1
|
Rimskaya B, Shebanov N, Entelis N, Mazunin I. Enzymatic tools for mitochondrial genome manipulation. Biochimie 2024:S0300-9084(24)00239-6. [PMID: 39426703 DOI: 10.1016/j.biochi.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
Mutations in mitochondrial DNA (mtDNA) can manifest phenotypically as a wide range of neuromuscular and neurodegenerative pathologies that are currently only managed symptomatically without addressing the root cause. A promising approach is the development of molecular tools aimed at mtDNA cutting or editing. Unlike nuclear DNA, a cell can have hundreds or even thousands of mitochondrial genomes, and mutations can be present either in all of them or only in a subset. Consequently, the developed tools are aimed at reducing the number of copies of mutant mtDNA or editing mutant nucleotides. Despite some progress in the field of mitochondrial genome editing in human cells, working with model animals is still limited due to the complexity of their creation. Furthermore, not all existing editing systems can be easily adapted to function within mitochondria. In this review, we evaluate the mtDNA editing tools available today, with a particular focus on specific mtDNA mutations linked to hereditary mitochondrial diseases, aiming to provide an in-depth understanding of both the opportunities and hurdles to the development of mitochondrial genome editing technologies.
Collapse
Affiliation(s)
- Beatrisa Rimskaya
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, 141700, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation
| | - Nikita Shebanov
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France
| | - Nina Entelis
- UMR7156 Molecular Genetics, Genomics, Microbiology, University of Strasbourg - CNRS, Strasbourg, 67000, France.
| | - Ilya Mazunin
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 143026, Russian Federation; Department of Biology and Genetics, Petrovsky Medical University, Moscow, 117418, Russian Federation.
| |
Collapse
|
2
|
Eghbalsaied S, Lawler C, Petersen B, Hajiyev RA, Bischoff SR, Frankenberg S. CRISPR/Cas9-mediated base editors and their prospects for mitochondrial genome engineering. Gene Ther 2024; 31:209-223. [PMID: 38177342 DOI: 10.1038/s41434-023-00434-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/06/2024]
Abstract
Base editors are a type of double-stranded break (DSB)-free gene editing technology that has opened up new possibilities for precise manipulation of mitochondrial DNA (mtDNA). This includes cytosine and adenosine base editors and more recently guanosine base editors. Because of having low off-target and indel rates, there is a growing interest in developing and evolving this research field. Here, we provide a detailed update on DNA base editors. While base editing has widely been used for nuclear genome engineering, the growing interest in applying this technology to mitochondrial DNA has been faced with several challenges. While Cas9 protein has been shown to enter mitochondria, use of smaller Cas proteins, such as Cas12a, has higher import efficiency. However, sgRNA transfer into mitochondria is the most challenging step. sgRNA structure and ratio of Cas protein to sgRNA are both important factors for efficient sgRNA entry into mitochondria. In conclusion, while there are still several challenges to be addressed, ongoing research in this field holds the potential for new treatments and therapies for mitochondrial disorders.
Collapse
Affiliation(s)
- Shahin Eghbalsaied
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
- Department of Animal Science, Isfahan Branch, Islamic Azad University (IAU), Isfahan, Iran.
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany.
| | - Clancy Lawler
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Björn Petersen
- Department of Biotechnology, Institute of Farm Animal Genetics, Friedrich-Loeffler-Institute (FLI), Mariensee, Germany
- eGenesis, 2706 HWY E, 53572, Mount Horeb, WI, USA
| | - Raul A Hajiyev
- Department of Genome Engineering, NovoHelix, Miami, FL, USA
- Department of Computer Science, Kent State University, Kent, OH, USA
| | - Steve R Bischoff
- Department of Genome Engineering, NovoHelix, Miami, FL, USA
- Foundry for Genome Engineering & Reproductive Medicine (FGERM), Miami, FL, USA
| | - Stephen Frankenberg
- School of BioSciences, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Zheng S, Wang J, Sun M, Wang P, Shi W, Zhang Z, Wang Z, Zhang H. The clinical and genetic characteristics of maternally inherited diabetes and deafness (MIDD) with mitochondrial m.3243A > G mutation: A 10-year follow-up observation study and literature review. Clin Case Rep 2024; 12:e8458. [PMID: 38314188 PMCID: PMC10834381 DOI: 10.1002/ccr3.8458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 02/06/2024] Open
Abstract
Maternally inherited diabetes and deafness (MIDD) is often caused by the m.3243A > G mutation in mitochondrial DNA. Unfortunately, the characteristics of MIDD, especially long-term outcomes and heteroplasmic changes, have not been well described previously. The purpose of this study was to describe the clinical and genetic features of a family with MIDD after 10 years of follow-up.A 33-year-old male patient with typical characteristics of MIDD, including early-onset diabetes, deafness, and low body mass index, was admitted to our department. Further investigation revealed that the vast majority of his maternal relatives suffered from diabetes with or without deafness. A detailed family history was then requested from the patient and a pedigree was constructed. The patient suspected of MIDD was screened for mutations using whole mitochondrial DNA sequencing. Candidate pathogenic variants were then validated in other family members through Sanger sequencing. The patient was diagnosed with MIDD, with inherited m.3243A > G mutation in the mitochondrially encoded tRNA leucine 1 (MT-TL1) gene, after 10 years of symptom onset. The patient was then treated with insulin and coenzyme Q10 to improve mitochondrial function. During the follow-up period, his fasting blood glucose and HbA1c levels were improved and the incidence of diabetic ketoacidosis was significantly reduced. Our findings indicate that whole mitochondrial DNA sequencing should be considered for patients suspected of MIDD to improve the efficiency of diagnosis and prognosis.
Collapse
Affiliation(s)
- Shasha Zheng
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Regenerative Medicine Clinical Research CenterWuhanChina
- Wuhan Diabetes Clinical Research CenterWuhanChina
- Key Laboratory for Molecular Diagnosis of Hubei ProvinceWuhanChina
| | - Juanjuan Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Regenerative Medicine Clinical Research CenterWuhanChina
- Wuhan Diabetes Clinical Research CenterWuhanChina
- Key Laboratory for Molecular Diagnosis of Hubei ProvinceWuhanChina
| | - Minxian Sun
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Regenerative Medicine Clinical Research CenterWuhanChina
- Wuhan Diabetes Clinical Research CenterWuhanChina
- Key Laboratory for Molecular Diagnosis of Hubei ProvinceWuhanChina
| | - Pei Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Regenerative Medicine Clinical Research CenterWuhanChina
- Wuhan Diabetes Clinical Research CenterWuhanChina
- Key Laboratory for Molecular Diagnosis of Hubei ProvinceWuhanChina
| | - Wei Shi
- Department of Endocrinology, Hubei Integrated Traditional Chinese and Western Medicine HospitalHubei University of Chinese MedicineWuhanChina
| | - Zhongzhi Zhang
- Department of Endocrinology, Hubei Integrated Traditional Chinese and Western Medicine HospitalHubei University of Chinese MedicineWuhanChina
| | - Zhongjing Wang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Regenerative Medicine Clinical Research CenterWuhanChina
- Wuhan Diabetes Clinical Research CenterWuhanChina
- Key Laboratory for Molecular Diagnosis of Hubei ProvinceWuhanChina
| | - Hongmei Zhang
- Department of Endocrinology, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Regenerative Medicine Clinical Research CenterWuhanChina
- Wuhan Diabetes Clinical Research CenterWuhanChina
- Key Laboratory for Molecular Diagnosis of Hubei ProvinceWuhanChina
| |
Collapse
|
4
|
Głodowicz P, Kuczyński K, Val R, Dietrich A, Rolle K. Mitochondrial transport of catalytic RNAs and targeting of the organellar transcriptome in human cells. J Mol Cell Biol 2024; 15:mjad051. [PMID: 37591617 PMCID: PMC11148835 DOI: 10.1093/jmcb/mjad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/19/2023] Open
Abstract
Mutations in the small genome present in mitochondria often result in severe pathologies. Different genetic strategies have been explored, aiming to rescue such mutations. A number of these strategies were based on the capacity of human mitochondria to import RNAs from the cytosol and designed to repress the replication of the mutated genomes or to provide the organelles with wild-type versions of mutant transcripts. However, the mutant RNAs present in mitochondria turned out to be an obstacle to therapy and little attention has been devoted so far to their elimination. Here, we present the development of a strategy to knockdown mitochondrial RNAs in human cells using the transfer RNA-like structure of Brome mosaic virus or Tobacco mosaic virus as a shuttle to drive trans-cleaving ribozymes into the organelles in human cell lines. We obtained a specific knockdown of the targeted mitochondrial ATP6 mRNA, followed by a deep drop in ATP6 protein and a functional impairment of the oxidative phosphorylation chain. Our strategy provides a powerful approach to eliminate mutant organellar transcripts and to analyse the control and communication of the human organellar genetic system.
Collapse
Affiliation(s)
- Paweł Głodowicz
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Konrad Kuczyński
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Romain Val
- Institute of Plant Molecular Biology, French National Center for Scientific Research (CNRS) and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - André Dietrich
- Institute of Plant Molecular Biology, French National Center for Scientific Research (CNRS) and University of Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France
| | - Katarzyna Rolle
- Department of Molecular Neurooncology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, ul. Z. Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
5
|
Chin HL, Lai PS, Tay SKH. A clinical approach to diagnosis and management of mitochondrial myopathies. Neurotherapeutics 2024; 21:e00304. [PMID: 38241155 PMCID: PMC10903095 DOI: 10.1016/j.neurot.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/11/2023] [Indexed: 01/21/2024] Open
Abstract
This paper provides an overview of the different types of mitochondrial myopathies (MM), associated phenotypes, genotypes as well as a practical clinical approach towards disease diagnosis, surveillance, and management. nDNA-related MM are more common in pediatric-onset disease whilst mtDNA-related MMs are more frequent in adults. Genotype-phenotype correlation in MM is challenging due to clinical and genetic heterogeneity. The multisystemic nature of many MMs adds to the diagnostic challenge. Diagnostic approaches utilizing genetic sequencing with next generation sequencing approaches such as gene panel, exome and genome sequencing are available. This aids molecular diagnosis, heteroplasmy detection in MM patients and furthers knowledge of known mitochondrial genes. Precise disease diagnosis can end the diagnostic odyssey for patients, avoid unnecessary testing, provide prognosis, facilitate anticipatory management, and enable access to available therapies or clinical trials. Adjunctive tests such as functional and exercise testing could aid surveillance of MM patients. Management requires a multi-disciplinary approach, systemic screening for comorbidities, cofactor supplementation, avoidance of substances that inhibit the respiratory chain and exercise training. This update of the current understanding on MMs provides practical perspectives on current diagnostic and management approaches for this complex group of disorders.
Collapse
Affiliation(s)
- Hui-Lin Chin
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Poh San Lai
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stacey Kiat Hong Tay
- Division of Genetics and Metabolism, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Division of Neurology, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, Singapore.
| |
Collapse
|
6
|
Gao Y, Guo L, Wang F, Wang Y, Li P, Zhang D. Development of mitochondrial gene-editing strategies and their potential applications in mitochondrial hereditary diseases: a review. Cytotherapy 2024; 26:11-24. [PMID: 37930294 DOI: 10.1016/j.jcyt.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/07/2023]
Abstract
Mitochondrial DNA (mtDNA) is a critical genome contained within the mitochondria of eukaryotic cells, with many copies present in each mitochondrion. Mutations in mtDNA often are inherited and can lead to severe health problems, including various inherited diseases and premature aging. The lack of efficient repair mechanisms and the susceptibility of mtDNA to damage exacerbate the threat to human health. Heteroplasmy, the presence of different mtDNA genotypes within a single cell, increases the complexity of these diseases and requires an effective editing method for correction. Recently, gene-editing techniques, including programmable nucleases such as restriction endonuclease, zinc finger nuclease, transcription activator-like effector nuclease, clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated 9 and base editors, have provided new tools for editing mtDNA in mammalian cells. Base editors are particularly promising because of their high efficiency and precision in correcting mtDNA mutations. In this review, we discuss the application of these techniques in mitochondrial gene editing and their limitations. We also explore the potential of base editors for mtDNA modification and discuss the opportunities and challenges associated with their application in mitochondrial gene editing. In conclusion, this review highlights the advancements, limitations and opportunities in current mitochondrial gene-editing technologies and approaches. Our insights aim to stimulate the development of new editing strategies that can ultimately alleviate the adverse effects of mitochondrial hereditary diseases.
Collapse
Affiliation(s)
- Yanyan Gao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Linlin Guo
- The Affiliated Cardiovascular Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Fei Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | - Dejiu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Phan HTL, Lee H, Kim K. Trends and prospects in mitochondrial genome editing. Exp Mol Med 2023:10.1038/s12276-023-00973-7. [PMID: 37121968 DOI: 10.1038/s12276-023-00973-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/20/2022] [Accepted: 01/05/2023] [Indexed: 05/02/2023] Open
Abstract
Mitochondria are of fundamental importance in programmed cell death, cellular metabolism, and intracellular calcium concentration modulation, and inheritable mitochondrial disorders via mitochondrial DNA (mtDNA) mutation cause several diseases in various organs and systems. Nevertheless, mtDNA editing, which plays an essential role in the treatment of mitochondrial disorders, still faces several challenges. Recently, programmable editing tools for mtDNA base editing, such as cytosine base editors derived from DddA (DdCBEs), transcription activator-like effector (TALE)-linked deaminase (TALED), and zinc finger deaminase (ZFD), have emerged with considerable potential for correcting pathogenic mtDNA variants. In this review, we depict recent advances in the field, including structural biology and repair mechanisms, and discuss the prospects of using base editing tools on mtDNA to broaden insight into their medical applicability for treating mitochondrial diseases.
Collapse
Affiliation(s)
- Hong Thi Lam Phan
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Hyunji Lee
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, 28116, Cheongju, Republic of Korea.
- School of Medicine, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Kyoungmi Kim
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| |
Collapse
|
8
|
Advances in Human Mitochondria-Based Therapies. Int J Mol Sci 2022; 24:ijms24010608. [PMID: 36614050 PMCID: PMC9820658 DOI: 10.3390/ijms24010608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are the key biological generators of eukaryotic cells, controlling the energy supply while providing many important biosynthetic intermediates. Mitochondria act as a dynamic, functionally and structurally interconnected network hub closely integrated with other cellular compartments via biomembrane systems, transmitting biological information by shuttling between cells and tissues. Defects and dysregulation of mitochondrial functions are critically involved in pathological mechanisms contributing to aging, cancer, inflammation, neurodegenerative diseases, and other severe human diseases. Mediating and rejuvenating the mitochondria may therefore be of significant benefit to prevent, reverse, and even treat such pathological conditions in patients. The goal of this review is to present the most advanced strategies using mitochondria to manage such disorders and to further explore innovative approaches in the field of human mitochondria-based therapies.
Collapse
|
9
|
Soldatov VO, Kubekina MV, Skorkina MY, Belykh AE, Egorova TV, Korokin MV, Pokrovskiy MV, Deykin AV, Angelova PR. Current advances in gene therapy of mitochondrial diseases. J Transl Med 2022; 20:562. [PMID: 36471396 PMCID: PMC9724384 DOI: 10.1186/s12967-022-03685-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial diseases (MD) are a heterogeneous group of multisystem disorders involving metabolic errors. MD are characterized by extremely heterogeneous symptoms, ranging from organ-specific to multisystem dysfunction with different clinical courses. Most primary MD are autosomal recessive but maternal inheritance (from mtDNA), autosomal dominant, and X-linked inheritance is also known. Mitochondria are unique energy-generating cellular organelles designed to survive and contain their own unique genetic coding material, a circular mtDNA fragment of approximately 16,000 base pairs. The mitochondrial genetic system incorporates closely interacting bi-genomic factors encoded by the nuclear and mitochondrial genomes. Understanding the dynamics of mitochondrial genetics supporting mitochondrial biogenesis is especially important for the development of strategies for the treatment of rare and difficult-to-diagnose diseases. Gene therapy is one of the methods for correcting mitochondrial disorders.
Collapse
Affiliation(s)
- Vladislav O Soldatov
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia.
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia.
| | - Marina V Kubekina
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina Yu Skorkina
- Department of Biochemistry, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Andrei E Belykh
- Dioscuri Centre for Metabolic Diseases, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Tatiana V Egorova
- Laboratory of Modeling and Gene Therapy of Hereditary Diseases, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Mikhail V Korokin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Mikhail V Pokrovskiy
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
| | - Alexey V Deykin
- Department of Pharmacology and Clinical Pharmacology, Belgorod State National Research University, Belgorod, Russia
- Laboratory of Genome Editing for Biomedicine and Animal Health, Belgorod State National Research University, Belgorod, Russia
| | - Plamena R Angelova
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
10
|
The Mitochondrial Genome in Aging and Disease and the Future of Mitochondrial Therapeutics. Biomedicines 2022; 10:biomedicines10020490. [PMID: 35203698 PMCID: PMC8962324 DOI: 10.3390/biomedicines10020490] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2022] Open
Abstract
Mitochondria are intracellular organelles that utilize nutrients to generate energy in the form of ATP by oxidative phosphorylation. Mitochondrial DNA (mtDNA) in humans is a 16,569 base pair double-stranded circular DNA that encodes for 13 vital proteins of the electron transport chain. Our understanding of the mitochondrial genome’s transcription, translation, and maintenance is still emerging, and human pathologies caused by mtDNA dysfunction are widely observed. Additionally, a correlation between declining mitochondrial DNA quality and copy number with organelle dysfunction in aging is well-documented in the literature. Despite tremendous advancements in nuclear gene-editing technologies and their value in translational avenues, our ability to edit mitochondrial DNA is still limited. In this review, we discuss the current therapeutic landscape in addressing the various pathologies that result from mtDNA mutations. We further evaluate existing gene therapy efforts, particularly allotopic expression and its potential to become an indispensable tool for restoring mitochondrial health in disease and aging.
Collapse
|
11
|
Mitochondrial Genome Editing to Treat Human Osteoarthritis-A Narrative Review. Int J Mol Sci 2022; 23:ijms23031467. [PMID: 35163384 PMCID: PMC8835930 DOI: 10.3390/ijms23031467] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/27/2022] Open
Abstract
Osteoarthritis (OA) is a severe, common chronic orthopaedic disorder characterised by a degradation of the articular cartilage with an incidence that increases over years. Despite the availability of various clinical options, none can stop the irreversible progression of the disease to definitely cure OA. Various mutations have been evidenced in the mitochondrial DNA (mtDNA) of cartilage cells (chondrocytes) in OA, leading to a dysfunction of the mitochondrial oxidative phosphorylation processes that significantly contributes to OA cartilage degeneration. The mitochondrial genome, therefore, represents a central, attractive target for therapy in OA, especially using genome editing procedures. In this narrative review article, we present and discuss the current advances and breakthroughs in mitochondrial genome editing as a potential, novel treatment to overcome mtDNA-related disorders such as OA. While still in its infancy and despite a number of challenges that need to be addressed (barriers to effective and site-specific mtDNA editing and repair), such a strategy has strong value to treat human OA in the future, especially using the groundbreaking clustered regularly interspaced short palindromic repeats (CRIPSR)/CRISPR-associated 9 (CRISPR/Cas9) technology and mitochondrial transplantation approaches.
Collapse
|
12
|
Lipophilic Conjugates for Carrier-Free Delivery of RNA Importable into Human Mitochondria. Methods Mol Biol 2021; 2277:49-67. [PMID: 34080144 DOI: 10.1007/978-1-0716-1270-5_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Defects in human mitochondrial genome can cause a wide range of clinical disorders that still do not have efficient therapies. The natural pathway of small noncoding RNA import can be exploited to address therapeutic RNAs into the mitochondria. To create an approach of carrier-free targeting of RNA into living human cells, we designed conjugates containing a cholesterol residue and developed the protocols of chemical synthesis of oligoribonucleotides conjugated with cholesterol residue through cleavable pH-triggered hydrazone bond. The biodegradable conjugates of importable RNA with cholesterol can be internalized by cells in a carrier-free manner; RNA can then be released in the late endosomes due to a change in pH and partially targeted into mitochondria. Here we provide detailed protocols for solid-phase and "in solution" chemical synthesis of oligoribonucleotides conjugated to a cholesterol residue through a hydrazone bond. We describe the optimization of the carrier-free cell transfection with these conjugated RNA molecules and methods for evaluating the cellular and mitochondrial uptake of lipophilic conjugates.
Collapse
|
13
|
Pérez-Amado CJ, Bazan-Cordoba A, Hidalgo-Miranda A, Jiménez-Morales S. Mitochondrial Heteroplasmy Shifting as a Potential Biomarker of Cancer Progression. Int J Mol Sci 2021; 22:7369. [PMID: 34298989 PMCID: PMC8304746 DOI: 10.3390/ijms22147369] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Cancer is a serious health problem with a high mortality rate worldwide. Given the relevance of mitochondria in numerous physiological and pathological mechanisms, such as adenosine triphosphate (ATP) synthesis, apoptosis, metabolism, cancer progression and drug resistance, mitochondrial genome (mtDNA) analysis has become of great interest in the study of human diseases, including cancer. To date, a high number of variants and mutations have been identified in different types of tumors, which coexist with normal alleles, a phenomenon named heteroplasmy. This mechanism is considered an intermediate state between the fixation or elimination of the acquired mutations. It is suggested that mutations, which confer adaptive advantages to tumor growth and invasion, are enriched in malignant cells. Notably, many recent studies have reported a heteroplasmy-shifting phenomenon as a potential shaper in tumor progression and treatment response, and we suggest that each cancer type also has a unique mitochondrial heteroplasmy-shifting profile. So far, a plethora of data evidencing correlations among heteroplasmy and cancer-related phenotypes are available, but still, not authentic demonstrations, and whether the heteroplasmy or the variation in mtDNA copy number (mtCNV) in cancer are cause or consequence remained unknown. Further studies are needed to support these findings and decipher their clinical implications and impact in the field of drug discovery aimed at treating human cancer.
Collapse
Affiliation(s)
- Carlos Jhovani Pérez-Amado
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
- Programa de Maestría y Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Amellalli Bazan-Cordoba
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
- Programa de Maestría y Doctorado, Posgrado en Ciencias Bioquímicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alfredo Hidalgo-Miranda
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
| | - Silvia Jiménez-Morales
- Laboratorio de Genómica del Cáncer, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico; (C.J.P.-A.); (A.B.-C.); (A.H.-M.)
| |
Collapse
|
14
|
Yang X, Jiang J, Li Z, Liang J, Xiang Y. Strategies for mitochondrial gene editing. Comput Struct Biotechnol J 2021; 19:3319-3329. [PMID: 34188780 PMCID: PMC8202187 DOI: 10.1016/j.csbj.2021.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
Mitochondria, as the energy factory of cells, participate in metabolism processes and play a critical role in the maintenance of human life activities. Mitochondria belong to semi-automatic organelles, which have their own genome different from nuclear genome. Mitochondrial DNA (mtDNA) mutations can cause a series of diseases and threaten human health. However, an effective approach to edit mitochondrial DNA, though long-desired, is lacking. In recent years, gene editing technologies, represented by restriction endonucleases (RE) technology, zinc finger nuclease (ZFN) technology, transcription activator-like effector nuclease (TALEN) technology, CRISPR system and pAgo-based system have been comprehensively explored, but the application of these technologies in mitochondrial gene editing is still to be explored and optimized. The present study highlights the progress and limitations of current mitochondrial gene editing technologies and approaches, and provides insights for development of novel strategies for future attempts.
Collapse
Affiliation(s)
- Xingbo Yang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiacheng Jiang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zongyu Li
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jiayi Liang
- School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Yaozu Xiang
- School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Shanghai East Hospital, Tongji University, Shanghai 200092, China
| |
Collapse
|
15
|
Shemiakova T, Ivanova E, Wu WK, Kirichenko TV, Starodubova AV, Orekhov AN. Atherosclerosis as Mitochondriopathy: Repositioning the Disease to Help Finding New Therapies. Front Cardiovasc Med 2021; 8:660473. [PMID: 34017868 PMCID: PMC8129197 DOI: 10.3389/fcvm.2021.660473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is a complex pathology that involves both metabolic dysfunction and chronic inflammatory process. During the last decade, a considerable progress was achieved in describing the pathophysiological features of atherosclerosis and developing approaches that target the abnormal lipid metabolism and chronic inflammation. However, early events in the arterial wall that initiate the disease development still remain obscure. Finding effective therapeutic targets in these early processes would allow developing methods for disease prevention and, possibly, atherosclerotic plaque regression. Currently, these early events are being actively studied by several research groups. One of the processes that are being investigated is the development of mitochondrial dysfunction, which was demonstrated to be present in the affected areas of the arterial wall. Detection and characterization of mitochondrial dysfunction associated with several chronic human disorders was made possible by the improved methods of studying mitochondrial biology and detecting mitochondrial DNA (mtDNA) mutations. It was found to be involved in several key atherogenic processes, such as oxidative stress, chronic inflammation, and intracellular lipid accumulation. Mitochondrial dysfunction can occur in all types of cells involved in the pathogenesis of atherosclerosis: monocytes and macrophages, smooth muscle cells, lymphocytes, and the endothelial cells. However, therapies that would specifically target the mitochondria to correct mitochondrial dysfunction and neutralize the defective organelles are still remain to be developed and characterized. The aim of this review is to outline the prospects for mitochondrial therapy for atherosclerosis. We discuss mechanisms of mitochondria-mediated atherogenic processes, known mitochondria-targeting therapy strategies, and novel mitochondria-targeting drugs in the context of atherosclerosis.
Collapse
Affiliation(s)
- Taisiia Shemiakova
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | | | - Wei-Kai Wu
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Tatiana V Kirichenko
- Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow, Russia.,Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia
| | - Antonina V Starodubova
- Federal Research Center for Nutrition, Biotechnology and Food Safety, Moscow, Russia.,Faculty of Therapy, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Alexander N Orekhov
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Institute of Human Morphology, Moscow, Russia.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia
| |
Collapse
|
16
|
Zakirova EG, Vyatkin YV, Verechshagina NA, Muzyka VV, Mazunin IO, Orishchenko KE. Study of the effect of the introduction of mitochondrial import determinants into the gRNA structure on the activity of the gRNA/SpCas9 complex in vitro. Vavilovskii Zhurnal Genet Selektsii 2021; 24:512-518. [PMID: 33659835 PMCID: PMC7716540 DOI: 10.18699/vj20.643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
It has long been known that defects in the structure of the mitochondrial genome can cause various neuromuscular
and neurodegenerative diseases. Nevertheless, at present there is no effective method for treating mitochondrial
diseases. The major problem with the treatment of such diseases is associated with mitochondrial DNA
(mtDNA) heteroplasmy. It means that due to a high copy number of the mitochondrial genome, mutant copies of
mtDNA coexist with wild-type molecules in the same organelle. The clinical symptoms of mitochondrial diseases and
the degree of their manifestation directly depend on the number of mutant mtDNA molecules in the cell. The possible
way to reduce adverse effects of the mutation is by shifting the level of heteroplasmy towards the wild-type
mtDNA molecules. Using this idea, several gene therapeutic approaches based on TALE and ZF nucleases have been
developed
for this purpose. However, the construction of protein domains of such systems is rather long and laborious
process. Meanwhile, the CRISPR/Cas9 system is fundamentally different from protein systems in that it is easy to use,
highly efficiency and has a different mechanism of action. All the characteristics and capabilities of the CRISPR/Cas9
system make it a promising tool in mitochondrial genetic engineering. In this article, we demonstrate for the first time
that the modification of gRNA by integration of specific mitochondrial import determinants in the gRNA scaffold does
not affect the activity of the gRNA/Cas9 complex in vitro.
Collapse
Affiliation(s)
- E G Zakirova
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | - V V Muzyka
- Novosibirsk State University, Novosibirsk, Russia
| | - I O Mazunin
- Skolkovo Institute of Science and Technology, Skolkovo, Russia
| | - K E Orishchenko
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
17
|
Zakirova EG, Muzyka VV, Mazunin IO, Orishchenko KE. Natural and Artificial Mechanisms of Mitochondrial Genome Elimination. Life (Basel) 2021; 11:life11020076. [PMID: 33498399 PMCID: PMC7909434 DOI: 10.3390/life11020076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 01/11/2023] Open
Abstract
The generally accepted theory of the genetic drift of mitochondrial alleles during mammalian ontogenesis is based on the presence of a selective bottleneck in the female germline. However, there is a variety of different theories on the pathways of genetic regulation of mitochondrial DNA (mtDNA) dynamics in oogenesis and adult somatic cells. The current review summarizes present knowledge on the natural mechanisms of mitochondrial genome elimination during mammalian development. We also discuss the variety of existing and developing methodologies for artificial manipulation of the mtDNA heteroplasmy level. Understanding of the basics of mtDNA dynamics will shed the light on the pathogenesis and potential therapies of human diseases associated with mitochondrial dysfunction.
Collapse
Affiliation(s)
- Elvira G. Zakirova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
| | - Vladimir V. Muzyka
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Ilya O. Mazunin
- Skolkovo Institute of Science and Technology, 143026 Skolkovo, Russia;
| | - Konstantin E. Orishchenko
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.G.Z.); (V.V.M.)
- Department of Genetic Technologies, Novosibirsk State University, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
18
|
Sazonova MA, Ryzhkova AI, Sinyov VV, Sazonova MD, Khasanova ZB, Nikitina NA, Karagodin VP, Orekhov AN, Sobenin IA. Creation of Cultures Containing Mutations Linked with Cardiovascular Diseases using Transfection and Genome Editing. Curr Pharm Des 2020; 25:693-699. [PMID: 30931844 DOI: 10.2174/1381612825666190329121532] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
OBJECTIVE In this review article, we analyzed the literature on the creation of cultures containing mutations associated with cardiovascular diseases (CVD) using transfection, transduction and editing of the human genome. METHODS We described different methods of transfection, transduction and editing of the human genome, used in the literature. RESULTS We reviewed the researches in which the creation of сell cultures containing mutations was described. According to the literature, system CRISPR/Cas9 proved to be the most preferred method for editing the genome. We found rather promising and interesting a practically undeveloped direction of mitochondria transfection using a gene gun. Such a gun can direct a genetically-engineered construct containing human DNA mutations to the mitochondria using heavy metal particles. However, in human molecular genetics, the transfection method using a gene gun is unfairly forgotten and is almost never used. Ethical problems arising from editing the human genome were also discussed in our review. We came to a conclusion that it is impossible to stop scientific and technical progress. It is important that the editing of the genome takes place under the strict control of society and does not bear dangerous consequences for humanity. To achieve this, the constant interaction of science with society, culture and business is necessary. CONCLUSION The most promising methods for the creation of cell cultures containing mutations linked with cardiovascular diseases, were system CRISPR/Cas9 and the gene gun.
Collapse
Affiliation(s)
- Margarita A Sazonova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Anastasia I Ryzhkova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Vasily V Sinyov
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation
| | - Marina D Sazonova
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Zukhra B Khasanova
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation
| | - Nadezhda A Nikitina
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation
| | | | - Alexander N Orekhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| | - Igor A Sobenin
- Laboratory of Medical Genetics, National Medical Research Center of Cardiology, Moscow, Russian Federation.,Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russian Federation
| |
Collapse
|
19
|
Kotrys AV, Szczesny RJ. Mitochondrial Gene Expression and Beyond-Novel Aspects of Cellular Physiology. Cells 2019; 9:cells9010017. [PMID: 31861673 PMCID: PMC7017415 DOI: 10.3390/cells9010017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are peculiar organelles whose proper function depends on the crosstalk between two genomes, mitochondrial and nuclear. The human mitochondrial genome (mtDNA) encodes only 13 proteins; nevertheless, its proper expression is essential for cellular homeostasis, as mtDNA-encoded proteins are constituents of mitochondrial respiratory complexes. In addition, mtDNA expression results in the production of RNA molecules, which influence cell physiology once released from the mitochondria into the cytoplasm. As a result, dysfunctions of mtDNA expression may lead to pathologies in humans. Here, we review the mechanisms of mitochondrial gene expression with a focus on recent findings in the field. We summarize the complex turnover of mitochondrial transcripts and present an increasing body of evidence indicating new functions of mitochondrial transcripts. We discuss mitochondrial gene regulation in different cellular contexts, focusing on stress conditions. Finally, we highlight the importance of emerging aspects of mitochondrial gene regulation in human health and disease.
Collapse
|
20
|
Kamenski PA, Krasheninnikov IA, Tarassov I. 40 Years of Studying RNA Import into Mitochondria: From Basic Mechanisms to Gene Therapy Strategies. Mol Biol 2019. [DOI: 10.1134/s0026893319060074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Kawamura E, Hibino M, Harashima H, Yamada Y. Targeted mitochondrial delivery of antisense RNA-containing nanoparticles by a MITO-Porter for safe and efficient mitochondrial gene silencing. Mitochondrion 2019; 49:178-188. [DOI: 10.1016/j.mito.2019.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 11/30/2022]
|
22
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
23
|
Jeandard D, Smirnova A, Tarassov I, Barrey E, Smirnov A, Entelis N. Import of Non-Coding RNAs into Human Mitochondria: A Critical Review and Emerging Approaches. Cells 2019; 8:E286. [PMID: 30917553 PMCID: PMC6468882 DOI: 10.3390/cells8030286] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 03/19/2019] [Accepted: 03/23/2019] [Indexed: 01/26/2023] Open
Abstract
Mitochondria harbor their own genetic system, yet critically depend on the import of a number of nuclear-encoded macromolecules to ensure their expression. In all eukaryotes, selected non-coding RNAs produced from the nuclear genome are partially redirected into the mitochondria, where they participate in gene expression. Therefore, the mitochondrial RNome represents an intricate mixture of the intrinsic transcriptome and the extrinsic RNA importome. In this review, we summarize and critically analyze data on the nuclear-encoded transcripts detected in human mitochondria and outline the proposed molecular mechanisms of their mitochondrial import. Special attention is given to the various experimental approaches used to study the mitochondrial RNome, including some recently developed genome-wide and in situ techniques.
Collapse
Affiliation(s)
- Damien Jeandard
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Anna Smirnova
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Ivan Tarassov
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| | - Eric Barrey
- GABI-UMR1313, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | - Nina Entelis
- UMR 7156 GMGM Strasbourg University/CNRS, 67000 Strasbourg, France.
| |
Collapse
|
24
|
Loutre R, Heckel AM, Smirnova A, Entelis N, Tarassov I. Can Mitochondrial DNA be CRISPRized: Pro and Contra. IUBMB Life 2018; 70:1233-1239. [PMID: 30184317 DOI: 10.1002/iub.1919] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 01/08/2023]
Abstract
Mitochondria represent a chimera of macromolecules encoded either in the organellar genome, mtDNA, or in the nuclear one. If the pathway of protein targeting to different sub-compartments of mitochondria was relatively well studied, import of small noncoding RNAs into mammalian mitochondria still awaits mechanistic explanations and its functional issues are often not understood thus raising polemics. At the same time, RNA mitochondrial import pathway has an obvious attractiveness as it appears as a unique natural mechanism permitting to address nucleic acids into the organelles. Deciphering the function(s) of imported RNAs inside the mitochondria is extremely complicated due to their relatively low abundance, which suggests their regulatory role. We previously demonstrated that mitochondrial targeting of small noncoding RNAs able to specifically anneal with the mutant mitochondrial DNA led to a decrease of the mtDNA heteroplasmy level by inhibiting mutant mtDNA replication. We then demonstrated that increasing level of expression of such antireplicative recombinant RNAs increases significantly the antireplicative effect. In this report, we present a new data investigating the possibility to establish a CRISPR-Cas9 system targeting mtDNA exploiting of the pathway of RNA import into mitochondria. Mitochondrially addressed Cas9 versions and a set of mitochondrially targeted guide RNAs were tested in vitro and in vivo and their effect on mtDNA copy number was demonstrated. So far, the system appeared as more complicated for use than previously found for nuclear DNA, because only application of a pair of guide RNAs produced the effect of mtDNA depletion. We discuss, in a critical way, these results and put them in a broader context of polemics concerning the possibilities of manipulation of mtDNA in mammalians. The findings described here prove the potential of the RNA import pathway as a tool for studying mtDNA and for future therapy of mitochondrial disorders. © The Authors. IUBMB Life published by Wiley Periodicals, Inc. on behalf of International Union of Biochemistry and Molecular Biology, 70(12):1233-1239, 2018.
Collapse
Affiliation(s)
- Romuald Loutre
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Anne-Marie Heckel
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Anna Smirnova
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Nina Entelis
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| | - Ivan Tarassov
- UMR 7156 GMGM (Molecular Genetics, Genomics, Microbiology), University of Strasbourg - CNRS, Strasbourg, France
| |
Collapse
|
25
|
Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome. Essays Biochem 2018; 62:455-465. [PMID: 29950320 PMCID: PMC6056713 DOI: 10.1042/ebc20170113] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 11/25/2022]
Abstract
Mitochondrial DNA (mtDNA) is a multi-copy genome whose cell copy number varies depending on tissue type. Mutations in mtDNA can cause a wide spectrum of diseases. Mutated mtDNA is often found as a subset of the total mtDNA population in a cell or tissue, a situation known as heteroplasmy. As mitochondrial dysfunction only presents after a certain level of heteroplasmy has been acquired, ways to artificially reduce or replace the mutated species have been attempted. This review addresses recent approaches and advances in this field, focusing on the prevention of pathogenic mtDNA transfer via mitochondrial donation techniques such as maternal spindle transfer and pronuclear transfer in which mutated mtDNA in the oocyte or fertilized embryo is substituted with normal copies of the mitochondrial genome. This review also discusses the molecular targeting and cleavage of pathogenic mtDNA to shift heteroplasmy using antigenomic therapy and genome engineering techniques including Zinc-finger nucleases and transcription activator-like effector nucleases. Finally, it considers CRISPR technology and the unique difficulties that mitochondrial genome editing presents.
Collapse
|
26
|
Loutre R, Heckel AM, Jeandard D, Tarassov I, Entelis N. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner. PLoS One 2018; 13:e0199258. [PMID: 29912984 PMCID: PMC6005506 DOI: 10.1371/journal.pone.0199258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/04/2018] [Indexed: 12/19/2022] Open
Abstract
Mutations in mitochondrial DNA are an important source of severe and incurable human diseases. The vast majority of these mutations are heteroplasmic, meaning that mutant and wild-type genomes are present simultaneously in the same cell. Only a very high proportion of mutant mitochondrial DNA (heteroplasmy level) leads to pathological consequences. We previously demonstrated that mitochondrial targeting of small RNAs designed to anneal with mutant mtDNA can decrease the heteroplasmy level by specific inhibition of mutant mtDNA replication, thus representing a potential therapy. We have also shown that 5S ribosomal RNA, partially imported into human mitochondria, can be used as a vector to deliver anti-replicative oligoribonucleotides into human mitochondria. So far, the efficiency of cellular expression of recombinant 5S rRNA molecules bearing therapeutic insertions remained very low. In the present study, we designed new versions of anti-replicative recombinant 5S rRNA targeting a large deletion in mitochondrial DNA which causes the KSS syndrome, analyzed their specific annealing to KSS mitochondrial DNA and demonstrated their import into mitochondria of cultured human cells. To obtain an increased level of the recombinant 5S rRNA stable expression, we created transmitochondrial cybrid cell line bearing a site for Flp-recombinase and used this system for the recombinase-mediated integration of genes coding for the anti-replicative recombinant 5S rRNAs into nuclear genome. We demonstrated that stable expression of anti-replicative 5S rRNA versions in human transmitochondrial cybrid cells can induce a shift in heteroplasmy level of KSS mutation in mtDNA. This shift was directly dependent on the level of the recombinant 5S rRNA expression and the sequence of the anti-replicative insertion. Quantification of mtDNA copy number in transfected cells revealed the absence of a non-specific effect on wild type mtDNA replication, indicating that the decreased proportion between mutant and wild type mtDNA molecules is not a consequence of a random repopulation of depleted pool of mtDNA genomes. The heteroplasmy change could be also modulated by cell growth conditions, namely increased by cells culturing in a carbohydrate-free medium, thus forcing them to use oxidative phosphorylation and providing a selective advantage for cells with improved respiration capacities. We discuss the advantages and limitations of this approach and propose further development of the anti-replicative strategy based on the RNA import into human mitochondria.
Collapse
Affiliation(s)
- Romuald Loutre
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| | - Anne-Marie Heckel
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| | - Damien Jeandard
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| | - Ivan Tarassov
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| | - Nina Entelis
- UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), Strasbourg University-CNRS, Strasbourg, France
| |
Collapse
|
27
|
Verechshagina N, Nikitchina N, Yamada Y, Harashima Н, Tanaka M, Orishchenko K, Mazunin I. Future of human mitochondrial DNA editing technologies. Mitochondrial DNA A DNA Mapp Seq Anal 2018; 30:214-221. [PMID: 29764251 DOI: 10.1080/24701394.2018.1472773] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
ATP and other metabolites, which are necessary for the development, maintenance, and functioning of bodily cells are all synthesized in the mitochondria. Multiple copies of the genome, present within the mitochondria, together with its maternal inheritance, determine the clinical manifestation and spreading of mutations in mitochondrial DNA (mtDNA). The main obstacle in the way of thorough understanding of mitochondrial biology and the development of gene therapy methods for mitochondrial diseases is the absence of systems that allow to directly change mtDNA sequence. Here, we discuss existing methods of manipulating the level of mtDNA heteroplasmy, as well as the latest systems, that could be used in the future as tools for human mitochondrial genome editing.
Collapse
Affiliation(s)
- N Verechshagina
- a Laboratory of Molecular Genetics Technologies , Immanuel Kant Baltic Federal University , Kaliningrad , Russia
| | - N Nikitchina
- a Laboratory of Molecular Genetics Technologies , Immanuel Kant Baltic Federal University , Kaliningrad , Russia
| | - Y Yamada
- b Faculty of Pharmaceutical Sciences, Laboratory for Molecular Design of Pharmaceutics , Hokkaido University , Sapporo , Japan
| | - Н Harashima
- b Faculty of Pharmaceutical Sciences, Laboratory for Molecular Design of Pharmaceutics , Hokkaido University , Sapporo , Japan
| | - M Tanaka
- c Department for Health and Longevity Research , National Institutes of Biomedical Innovation, Health and Nutrition , Ibaraki City, Osaka , Japan.,d Department of Neurology , Juntendo University Graduate School of Medicine , Tokyo , Japan
| | - K Orishchenko
- a Laboratory of Molecular Genetics Technologies , Immanuel Kant Baltic Federal University , Kaliningrad , Russia.,e Laboratory of Cell Technologies , Institute of Cytology and Genetics SB RAS , Novosibirsk , Russia
| | - I Mazunin
- a Laboratory of Molecular Genetics Technologies , Immanuel Kant Baltic Federal University , Kaliningrad , Russia
| |
Collapse
|
28
|
Gammage PA, Moraes CT, Minczuk M. Mitochondrial Genome Engineering: The Revolution May Not Be CRISPR-Ized. Trends Genet 2018; 34:101-110. [PMID: 29179920 PMCID: PMC5783712 DOI: 10.1016/j.tig.2017.11.001] [Citation(s) in RCA: 212] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/28/2017] [Accepted: 11/02/2017] [Indexed: 12/17/2022]
Abstract
In recent years mitochondrial DNA (mtDNA) has transitioned to greater prominence across diverse areas of biology and medicine. The recognition of mitochondria as a major biochemical hub, contributions of mitochondrial dysfunction to various diseases, and several high-profile attempts to prevent hereditary mtDNA disease through mitochondrial replacement therapy have roused interest in the organellar genome. Subsequently, attempts to manipulate mtDNA have been galvanized, although with few robust advances and much controversy. Re-engineered protein-only nucleases such as mtZFN and mitoTALEN function effectively in mammalian mitochondria, although efficient delivery of nucleic acids into the organelle remains elusive. Such an achievement, in concert with a mitochondria-adapted CRISPR/Cas9 platform, could prompt a revolution in mitochondrial genome engineering and biological understanding. However, the existence of an endogenous mechanism for nucleic acid import into mammalian mitochondria, a prerequisite for mitochondrial CRISPR/Cas9 gene editing, remains controversial.
Collapse
Affiliation(s)
- Payam A Gammage
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| | - Carlos T Moraes
- Miller School of Medicine, University of Miami, Miami, FL, USA.
| | - Michal Minczuk
- Medical Research Council (MRC) Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
29
|
Abstract
Mitochondria are cytosolic organelles essential for generating energy and maintaining cell homeostasis. Despite their critical function, the handful of proteins expressed by the mitochondrial genome is insufficient to maintain mitochondrial structure or activity. Accordingly, mitochondrial metabolism is fully dependent on factors encoded by the nuclear DNA, including many proteins synthesized in the cytosol and imported into mitochondria via established mechanisms. However, there is growing evidence that mammalian mitochondria can also import cytosolic noncoding RNA via poorly understood processes. Here, we summarize our knowledge of mitochondrial RNA, discuss recent progress in understanding the molecular mechanisms and functional impact of RNA import into mitochondria, and identify rising challenges and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Kyoung Mi Kim
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
30
|
Steffann J, Bonnefont JP, Frydman N. [Nuclear transfer to prevent transmission of mtDNA disorders: where are we?]. Med Sci (Paris) 2017; 33:642-645. [PMID: 28990567 DOI: 10.1051/medsci/20173306022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The recent birth from a mitochondrial DNA mutation carrier of a child, conceived after transfer in a donor oocyte of the meiotic spindle, taken from the maternal oocyte, revived the debate on the safety of these procedures. The doubts concern mainly the possibility of genetic reversion, the uncertainties about potential disturbances of the dialogue between nuclear and mitochondrial genomes and the side effects of a heteroplasmic state induced by these techniques. The possibility to expand nuclear transfer applications to patients experiencing in vitro fertilization failure, urges us to answer these questions rapidly.
Collapse
Affiliation(s)
- Julie Steffann
- Université Paris-Descartes, Institut Imagine UMR 1163, et Hôpital Necker-Enfants Malades (AP-HP), Paris, F-75015, France
| | - Jean-Paul Bonnefont
- Université Paris-Descartes, Institut Imagine UMR 1163, et Hôpital Necker-Enfants Malades (AP-HP), Paris, F-75015, France
| | - Nelly Frydman
- AP-HP, Biologie de la Reproduction, Université Paris-Sud, Université Paris-Saclay, Hôpital Antoine-Béclère Clamart, F-92140, France
| |
Collapse
|
31
|
Gammage PA, Gaude E, Van Haute L, Rebelo-Guiomar P, Jackson CB, Rorbach J, Pekalski ML, Robinson AJ, Charpentier M, Concordet JP, Frezza C, Minczuk M. Near-complete elimination of mutant mtDNA by iterative or dynamic dose-controlled treatment with mtZFNs. Nucleic Acids Res 2016; 44:7804-16. [PMID: 27466392 PMCID: PMC5027515 DOI: 10.1093/nar/gkw676] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/20/2016] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial diseases are frequently associated with mutations in mitochondrial DNA (mtDNA). In most cases, mutant and wild-type mtDNAs coexist, resulting in heteroplasmy. The selective elimination of mutant mtDNA, and consequent enrichment of wild-type mtDNA, can rescue pathological phenotypes in heteroplasmic cells. Use of the mitochondrially targeted zinc finger-nuclease (mtZFN) results in degradation of mutant mtDNA through site-specific DNA cleavage. Here, we describe a substantial enhancement of our previous mtZFN-based approaches to targeting mtDNA, allowing near-complete directional shifts of mtDNA heteroplasmy, either by iterative treatment or through finely controlled expression of mtZFN, which limits off-target catalysis and undesired mtDNA copy number depletion. To demonstrate the utility of this improved approach, we generated an isogenic distribution of heteroplasmic cells with variable mtDNA mutant level from the same parental source without clonal selection. Analysis of these populations demonstrated an altered metabolic signature in cells harbouring decreased levels of mutant m.8993T>G mtDNA, associated with neuropathy, ataxia, and retinitis pigmentosa (NARP). We conclude that mtZFN-based approaches offer means for mtDNA heteroplasmy manipulation in basic research, and may provide a strategy for therapeutic intervention in selected mitochondrial diseases.
Collapse
Affiliation(s)
| | | | | | - Pedro Rebelo-Guiomar
- MRC Mitochondrial Biology Unit, Cambridge, UK GABBA, University of Porto, Portugal
| | | | | | - Marcin L Pekalski
- JDRF/Wellcome Trust DIL, Cambridge Institute for Medical Research, University of Cambridge, UK
| | | | - Marine Charpentier
- INSERM U1154, CNRS UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Jean-Paul Concordet
- INSERM U1154, CNRS UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | | | | |
Collapse
|
32
|
Method of carrier-free delivery of therapeutic RNA importable into human mitochondria: Lipophilic conjugates with cleavable bonds. Biomaterials 2016; 76:408-17. [DOI: 10.1016/j.biomaterials.2015.10.075] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/25/2015] [Accepted: 10/29/2015] [Indexed: 12/15/2022]
|
33
|
Baleva M, Gowher A, Kamenski P, Tarassov I, Entelis N, Masquida B. A Moonlighting Human Protein Is Involved in Mitochondrial Import of tRNA. Int J Mol Sci 2015; 16:9354-67. [PMID: 25918939 PMCID: PMC4463592 DOI: 10.3390/ijms16059354] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/02/2015] [Accepted: 04/15/2015] [Indexed: 12/29/2022] Open
Abstract
In yeast Saccharomyces cerevisiae, ~3% of the lysine transfer RNA acceptor 1 (tRK1) pool is imported into mitochondria while the second isoacceptor, tRK2, fully remains in the cytosol. The mitochondrial function of tRK1 is suggested to boost mitochondrial translation under stress conditions. Strikingly, yeast tRK1 can also be imported into human mitochondria in vivo, and can thus be potentially used as a vector to address RNAs with therapeutic anti-replicative capacity into mitochondria of sick cells. Better understanding of the targeting mechanism in yeast and human is thus critical. Mitochondrial import of tRK1 in yeast proceeds first through a drastic conformational rearrangement of tRK1 induced by enolase 2, which carries this freight to the mitochondrial pre-lysyl-tRNA synthetase (preMSK). The latter may cross the mitochondrial membranes to reach the matrix where imported tRK1 could be used by the mitochondrial translation apparatus. This work focuses on the characterization of the complex that tRK1 forms with human enolases and their role on the interaction between tRK1 and human pre-lysyl-tRNA synthetase (preKARS2).
Collapse
Affiliation(s)
- Maria Baleva
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
- Department of Molecular Biology, Biology Faculty of Moscow State University, 119992 Moscow, Russia.
| | - Ali Gowher
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Piotr Kamenski
- Department of Molecular Biology, Biology Faculty of Moscow State University, 119992 Moscow, Russia.
| | - Ivan Tarassov
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Nina Entelis
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| | - Benoît Masquida
- Department of Molecular and Cellular Genetics, UMR 7156 Génétique Moléculaire, Génomique, Microbiologie (GMGM), CNRS-Université de Strasbourg, 67084 Strasbourg, France.
| |
Collapse
|
34
|
Cannon MV, Irwin MH, Pinkert CA. Mitochondrially-Imported RNA in Drug Discovery. Drug Dev Res 2015; 76:61-71. [DOI: 10.1002/ddr.21241] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/14/2014] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Carl A. Pinkert
- Department of Pathobiology; Auburn University; Auburn AL USA
- Department of Biology; The University of Alabama; Tuscaloosa AL USA
| |
Collapse
|
35
|
The role of mitochondrial DNA mutation on neurodegenerative diseases. Exp Mol Med 2015; 47:e150. [PMID: 25766619 PMCID: PMC4351410 DOI: 10.1038/emm.2014.122] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 11/19/2014] [Indexed: 01/02/2023] Open
Abstract
Many researchers have reported that oxidative damage to mitochondrial DNA (mtDNA) is increased in several age-related disorders. Damage to mitochondrial constituents and mtDNA can generate additional mitochondrial dysfunction that may result in greater reactive oxygen species production, triggering a circular chain of events. However, the mechanisms underlying this vicious cycle have yet to be fully investigated. In this review, we summarize the relationship of oxidative stress-induced mitochondrial dysfunction with mtDNA mutation in neurodegenerative disorders.
Collapse
|
36
|
Abstract
Defects in mitochondrial genome can cause a wide range of clinical disorders, mainly neuromuscular diseases. Various strategies have been proposed to address these pathologies; unfortunately no efficient treatment is currently available. In some cases, defects may be rescued by targeting into mitochondria nuclear DNA-expressed counterparts of the affected molecules. Another strategy is based on the induced shift of the heteroplasmy, meaning that wild type and mutated mtDNA can coexist in a single cell. The occurrence and severity of the disease depend on the heteroplasmy level, therefore, several approaches have been recently proposed to selectively reduce the levels of mutant mtDNA. Here we describe the experimental systems used to study the molecular mechanisms of mitochondrial dysfunctions: the respiratory deficient yeast strains, mammalian trans-mitochondrial cybrid cells and mice models, and overview the recent advances in development of various therapeutic approaches.
Collapse
Affiliation(s)
- Yann Tonin
- UMR 7156, Université de Strasbourg-CNRS, 21, rue René Descartes, 67084 Strasbourg, France
| | - Nina Entelis
- UMR 7156, Université de Strasbourg-CNRS, 21, rue René Descartes, 67084 Strasbourg, France
| |
Collapse
|