1
|
Wang Q, Gu X, Yang L, Jiang Y, Zhang J, He J. Emerging perspectives on precision therapy for Parkinson's disease: multidimensional evidence leading to a new breakthrough in personalized medicine. Front Aging Neurosci 2024; 16:1417515. [PMID: 39026991 PMCID: PMC11254646 DOI: 10.3389/fnagi.2024.1417515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
PD is a prevalent and progressive neurodegenerative disorder characterized by both motor and non-motor symptoms. Genes play a significant role in the onset and progression of the disease. While the complexity and pleiotropy of gene expression networks have posed challenges for gene-targeted therapies, numerous pathways of gene variant expression show promise as therapeutic targets in preclinical studies, with some already in clinical trials. With the recognition of the numerous genes and complex pathways that can influence PD, it may be possible to take a novel approach to choose a treatment for the condition. This approach would be based on the symptoms, genomics, and underlying mechanisms of the disease. We discuss the utilization of emerging genetic and pathological knowledge of PD patients to categorize the disease into subgroups. Our long-term objective is to generate new insights for the therapeutic approach to the disease, aiming to delay and treat it more effectively, and ultimately reduce the burden on individuals and society.
Collapse
Affiliation(s)
- Qiaoli Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuan Gu
- Department of Trauma center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Le Yang
- Department of Endocrinology, The People’s Hospital of Jilin Province, Changchun, China
| | - Yan Jiang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiao Zhang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinting He
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Keeney MT, Hoffman EK, Weir J, Wagner WG, Rocha EM, Castro S, Farmer K, Fazzari M, Di Maio R, Konradi A, Hastings TG, Pintchovski SA, Shrader WD, Greenamyre JT. 15-Lipoxygenase-Mediated Lipid Peroxidation Regulates LRRK2 Kinase Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598654. [PMID: 38915558 PMCID: PMC11195290 DOI: 10.1101/2024.06.12.598654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) that increase its kinase activity are strongly linked to genetic forms of Parkinson's disease (PD). However, the regulation of endogenous wild-type (WT) LRRK2 kinase activity remains poorly understood, despite its frequent elevation in idiopathic PD (iPD) patients. Various stressors such as mitochondrial dysfunction, lysosomal dyshomeostasis, or vesicle trafficking deficits can activate WT LRRK2 kinase, but the specific molecular mechanisms are not fully understood. We found that the production of 4-hydroxynonenal (4-HNE), a lipid hydroperoxidation end-product, is a common biochemical response to these diverse stimuli. 4-HNE forms post-translational adducts with Cys2024 and Cys2025 in the kinase activation loop of WT LRRK2, significantly increasing its kinase activity. Additionally, we discovered that the 4-HNE responsible for regulating LRRK2 is generated by the action of 15-lipoxygenase (15-LO), making 15-LO an upstream regulator of the pathogenic hyperactivation of LRRK2 kinase activity. Pharmacological inhibition or genetic ablation of 15-LO prevents 4-HNE post-translational modification of LRRK2 kinase and its subsequent pathogenic hyperactivation. Therefore, 15-LO inhibitors, or methods to lower 4-HNE levels, or the targeting of Cys2024/2025 could provide new therapeutic strategies to modulate LRRK2 kinase activity and treat PD.
Collapse
|
3
|
Pitz V, Makarious MB, Bandres-Ciga S, Iwaki H, Singleton AB, Nalls M, Heilbron K, Blauwendraat C. Analysis of rare Parkinson's disease variants in millions of people. NPJ Parkinsons Dis 2024; 10:11. [PMID: 38191580 PMCID: PMC10774311 DOI: 10.1038/s41531-023-00608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
Although many rare variants have been reportedly associated with Parkinson's disease (PD), many have not been replicated or have failed to replicate. Here, we conduct a large-scale replication of rare PD variants. We assessed a total of 27,590 PD cases, 6701 PD proxies, and 3,106,080 controls from three data sets: 23andMe, Inc., UK Biobank, and AMP-PD. Based on well-known PD genes, 834 variants of interest were selected from the ClinVar annotated 23andMe dataset. We performed a meta-analysis using summary statistics of all three studies. The meta-analysis resulted in five significant variants after Bonferroni correction, including variants in GBA1 and LRRK2. Another eight variants are strong candidate variants for their association with PD. Here, we provide the largest rare variant meta-analysis to date, providing information on confirmed and newly identified variants for their association with PD using several large databases. Additionally we also show the complexities of studying rare variants in large-scale cohorts.
Collapse
Affiliation(s)
- Vanessa Pitz
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Mary B Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hirotaka Iwaki
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike Nalls
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | | | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Hu J, Zhang D, Tian K, Ren C, Li H, Lin C, Huang X, Liu J, Mao W, Zhang J. Small-molecule LRRK2 inhibitors for PD therapy: Current achievements and future perspectives. Eur J Med Chem 2023; 256:115475. [PMID: 37201428 DOI: 10.1016/j.ejmech.2023.115475] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multifunctional protein that orchestrates a diverse array of cellular processes, including vesicle transport, autophagy, lysosome degradation, neurotransmission, and mitochondrial activity. Hyperactivation of LRRK2 triggers vesicle transport dysfunction, neuroinflammation, accumulation of α-synuclein, mitochondrial dysfunction, and the loss of cilia, ultimately leading to Parkinson's disease (PD). Therefore, targeting LRRK2 protein is a promising therapeutic strategy for PD. The clinical translation of LRRK2 inhibitors was historically impeded by issues surrounding tissue specificity. Recent studies have identified LRRK2 inhibitors that have no effect on peripheral tissues. Currently, there are four small-molecule LRRK2 inhibitors undergoing clinical trials. This review provides a summary of the structure and biological functions of LRRK2, along with an overview of the binding modes and structure-activity relationships (SARs) of small-molecule inhibitors targeting LRRK2. It offers valuable references for developing novel drugs targeting LRRK2.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dan Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Keyue Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Changyu Ren
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Heng Li
- Chengdu Fifth People's Hospital, Chengdu, 611130, Sichuan, China
| | - Congcong Lin
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoli Huang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wuyu Mao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China; Department of Respiratory and Critical Care Medicine, Institute of Respiratory Health, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Pitz V, Makarious M, Bandrés-Ciga S, Iwaki H, Singleton A, Nalls M, Heilbron K, Blauwendraat C. Analysis of rare Parkinson's disease variants in millions of people. RESEARCH SQUARE 2023:rs.3.rs-2743857. [PMID: 37090536 PMCID: PMC10120789 DOI: 10.21203/rs.3.rs-2743857/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Objective Although many rare variants have been reportedly associated with Parkinson's disease (PD), many have not been replicated or have failed to replicate. Here, we conduct a large-scale replication of rare PD variants. Methods We assessed a total of 27,590 PD cases, 6,701 PD proxies, and 3,106,080 controls from three data sets: 23andMe, Inc., UK Biobank, and AMP-PD. Based on well-known PD genes, 834 variants of interest were selected from the ClinVar annotated 23andMe dataset. We performed a meta-analysis using summary statistics of all three studies. Results The meta-analysis resulted in 11 significant variants after Bonferroni correction, including variants in GBA1 and LRRK2. At least 9 previously reported pathogenic or risk variants for PD did not pass Bonferroni correction in this analysis. Conclusions Here, we provide the largest rare variant meta-analysis to date, providing thorough information of variants confirmed, newly identified, or rebutted for their association with PD.
Collapse
|
6
|
Lesniak RK, Nichols RJ, Montine TJ. Development of mutation-selective LRRK2 kinase inhibitors as precision medicine for Parkinson's disease and other diseases for which carriers are at increased risk. Front Neurol 2022; 13:1016040. [PMID: 36388213 PMCID: PMC9643380 DOI: 10.3389/fneur.2022.1016040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Robert K. Lesniak
- Medicinal Chemistry Knowledge Center, Sarafan Chemistry, Engineering and Medicine for Human Health, Stanford University, Stanford, CA, United States
- Department of Pathology, Stanford University, Stanford, CA, United States
- *Correspondence: Robert K. Lesniak
| | - R. Jeremy Nichols
- Department of Pathology, Stanford University, Stanford, CA, United States
- R. Jeremy Nichols
| | - Thomas J. Montine
- Department of Pathology, Stanford University, Stanford, CA, United States
- Thomas J. Montine
| |
Collapse
|
7
|
Nowakowska AW, Kotulska M. Topological analysis as a tool for detection of abnormalities in protein-protein interaction data. Bioinformatics 2022; 38:3968-3975. [PMID: 35771625 PMCID: PMC9746892 DOI: 10.1093/bioinformatics/btac440] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/11/2022] [Accepted: 06/28/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION Protein-protein interaction datasets, which can be modeled as networks, constitute an essential layer in multi-omics approach to biomedical knowledge. This representation gives insight into molecular pathways, help to uncover novel potential drug targets or predict a therapy outcome. Nevertheless, the data that constitute such systems are frequently incomplete, error-prone and biased by scientific trends. Implementation of methods for detection of such shortcomings could improve protein-protein interaction data analysis. RESULTS We performed topological analysis of three protein-protein interaction networks (PPINs) from IntAct Molecular Database, regarding cancer, Parkinson's disease (two most common subjects in PPINs analysis) and Human Reference Interactome. The data collections were shown to be often biased by scientific interests, which highly impact the networks structure. This may obscure correct systematic biological interpretation of the protein-protein interactions and limit their application potential. As a solution to this problem, we propose a set of topological methods for the bias detection, which performed in the first step provides more objective biological conclusions regarding protein-protein interactions and their multi-omics consequences. AVAILABILITY AND IMPLEMENTATION A user-friendly tool Extensive Tool for Network Analysis (ETNA) is available on https://github.com/AlicjaNowakowska/ETNA. The software includes a graphical Colab notebook: https://githubtocolab.com/AlicjaNowakowska/ETNA/blob/main/ETNAColab.ipynb. CONTACT alicja.nowakowska@pwr.edu.pl or malgorzata.kotulska@pwr.edu.pl. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
8
|
|
9
|
Rocha EM, Keeney MT, Di Maio R, De Miranda BR, Greenamyre JT. LRRK2 and idiopathic Parkinson's disease. Trends Neurosci 2022; 45:224-236. [PMID: 34991886 PMCID: PMC8854345 DOI: 10.1016/j.tins.2021.12.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 12/22/2022]
Abstract
The etiology of idiopathic Parkinson's disease (iPD) is multifactorial, and both genetics and environmental exposures are risk factors. While mutations in leucine-rich repeat kinase-2 (LRRK2) that are associated with increased kinase activity are the most common cause of autosomal dominant PD, the role of LRRK2 in iPD, independent of mutations, remains uncertain. In this review, we discuss how the architecture of LRRK2 influences kinase activation and how enhanced LRRK2 substrate phosphorylation might contribute to pathogenesis. We describe how oxidative stress and endolysosomal dysfunction, both of which occur in iPD, can activate non-mutated LRRK2 to a similar degree as pathogenic mutations. Similarly, environmental toxicants that are linked epidemiologically to iPD risk can also activate LRRK2. In aggregate, current evidence suggests an important role for LRRK2 in iPD.
Collapse
Affiliation(s)
- Emily M Rocha
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Matthew T Keeney
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Molecular Pharmacology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Roberto Di Maio
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Briana R De Miranda
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Timothy Greenamyre
- Pittsburgh Institute for Neurodegenerative Diseases and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Molecular Pharmacology Graduate Program, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
10
|
Discovery of G2019S-Selective Leucine Rich Repeat Protein Kinase 2 inhibitors with in vivo efficacy. Eur J Med Chem 2021; 229:114080. [PMID: 34992038 DOI: 10.1016/j.ejmech.2021.114080] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022]
Abstract
Mutations in the Leucine Rich Repeat Protein Kinase 2 gene (LRRK2) are the most common genetic causes of Parkinson's Disease (PD). The G2019S mutation is the most common inherited LRRK2 mutation, occurs in the kinase domain, and results in increased kinase activity. We report the discovery and development of compound 38, an indazole-based, G2019S-selective (>2000-fold vs. WT) LRRK2 inhibitor capable of entering rodent brain (Kp = 0.5) and selectively inhibiting G2019S-LRRK2. The compounds disclosed herein present a starting point for further development of brain penetrant G2019S selective inhibitors that hopefully reduce lung phenotype side-effects and pave the way to providing a precision medicine for people with PD who carry the G2019S mutation.
Collapse
|
11
|
Helton LG, Rideout HJ, Herberg FW, Kennedy EJ. Leucine rich repeat kinase 2 (
LRRK2
) peptide modulators: Recent advances and future directions. Pept Sci (Hoboken) 2021. [DOI: 10.1002/pep2.24251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Leah G. Helton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy University of Georgia Athens Georgia USA
| | - Hardy J. Rideout
- Center for Clinical, Experimental Surgery, and Translational Research Biomedical Research Foundation of the Academy of Athens Athens Greece
| | - Friedrich W. Herberg
- Department of Biochemistry Institute for Biology, University of Kassel Kassel Germany
| | - Eileen J. Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy University of Georgia Athens Georgia USA
| |
Collapse
|
12
|
Azeggagh S, Berwick DC. The development of inhibitors of leucine-rich repeat kinase 2 (LRRK2) as a therapeutic strategy for Parkinson's disease: the current state of play. Br J Pharmacol 2021; 179:1478-1495. [PMID: 34050929 DOI: 10.1111/bph.15575] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/14/2021] [Accepted: 05/21/2021] [Indexed: 12/29/2022] Open
Abstract
Current therapeutic approaches for Parkinson's disease (PD) are based around treatments that alleviate symptoms but do not slow or prevent disease progression. As such, alternative strategies are needed. A promising approach is the use of molecules that reduce the function of leucine-rich repeat kinase (LRRK2). Gain-of-function mutations in LRRK2 account for a notable proportion of familial Parkinson's disease cases, and significantly, elevated LRRK2 kinase activity is reported in idiopathic Parkinson's disease. Here, we describe progress in finding therapeutically effective LRRK2 inhibitors, summarising studies that range from in vitro experiments to clinical trials. LRRK2 is a complex protein with two enzymatic activities and a myriad of functions. This creates opportunities for a rich variety of strategies and also increases the risk of unintended consequences. We comment on the strength and limitations of the different approaches and conclude that with two molecules under clinical trial and a diversity of alternative options in the pipeline, there is cause for optimism.
Collapse
Affiliation(s)
- Sonia Azeggagh
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Daniel C Berwick
- Institute of Medical and Biomedical Education, St George's, University of London, London, UK
| |
Collapse
|
13
|
Chittoor-Vinod VG, Nichols RJ, Schüle B. Genetic and Environmental Factors Influence the Pleomorphy of LRRK2 Parkinsonism. Int J Mol Sci 2021; 22:1045. [PMID: 33494262 PMCID: PMC7864502 DOI: 10.3390/ijms22031045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/16/2021] [Accepted: 01/17/2021] [Indexed: 12/25/2022] Open
Abstract
Missense mutations in the LRRK2 gene were first identified as a pathogenic cause of Parkinson's disease (PD) in 2004. Soon thereafter, a founder mutation in LRRK2, p.G2019S (rs34637584), was described, and it is now estimated that there are approximately 100,000 people worldwide carrying this risk variant. While the clinical presentation of LRRK2 parkinsonism has been largely indistinguishable from sporadic PD, disease penetrance and age at onset can be quite variable. In addition, its neuropathological features span a wide range from nigrostriatal loss with Lewy body pathology, lack thereof, or atypical neuropathology, including a large proportion of cases with concomitant Alzheimer's pathology, hailing LRRK2 parkinsonism as the "Rosetta stone" of parkinsonian disorders, which provides clues to an understanding of the different neuropathological trajectories. These differences may result from interactions between the LRRK2 mutant protein and other proteins or environmental factors that modify LRRK2 function and, thereby, influence pathobiology. This review explores how potential genetic and biochemical modifiers of LRRK2 function may contribute to the onset and clinical presentation of LRRK2 parkinsonism. We review which genetic modifiers of LRRK2 influence clinical symptoms, age at onset, and penetrance, what LRRK2 mutations are associated with pleomorphic LRRK2 neuropathology, and which environmental modifiers can augment LRRK2 mutant pathophysiology. Understanding how LRRK2 function is influenced and modulated by other interactors and environmental factors-either increasing toxicity or providing resilience-will inform targeted therapeutic development in the years to come. This will allow the development of disease-modifying therapies for PD- and LRRK2-related neurodegeneration.
Collapse
Affiliation(s)
| | - R. Jeremy Nichols
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Birgitt Schüle
- Department Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| |
Collapse
|
14
|
Pathological Functions of LRRK2 in Parkinson's Disease. Cells 2020; 9:cells9122565. [PMID: 33266247 PMCID: PMC7759975 DOI: 10.3390/cells9122565] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in the gene encoding leucine-rich repeat kinase 2 (LRRK2) are common genetic risk factors for both familial and sporadic Parkinson’s disease (PD). Pathogenic mutations in LRRK2 have been shown to induce changes in its activity, and abnormal increase in LRRK2 kinase activity is thought to contribute to PD pathology. The precise molecular mechanisms underlying LRRK2-associated PD pathology are far from clear, however the identification of LRRK2 substrates and the elucidation of cellular pathways involved suggest a role of LRRK2 in microtubule dynamics, vesicular trafficking, and synaptic transmission. Moreover, LRRK2 is associated with pathologies of α-synuclein, a major component of Lewy bodies (LBs). Evidence from various cellular and animal models supports a role of LRRK2 in the regulation of aggregation and propagation of α-synuclein. Here, we summarize our current understanding of how pathogenic mutations dysregulate LRRK2 and discuss the possible mechanisms leading to neurodegeneration.
Collapse
|
15
|
Knape MJ, Wallbott M, Burghardt NCG, Bertinetti D, Hornung J, Schmidt SH, Lorenz R, Herberg FW. Molecular Basis for Ser/Thr Specificity in PKA Signaling. Cells 2020; 9:cells9061548. [PMID: 32630525 PMCID: PMC7361990 DOI: 10.3390/cells9061548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022] Open
Abstract
cAMP-dependent protein kinase (PKA) is the major receptor of the second messenger cAMP and a prototype for Ser/Thr-specific protein kinases. Although PKA strongly prefers serine over threonine substrates, little is known about the molecular basis of this substrate specificity. We employ classical enzyme kinetics and a surface plasmon resonance (SPR)-based method to analyze each step of the kinase reaction. In the absence of divalent metal ions and nucleotides, PKA binds serine (PKS) and threonine (PKT) substrates, derived from the heat-stable protein kinase inhibitor (PKI), with similar affinities. However, in the presence of metal ions and adenine nucleotides, the Michaelis complex for PKT is unstable. PKA phosphorylates PKT with a higher turnover due to a faster dissociation of the product complex. Thus, threonine substrates are not necessarily poor substrates of PKA. Mutation of the DFG+1 phenylalanine to β-branched amino acids increases the catalytic efficiency of PKA for a threonine peptide substrate up to 200-fold. The PKA Cα mutant F187V forms a stable Michaelis complex with PKT and shows no preference for serine versus threonine substrates. Disease-associated mutations of the DFG+1 position in other protein kinases underline the importance of substrate specificity for keeping signaling pathways segregated and precisely regulated.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Robin Lorenz
- Correspondence: (R.L.); (F.W.H.); Tel.: +49-561-804-4539 (R.L.); +49-561-804-4511 (F.W.H.)
| | - Friedrich W. Herberg
- Correspondence: (R.L.); (F.W.H.); Tel.: +49-561-804-4539 (R.L.); +49-561-804-4511 (F.W.H.)
| |
Collapse
|
16
|
The dynamic switch mechanism that leads to activation of LRRK2 is embedded in the DFGψ motif in the kinase domain. Proc Natl Acad Sci U S A 2019; 116:14979-14988. [PMID: 31292254 PMCID: PMC6660771 DOI: 10.1073/pnas.1900289116] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Little is known about the regulation of Leucine-rich repeat kinase 2 (LRRK2) associated with familial Parkinson’s disease (PD). To test whether the kinase domain drives LRRK2 activation, we applied the spine concept that describes the core architecture of every protein kinase. We discovered that mutation of Y2018, a regulatory spine residue, to Phe in the DFGψ motif created a hyperactive kinase similar to the PD-associated mutation G2019S. The hydroxyl moiety of Y2018 thus serves as a “brake,” stabilizing the inactive conformation; simply removing it destroys a key inhibitory hydrogen-bonding node. These data reveal an LRRK2-specific regulatory mechanism, confirming that the kinase domain functions as a classical kinase that controls overall conformational dynamics in full-length LRRK2 and drives therapeutic strategies. Leucine-rich repeat kinase 2 (LRRK2) is a large multidomain protein, and LRRK2 mutants are recognized risk factors for Parkinson’s disease (PD). Although the precise mechanisms that control LRRK2 regulation and function are unclear, the importance of the kinase domain is strongly implicated, since 2 of the 5 most common familial LRRK2 mutations (G2019S and I2020T) are localized to the conserved DFGψ motif in the kinase core, and kinase inhibitors are under development. Combining the concept of regulatory (R) and catalytic (C) spines with kinetic and cell-based assays, we discovered a major regulatory mechanism embedded within the kinase domain and show that the DFG motif serves as a conformational switch that drives LRRK2 activation. LRRK2 is quite unusual in that the highly conserved Phe in the DFGψ motif, which is 1 of the 4 R-spine residues, is replaced with tyrosine (DY2018GI). A Y2018F mutation creates a hyperactive phenotype similar to the familial mutation G2019S. The hydroxyl moiety of Y2018 thus serves as a “brake” that stabilizes an inactive conformation; simply removing it destroys a key hydrogen-bonding node. Y2018F, like the pathogenic mutant I2020T, spontaneously forms LRRK2-decorated microtubules in cells, while the wild type and G2019S require kinase inhibitors to form filaments. We also explored 3 different mechanisms that create kinase-dead pseudokinases, including D2017A, which further emphasizes the highly synergistic role of key hydrophobic and hydrophilic/charged residues in the assembly of active LRRK2. We thus hypothesize that LRRK2 harbors a classical protein kinase switch mechanism that drives the dynamic activation of full-length LRRK2.
Collapse
|
17
|
Abstract
LRRK2 mutations are associated with the loss of neurons, that is to say toxicity, in patients and in experimental model systems. However, the mechanisms by which mutations can be linked to neurodegeneration are not fully defined. Here I will argue that mechanism in this context encompasses a variety of levels of information. Mutations or alterations in gene expression at a genetic level are one set of mechanisms that are reflected at the biochemical level likely in enhanced or persistent function of LRRK2. By impacting cellular pathways, prominently including changes in autophagy but also microtubule function, mitochondria and protein synthesis, in neurons and immune cells, the LRRK2 brain is primed for neurodegeneration in an age-dependent manner. These concepts have implications for not only modeling LRRK2 disease but also perhaps for Parkinson's disease more generally, including the development of therapeutic modalities.
Collapse
|
18
|
Chen ML, Wu RM. LRRK 2 gene mutations in the pathophysiology of the ROCO domain and therapeutic targets for Parkinson's disease: a review. J Biomed Sci 2018; 25:52. [PMID: 29903014 PMCID: PMC6000924 DOI: 10.1186/s12929-018-0454-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/31/2018] [Indexed: 01/13/2023] Open
Abstract
Parkinson’s disease (PD) is the most common movement disorder and manifests as resting tremor, rigidity, bradykinesia, and postural instability. Pathologically, PD is characterized by selective loss of dopaminergic neurons in the substantia nigra and the formation of intracellular inclusions containing α-synuclein and ubiquitin called Lewy bodies. Consequently, a remarkable deficiency of dopamine in the striatum causes progressive disability of motor function. The etiology of PD remains uncertain. Genetic variability in leucine-rich repeat kinase 2 (LRRK2) is the most common genetic cause of sporadic and familial PD. LRRK2 encodes a large protein containing three catalytic and four protein-protein interaction domains. Patients with LRRK2 mutations exhibit a clinical and pathological phenotype indistinguishable from sporadic PD. Recent studies have shown that pathological mutations of LRRK2 can reduce the rate of guanosine triphosphate (GTP) hydrolysis, increase kinase activity and GTP binding activity, and subsequently cause cell death. The process of cell death involves several signaling pathways, including the autophagic–lysosomal pathway, intracellular trafficking, mitochondrial dysfunction, and the ubiquitin–proteasome system. This review summarizes the cellular function and pathophysiology of LRRK2 ROCO domain mutations in PD and the perspective of therapeutic approaches.
Collapse
Affiliation(s)
- Meng-Ling Chen
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Da-an Dist, Taipei City, 10617, Taiwan.,Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, No. 7, Chung-Shan South Road, Zhongzheng Dist, Taipei City, 10002, Taiwan
| | - Ruey-Meei Wu
- Department of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Da-an Dist, Taipei City, 10617, Taiwan. .,Department of Neurology, College of Medicine, National Taiwan University Hospital, National Taiwan University, No. 7, Chung-Shan South Road, Zhongzheng Dist, Taipei City, 10002, Taiwan.
| |
Collapse
|
19
|
Gilsbach BK, Eckert M, Gloeckner CJ. Regulation of LRRK2: insights from structural and biochemical analysis. Biol Chem 2018; 399:637-642. [DOI: 10.1515/hsz-2018-0132] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 04/14/2018] [Indexed: 12/11/2022]
Abstract
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a multi-domain protein and its mutations can lead to Parkinson’s disease. Recent studies on LRRK2 and homologue proteins have advanced our mechanistic understanding of LRRK2 regulation. Here, we summarize the available data on the biochemistry and structure of LRRK2 and postulate three possible layers of regulation, translocation, monomer-dimer equilibrium and intramolecular activation of domains.
Collapse
Affiliation(s)
- Bernd K. Gilsbach
- DZNE-German Center for Neurodegenerative Diseases , Otfried-Müller Str. 23 , D-72076 Tübingen , Germany
| | - Marita Eckert
- DZNE-German Center for Neurodegenerative Diseases , Otfried-Müller Str. 23 , D-72076 Tübingen , Germany
| | - Christian Johannes Gloeckner
- DZNE-German Center for Neurodegenerative Diseases , Otfried-Müller Str. 23 , D-72076 Tübingen , Germany
- University of Tübingen, Institute for Ophthalmic Research, Center for Ophthalmology , Elfriede-Aulhorn-Str. 7 , D-72076 Tübingen , Germany
| |
Collapse
|
20
|
Nagarajan N, Chellam J, Kannan RR. Exploring the functional impact of mutational drift in LRRK2 gene and identification of specific inhibitors for the treatment of Parkinson disease. J Cell Biochem 2018; 119:4878-4889. [PMID: 29369408 DOI: 10.1002/jcb.26703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) is a disorder of the central nervous system that is caused due to the death of the dopaminergic neurons in the region of the brain called substantia nigra. Mutations in LRRK2 genes are associated with disease condition and it's been reported as crucial factor for drug resistance. Identification of deleterious mutations and studying the structural and functional impact of such mutations may lead to the identification of potential selective inhibitors. In this study, we analyzed 52 PD associated mutations, among that 20 were identified as highly deleterious. The deleterious mutations G2019S and I2020T in the kinase domain were playing a key role in causing resistance to drug levedopa. Molecular docking analyses have been performed to understand the binding affinity of levodapa with LRRK2 in wild and mutant condition. Molecular docking results show that levedopa binds differentially and obtained less number of hydrogen bonds in compared with wild type LRRK2. In addition, molecular dynamics simulations were performed to study the efficacy of docked complexes and it was observed that the efficacy of the mutant complexes (G2019S-Levodopa and I2020T-Levodopa) affected in the presence of mutation. Finally, through virtual screening approach specific inhibitors SCHEMBL6473053 and SCHEMBL1278779 have been identified that could potentially inhibit LLRK2 mutants G2019S and I2020T respectively. Over all this computational investigation correlates the impact of genotypic modulation in structure and function of drug target which enhanced in the identification of precision medicine to treat PD.
Collapse
Affiliation(s)
- Nagasundaram Nagarajan
- Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama University, Chennai, Tamil Nadu, India
| | - Jaynthy Chellam
- Department of Bioinformatics, Sathyabama University, Chennai, Tamil Nadu, India
| | - Rajaretinam Rajesh Kannan
- Molecular and Nanomedicine Research Unit, Centre for Nanoscience and Nanotechnology, Sathyabama University, Chennai, Tamil Nadu, India
| |
Collapse
|
21
|
Bhayye SS, Roy K, Saha A. Molecular dynamics simulation study reveals polar nature of pathogenic mutations responsible for stabilizing active conformation of kinase domain in leucine-rich repeat kinase II. Struct Chem 2017. [DOI: 10.1007/s11224-017-1059-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
22
|
Martin I. Decoding Parkinson's Disease Pathogenesis: The Role of Deregulated mRNA Translation. JOURNAL OF PARKINSONS DISEASE 2017; 6:17-27. [PMID: 26889638 PMCID: PMC4927901 DOI: 10.3233/jpd-150738] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Mutations in a number of genes cause rare familial forms of Parkinson’s disease and provide profound insight into potential mechanisms governing disease pathogenesis. Recently, a role for translation and metabolism of mRNA has emerged in the development of various neurodegenerative disorders including Parkinson’s disease (PD). In PD, preliminary evidence supports a role for aberrant translation in the disease process stemming from mutations in several genes. Translation control is central to maintaining organism homeostasis under variable environmental conditions and deregulation of this may predispose to certain stressors. Hypothetically, deregulated translation may be detrimental to neuronal viability in PD through the misexpression of a subset of transcripts or through the impact of excessive bulk translation on energy consumption and burden on protein homeostatic mechanisms. While compelling preliminary evidence exists to support a role for translation in PD, much more work is required to identify specific mechanisms linking altered translation to the disease process.
Collapse
Affiliation(s)
- Ian Martin
- Correspondence to: Ian Martin, PhD Jungers Center for Neurosciences Research Parkinson Center of Oregon Department of Neurology - Mail Code L623 Oregon Health and Science University 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA. Tel.: +1 503 494 9140; Fax: +1 503 494 7358; E-mail:
| |
Collapse
|
23
|
Molecular Insights and Functional Implication of LRRK2 Dimerization. ADVANCES IN NEUROBIOLOGY 2017; 14:107-121. [DOI: 10.1007/978-3-319-49969-7_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
|
25
|
First model of dimeric LRRK2: the challenge of unrevealing the structure of a multidomain Parkinson's-associated protein. Biochem Soc Trans 2016; 44:1635-1641. [DOI: 10.1042/bst20160226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 01/10/2023]
Abstract
Mutations within the leucine-rich repeat kinase 2 (LRRK2) gene represent the most common cause of Mendelian forms of Parkinson's disease, among autosomal dominant cases. Its gene product, LRRK2, is a large multidomain protein that belongs to the Roco protein family exhibiting GTPase and kinase activity, with the latter activity increased by pathogenic mutations. To allow rational drug design against LRRK2 and to understand the cross-regulation of the G- and the kinase domain at a molecular level, it is key to solve the three-dimensional structure of the protein. We review here our recent successful approach to build the first structural model of dimeric LRRK2 by an integrative modeling approach.
Collapse
|
26
|
LRRK2 regulates retrograde synaptic compensation at the Drosophila neuromuscular junction. Nat Commun 2016; 7:12188. [PMID: 27432119 PMCID: PMC4960312 DOI: 10.1038/ncomms12188] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/09/2016] [Indexed: 11/24/2022] Open
Abstract
Parkinson's disease gene leucine-rich repeat kinase 2 (LRRK2) has been implicated in a number of processes including the regulation of mitochondrial function, autophagy and endocytic dynamics; nevertheless, we know little about its potential role in the regulation of synaptic plasticity. Here we demonstrate that postsynaptic knockdown of the fly homologue of LRRK2 thwarts retrograde, homeostatic synaptic compensation at the larval neuromuscular junction. Conversely, postsynaptic overexpression of either the fly or human LRRK2 transgene induces a retrograde enhancement of presynaptic neurotransmitter release by increasing the size of the release ready pool of vesicles. We show that LRRK2 promotes cap-dependent translation and identify Furin 1 as its translational target, which is required for the synaptic function of LRRK2. As the regulation of synaptic homeostasis plays a fundamental role in ensuring normal and stable synaptic function, our findings suggest that aberrant function of LRRK2 may lead to destabilization of neural circuits. Mutations in the protein LRRK2 have been associated with Parkinson's disease but little is still known about the basic functions of the protein in the brain. Here the authors show that in fruit flies, LRRK2 regulates retrograde homeostatic synaptic compensation at the larval neuromuscular junction.
Collapse
|
27
|
Abstract
Mutations in LRRK2 are associated with inherited Parkinson's disease (PD) in a large number of families, and the genetic locus containing the LRRK2 gene contains a risk factor for sporadic PD. The LRRK2 protein contains several domains that suggest a role in cellular signaling, including a kinase domain. It is also clear that LRRK2 interacts, either physically or genetically, with several other important proteins implicated in PD, suggesting that LRRK2 may be a central player in the pathways that underlie parkinsonism. As such, LRRK2 has been proposed to be a plausible target for therapeutic intervention, with kinase inhibition being pursued most actively. However, there are still several fundamental aspects of LRRK2 biology and function that remain unresolved at this time. This review will focus on the key questions of normal function of LRRK2 and how this might be related to the pathophysiology of PD.
Collapse
|
28
|
Liu Z, Mobley JA, DeLucas LJ, Kahn RA, West AB. LRRK2 autophosphorylation enhances its GTPase activity. FASEB J 2015; 30:336-47. [PMID: 26396237 DOI: 10.1096/fj.15-277095] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022]
Abstract
The leucine-rich repeat kinase (LRRK)-2 protein contains nonoverlapping GTPase and kinase domains, and mutation in either domain can cause Parkinson disease. GTPase proteins are critical upstream modulators of many effector protein kinases. In LRRK2, this paradigm may be reversed, as the kinase domain phosphorylates its own GTPase domain. In this study, we found that the ameba LRRK2 ortholog ROCO4 phosphorylates the GTPase domain [termed Ras-of-complex (ROC) domain in this family] of human LRRK2 on the same residues as the human LRRK2 kinase. Phosphorylation of ROC enhances its rate of GTP hydrolysis [from kcat (catalytic constant) 0.007 to 0.016 min(-1)], without affecting GTP or GDP dissociation kinetics [koff = 0.093 and 0.148 min(-1) for GTP and GDP, respectively). Phosphorylation also promotes the formation of ROC dimers, although GTPase activity appears to be equivalent between purified dimers and monomers. Modeling experiments show that phosphorylation induces conformational changes at the critical p-loop structure. Finally, ROC appears to be one of many GTPases phosphorylated in p-loop residues, as revealed by alignment of LRRK2 autophosphorylation sites with GTPases annotated in the phosphoproteome database. These results provide an example of a novel mechanism for kinase-mediated control of GTPase activity.
Collapse
Affiliation(s)
- Zhiyong Liu
- *Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Center for Structural Biology, Department of Optometry, and Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA; and Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - James A Mobley
- *Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Center for Structural Biology, Department of Optometry, and Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA; and Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lawrence J DeLucas
- *Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Center for Structural Biology, Department of Optometry, and Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA; and Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Richard A Kahn
- *Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Center for Structural Biology, Department of Optometry, and Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA; and Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Andrew B West
- *Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, Center for Structural Biology, Department of Optometry, and Department of Surgery, The University of Alabama at Birmingham, Birmingham, Alabama, USA; and Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
29
|
Shanley MR, Hawley D, Leung S, Zaidi NF, Dave R, Schlosser KA, Bandopadhyay R, Gerber SA, Liu M. LRRK2 Facilitates tau Phosphorylation through Strong Interaction with tau and cdk5. Biochemistry 2015; 54:5198-208. [PMID: 26268594 DOI: 10.1021/acs.biochem.5b00326] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leucine-rich repeat kinase 2 (LRRK2) and tau have been identified as risk factors of Parkinson's disease (PD). As LRRK2 is a kinase and tau is hyperphosphorylated in some LRRK2 mutation carriers of PD patients, the obvious hypothesis is that tau could be a substrate of LRRK2. Previous reports that LRRK2 phosphorylates free tau or tubulin-associated tau provide direct support for this proposition. By comparing LRRK2 with cdk5, we show that wild-type LRRK2 and the G2019S mutant phosphorylate free recombinant full-length tau protein with specific activity 480- and 250-fold lower than cdk5, respectively. More strikingly tau binds to wt LRRK2 or the G2019S mutant 140- or 200-fold more strongly than cdk5. The extremely low activity of LRRK2 but strong binding affinity with tau suggests that LRRK2 may facilitate tau phosphorylation as a scaffold protein rather than as a major tau kinase. This hypothesis is further supported by the observation that (i) cdk5 or tau coimmunoprecipitates with endogenous LRRK2 in SH-SY5Y cells, in mouse brain tissue, and in human PBMCs; (ii) knocking down endogenous LRRK2 by its siRNA in SH-SY5Y cells reduces tau phosphorylation at Ser396 and Ser404; (iii) inhibiting LRRK2 kinase activity by its inhibitors has no effect on tau phosphorylation at these two sites; and (iv) overexpressing wt LRRK2, the G2019S mutant, or the D1994A kinase-dead mutant in SH-SY5Y cells has no effect on tau phosphorylation. Our results suggest that LRRK2 facilitates tau phosphorylation indirectly by recruiting tau or cdk5 rather than by directly phosphorylating tau.
Collapse
Affiliation(s)
- Mary R Shanley
- Neurology Department, Brigham and Women's Hospital, Harvard Medical School , 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Dillon Hawley
- Neurology Department, Brigham and Women's Hospital, Harvard Medical School , 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Shirley Leung
- Neurology Department, Brigham and Women's Hospital, Harvard Medical School , 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Nikhat F Zaidi
- Neurology Department, Brigham and Women's Hospital, Harvard Medical School , 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Roshni Dave
- Neurology Department, Brigham and Women's Hospital, Harvard Medical School , 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, United States
| | - Kate A Schlosser
- Department of Genetics and of Biochemistry, Geisel School of Medicine at Dartmouth , One Medical Center Drive HB-7937, Lebanon, New Hampshire 03756, United States
| | - Rina Bandopadhyay
- Reta Lila, Weston Institute of Neurological Studies Department of Molecular Neuroscience UCL, Institute of Neurology 1 , Wakefield Street, London WC1N 1PJ, U.K
| | - Scott A Gerber
- Department of Genetics and of Biochemistry, Geisel School of Medicine at Dartmouth , One Medical Center Drive HB-7937, Lebanon, New Hampshire 03756, United States
| | - Min Liu
- Neurology Department, Brigham and Women's Hospital, Harvard Medical School , 65 Landsdowne Street, Fourth Floor, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
30
|
Discovery of LRRK2 inhibitors using sequential in silico joint pharmacophore space (JPS) and ensemble docking. Bioorg Med Chem Lett 2015; 25:2713-9. [DOI: 10.1016/j.bmcl.2015.04.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/08/2015] [Accepted: 04/10/2015] [Indexed: 11/22/2022]
|
31
|
Wallings R, Manzoni C, Bandopadhyay R. Cellular processes associated with LRRK2 function and dysfunction. FEBS J 2015; 282:2806-26. [PMID: 25899482 PMCID: PMC4522467 DOI: 10.1111/febs.13305] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/23/2015] [Accepted: 04/20/2015] [Indexed: 02/07/2023]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2)-encoding gene are the most common cause of monogenic Parkinson's disease. The identification of LRRK2 polymorphisms associated with increased risk for sporadic Parkinson's disease, as well as the observation that LRRK2-Parkinson's disease has a pathological phenotype that is almost indistinguishable from the sporadic form of disease, suggested LRRK2 as the culprit to provide understanding for both familial and sporadic Parkinson's disease cases. LRRK2 is a large protein with both GTPase and kinase functions. Mutations segregating with Parkinson's disease reside within the enzymatic core of LRRK2, suggesting that modification of its activity impacts greatly on disease onset and progression. Although progress has been made since its discovery in 2004, there is still much to be understood regarding LRRK2's physiological and neurotoxic properties. Unsurprisingly, given the presence of multiple enzymatic domains, LRRK2 has been associated with a diverse set of cellular functions and signalling pathways including mitochondrial function, vesicle trafficking together with endocytosis, retromer complex modulation and autophagy. This review discusses the state of current knowledge on the role of LRRK2 in health and disease with discussion of potential substrates of phosphorylation and functional partners with particular emphasis on signalling mechanisms. In addition, the use of immune cells in LRRK2 research and the role of oxidative stress as a regulator of LRRK2 activity and cellular function are also discussed.
Collapse
Affiliation(s)
- Rebecca Wallings
- Reta Lila Weston Institute of Neurological Studies and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Claudia Manzoni
- School of Pharmacy, University of Reading, UK.,UCL Institute of Neurology, London, UK
| | - Rina Bandopadhyay
- Reta Lila Weston Institute of Neurological Studies and Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| |
Collapse
|
32
|
West AB. Ten years and counting: moving leucine-rich repeat kinase 2 inhibitors to the clinic. Mov Disord 2014; 30:180-9. [PMID: 25448543 PMCID: PMC4318704 DOI: 10.1002/mds.26075] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 09/29/2014] [Accepted: 09/29/2014] [Indexed: 12/22/2022] Open
Abstract
The burden that Parkinson's disease (PD) exacts on the population continues to increase year after year. Though refinement of symptomatic treatments continues at a reasonable pace, no accepted therapies are available to slow or prevent disease progression. The leucine-rich repeat kinase 2 (LRRK2) gene was identified in PD genetic studies and offers new hope for novel therapeutic approaches. The evidence linking LRRK2 kinase activity to PD susceptibility is presented, as well as seminal discoveries relevant to the prosecution of LRRK2 kinase inhibition. Finally, suggestions are made for predictive preclinical modeling and successful first-in-human trials. © 2014 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Andrew B West
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
33
|
Martin I, Kim JW, Dawson VL, Dawson TM. LRRK2 pathobiology in Parkinson's disease. J Neurochem 2014; 131:554-65. [PMID: 25251388 DOI: 10.1111/jnc.12949] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/14/2014] [Accepted: 09/16/2014] [Indexed: 12/11/2022]
Abstract
Mutations in the catalytic Roc-COR and kinase domains of leucine-rich repeat kinase 2 (LRRK2) are a common cause of familial Parkinson's disease (PD). LRRK2 mutations cause PD with age-related penetrance and clinical features identical to late-onset sporadic PD. Biochemical studies support an increase in LRRK2 kinase activity and a decrease in GTPase activity for kinase domain and Roc-COR mutations, respectively. Strong evidence exists that LRRK2 toxicity is kinase dependent leading to extensive efforts to identify selective and brain-permeable LRRK2 kinase inhibitors for clinical development. Cell and animal models of PD indicate that LRRK2 mutations affect vesicular trafficking, autophagy, protein synthesis, and cytoskeletal function. Although some of these biological functions are affected consistently by most disease-linked mutations, others are not and it remains currently unclear how mutations that produce variable effects on LRRK2 biochemistry and function all commonly result in the degeneration and death of dopamine neurons. LRRK2 is typically present in Lewy bodies and its toxicity in mammalian models appears to be dependent on the presence of α-synuclein, which is elevated in human iPS-derived dopamine neurons from patients harboring LRRK2 mutations. Here, we summarize biochemical and functional studies of LRRK2 and its mutations and focus on aberrant vesicular trafficking and protein synthesis as two leading mechanisms underlying LRRK2-linked disease.
Collapse
Affiliation(s)
- Ian Martin
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | |
Collapse
|
34
|
Rudenko IN, Cookson MR. Heterogeneity of leucine-rich repeat kinase 2 mutations: genetics, mechanisms and therapeutic implications. Neurotherapeutics 2014; 11:738-50. [PMID: 24957201 PMCID: PMC4391379 DOI: 10.1007/s13311-014-0284-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Variation within and around the leucine-rich repeat kinase 2 (LRRK2) gene is associated with familial and sporadic Parkinson's disease (PD). Here, we discuss the prevalence of LRRK2 substitutions in different populations and their association with PD, as well as molecular and cellular mechanisms of pathologically relevant LRRK2 mutations. Kinase activation was proposed as a universal molecular mechanism for all pathogenic LRRK2 mutations, but later reports revealed heterogeneity in the effect of mutations on different activities of LRRK2. One mutation (G2019S) increases kinase activity, whereas mutations in the Ras of complex proteins (ROC)-C-terminus of ROC (COR) bidomain impair the GTPase function of LRRK2. Some risk factor variants, including G2385R in the WD40 domain, actually decrease the kinase activity of LRRK2. We suggest a model where LRRK2 mutations exert different molecular mechanisms but interfere with normal cellular function of LRRK2 at different levels of the same downstream pathway. Finally, we discuss the current state of therapeutic approaches for LRRK2-related PD.
Collapse
Affiliation(s)
- Iakov N. Rudenko
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
35
|
Liu Z, Galemmo RA, Fraser KB, Moehle MS, Sen S, Volpicelli-Daley LA, DeLucas LJ, Ross LJ, Valiyaveettil J, Moukha-Chafiq O, Pathak AK, Ananthan S, Kezar H, White EL, Gupta V, Maddry JA, Suto MJ, West AB. Unique functional and structural properties of the LRRK2 protein ATP-binding pocket. J Biol Chem 2014; 289:32937-51. [PMID: 25228699 DOI: 10.1074/jbc.m114.602318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pathogenic mutations in the LRRK2 gene can cause late-onset Parkinson disease. The most common mutation, G2019S, resides in the kinase domain and enhances activity. LRRK2 possesses the unique property of cis-autophosphorylation of its own GTPase domain. Because high-resolution structures of the human LRRK2 kinase domain are not available, we used novel high-throughput assays that measured both cis-autophosphorylation and trans-peptide phosphorylation to probe the ATP-binding pocket. We disclose hundreds of commercially available activity-selective LRRK2 kinase inhibitors. Some compounds inhibit cis-autophosphorylation more strongly than trans-peptide phosphorylation, and other compounds inhibit G2019S-LRRK2 more strongly than WT-LRRK2. Through exploitation of structure-activity relationships revealed through high-throughput analyses, we identified a useful probe inhibitor, SRI-29132 (11). SRI-29132 is exquisitely selective for LRRK2 kinase activity and is effective in attenuating proinflammatory responses in macrophages and rescuing neurite retraction phenotypes in neurons. Furthermore, the compound demonstrates excellent potency, is highly blood-brain barrier-permeant, but suffers from rapid first-pass metabolism. Despite the observed selectivity of SRI-29132, docking models highlighted critical interactions with residues conserved in many protein kinases, implying a unique structural configuration for the LRRK2 ATP-binding pocket. Although the human LRRK2 kinase domain is unstable and insoluble, we demonstrate that the LRRK2 homolog from ameba can be mutated to approximate some aspects of the human LRRK2 ATP-binding pocket. Our results provide a rich resource for LRRK2 small molecule inhibitor development. More broadly, our results provide a precedent for the functional interrogation of ATP-binding pockets when traditional approaches to ascertain structure prove difficult.
Collapse
Affiliation(s)
- Zhiyong Liu
- From the Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology and Center for Biophysical Sciences and Engineering, Department of Optometry, The University of Alabama at Birmingham, Birmingham, Alabama 35294 and
| | - Robert A Galemmo
- the Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35294
| | - Kyle B Fraser
- From the Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology and
| | - Mark S Moehle
- From the Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology and
| | - Saurabh Sen
- From the Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology and
| | - Laura A Volpicelli-Daley
- From the Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology and
| | - Lawrence J DeLucas
- the Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35294
| | - Larry J Ross
- the Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35294
| | - Jacob Valiyaveettil
- the Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35294
| | - Omar Moukha-Chafiq
- the Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35294
| | - Ashish K Pathak
- the Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35294
| | - Subramaniam Ananthan
- the Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35294
| | - Hollis Kezar
- the Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35294
| | - E Lucile White
- the Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35294
| | - Vandana Gupta
- the Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35294
| | - Joseph A Maddry
- the Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35294
| | - Mark J Suto
- the Drug Discovery Division, Southern Research Institute, Birmingham, Alabama 35294
| | - Andrew B West
- From the Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology and
| |
Collapse
|
36
|
|