1
|
Purcell KF, Lachiewicz PF. Heterotopic Ossification After Modern Total Hip Arthroplasty: Predisposing Factors, Prophylaxis, and Surgical Treatment. J Am Acad Orthop Surg 2023; 31:490-496. [PMID: 36972521 DOI: 10.5435/jaaos-d-22-01070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 03/29/2023] Open
Abstract
Heterotopic ossification (HO) is a common radiographic finding and potentially serious complication after modern total hip arthroplasty. Although historically associated with the posterolateral approach, HO has been noted in 10% to 40% of patients having direct anterior or anterior-based muscle sparing approaches. The available data are uncertain whether robotic arm-assisted procedures are associated with this complication. Current prophylaxis for patients considered high risk of this complication includes postoperative, nonsteroidal, anti-inflammatory medication for several weeks or low-dose perioperative irradiation. The surgical treatment of symptomatic HO associated with severely restricted motion or ankylosis of the hip should be individualized but may include wide excision of bone, acetabular revision to prevent instability, and prophylaxis to prevent recurrence.
Collapse
Affiliation(s)
- Kevin F Purcell
- From the Department of Orthopaedic Surgery, Duke University Medical Center, Durham, NC
| | | |
Collapse
|
2
|
Danya F, Marco B, Valentino C, Mario M, Antonio Pompilio G. Case Report: Unusual Heterotopic Ossification of the Hindfoot. Front Surg 2022; 9:917560. [PMID: 35747430 PMCID: PMC9209653 DOI: 10.3389/fsurg.2022.917560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 12/01/2022] Open
Abstract
Heterotopic ossification (HO) is a pathologic condition in which aberrant lamellar bone deposits in soft tissues, outside of the normal skeleton. Pathogenesis is still unclear, but different risk factors are known. Here we report a case of a 14 year-old girl presenting with pain in the medial calcaneal region and evidence of a rapidly growing, firm and solid neoformation. The lesion was diagnosed 6 years earlier, but it was consistently smaller and asymptomatic so that the patient did not undergo any follow up. The patient had no previous trauma or surgery, no other risk factors for HO and did not show any clinically evident HO in other districts. Xray and CT showed a heterogeneous bony lesion in the context of soft tissues, isolated from the calcaneus. After complete excision, histological analysis confirmed the diagnosis of HO. In conclusion, lone non congenital HO can occur regardless of known risk factors. Small HO lesion may also enter a proliferative phase without evidence of triggering events. More studies are required to better understand etiopathogenesis of HO in these clinical settings.
Collapse
Affiliation(s)
- Falcioni Danya
- Clinic of Adult and Paediatric Orthopedic, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, Ancona, Italy
- Correspondence: Danya Falcioni
| | - Baldini Marco
- Clinical Orthopedics, Department of Clinical and Molecular Science, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Coppa Valentino
- Clinic of Adult and Paediatric Orthopedic, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Marinelli Mario
- Clinic of Adult and Paediatric Orthopedic, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, Ancona, Italy
| | - Gigante Antonio Pompilio
- Clinical Orthopedics, Department of Clinical and Molecular Science, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
- Clinic of Adult and Paediatric Orthopedic, Azienda Ospedaliero-Universitaria, Ospedali Riuniti di Ancona, Ancona, Italy
| |
Collapse
|
3
|
Prognostic Value of Bone Formation and Resorption Proteins in Heterotopic Ossification in Critically-Ill Patients. a Single-Centre Study. J Crit Care Med (Targu Mures) 2021; 7:37-45. [PMID: 34722902 PMCID: PMC8519375 DOI: 10.2478/jccm-2020-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/26/2020] [Indexed: 11/21/2022] Open
Abstract
Introduction A potential complication in critically ill patients is the formation of bone in soft tissues, termed heterotopic ossification. The exact pathogenetic mechanisms are still undetermined. Bone morphogenetic proteins induce bone formation, while signalling through the receptor activator of nuclear factor kappa-Β (RANK) and its ligand (RANKL), regulates osteoclast formation, activation, and survival in normal bone modelling and remodelling. Osteoprotegerin protects bone from excessive bone loss by blocking RANKL from binding to RANK. Aim The study aimed to investigate these molecules as potential prognostic biomarkers of heterotopic ossification development in critically ill patients. Materials and Methods In this prospective observational study, BMP-2, RANKL, and osteoprotegerin were measured by ELISA in twenty-eight critically-ill, initially non-septic patients, on admission to an ICU, seven days post-admission, and thirty days after ICU discharge. Results In the critically-ill cohort, nine of the twenty-eight patients developed heterotopic ossification up to the 30-day follow-up time-point. The patients who developed heterotopic ossification exhibited significantly reduced BMP-2 and RANKL levels on ICU admission, compared to patients who did not; Osteoprotegerin readings were similar in both groups. Conclusions Critically-ill patients who will subsequently develop heterotopic ossification, have significantly lower BMP-2 and RANKL levels at the time of ICU admission, suggesting that these proteins may be useful as prognostic markers for this debilitating condition.
Collapse
|
4
|
MyD88 Is Not Required for Muscle Injury-Induced Endochondral Heterotopic Ossification in a Mouse Model of Fibrodysplasia Ossificans Progressiva. Biomedicines 2021; 9:biomedicines9060630. [PMID: 34206078 PMCID: PMC8227787 DOI: 10.3390/biomedicines9060630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/25/2021] [Accepted: 05/25/2021] [Indexed: 01/09/2023] Open
Abstract
Excess inflammation and canonical BMP receptor (BMPR) signaling are coinciding hallmarks of the early stages of injury-induced endochondral heterotopic ossification (EHO), especially in the rare genetic disease fibrodysplasia ossificans progressiva (FOP). Multiple inflammatory signaling pathways can synergistically enhance BMP-induced Smad1/5/8 activity in multiple cell types, suggesting the importance of pathway crosstalk in EHO and FOP. Toll-like receptors (TLRs) and IL-1 receptors mediate many of the earliest injury-induced inflammatory signals largely via MyD88-dependent pathways. Thus, the hypothesis that MyD88-dependent signaling is required for EHO was tested in vitro and in vivo using global or Pdgfrα-conditional deletion of MyD88 in FOP mice. As expected, IL-1β or LPS synergistically increased Activin A (ActA)-induced phosphorylation of Smad 1/5 in fibroadipoprogenitors (FAPs) expressing Alk2R206H. However, conditional deletion of MyD88 in Pdgfrα-positive cells of FOP mice did not significantly alter the amount of muscle injury-induced EHO. Even more surprisingly, injury-induced EHO was not significantly affected by global deletion of MyD88. These studies demonstrate that MyD88-dependent signaling is dispensable for injury-induced EHO in FOP mice.
Collapse
|
5
|
Takafuji Y, Tatsumi K, Kawao N, Okada K, Muratani M, Kaji H. Effects of fluid flow shear stress to mouse muscle cells on the bone actions of muscle cell-derived extracellular vesicless. PLoS One 2021; 16:e0250741. [PMID: 33961664 PMCID: PMC8104413 DOI: 10.1371/journal.pone.0250741] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/12/2021] [Indexed: 11/18/2022] Open
Abstract
The interactions between skeletal muscle and bone have been recently noted, and muscle-derived humoral factors related to bone metabolism play crucial roles in the muscle/bone relationships. We previously reported that extracellular vesicles from mouse muscle C2C12 cells (Myo-EVs) suppress osteoclast formation in mice. Although mechanical stress is included in extrinsic factors which are important for both muscle and bone, the detailed roles of mechanical stress in the muscle/bone interactions have still remained unknown. In present study, we examined the effects of fluid flow shear stress (FFSS) to C2C12 cells on the physiological actions of muscle cell-derived EV. Applying FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed osteoclast formation and several osteoclast-related gene levels in mouse bone marrow cells in the presence of receptor activator nuclear factor κB ligand (RANKL). Moreover, FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed mitochondria biogenesis genes during osteoclast formation with RANKL treatment. In addition, FFSS to C2C12 cells significantly enhanced muscle cell-derived EV-suppressed osteoclast formation and several osteoclast-related gene levels in Raw264.7 cells in the presence of RANKL. Small RNA-seq-analysis showed that FFSS elevated the expression of miR196a-5p and miR155-5p with the suppressive actions of osteoclast formation and low expression in mouse bone cells. On the other hand, muscle cell-derived EVs with or without FFSS to C2C12 cells did not affect the expression of osteogenic genes, alkaline phosphatase activity and mineralization in mouse osteoblasts. In conclusion, we first showed that FFSS to C2C12 cells enhances the suppressive effects of muscle cell-derived EVs on osteoclast formation in mouse cells. Muscle cell-derived EVs might be partly involved in the effects of mechanical stress on the muscle/bone relationships.
Collapse
Affiliation(s)
- Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Masafumi Muratani
- Faculty of Medicine, Department of Genome Biology, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| |
Collapse
|
6
|
Alexander KA, Tseng HW, Salga M, Genêt F, Levesque JP. When the Nervous System Turns Skeletal Muscles into Bones: How to Solve the Conundrum of Neurogenic Heterotopic Ossification. Curr Osteoporos Rep 2020; 18:666-676. [PMID: 33085000 DOI: 10.1007/s11914-020-00636-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Neurogenic heterotopic ossification (NHO) is the abnormal formation of extra-skeletal bones in periarticular muscles after damage to the central nervous system (CNS) such as spinal cord injury (SCI), traumatic brain injury (TBI), stroke, or cerebral anoxia. The purpose of this review is to summarize recent developments in the understanding of NHO pathophysiology and pathogenesis. Recent animal models of NHO and recent findings investigating the communication between CNS injury, tissue inflammation, and upcoming NHO therapeutics are discussed. RECENT FINDINGS Animal models of NHO following TBI or SCI have shown that NHO requires the combined effects of a severe CNS injury and soft tissue damage, in particular muscular inflammation and the infiltration of macrophages into damaged muscles plays a key role. In the context of a CNS injury, the inflammatory response to soft tissue damage is exaggerated and persistent with excessive signaling via substance P-, oncostatin M-, and TGF-β1-mediated pathways. This review provides an overview of the known animal models and mechanisms of NHO and current therapeutic interventions for NHO patients. While some of the inflammatory mechanisms leading to NHO are common with other forms of traumatic and genetic heterotopic ossifications (HO), NHOs uniquely involve systemic changes in response to CNS injury. Future research into these CNS-mediated mechanisms is likely to reveal new targetable pathways to prevent NHO development in patients.
Collapse
Affiliation(s)
- Kylie A Alexander
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Hsu-Wen Tseng
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia
| | - Marjorie Salga
- Department of Physical Medicine and Rehabilitation, CIC 1429, Raymond Poincaré Hospital, APHP, Garches, France
- END:ICAP U1179 INSERM, University of Versailles Saint Quentin en Yvelines, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - François Genêt
- Department of Physical Medicine and Rehabilitation, CIC 1429, Raymond Poincaré Hospital, APHP, Garches, France
- END:ICAP U1179 INSERM, University of Versailles Saint Quentin en Yvelines, UFR Simone Veil-Santé, Montigny le Bretonneux, France
| | - Jean-Pierre Levesque
- Mater Research Institute, The University of Queensland, Translational Research Institute, 37 Kent Street, Woolloongabba, Queensland, 4102, Australia.
| |
Collapse
|
7
|
Shimoide T, Kawao N, Morita H, Ishida M, Takafuji Y, Kaji H. Roles of Olfactomedin 1 in Muscle and Bone Alterations Induced by Gravity Change in Mice. Calcif Tissue Int 2020; 107:180-190. [PMID: 32462291 DOI: 10.1007/s00223-020-00710-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/19/2020] [Indexed: 02/08/2023]
Abstract
Microgravity causes both muscle and bone loss. Although we previously revealed that gravity change influences muscle and bone through the vestibular system in mice, its detailed mechanism has not been elucidated. In this study, we investigated the roles of olfactomedin 1 (OLFM1), whose expression was upregulated during hypergravity in the soleus muscle, in mouse bone cells. Vestibular lesion significantly blunted OLFM1 expression in the soleus muscle and serum OLFM1 levels enhanced by hypergravity in mice. Moreover, a phosphatidylinositol 3-kinase inhibitor antagonized shear stress-enhanced OLFM1 expression in C2C12 myotubes. As for the effects of OLFM1 on bone cells, OLFM1 inhibited osteoclast formation from mouse bone marrow cells and mouse preosteoclastic RAW264.7 cells. Moreover, OLFM1 suppressed RANKL expression and nuclear factor-κB signaling in mouse osteoblasts. Serum OLFM1 levels were positively related to OLFM1 mRNA levels in the soleus muscle and trabecular bone mineral density of mice. In conclusion, we first showed that OLFM1 suppresses osteoclast formation and RANKL expression in mouse cells.
Collapse
Affiliation(s)
- Takeshi Shimoide
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan.
| |
Collapse
|
8
|
Schoenmaker T, Deng D, de Vries TJ. Tailored Teaching for Specialized (Para-)medical Students - Experience From Incorporating a Relevant Genetic Disease Throughout a Course of Molecular Cell Biology. Front Public Health 2020; 8:224. [PMID: 32754565 PMCID: PMC7381322 DOI: 10.3389/fpubh.2020.00224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Worldwide, a mandatory course in Molecular Cell Biology is often part of the (para-) medical curricula. Student audiences are regularly not receptive to such relatively theoretical courses and teachers often struggle to convey the necessary information. Here, positive experience is shared on rigorously embedding a genetic disease that severely affects the movement apparatus, fibrodysplasia ossificans progressiva (FOP), in all aspects of a course for an international group of Research Master Human Movement Sciences students. Various molecular cell biological aspects of FOP were systematically implemented in the course, covering genetics, the biochemical consequences of the mutation, signaling pathways that affect bone formation and lectures on how to clone the mutation or cure the mutation. Students were invited to critically think about how to use the theories learned in the course to analyze a research paper. During the practical part of the course, students assisted in novel, cutting edge research on FOP patient derived or control cells. Research findings were reported in a research paper format. By building a Molecular Cell Biology course around an appealing disease, we managed to increase the general motivation of the students for the course as reflected in two specific questions of the course evaluations (p < 0.05). It convincingly taught the relevance of a course of Molecular Cell Biology to students with a primary background in biomechanics and physiotherapy for their paramedical professional life. This approach of embedding an audience-tailored human disease with a known genetic cause into a course can be implemented to many medical curriculum related courses and will increase students' perception of the relevance of a course.
Collapse
Affiliation(s)
- Ton Schoenmaker
- Department of Peridontology, Academic Centre for Dentistry Amsterdam (ACTA, University of Amsterdam and Vrije Universiteit), Amsterdam, Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA, University of Amsterdam and Vrije Universiteit), Amsterdam, Netherlands
| | - Teun J de Vries
- Department of Peridontology, Academic Centre for Dentistry Amsterdam (ACTA, University of Amsterdam and Vrije Universiteit), Amsterdam, Netherlands
| |
Collapse
|
9
|
Kawaguchi M, Kawao N, Takafuji Y, Ishida M, Kaji H. Myonectin inhibits the differentiation of osteoblasts and osteoclasts in mouse cells. Heliyon 2020; 6:e03967. [PMID: 32514479 PMCID: PMC7266783 DOI: 10.1016/j.heliyon.2020.e03967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/01/2020] [Accepted: 05/07/2020] [Indexed: 11/03/2022] Open
Abstract
Myonectin is a myokine, which is involved in the pathophysiology of diabetes and obesity, and various myokines are involved in the interactions between skeletal muscle and bone. However, roles of myonectin in bone have still remained unknown. We therefore examined the effects of myonectin on mouse osteoblast and osteoclast differentiation in vitro. Myonectin significantly suppressed the mRNA levels of osteogenic genes and alkaline phosphatase (ALP) activity in mouse osteoblasts. As for osteoclasts, myonectin significantly suppressed osteoclast formation as well as the mRNA levels of osteoclast-related genes enhanced by receptor activator nuclear factor κB ligand (RANKL) from mouse monocytic RAW264.7 cells. Moreover, myonectin significantly suppressed osteoclast formation from mouse bone marrow cells in the presence of macrophage-colony stimulating factor and RANKL. On the other hand, myonectin significantly suppressed RANKL-induced oxygen consumption rate and peroxisome proliferator-activated receptor γ coactivator-1β mRNA levels in RAW264.7 cells, although myonectin did not affect these mitochondrial biogenesis parameters in mouse osteoblasts. In conclusion, the present study demonstrated that myonectin suppresses the differentiation and ALP activity in mouse osteoblasts. Moreover, myonectin suppressed osteoclast differentiation from mouse bone marrow and RAW264.7 cells partly through an inhibition of mitochondrial biogenesis.
Collapse
Affiliation(s)
- Miku Kawaguchi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka, 589-8511, Japan
| |
Collapse
|
10
|
Takafuji Y, Tatsumi K, Ishida M, Kawao N, Okada K, Kaji H. Extracellular vesicles secreted from mouse muscle cells suppress osteoclast formation: Roles of mitochondrial energy metabolism. Bone 2020; 134:115298. [PMID: 32092478 DOI: 10.1016/j.bone.2020.115298] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Recent reports have described the interactions of muscle and bone. Various muscle-derived humoral factors, known as myokines, affect bone. Although extracellular vesicles (EVs) play a vital role in physiological and pathophysiological processes by transferring their contents to distant tissues during bone metabolism, the roles of EVs in the muscle-bone interactions remain unknown. In the present study, we investigated the effects of EVs secreted from mouse muscle C2C12 cells on mouse bone cells and mitochondrial biogenesis. EVs secreted from C2C12 cells (Myo-EVs) were isolated from the conditioned medium of C2C12 cells by ultracentrifugation. Myo-EVs suppressed osteoclast formation as well as the expression of tartrate-resistant acid phosphatase, cathepsin K, nuclear factor of activated T-cells cytoplasmic 1 and dendritic cell-specific transmembrane protein induced by receptor activator of nuclear factor κB ligand (RANKL) in mouse bone marrow cells and preosteoclastic Raw264.7 cells. Moreover, Myo-EVs suppressed oxygen consumption and mRNA expression of the mitochondrial biogenesis markers enhanced by RANKL in these cells. However, Myo-EVs did not affect the phenotypes or mitochondrial biogenesis of mouse primary osteoblasts. In conclusion, the present study showed for the first time that Myo-EVs suppress osteoclast formation and mitochondrial energy metabolism in mouse bone marrow and Raw264.7 cells. EVs secreted from skeletal muscles might be a crucial mediator of muscle-bone interactions.
Collapse
Affiliation(s)
- Yoshimasa Takafuji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Kohei Tatsumi
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan.
| |
Collapse
|
11
|
Bioinformatics Analysis of the Molecular Mechanism of Late-Stage Heterotopic Ossification. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5097823. [PMID: 32382555 PMCID: PMC7180431 DOI: 10.1155/2020/5097823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
Abstract
Background Heterotopic ossification (HO) is a common disease happened in soft tissues after injury. The present study utilized the bioinformatics method to analyze the HO samples in a mouse burn/tenotomy-induced HO model to identify the possible key points and treatment targets. Methods The transcriptome profiles of GSE126118 were obtained from the Gene Expression Omnibus (GEO) database. The study was based on a mouse burn/tenotomy-induced HO model, and 2 tenotomy samples and 3 uninjured contralateral hindlimb tendon samples were collected at 3 weeks after injury for further analysis. The transcripts per million approach was performed for background correction and normalization; then, the differentially expressed genes (DEGs) were detected using the limma R package with the settings p < 0.01 and ∣log2FC∣ > 2.0. The Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, and the protein-protein interaction (PPI) network analysis were performed with the detected DEGs. Results A total of 74 DEGs were upregulated, and 159 DEGs were downregulated between the tenotomy and uninjured tendon group. Pathway and process enrichment analyses demonstrated that the upregulated DEGs were mainly associated with terms related to ECM remodeling, ossification, angiogenesis, inflammation, etc., and the downregulated DEGs were mainly associated with oxidative phosphorylation, metabolic process, etc. Conclusion The results of GO, KEGG, and PPI network analyses suggested that the ECM remodeling, ossification, angiogenesis, and inflammation processes were markedly upregulated in the tenotomy site. And the oxidative phosphorylation and metabolic processes were markedly downregulated. These findings provide valuable clues for highlighting the characteristics of late-stage HO and investigating possible treatments.
Collapse
|
12
|
Kawao N, Morita H, Iemura S, Ishida M, Kaji H. Roles of Dkk2 in the Linkage from Muscle to Bone during Mechanical Unloading in Mice. Int J Mol Sci 2020; 21:ijms21072547. [PMID: 32268570 PMCID: PMC7177709 DOI: 10.3390/ijms21072547] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 12/17/2022] Open
Abstract
Mechanical unloading simultaneously induces muscle and bone loss, but its mechanisms are not fully understood. The interactions between skeletal muscle and bone have been recently noted. Although canonical wingless-related integration site (Wnt)/β-catenin signaling is crucial for bone metabolism, its roles in the muscle and bone interactions have remained unknown. Here, we performed comprehensive DNA microarray analyses to clarify humoral factors linking muscle to bone in response to mechanical unloading and hypergravity with 3 g in mice. We identified Dickkopf (Dkk) 2, a Wnt/β-catenin signaling inhibitor, as a gene whose expression was increased by hindlimb unloading (HU) and reduced by hypergravity in the soleus muscle of mice. HU significantly elevated serum Dkk2 levels and Dkk2 mRNA levels in the soleus muscle of mice whereas hypergravity significantly decreased those Dkk2 levels. In the simple regression analyses, serum Dkk2 levels were negatively and positively related to trabecular bone mineral density and mRNA levels of receptor activator of nuclear factor-kappa B ligand (RANKL) in the tibia of mice, respectively. Moreover, shear stress significantly suppressed Dkk2 mRNA levels in C2C12 cells, and cyclooxygenase inhibitors significantly antagonized the effects of shear stress on Dkk2 expression. On the other hand, Dkk2 suppressed the mRNA levels of osteogenic genes, alkaline phosphatase activity and mineralization, and it increased RANKL mRNA levels in mouse osteoblasts. In conclusion, we showed that muscle and serum Dkk2 levels are positively and negatively regulated during mechanical unloading and hypergravity in mice, respectively. An increase in Dkk2 expression in the skeletal muscle might contribute to disuse- and microgravity-induced bone and muscle loss.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan; (N.K.); (S.I.); (M.I.)
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan;
| | - Shunki Iemura
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan; (N.K.); (S.I.); (M.I.)
| | - Masayoshi Ishida
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan; (N.K.); (S.I.); (M.I.)
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, Osakasayama 589-8511, Japan; (N.K.); (S.I.); (M.I.)
- Correspondence: ; Tel.: +81-72-366-0221
| |
Collapse
|
13
|
Meyers C, Lisiecki J, Miller S, Levin A, Fayad L, Ding C, Sono T, McCarthy E, Levi B, James AW. Heterotopic Ossification: A Comprehensive Review. JBMR Plus 2019; 3:e10172. [PMID: 31044187 PMCID: PMC6478587 DOI: 10.1002/jbm4.10172] [Citation(s) in RCA: 277] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/31/2018] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
Heterotopic ossification (HO) is a diverse pathologic process, defined as the formation of extraskeletal bone in muscle and soft tissues. HO can be conceptualized as a tissue repair process gone awry and is a common complication of trauma and surgery. This comprehensive review seeks to synthesize the clinical, pathoetiologic, and basic biologic features of HO, including nongenetic and genetic forms. First, the clinical features, radiographic appearance, histopathologic diagnosis, and current methods of treatment are discussed. Next, current concepts regarding the mechanistic bases for HO are discussed, including the putative cell types responsible for HO formation, the inflammatory milieu and other prerequisite “niche” factors for HO initiation and propagation, and currently available animal models for the study of HO of this common and potentially devastating condition. © 2019 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carolyn Meyers
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | | | - Sarah Miller
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Adam Levin
- Department of Orthopaedic Surgery Johns Hopkins University Baltimore MD USA
| | - Laura Fayad
- Department of Radiology Johns Hopkins University Baltimore MD USA
| | - Catherine Ding
- UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| | - Takashi Sono
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Edward McCarthy
- Department of Pathology Johns Hopkins University Baltimore MD USA
| | - Benjamin Levi
- Department of Surgery University of Michigan Ann Arbor MI USA
| | - Aaron W James
- Department of Pathology Johns Hopkins University Baltimore MD USA.,UCLA and Orthopaedic Hospital Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center Los Angeles CA USA
| |
Collapse
|
14
|
Kleyenstüber T. Anaesthetic considerations in a child with fibrodysplasia ossificans progressiva. SOUTHERN AFRICAN JOURNAL OF ANAESTHESIA AND ANALGESIA 2019. [DOI: 10.1080/22201181.2018.1517918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Thomas Kleyenstüber
- Department of Anaesthesia, Rahima Moosa Mother and Child Hospital, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
15
|
de Vries TJ, Schoenmaker T, Micha D, Hogervorst J, Bouskla S, Forouzanfar T, Pals G, Netelenbos C, Eekhoff EMW, Bravenboer N. Periodontal ligament fibroblasts as a cell model to study osteogenesis and osteoclastogenesis in fibrodysplasia ossificans progressiva. Bone 2018; 109:168-177. [PMID: 28705683 DOI: 10.1016/j.bone.2017.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 01/21/2023]
Abstract
Fibrodysplasia Ossificans Progressiva (FOP) is a progressive disease characterized by periods of heterotopic ossification of soft connective tissues, including ligaments. Though progress has been made in recent years in unraveling the underlying mechanism, patient-derived cell models are necessary to test potential treatment options. Periodontal ligament fibroblasts (PLF) from extracted teeth can be used to study deviant bone modeling processes in vitro since these cells are derived from genuine ligaments. They further provide a tool to study the hitherto unknown role of the bone morphogenesis protein receptor type 1 (BMPR-1) Activin A type 1 receptor ACVR1-R206H mutation in osteoclastogenesis. To further validate this potential model, osteogenesis and osteoclastogenesis was studied in the presence of TGF-β/activin receptor inhibitor GW788388. Control and FOP fibroblasts (n=6 of each) were used in osteogenesis and osteoclastogenesis assays in the absence or presence of TGF-β/activin receptor inhibitor GW788388. For osteogenesis, alkaline phosphatase (ALP) activity, alizarin red staining for mineralization and qPCR for expression of osteogenic markers was assessed. TRACP staining, multinuclearity and expression of osteoclastogenesis markers were used as a measure of osteoclast formation. FOP fibroblasts cultured in osteogenic medium displayed a trend of higher ALP activity at 7days. Gene expression of ALP from FOP fibroblasts was significantly higher at 3days. Mineralization was similar at 21days for both groups. GW788388 did not influence mineral deposition in both groups. Osteoclast formation was inhibited by GW788388 on plastic for both controls and FOP. On cortical bone slices, however, osteoclast formation was significantly lowered by GW788388, only in FOP cultures. qPCR revealed strong expression of RANKL at 7days and a significant decline at 14 and 21days in both FOP and control cultures. In contrast to the osteoclastogenesis results, the RANKL/OPG ratio was higher in the presence of GW788388, only in FOP cultures. TGF-β expression was significantly higher at 14 and 21days compared to 7days, possibly signifying a role in later stages of osteoclast formation. Addition of GW788388 strongly decreased TGF-β expression. Our study shows that periodontal ligament fibroblasts from FOP patients displayed at most slightly enhanced in vitro osteogenesis and osteoclastogenesis. This model could be useful to elucidate molecular mechanisms leading to heterotopic ossification in FOP such as in the presence of specific ACVR1-R206H activators as Activin A.
Collapse
Affiliation(s)
- Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands.
| | - Ton Schoenmaker
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Jolanda Hogervorst
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Siham Bouskla
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Tim Forouzanfar
- Department of Oral and Maxillofacial Surgery and Oral Pathology, VU University Medical Center, Amsterdam, The Netherlands, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit, Amsterdam, The Netherlands
| | - Gerard Pals
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands
| | - Coen Netelenbos
- Internal Medicine, Endocrinology Section, VU University Medical Center, Amsterdam, The Netherlands
| | - E Marelise W Eekhoff
- Internal Medicine, Endocrinology Section, VU University Medical Center, Amsterdam, The Netherlands
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
16
|
Fennen M, Pap T, Dankbar B. Smad-dependent mechanisms of inflammatory bone destruction. Arthritis Res Ther 2016; 18:279. [PMID: 27906049 PMCID: PMC5134126 DOI: 10.1186/s13075-016-1187-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/18/2016] [Indexed: 12/20/2022] Open
Abstract
Homeostatic bone remodelling becomes disturbed in a variety of pathologic conditions that affect the skeleton, including inflammatory diseases. Rheumatoid arthritis is the prototype of an inflammatory arthritis characterised by chronic inflammation, progressive cartilage destruction and focal bone erosions and is a prime example for a disease with disturbed bone homeostasis. The inflammatory milieu favours the recruitment and activation of osteoclasts, which have been found to be the cells that are primarily responsible for bone erosions in many animal models of inflammatory arthritis. Among the inflammatory modulators, members of the transforming growth factor (TGF)-β super family are shown to be important regulators in osteoclastogenesis with Smad-mediated signalling being crucial for inducing osteoclast differentiation. These findings have opened a new field for exploring mechanisms of osteoclast differentiation under inflammatory conditions. Recent studies have shown that the TGF-β superfamily members TGF-β1, myostatin and activin A directly regulate osteoclast differentiation through mechanisms that depend on the RANKL–RANK interplay. These growth factors transduce their signals through type I and II receptor serine/threonine kinases, thereby activating the Smad pathway. In this review, we describe the impact of inflammation-induced Smad signalling in osteoclast development and subsequently bone erosion in rheumatoid arthritis.
Collapse
Affiliation(s)
- Michelle Fennen
- Institute of Experimental Musculoskeletal Medicine, Westfalian Wilhelms-University Münster, Münster, Germany
| | - Thomas Pap
- Institute of Experimental Musculoskeletal Medicine, Westfalian Wilhelms-University Münster, Münster, Germany
| | - Berno Dankbar
- Institute of Experimental Musculoskeletal Medicine, Westfalian Wilhelms-University Münster, Münster, Germany.
| |
Collapse
|
17
|
Shimoide T, Kawao N, Tamura Y, Morita H, Kaji H. Novel roles of FKBP5 in muscle alteration induced by gravity change in mice. Biochem Biophys Res Commun 2016; 479:602-606. [PMID: 27680313 DOI: 10.1016/j.bbrc.2016.09.126] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/24/2016] [Indexed: 01/06/2023]
Abstract
Skeletal muscle hypertrophy and wasting are induced by hypergravity and microgravity, respectively. However, the mechanisms by which gravity change regulates muscle mass still remain unclear. We previously reported that hypergravity increases muscle mass via the vestibular system in mice. In this study, we performed comparative DNA microarray analysis of the soleus muscle from mice kept in 1 or 3 g environments with or without vestibular lesions. Mice were kept in 1 g or 3 g environment for 4 weeks by using a centrifuge 14 days after surgical bilateral vestibular lesions. FKBP5 was extracted as a gene whose expression was enhanced by hypergravity through the vestibular system. Stable FKBP5 overexpression increased the phosphorylations of Akt and p70 S6 kinase (muscle protein synthesis pathway) and myosin heavy chain, a myotube gene, mRNA level in mouse myoblastic C2C12 cells, although it reduced the mRNA levels of atrogin-1 and MuRF1, muscle protein degradation-related genes. In conclusion, we first showed that FKBP5 is induced by hypergravity through the vestibular system in anti-gravity muscle of mice. Our data suggest that FKBP5 might increase muscle mass through the enhancements of muscle protein synthesis and myotube differentiation as well as an inhibition of muscle protein degradation in mice.
Collapse
Affiliation(s)
- Takeshi Shimoide
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Yukinori Tamura
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan
| | - Hironobu Morita
- Department of Physiology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kindai University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, Osaka 589-8511, Japan.
| |
Collapse
|
18
|
Kawao N, Yano M, Tamura Y, Okumoto K, Okada K, Kaji H. Role of osteoclasts in heterotopic ossification enhanced by fibrodysplasia ossificans progressiva-related activin-like kinase 2 mutation in mice. J Bone Miner Metab 2016. [PMID: 26204847 DOI: 10.1007/s00774-015-0701-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a disorder of skeletal malformations and progressive heterotopic ossification. The constitutively activating mutation (R206H) of the bone morphogenetic protein type 1 receptor, activin-like kinase 2 (ALK2), is responsible for the pathogenesis of FOP. Although transfection of the causal mutation of FOP into myoblasts enhances osteoclast formation by transforming growth factor-β (TGF-β), the role of osteoclasts in heterotopic ossification is unknown. We therefore examined the effects of alendronate, SB431542 and SB203580 on heterotopic ossification induced by the causal mutation of FOP. Total bone mineral content as well as numbers of tartrate-resistant acid phosphatase (TRAP)-positive multinucleated and alkaline phosphatase (ALP)-positive cells in heterotopic bone were significantly higher in muscle tissues implanted with ALK2 (R206H)-transfected mouse myoblastic C2C12 cells than in the tissues implanted with empty vector-transfected cells in nude mice. Alendronate, an aminobisphosphonate, did not affect total mineral content or numbers of TRAP-positive multinucleated and ALP-positive cells in heterotopic bone, which were enhanced by the implantation of ALK2 (R206H)-transfected C2C12 cells, although it significantly decreased serum levels of cross-linked C-telopeptide of type I collagen, a bone resorption index. Moreover, neither SB431542, an inhibitor of TGF-β receptor type I kinase, nor SB203580, an inhibitor of p38 mitogen-activated protein kinase, affected the increase in heterotopic ossification due to the implantation of ALK2 (R206H)-transfected C2C12 cells. In conclusion, the present study indicates that osteoclast inhibition does not affect heterotopic ossification enhanced by FOP-related mutation.
Collapse
Affiliation(s)
- Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan
| | - Masato Yano
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan
| | - Yukinori Tamura
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan
| | - Katsumi Okumoto
- Life Science Research Institute, Kinki University, Osaka, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-8511, Osaka, Japan.
| |
Collapse
|
19
|
Hatsell SJ, Idone V, Wolken DMA, Huang L, Kim HJ, Wang L, Wen X, Nannuru KC, Jimenez J, Xie L, Das N, Makhoul G, Chernomorsky R, D'Ambrosio D, Corpina RA, Schoenherr CJ, Feeley K, Yu PB, Yancopoulos GD, Murphy AJ, Economides AN. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci Transl Med 2016; 7:303ra137. [PMID: 26333933 DOI: 10.1126/scitranslmed.aac4358] [Citation(s) in RCA: 319] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder characterized by episodically exuberant heterotopic ossification (HO), whereby skeletal muscle is abnormally converted into misplaced, but histologically normal bone. This HO leads to progressive immobility with catastrophic consequences, including death by asphyxiation. FOP results from mutations in the intracellular domain of the type I BMP (bone morphogenetic protein) receptor ACVR1; the most common mutation alters arginine 206 to histidine (ACVR1(R206H)) and has been thought to drive inappropriate bone formation as a result of receptor hyperactivity. We unexpectedly found that this mutation rendered ACVR1 responsive to the activin family of ligands, which generally antagonize BMP signaling through ACVR1 but cannot normally induce bone formation. To test the implications of this finding in vivo, we engineered mice to carry the Acvr1(R206H) mutation. Because mice that constitutively express Acvr1[R206H] die perinatally, we generated a genetically humanized conditional-on knock-in model for this mutation. When Acvr1[R206H] expression was induced, mice developed HO resembling that of FOP; HO could also be triggered by activin A administration in this mouse model of FOP but not in wild-type controls. Finally, HO was blocked by broad-acting BMP blockers, as well as by a fully human antibody specific to activin A. Our results suggest that ACVR1(R206H) causes FOP by gaining responsiveness to the normally antagonistic ligand activin A, demonstrating that this ligand is necessary and sufficient for driving HO in a genetically accurate model of FOP; hence, our human antibody to activin A represents a potential therapeutic approach for FOP.
Collapse
Affiliation(s)
- Sarah J Hatsell
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Vincent Idone
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dana M Alessi Wolken
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lily Huang
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Hyon J Kim
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lili Wang
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Xialing Wen
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kalyan C Nannuru
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Johanna Jimenez
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Liqin Xie
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Nanditha Das
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Genevieve Makhoul
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | | | - David D'Ambrosio
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Richard A Corpina
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | | | - Kieran Feeley
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Paul B Yu
- Brigham and Women's Hospital, 20 Shattuck Street, Thorn Biosciences 1203, Boston, MA 02115, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Aris N Economides
- Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA. Regeneron Genetics Center Inc., 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| |
Collapse
|
20
|
Trauma-induced heterotopic bone formation and the role of the immune system: A review. J Trauma Acute Care Surg 2016; 80:156-65. [PMID: 26491794 DOI: 10.1097/ta.0000000000000883] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Extremity trauma, spinal cord injuries, head injuries, and burn injuries place patients at high risk of pathologic extraskeletal bone formation. This heterotopic bone causes severe pain, deformities, and joint contractures. The immune system has been increasingly implicated in this debilitating condition. This review summarizes the various roles immune cells and inflammation play in the formation of ectopic bone and highlights potential areas of future investigation and treatment. Cell types in both the innate and adaptive immune system such as neutrophils, macrophages, mast cells, B cells, and T cells have all been implicated as having a role in ectopic bone formation through various mechanisms. Many of these cell types are promising areas of therapeutic investigation for potential treatment. The immune system has also been known to also influence osteoclastogenesis, which is heavily involved in ectopic bone formation. Chronic inflammation is also known to have an inhibitory role in the formation of ectopic bone, whereas acute inflammation is necessary for ectopic bone formation.
Collapse
|
21
|
The biological function of type I receptors of bone morphogenetic protein in bone. Bone Res 2016; 4:16005. [PMID: 27088043 PMCID: PMC4820739 DOI: 10.1038/boneres.2016.5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/04/2016] [Accepted: 02/20/2016] [Indexed: 12/13/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) have multiple roles in skeletal development, homeostasis and regeneration. BMPs signal via type I and type II serine/threonine kinase receptors (BMPRI and BMPRII). In recent decades, genetic studies in humans and mice have demonstrated that perturbations in BMP signaling via BMPRI resulted in various diseases in bone, cartilage, and muscles. In this review, we focus on all three types of BMPRI, which consist of activin-like kinase 2 (ALK2, also called type IA activin receptor), activin-like kinase 3 (ALK3, also called BMPRIA), and activin-like kinase 6 (ALK6, also called BMPRIB). The research areas covered include the current progress regarding the roles of these receptors during myogenesis, chondrogenesis, and osteogenesis. Understanding the physiological and pathological functions of these receptors at the cellular and molecular levels will advance drug development and tissue regeneration for treating musculoskeletal diseases and bone defects in the future.
Collapse
|
22
|
Micha D, Voermans E, Eekhoff MEW, van Essen HW, Zandieh-Doulabi B, Netelenbos C, Rustemeyer T, Sistermans EA, Pals G, Bravenboer N. Inhibition of TGFβ signaling decreases osteogenic differentiation of fibrodysplasia ossificans progressiva fibroblasts in a novel in vitro model of the disease. Bone 2016; 84:169-180. [PMID: 26769004 DOI: 10.1016/j.bone.2016.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 12/16/2022]
Abstract
Fibrodysplasia ossificans progressiva is a rare genetic disorder characterized by progressive heterotopic ossification. FOP patients develop soft tissue lumps as a result of inflammation-induced flare-ups which leads to the irreversible replacement of skeletal muscle tissue with bone tissue. Classical FOP patients possess a mutation (c.617G>A; R206H) in the ACVR1-encoding gene which leads to dysregulated BMP signaling. Nonetheless, not all FOP patients with this mutation exhibit equal severity in symptom presentation or disease progression which indicates a strong contribution by environmental factors. Given the pro-inflammatory role of TGFβ, we studied the role of TGFβ in the progression of osteogenic differentiation in primary dermal fibroblasts from five classical FOP patients based on a novel method of platelet lysate-based osteogenic transdifferentiation. During the course of transdifferentiation the osteogenic properties of the cells were evaluated by the mRNA expression of Sp7/Osterix, Runx2, Alp, OC and the presence of mineralization. During transdifferentiation the expression of osteoblast markers Runx2 (p<0.05) and Alp were higher in patient cells compared to healthy controls. All cell lines exhibited increase in mineralisation. FOP fibroblasts also expressed higher baseline Sp7/Osterix levels (p<0.05) confirming their higher osteogenic potential. The pharmacological inhibition of TGFβ signaling during osteogenic transdifferentiation resulted in the attenuation of osteogenic transdifferentiation in all cell lines as shown by the decrease in the expression of Runx2 (p<0.05), Alp and mineralization. We suggest that blocking of TGFβ signaling can decrease the osteogenic transdifferentiation of FOP fibroblasts.
Collapse
Affiliation(s)
- Dimitra Micha
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Elise Voermans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Marelise E W Eekhoff
- Internal Medicine, Endocrinology Section, VU University Medical Center, Amsterdam, The Netherlands.
| | - Huib W van Essen
- Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute, Amsterdam, The Netherlands.
| | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and VU University, MOVE Research Institute, Amsterdam, The Netherlands.
| | - Coen Netelenbos
- Internal Medicine, Endocrinology Section, VU University Medical Center, Amsterdam, The Netherlands.
| | - Thomas Rustemeyer
- Department of Dermatology, VU University Medical Centre, Amsterdam, The Netherlands.
| | - E A Sistermans
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Gerard Pals
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, The Netherlands.
| | - Nathalie Bravenboer
- Department of Clinical Chemistry, VU University Medical Center, MOVE Research Institute, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Sánchez-Duffhues G, Hiepen C, Knaus P, Ten Dijke P. Bone morphogenetic protein signaling in bone homeostasis. Bone 2015; 80:43-59. [PMID: 26051467 DOI: 10.1016/j.bone.2015.05.025] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/11/2015] [Accepted: 05/20/2015] [Indexed: 01/06/2023]
Abstract
Bone morphogenetic proteins (BMPs) are cytokines belonging to the transforming growth factor-β (TGF-β) superfamily. They play multiple functions during development and tissue homeostasis, including regulation of the bone homeostasis. The BMP signaling pathway consists in a well-orchestrated manner of ligands, membrane receptors, co-receptors and intracellular mediators, that regulate the expression of genes controlling the normal functioning of the bone tissues. Interestingly, BMP signaling perturbation is associated to a variety of low and high bone mass diseases, including osteoporosis, bone fracture disorders and heterotopic ossification. Consistent with these findings, in vitro and in vivo studies have shown that BMPs have potent effects on the activity of cells regulating bone function, suggesting that manipulation of the BMP signaling pathway may be employed as a therapeutic approach to treat bone diseases. Here we review the recent advances on BMP signaling and bone homeostasis, and how this knowledge may be used towards improved diagnosis and development of novel treatment modalities. This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands
| | - Christian Hiepen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany
| | - Petra Knaus
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany; Berlin Brandenburg School of Regenerative Therapies (BSRT), Charité Universitätsmedizin, Berlin, Germany.
| | - Peter Ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medical Center, The Netherlands.
| |
Collapse
|
24
|
Shiomi A, Kawao N, Yano M, Okada K, Tamura Y, Okumoto K, Matsuo O, Akagi M, Kaji H. α₂-Antiplasmin is involved in bone loss induced by ovariectomy in mice. Bone 2015; 79:233-41. [PMID: 26094563 DOI: 10.1016/j.bone.2015.06.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/06/2015] [Accepted: 06/13/2015] [Indexed: 12/22/2022]
Abstract
The mechanism of postmenopausal osteoporosis is not fully understood. α2-Antiplasmin (α2-AP) is the primary inhibitor of plasmin in the fibrinolytic system, but is known to have activities beyond fibrinolysis. However, its role in bone metabolism and the pathogenesis of osteoporosis remains unknown. In the current study, we therefore examined the effects of α2-AP deficiency on ovariectomy (OVX)-induced bone loss by using wild-type and α2-AP-deficient mice. Quantitative computed tomography analysis revealed that α2-AP deficiency blunted OVX-induced trabecular bone loss in mice. Moreover, α2-AP deficiency significantly blunted serum levels of bone-specific alkaline phosphatase, cross-linked C-telopeptide of type I collagen, and interleukin (IL)-1β elevated by OVX. α2-AP treatment elevated the levels of IL-1β and tumor necrosis factor (TNF)-α mRNA in RAW 264.7 cells, although it suppressed osteoclast formation induced by receptor activator of nuclear factor-κB ligand. α2-AP treatment activated ERK1/2 and p38 MAP kinase pathways in RAW 264.7 cells, and these MAP kinase inhibitors antagonized the levels of IL-1β mRNA elevated by α2-AP. The data demonstrate that α2-AP is linked to bone loss due to OVX, through a mechanism that depends in part on the production of IL-1β and TNF-α in monocytes.
Collapse
Affiliation(s)
- Akihito Shiomi
- Department of Orthopaedic Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan; Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Naoyuki Kawao
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masato Yano
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Kiyotaka Okada
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Yukinori Tamura
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Katsumi Okumoto
- Life Science Research Institute, Kinki University, Osaka-Sayama, Osaka 589-8511, Japan
| | - Osamu Matsuo
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Masao Akagi
- Department of Orthopaedic Surgery, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan
| | - Hiroshi Kaji
- Department of Physiology and Regenerative Medicine, Kinki University Faculty of Medicine, Osaka-Sayama, Osaka 589-8511, Japan.
| |
Collapse
|