treated with MA for 3 days. Range of genes were found to be differentially regulated, with a large number of genes significantly downregulated, including NEK2, TTK, TOP2A, and CCNE2. Gene ontology and pathway analysis showed a highly significant clustering of genes involved in cell cycle progression and DNA replication. Further pathway analysis showed that the genes downregulated by multiple MA treatment were critical for G2/M phase progression and G1/S transition. Cell cycle analysis of SVG astrocytes showed a significant reduction in the percentage of cell in the G2/M phase with a concomitant increase in G1 percentage. This was consistent with the gene array and validation data, which showed that repeated MA treatment downregulated the genes associated with cell cycle regulation. This is a novel finding, which explains the effect of MA treatment on astrocytes and has clear implication in neuroinflammation among the drug abusers.
Collapse
|
42
|
Lee S, Bolanos-Garcia VM. The dynamics of signal amplification by macromolecular assemblies for the control of chromosome segregation. Front Physiol 2014; 5:368. [PMID: 25324779 PMCID: PMC4179342 DOI: 10.3389/fphys.2014.00368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/07/2014] [Indexed: 11/13/2022] Open
Abstract
The control of chromosome segregation relies on the spindle assembly checkpoint (SAC), a complex regulatory system that ensures the high fidelity of chromosome segregation in higher organisms by delaying the onset of anaphase until each chromosome is properly bi-oriented on the mitotic spindle. Central to this process is the establishment of multiple yet specific protein-protein interactions in a narrow time-space window. Here we discuss the highly dynamic nature of multi-protein complexes that control chromosome segregation in which an intricate network of weak but cooperative interactions modulate signal amplification to ensure a proper SAC response. We also discuss the current structural understanding of the communication between the SAC and the kinetochore; how transient interactions can regulate the assembly and disassembly of the SAC as well as the challenges and opportunities for the definition and the manipulation of the flow of information in SAC signaling.
Collapse
Affiliation(s)
- Semin Lee
- Center for Biomedical Informatics, Harvard Medical School, Harvard University Boston, MA, USA
| | - Victor M Bolanos-Garcia
- Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University Oxford, UK
| |
Collapse
|
43
|
Wang K, Sturt-Gillespie B, Hittle JC, Macdonald D, Chan GK, Yen TJ, Liu ST. Thyroid hormone receptor interacting protein 13 (TRIP13) AAA-ATPase is a novel mitotic checkpoint-silencing protein. J Biol Chem 2014; 289:23928-37. [PMID: 25012665 DOI: 10.1074/jbc.m114.585315] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mitotic checkpoint (or spindle assembly checkpoint) is a fail-safe mechanism to prevent chromosome missegregation by delaying anaphase onset in the presence of defective kinetochore-microtubule attachment. The target of the checkpoint is the E3 ubiquitin ligase anaphase-promoting complex/cyclosome. Once all chromosomes are properly attached and bioriented at the metaphase plate, the checkpoint needs to be silenced. Previously, we and others have reported that TRIP13 AAA-ATPase binds to the mitotic checkpoint-silencing protein p31(comet). Here we show that endogenous TRIP13 localizes to kinetochores. TRIP13 knockdown delays metaphase-to-anaphase transition. The delay is caused by prolonged presence of the effector for the checkpoint, the mitotic checkpoint complex, and its association and inhibition of the anaphase-promoting complex/cyclosome. These results suggest that TRIP13 is a novel mitotic checkpoint-silencing protein. The ATPase activity of TRIP13 is essential for its checkpoint function, and interference with TRIP13 abolished p31(comet)-mediated mitotic checkpoint silencing. TRIP13 overexpression is a hallmark of cancer cells showing chromosomal instability, particularly in certain breast cancers with poor prognosis. We suggest that premature mitotic checkpoint silencing triggered by TRIP13 overexpression may promote cancer development.
Collapse
Affiliation(s)
- Kexi Wang
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | | | - James C Hittle
- the Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, and
| | - Dawn Macdonald
- the Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Gordon K Chan
- the Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| | - Tim J Yen
- the Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, and
| | - Song-Tao Liu
- From the Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606,
| |
Collapse
|