1
|
Firdaus Z, Li X. Epigenetic Explorations of Neurological Disorders, the Identification Methods, and Therapeutic Avenues. Int J Mol Sci 2024; 25:11658. [PMID: 39519209 PMCID: PMC11546397 DOI: 10.3390/ijms252111658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Neurodegenerative disorders are major health concerns globally, especially in aging societies. The exploration of brain epigenomes, which consist of multiple forms of DNA methylation and covalent histone modifications, offers new and unanticipated perspective into the mechanisms of aging and neurodegenerative diseases. Initially, chromatin defects in the brain were thought to be static abnormalities from early development associated with rare genetic syndromes. However, it is now evident that mutations and the dysregulation of the epigenetic machinery extend across a broader spectrum, encompassing adult-onset neurodegenerative diseases. Hence, it is crucial to develop methodologies that can enhance epigenetic research. Several approaches have been created to investigate alterations in epigenetics on a spectrum of scales-ranging from low to high-with a particular focus on detecting DNA methylation and histone modifications. This article explores the burgeoning realm of neuroepigenetics, emphasizing its role in enhancing our mechanistic comprehension of neurodegenerative disorders and elucidating the predominant techniques employed for detecting modifications in the epigenome. Additionally, we ponder the potential influence of these advancements on shaping future therapeutic approaches.
Collapse
Affiliation(s)
- Zeba Firdaus
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaogang Li
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Zhou Y, Luo Q, Zeng F, Liu X, Han J, Gu L, Tian X, Zhang Y, Zhao Y, Wang F. Trichostatin A Promotes Cytotoxicity of Cisplatin, as Evidenced by Enhanced Apoptosis/Cell Death Markers. Molecules 2024; 29:2623. [PMID: 38893499 PMCID: PMC11173726 DOI: 10.3390/molecules29112623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, promotes the cytotoxicity of the genotoxic anticancer drug cisplatin, yet the underlying mechanism remains poorly understood. Herein, we revealed that TSA at a low concentration (1 μM) promoted the cisplatin-induced activation of caspase-3/6, which, in turn, increased the level of cleaved PARP1 and degraded lamin A&C, leading to more cisplatin-induced apoptosis and G2/M phase arrest of A549 cancer cells. Both ICP-MS and ToF-SIMS measurements demonstrated a significant increase in DNA-bound platinum in A549 cells in the presence of TSA, which was attributable to TSA-induced increase in the accessibility of genomic DNA to cisplatin attacking. The global quantitative proteomics results further showed that in the presence of TSA, cisplatin activated INF signaling to upregulate STAT1 and SAMHD1 to increase cisplatin sensitivity and downregulated ICAM1 and CD44 to reduce cell migration, synergistically promoting cisplatin cytotoxicity. Furthermore, in the presence of TSA, cisplatin downregulated TFAM and SLC3A2 to enhance cisplatin-induced ferroptosis, also contributing to the promotion of cisplatin cytotoxicity. Importantly, our posttranslational modification data indicated that acetylation at H4K8 played a dominant role in promoting cisplatin cytotoxicity. These findings provide novel insights into better understanding the principle of combining chemotherapy of genotoxic drugs and HDAC inhibitors for the treatment of cancers.
Collapse
Affiliation(s)
- Yang Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangang Zeng
- School of Environment of Natural Resources, Remin University of China, Beijing 100875, China;
| | - Xingkai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
| | - Juanjuan Han
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
- National Centre for Mass Spectrometry in Beijing, Beijing 100190, China
| | - Liangzhen Gu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Tian
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.Z.); (Q.L.); (J.H.); (L.G.); (X.T.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Centre for Mass Spectrometry in Beijing, Beijing 100190, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
3
|
Affandi T, Haas A, Ohm AM, Wright GM, Black JC, Reyland ME. PKCδ Regulates Chromatin Remodeling and DNA Repair through SIRT6. Mol Cancer Res 2024; 22:181-196. [PMID: 37889141 PMCID: PMC10872792 DOI: 10.1158/1541-7786.mcr-23-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/07/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
Irradiation (IR) is a highly effective cancer therapy; however, IR damage to tumor-adjacent healthy tissues can result in significant comorbidities and potentially limit the course of therapy. We have previously shown that protein kinase C delta (PKCδ) is required for IR-induced apoptosis and that inhibition of PKCδ activity provides radioprotection in vivo. Here we show that PKCδ regulates histone modification, chromatin accessibility, and double-stranded break (DSB) repair through a mechanism that requires Sirtuin 6 (SIRT6). Overexpression of PKCδ promotes genomic instability and increases DNA damage and apoptosis. Conversely, depletion of PKCδ increases DNA repair via nonhomologous end joining (NHEJ) and homologous recombination (HR) as evidenced by increased formation of DNA damage foci, increased expression of DNA repair proteins, and increased repair of NHEJ and HR fluorescent reporter constructs. Nuclease sensitivity indicates that PKCδ depletion is associated with more open chromatin, while overexpression of PKCδ reduces chromatin accessibility. Epiproteome analysis reveals increased chromatin associated H3K36me2 in PKCδ-depleted cells which is accompanied by chromatin disassociation of KDM2A. We identify SIRT6 as a downstream mediator of PKCδ. PKCδ-depleted cells have increased SIRT6 expression, and depletion of SIRT6 reverses changes in chromatin accessibility, histone modification and DSB repair in PKCδ-depleted cells. Furthermore, depletion of SIRT6 reverses radioprotection in PKCδ-depleted cells. Our studies describe a novel pathway whereby PKCδ orchestrates SIRT6-dependent changes in chromatin accessibility to regulate DNA repair, and define a mechanism for regulation of radiation-induced apoptosis by PKCδ. IMPLICATIONS PKCδ controls sensitivity to irradiation by regulating DNA repair.
Collapse
Affiliation(s)
- Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ami Haas
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela M. Ohm
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gregory M. Wright
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joshua C. Black
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary E. Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Bitler BG, Bailey CA, Yamamoto TM, McMellen A, Kim H, Watson ZL. Targeting BRPF3 moderately reverses olaparib resistance in high grade serous ovarian carcinoma. Mol Carcinog 2023; 62:1717-1730. [PMID: 37493106 PMCID: PMC10592327 DOI: 10.1002/mc.23610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 07/27/2023]
Abstract
PARP inhibitors (PARPi) kill cancer cells by stalling DNA replication and preventing DNA repair, resulting in a critical accumulation of DNA damage. Resistance to PARPi is a growing clinical problem in the treatment of high grade serous ovarian carcinoma (HGSOC). Acetylation of histone H3 lysine 14 (H3K14ac) and associated histone acetyltransferases (HATs) and epigenetic readers have known functions in DNA repair and replication. Our objectives are to examine their expression and activities in the context of PARPi-resistant HGSOC, and to determine if targeting H3K14ac or associated proteins has therapeutic potential. Using mass spectrometry profiling of histone modifications, we observed increased H3K14ac enrichment in PARPi-resistant HGSOC cells relative to isogenic PARPi-sensitive lines. By reverse-transcriptase quantitative PCR and RNA-seq, we also observed altered expression of numerous HATs in PARPi-resistant HGSOC cells and a PARPi-resistant PDX model. Knockdown of HATs only modestly altered PARPi response, although knockdown and inhibition of PCAF significantly increased resistance. Pharmacologic inhibition of HBO1 depleted H3K14ac but did not affect PARPi response. However, knockdown and inhibition of BRPF3, a bromodomain and PHD-finger containing protein that is known to interact in a complex with HBO1, did reduce PARPi resistance. This study demonstrates that depletion of H3K14ac does not affect PARPi response in HGSOC. Our data suggest that the bromodomain function of HAT proteins, such as PCAF, or accessory proteins, such as BRPF3, may play a more direct role compared to direct HATs function in PARPi response.
Collapse
Affiliation(s)
- Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Courtney A. Bailey
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Tomomi M. Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Alexandra McMellen
- Section of Hematology, Oncology, and Bone Marrow Transplantation, Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Hyunmin Kim
- Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Zachary L. Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
5
|
Bennett SA, Cobos SN, Son E, Segal R, Mathew S, Yousuf H, Torrente MP. Impaired RNA Binding Does Not Prevent Histone Modification Changes in a FUS ALS/FTD Yeast Model. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000895. [PMID: 37746061 PMCID: PMC10517347 DOI: 10.17912/micropub.biology.000895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/04/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
Mutations in the RNA-binding protein FUS are linked to amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD). FUS mutants mislocalize and aggregate in dying neurons. We previously established that FUS proteinopathy is linked to changes in the histone modification landscape in a yeast ALS/FTD model. Here, we examine whether FUS' RNA binding is necessary for this connection. We find that overexpression of a FUS mutant unable to bind RNA is still associated with reduced levels of H3S10ph, H3K14ac and H3K56ac. Hence, FUS' ability to bind RNA is not required in the mechanism connecting FUS proteinopathy to altered histone post-translational modifications.
Collapse
Affiliation(s)
- Seth A. Bennett
- PhD. Program in Biochemistry, City University of New York - The Graduate Center, New York, NY, USA 10016
| | - Samantha N. Cobos
- PhD. Program in Chemistry, City University of New York - The Graduate Center, New York, NY, USA 10016
| | - Elizaveta Son
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY, USA 11210
| | - Rianna Segal
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY, USA 11210
| | - Shana Mathew
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY, USA 11210
| | - Huda Yousuf
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY, USA 11210
| | - Mariana P. Torrente
- Department of Chemistry and Biochemistry, Brooklyn College, Brooklyn, NY, USA 11210
- PhD. Programs in Chemistry, Biochemistry, and Biology, City University of New York - The Graduate Center, New York, NY, USA 10016
| |
Collapse
|
6
|
Affandi T, Haas A, Ohm AM, Wright GM, Black JC, Reyland ME. PKCδ regulates chromatin remodeling and DNA repair through SIRT6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541991. [PMID: 37292592 PMCID: PMC10245827 DOI: 10.1101/2023.05.24.541991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein kinase C delta (PKCδ) is a ubiquitous kinase whose function is defined in part by localization to specific cellular compartments. Nuclear PKCδ is both necessary and sufficient for IR-induced apoptosis, while inhibition of PKCδ activity provides radioprotection in vivo. How nuclear PKCδ regulates DNA-damage induced cell death is poorly understood. Here we show that PKCδ regulates histone modification, chromatin accessibility, and double stranded break (DSB) repair through a mechanism that requires SIRT6. Overexpression of PKCδ promotes genomic instability and increases DNA damage and apoptosis. Conversely, depletion of PKCδ increases DNA repair via non-homologous end joining (NHEJ) and homologous recombination (HR) as evidenced by more rapid formation of NHEJ (DNA-PK) and HR (Rad51) DNA damage foci, increased expression of repair proteins, and increased repair of NHEJ and HR fluorescent reporter constructs. Nuclease sensitivity indicates that PKCδ depletion is associated with more open chromatin, while overexpression of PKCδ reduces chromatin accessibility. Epiproteome analysis revealed that PKCδ depletion increases chromatin associated H3K36me2, and reduces ribosylation of KDM2A and chromatin bound KDM2A. We identify SIRT6 as a downstream mediator of PKCδ. PKCδ-depleted cells have increased expression of SIRT6, and depletion of SIRT6 reverses the changes in chromatin accessibility, histone modification and NHEJ and HR DNA repair seen with PKCδ-depletion. Furthermore, depletion of SIRT6 reverses radioprotection in PKCδ-depleted cells. Our studies describe a novel pathway whereby PKCδ orchestrates SIRT6-dependent changes in chromatin accessibility to increase DNA repair, and define a mechanism for regulation of radiation-induced apoptosis by PKCδ.
Collapse
Affiliation(s)
- Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ami Haas
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela M. Ohm
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gregory M. Wright
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joshua C. Black
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary E. Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
7
|
Bhootra S, Jill N, Rajak R, Shanmugam G, Rakshit S, Kannanthodi S, Thakkar V, George M, Sarkar K. Diospyros malabarica fruit preparation mediates immunotherapeutic modulation and epigenetic regulation to evoke protection against non-small cell lung cancer (NSCLC). JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116525. [PMID: 37149067 DOI: 10.1016/j.jep.2023.116525] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diospyros malabarica is an ethnomedicinal plant with hypoglycaemic, anti-bacterial, and anti-cancer properties and it belongs to the Ebenaceae family which is well known for its medicinal uses since ancient times and application of its bark and unripened fruit has been significantly mentioned in Ayurvedic texts. The Diospyros malabarica species which is known as the Gaub in Hindi and Indian Persimmon in English is native to India, however, it is distributed throughout the tropics. AIM OF THE STUDY As Diospyros malabarica fruit preparation (DFP) possesses medicinal values, the study aims to evaluate its role as natural, non-toxic, and cost-effective dendritic cells (DCs) maturing immunomodulatory agent and also as an epigenetic regulator to combat Non-small cell lung cancer (NSCLC) which is a type of lung cancer whose treatment options such as chemotherapy, radiation therapy, etc. are accompanied with some adverse side effects. Thus, immunotherapeutic strategies are in high demand to evoke tumor protective immunity against NSCLC without causing such side effects. MATERIALS AND METHODS Peripheral Mononuclear Cells (PBMCs) derived monocytes of normal subjects and NSCLC patients were utilized to generate DCs matured with either LPS (LPSDC) or DFP (DFPDC). Mixed Lymphocyte Reaction (MLR) was carried out with the differentially matured DCs co-culturing T cells and cytotoxicity of lung cancer cells (A549) was measured through LDH release assay and cytokine profiling was carried out via ELISA respectively. PBMCs of normal subjects and NSCLC patients have transfected separately in vitrowith CRISPR-activation plasmid of p53 and CRISPR-Cas9 knockout plasmid of c-Myc to analyze epigenetic mechanism(s) in the presence and absence of DFP. RESULTS Diospyros malabarica fruit preparation (DFP) treated DC upregulates the secretion of T helper (TH)1 cell specific cytokines (IFN-γ and IL-12) and signal transducer and activator of transcription molecules (STAT1 and STAT4). Furthermore, it also downregulates the secretion of TH2-specific cytokines (IL-4 and IL-10). Diospyros malabarica fruit preparation (DFP) enhances p53 expression by reducing methylation levels at the CpG island of the promoter region. Upon c-Myc knockout, epigenetic markers such as H3K4Me3, p53, H3K14Ac, BRCA1, and WASp were enhanced whereas H3K27Me3, JMJD3, and NOTCH1 were downregulated. CONCLUSION Diospyros malabarica fruit preparation (DFP) not only increases the expression of type 1 specific cytokines but also augments tumor suppression modulating various epigenetic markers to evoke tumor protective immunity without any toxic activities.
Collapse
Affiliation(s)
- Sannidhi Bhootra
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Nandana Jill
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Rohit Rajak
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Samiyah Kannanthodi
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Vidhi Thakkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Melvin George
- Department of Clinical Pharmacology, SRM Medical College Hospital and Research Centre, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India.
| |
Collapse
|
8
|
González L, Kolbin D, Trahan C, Jeronimo C, Robert F, Oeffinger M, Bloom K, Michnick SW. Adaptive partitioning of a gene locus to the nuclear envelope in Saccharomyces cerevisiae is driven by polymer-polymer phase separation. Nat Commun 2023; 14:1135. [PMID: 36854718 PMCID: PMC9975218 DOI: 10.1038/s41467-023-36391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 01/30/2023] [Indexed: 03/03/2023] Open
Abstract
Partitioning of active gene loci to the nuclear envelope (NE) is a mechanism by which organisms increase the speed of adaptation and metabolic robustness to fluctuating resources in the environment. In the yeast Saccharomyces cerevisiae, adaptation to nutrient depletion or other stresses, manifests as relocalization of active gene loci from nucleoplasm to the NE, resulting in more efficient transport and translation of mRNA. The mechanism by which this partitioning occurs remains a mystery. Here, we demonstrate that the yeast inositol depletion-responsive gene locus INO1 partitions to the nuclear envelope, driven by local histone acetylation-induced polymer-polymer phase separation from the nucleoplasmic phase. This demixing is consistent with recent evidence for chromatin phase separation by acetylation-mediated dissolution of multivalent histone association and fits a physical model where increased bending stiffness of acetylated chromatin polymer causes its phase separation from de-acetylated chromatin. Increased chromatin spring stiffness could explain nucleation of transcriptional machinery at active gene loci.
Collapse
Affiliation(s)
- Lidice González
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC, H3C 3J7, Canada
| | - Daniel Kolbin
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christian Trahan
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - Célia Jeronimo
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H3A 1A3, Canada
- Département de Médecine, Faculté de Médecine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, QC, H3T 1J4, Canada
| | - Marlene Oeffinger
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC, H3C 3J7, Canada
- Institut de recherches cliniques de Montréal, 110 Avenue des Pins Ouest, Montréal, QC, H2W 1R7, Canada
- Faculty of Medicine, Division of Experimental Medicine, McGill University, Montréal, QC, H3A 1A3, Canada
| | - Kerry Bloom
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Stephen W Michnick
- Département de Biochimie, Université de Montréal, C.P. 6128, Succursale centre-ville, Montréal, QC, H3C 3J7, Canada.
| |
Collapse
|
9
|
Zhao J, Huai J. Role of primary aging hallmarks in Alzheimer´s disease. Theranostics 2023; 13:197-230. [PMID: 36593969 PMCID: PMC9800733 DOI: 10.7150/thno.79535] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which severely threatens the health of the elderly and causes significant economic and social burdens. The causes of AD are complex and include heritable but mostly aging-related factors. The primary aging hallmarks include genomic instability, telomere wear, epigenetic changes, and loss of protein stability, which play a dominant role in the aging process. Although AD is closely associated with the aging process, the underlying mechanisms involved in AD pathogenesis have not been well characterized. This review summarizes the available literature about primary aging hallmarks and their roles in AD pathogenesis. By analyzing published literature, we attempted to uncover the possible mechanisms of aberrant epigenetic markers with related enzymes, transcription factors, and loss of proteostasis in AD. In particular, the importance of oxidative stress-induced DNA methylation and DNA methylation-directed histone modifications and proteostasis are highlighted. A molecular network of gene regulatory elements that undergoes a dynamic change with age may underlie age-dependent AD pathogenesis, and can be used as a new drug target to treat AD.
Collapse
|
10
|
Lactate Rewrites the Metabolic Reprogramming of Uveal Melanoma Cells and Induces Quiescence Phenotype. Int J Mol Sci 2022; 24:ijms24010024. [PMID: 36613471 PMCID: PMC9820521 DOI: 10.3390/ijms24010024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Uveal melanoma (UM), the most common primary intraocular cancer in adults, is among the tumors with poorer prognosis. Recently, the role of the oncometabolite lactate has become attractive due to its role as hydroxycarboxylic acid receptor 1 (HCAR1) activator, as an epigenetic modulator inducing lysine residues lactylation and, of course, as a glycolysis end-product, bridging the gap between glycolysis and oxidative phosphorylation. The aim of the present study was to dissect in UM cell line (92.1) the role of lactate as either a metabolite or a signaling molecule, using the known modulators of HCAR1 and of lactate transporters. Our results show that lactate (20 mM) resulted in a significant decrease in cell proliferation and migration, acting and switching cell metabolism toward oxidative phosphorylation. These results were coupled with increased euchromatin content and quiescence in UM cells. We further showed, in a clinical setting, that an increase in lactate transporters MCT4 and HCAR1 is associated with a spindle-shape histological type in UM. In conclusion, our results suggest that lactate metabolism may serve as a prognostic marker of UM progression and may be exploited as a potential therapeutic target.
Collapse
|
11
|
Faragó A, Zsindely N, Farkas A, Neller A, Siági F, Szabó MR, Csont T, Bodai L. Acetylation State of Lysine 14 of Histone H3.3 Affects Mutant Huntingtin Induced Pathogenesis. Int J Mol Sci 2022; 23:15173. [PMID: 36499499 PMCID: PMC9738228 DOI: 10.3390/ijms232315173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/24/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Huntington's Disease (HD) is a fatal neurodegenerative disorder caused by the expansion of a polyglutamine-coding CAG repeat in the Huntingtin gene. One of the main causes of neurodegeneration in HD is transcriptional dysregulation that, in part, is caused by the inhibition of histone acetyltransferase (HAT) enzymes. HD pathology can be alleviated by increasing the activity of specific HATs or by inhibiting histone deacetylase (HDAC) enzymes. To determine which histone's post-translational modifications (PTMs) might play crucial roles in HD pathology, we investigated the phenotype-modifying effects of PTM mimetic mutations of variant histone H3.3 in a Drosophila model of HD. Specifically, we studied the mutations (K→Q: acetylated; K→R: non-modified; and K→M: methylated) of lysine residues K9, K14, and K27 of transgenic H3.3. In the case of H3.3K14Q modification, we observed the amelioration of all tested phenotypes (viability, longevity, neurodegeneration, motor activity, and circadian rhythm defects), while H3.3K14R had the opposite effect. H3.3K14Q expression prevented the negative effects of reduced Gcn5 (a HAT acting on H3K14) on HD pathology, while it only partially hindered the positive effects of heterozygous Sirt1 (an HDAC acting on H3K14). Thus, we conclude that the Gcn5-dependent acetylation of H3.3K14 might be an important epigenetic contributor to HD pathology.
Collapse
Affiliation(s)
- Anikó Faragó
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Anita Farkas
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Alexandra Neller
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Fruzsina Siági
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary
| | - Márton Richárd Szabó
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - Tamás Csont
- Department of Biochemistry, Albert Szent-Györgyi Medical School, University of Szeged, H-6720 Szeged, Hungary
- Interdisciplinary Centre of Excellence, University of Szeged, H-6720 Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
12
|
Tsunemine S, Nakagawa H, Suzuki Y, Murakami Y. The chromatin remodeler RSC prevents ectopic CENP-A propagation into pericentromeric heterochromatin at the chromatin boundary. Nucleic Acids Res 2022; 50:10914-10928. [PMID: 36200823 DOI: 10.1093/nar/gkac827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/05/2022] [Accepted: 10/01/2022] [Indexed: 01/22/2023] Open
Abstract
Centromeres of most eukaryotes consist of two distinct chromatin domains: a kinetochore domain, identified by the histone H3 variant, CENP-A, and a heterochromatic domain. How these two domains are separated is unclear. Here, we show that, in Schizosaccharomyces pombe, mutation of the chromatin remodeler RSC induced CENP-ACnp1 misloading at pericentromeric heterochromatin, resulting in the mis-assembly of kinetochore proteins and a defect in chromosome segregation. We find that RSC functions at the kinetochore boundary to prevent CENP-ACnp1 from spreading into neighbouring heterochromatin, where deacetylated histones provide an ideal environment for the spread of CENP-ACnp1. In addition, we show that RSC decompacts the chromatin structure at this boundary, and propose that this RSC-directed chromatin decompaction prevents mis-propagation of CENP-ACnp1 into pericentromeric heterochromatin. Our study provides an insight into how the distribution of distinct chromatin domains is established and maintained.
Collapse
Affiliation(s)
- Satoru Tsunemine
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan.,Laboratory of Cell Regulation, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Hiromi Nakagawa
- Laboratory of Cell Regulation, Department of Viral Oncology, Institute for Virus Research, Kyoto University, Kyoto 606-8507, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa 277-8562, Japan
| | - Yota Murakami
- Laboratory of Bioorganic Chemistry, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
13
|
Cañas JC, García-Rubio ML, García A, Antequera F, Gómez-González B, Aguilera A. A role for the Saccharomyces cerevisiae Rtt109 histone acetyltransferase in R-loop homeostasis and associated genome instability. Genetics 2022; 222:6648348. [PMID: 35866610 PMCID: PMC9434296 DOI: 10.1093/genetics/iyac108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/08/2022] [Indexed: 12/02/2022] Open
Abstract
The stability of the genome is occasionally challenged by the formation of DNA–RNA hybrids and R-loops, which can be influenced by the chromatin context. This is mainly due to the fact that DNA–RNA hybrids hamper the progression of replication forks, leading to fork stalling and, ultimately, DNA breaks. Through a specific screening of chromatin modifiers performed in the yeast Saccharomyces cerevisiae, we have found that the Rtt109 histone acetyltransferase is involved in several steps of R-loop-metabolism and their associated genetic instability. On the one hand, Rtt109 prevents DNA–RNA hybridization by the acetylation of histone H3 lysines 14 and 23 and, on the other hand, it is involved in the repair of replication-born DNA breaks, such as those that can be caused by R-loops, by acetylating lysines 14 and 56. In addition, Rtt109 loss renders cells highly sensitive to replication stress in combination with R-loop-accumulating THO-complex mutants. Our data evidence that the chromatin context simultaneously influences the occurrence of DNA–RNA hybrid-associated DNA damage and its repair, adding complexity to the source of R-loop-associated genetic instability.
Collapse
Affiliation(s)
- Juan Carlos Cañas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC, 41092 Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - María Luisa García-Rubio
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC, 41092 Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Alicia García
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, 37007, Salamanca, Spain
| | - Francisco Antequera
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, 37007, Salamanca, Spain
| | - Belén Gómez-González
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC, 41092 Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Universidad de Sevilla-CSIC, 41092 Seville, Spain.,Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Seville, Spain
| |
Collapse
|
14
|
Sehrawat P, Shobhawat R, Kumar A. Catching Nucleosome by Its Decorated Tails Determines Its Functional States. Front Genet 2022; 13:903923. [PMID: 35910215 PMCID: PMC9329655 DOI: 10.3389/fgene.2022.903923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
The fundamental packaging unit of chromatin, i.e., nucleosome, consists of ∼147 bp of DNA wrapped around a histone octamer composed of the core histones, H2A, H2B, H3, and H4, in two copies each. DNA packaged in nucleosomes must be accessible to various machineries, including replication, transcription, and DNA damage repair, implicating the dynamic nature of chromatin even in its compact state. As the tails protrude out of the nucleosome, they are easily accessible to various chromatin-modifying machineries and undergo post-translational modifications (PTMs), thus playing a critical role in epigenetic regulation. PTMs can regulate chromatin states via charge modulation on histones, affecting interaction with various chromatin-associated proteins (CAPs) and DNA. With technological advancement, the list of PTMs is ever-growing along with their writers, readers, and erasers, expanding the complexity of an already intricate epigenetic field. In this review, we discuss how some of the specific PTMs on flexible histone tails affect the nucleosomal structure and regulate the accessibility of chromatin from a mechanistic standpoint and provide structural insights into some newly identified PTM–reader interaction.
Collapse
|
15
|
Kolobynina KG, Rapp A, Cardoso MC. Chromatin Ubiquitination Guides DNA Double Strand Break Signaling and Repair. Front Cell Dev Biol 2022; 10:928113. [PMID: 35865631 PMCID: PMC9294282 DOI: 10.3389/fcell.2022.928113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chromatin is the context for all DNA-based molecular processes taking place in the cell nucleus. The initial chromatin structure at the site of the DNA damage determines both, lesion generation and subsequent activation of the DNA damage response (DDR) pathway. In turn, proceeding DDR changes the chromatin at the damaged site and across large fractions of the genome. Ubiquitination, besides phosphorylation and methylation, was characterized as an important chromatin post-translational modification (PTM) occurring at the DNA damage site and persisting during the duration of the DDR. Ubiquitination appears to function as a highly versatile “signal-response” network involving several types of players performing various functions. Here we discuss how ubiquitin modifiers fine-tune the DNA damage recognition and response and how the interaction with other chromatin modifications ensures cell survival.
Collapse
|
16
|
Tan YS, Zhang RK, Liu ZH, Li BZ, Yuan YJ. Microbial Adaptation to Enhance Stress Tolerance. Front Microbiol 2022; 13:888746. [PMID: 35572687 PMCID: PMC9093737 DOI: 10.3389/fmicb.2022.888746] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/18/2022] [Indexed: 01/28/2023] Open
Abstract
Microbial cell factories have been widely used in the production of various chemicals. Although synthetic biology is useful in improving the cell factories, adaptation is still widely applied to enhance its complex properties. Adaptation is an important strategy for enhancing stress tolerance in microbial cell factories. Adaptation involves gradual modifications of microorganisms in a stressful environment to enhance their tolerance. During adaptation, microorganisms use different mechanisms to enhance non-preferred substrate utilization and stress tolerance, thereby improving their ability to adapt for growth and survival. In this paper, the progress on the effects of adaptation on microbial substrate utilization capacity and environmental stress tolerance are reviewed, and the mechanisms involved in enhancing microbial adaptive capacity are discussed.
Collapse
Affiliation(s)
- Yong-Shui Tan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Ren-Kuan Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Synthetic Biology Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, China
| |
Collapse
|
17
|
Khan P, Chaudhuri RN. Acetylation of H3K56 orchestrates UV-responsive chromatin events that generate DNA accessibility during Nucleotide Excision Repair. DNA Repair (Amst) 2022; 113:103317. [PMID: 35290816 DOI: 10.1016/j.dnarep.2022.103317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/25/2022] [Accepted: 03/07/2022] [Indexed: 11/22/2022]
Abstract
Histone modifications have long been related to DNA damage response. Nucleotide excision repair pathway that removes helix-distorting lesions necessitates DNA accessibility through chromatin modifications. Previous studies have linked H3 tail residue acetylation to UV-induced NER. Here we present evidences that acetylation of H3K56 is crucial for early phases of NER. Using H3K56 mutants K56Q and K56R, which mimic acetylated and unacetylated lysines respectively, we show that recruitment of the repair factor Rad16, a Swi/Snf family member is dependent on H3K56 acetylation. With constitutive H3K56 acetylation, Rad16 recruitment became UV-independent. Furthermore, H3K56 acetylation promoted UV-induced hyperacetylation of H3K9 and H3K14. Importantly, constitutive H3K56 acetylation prominently increased chromatin accessibility. During NER, lack of H3K56 acetylation that effectively aborted H3 tail residue acetylation and Rad16 recruitment, thus failed to impart essential chromatin modulations. The NER-responsive oscillation of chromatin structure observed in wild type, was distinctly eliminated in absence of H3K56 acetylation. In vitro assay with wild type and H3K56 mutant cell extracts further indicated that absence of H3K56 acetylation negatively affected DNA relaxation during NER. Overall, H3K56 acetylation regulates Rad16 redistribution and UV-induced H3 tail residue hyperacetylation, and the resultant modification code promotes chromatin accessibility and recruitment of subsequent repair factors during NER.
Collapse
Affiliation(s)
- Preeti Khan
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata 700016, India.
| |
Collapse
|
18
|
Li W, Jones K, Burke TJ, Hossain MA, Lariscy L. Epigenetic Regulation of Nucleotide Excision Repair. Front Cell Dev Biol 2022; 10:847051. [PMID: 35465333 PMCID: PMC9023881 DOI: 10.3389/fcell.2022.847051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/24/2022] [Indexed: 12/30/2022] Open
Abstract
Genomic DNA is constantly attacked by a plethora of DNA damaging agents both from endogenous and exogenous sources. Nucleotide excision repair (NER) is the most versatile repair pathway that recognizes and removes a wide range of bulky and/or helix-distorting DNA lesions. Even though the molecular mechanism of NER is well studied through in vitro system, the NER process inside the cell is more complicated because the genomic DNA in eukaryotes is tightly packaged into chromosomes and compacted into a nucleus. Epigenetic modifications regulate gene activity and expression without changing the DNA sequence. The dynamics of epigenetic regulation play a crucial role during the in vivo NER process. In this review, we summarize recent advances in our understanding of the epigenetic regulation of NER.
Collapse
|
19
|
Chakraborty U, Shen ZJ, Tyler J. Chaperoning histones at the DNA repair dance. DNA Repair (Amst) 2021; 108:103240. [PMID: 34687987 DOI: 10.1016/j.dnarep.2021.103240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/28/2021] [Accepted: 10/03/2021] [Indexed: 12/15/2022]
Abstract
Unlike all other biological molecules that are degraded and replaced if damaged, DNA must be repaired as chromosomes cannot be replaced. Indeed, DNA endures a wide variety of structural damage that need to be repaired accurately to maintain genomic stability and proper functioning of cells and to prevent mutation leading to disease. Given that the genome is packaged into chromatin within eukaryotic cells, it has become increasingly evident that the chromatin context of DNA both facilitates and regulates DNA repair processes. In this review, we discuss mechanisms involved in removal of histones (chromatin disassembly) from around DNA lesions, by histone chaperones and chromatin remodelers, that promotes accessibility of the DNA repair machinery. We also elaborate on how the deposition of core histones and specific histone variants onto DNA (chromatin assembly) during DNA repair promotes repair processes, the role of histone post translational modifications in these processes and how chromatin structure is reestablished after DNA repair is complete.
Collapse
Affiliation(s)
- Ujani Chakraborty
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Zih-Jie Shen
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Jessica Tyler
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
20
|
Chabanon RM, Morel D, Eychenne T, Colmet-Daage L, Bajrami I, Dorvault N, Garrido M, Meisenberg C, Lamb A, Ngo C, Hopkins SR, Roumeliotis TI, Jouny S, Hénon C, Kawai-Kawachi A, Astier C, Konde A, Del Nery E, Massard C, Pettitt SJ, Margueron R, Choudhary JS, Almouzni G, Soria JC, Deutsch E, Downs JA, Lord CJ, Postel-Vinay S. PBRM1 Deficiency Confers Synthetic Lethality to DNA Repair Inhibitors in Cancer. Cancer Res 2021; 81:2888-2902. [PMID: 33888468 DOI: 10.1158/0008-5472.can-21-0628] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022]
Abstract
Inactivation of Polybromo 1 (PBRM1), a specific subunit of the PBAF chromatin remodeling complex, occurs frequently in cancer, including 40% of clear cell renal cell carcinomas (ccRCC). To identify novel therapeutic approaches to targeting PBRM1-defective cancers, we used a series of orthogonal functional genomic screens that identified PARP and ATR inhibitors as being synthetic lethal with PBRM1 deficiency. The PBRM1/PARP inhibitor synthetic lethality was recapitulated using several clinical PARP inhibitors in a series of in vitro model systems and in vivo in a xenograft model of ccRCC. In the absence of exogenous DNA damage, PBRM1-defective cells exhibited elevated levels of replication stress, micronuclei, and R-loops. PARP inhibitor exposure exacerbated these phenotypes. Quantitative mass spectrometry revealed that multiple R-loop processing factors were downregulated in PBRM1-defective tumor cells. Exogenous expression of the R-loop resolution enzyme RNase H1 reversed the sensitivity of PBRM1-deficient cells to PARP inhibitors, suggesting that excessive levels of R-loops could be a cause of this synthetic lethality. PARP and ATR inhibitors also induced cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) innate immune signaling in PBRM1-defective tumor cells. Overall, these findings provide the preclinical basis for using PARP inhibitors in PBRM1-defective cancers. SIGNIFICANCE: This study demonstrates that PARP and ATR inhibitors are synthetic lethal with the loss of PBRM1, a PBAF-specific subunit, thus providing the rationale for assessing these inhibitors in patients with PBRM1-defective cancer. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/11/2888/F1.large.jpg.
Collapse
MESH Headings
- Animals
- Apoptosis
- Ataxia Telangiectasia Mutated Proteins/antagonists & inhibitors
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Renal Cell/drug therapy
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Proliferation
- DNA Repair
- DNA-Binding Proteins/deficiency
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Kidney Neoplasms/drug therapy
- Kidney Neoplasms/genetics
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
- Synthetic Lethal Mutations
- Transcription Factors/deficiency
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Roman M Chabanon
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Daphné Morel
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
- Université Paris Saclay, Université Paris-Sud, Faculté de Médicine, Le Kremlin Bicêtre, France
| | - Thomas Eychenne
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Léo Colmet-Daage
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Ilirjana Bajrami
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Nicolas Dorvault
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Marlène Garrido
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Cornelia Meisenberg
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, London, United Kingdom
| | | | - Carine Ngo
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Suzanna R Hopkins
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, London, United Kingdom
| | | | - Samuel Jouny
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Clémence Hénon
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | | | - Clémence Astier
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France
| | - Asha Konde
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Elaine Del Nery
- Institut Curie, PSL Research University, Department of Translational Research, The Biophenics High-Content Screening Laboratory, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | | | - Stephen J Pettitt
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom
| | - Raphaël Margueron
- Institut Curie, PSL Research University, INSERM Unit U934, CNRS UMR 3215, Paris, France
| | - Jyoti S Choudhary
- Functional Proteomics Team, The Institute of Cancer Research, London, United Kingdom
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, UMR 3664, Equipe Labellisée Ligue contre le Cancer, Paris, France
- Sorbonne Universités, UPMC Université Paris-VI, CNRS, UMR3664, Paris, France
| | - Jean-Charles Soria
- Université Paris Saclay, Université Paris-Sud, Faculté de Médicine, Le Kremlin Bicêtre, France
| | - Eric Deutsch
- Université Paris Saclay, Université Paris-Sud, Faculté de Médicine, Le Kremlin Bicêtre, France
- INSERM UMR1030 Molecular Radiotherapy and Therapeutic Innovations, Gustave Roussy, Villejuif, France
| | - Jessica A Downs
- Epigenetics and Genome Stability Team, The Institute of Cancer Research, London, United Kingdom
| | - Christopher J Lord
- The CRUK Gene Function Laboratory and Breast Cancer Now Toby Robins Breast Cancer Research Centre, The Institute of Cancer Research, London, United Kingdom.
| | - Sophie Postel-Vinay
- ATIP-Avenir group, Inserm Unit U981, Gustave Roussy, Villejuif, France.
- Université Paris Saclay, Université Paris-Sud, Faculté de Médicine, Le Kremlin Bicêtre, France
- Drug Development Department, DITEP, Gustave Roussy, Villejuif, France
| |
Collapse
|
21
|
Fang L, Chen D, Zhang J, Li H, Bradford B, Jin C. Potential functions of histone H3.3 lysine 56 acetylation in mammals. Epigenetics 2021; 17:498-517. [PMID: 33902396 DOI: 10.1080/15592294.2021.1922198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
H3K56 acetylation (H3K56Ac) was first identified in yeast and has recently been reported to play important roles in maintaining genomic stability, chromatin assembly, DNA replication, cell cycle progression and DNA repair. Although H3.1K56Ac has been relatively well studied, the function of H3.3K56Ac remains mostly unknown in mammals. In this study, we used H3.3K56Q and H3.3K56R mutants to study the possible function of H3.3K56 acetylation. The K-to-Q substitution mimics a constitutively acetylated lysine, while the K-to-R replacement mimics a constitutively unmodified lysine. We report that cell lines harbouring mutation of H3.3K56R exhibit increased cell death and dramatic morphology changes. Using a Tet-Off inducible system, we found an increased population of polyploid/aneuploid cells and decreased cell viability in H3.3K56R mutant cells. Consistent with these results, the H3.3K56R mutant had compromised H3.3 incorporation into several pericentric and centric heterochromatin regions we tested. Moreover, mass spectrometry analysis coupled with label-free quantification revealed that biological processes regulated by the H3.3-associating proteins, whose interaction with H3.3 was markedly increased by H3.3K56Q mutation but decreased by H3.3K56R mutation, include sister chromatid cohesion, mitotic nuclear division, and mitotic nuclear envelope disassembly. These results suggest that H3.3K56 acetylation is crucial for chromosome segregation and cell division in mammals.
Collapse
Affiliation(s)
- Lei Fang
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA.,Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Danqi Chen
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Jingzi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Hongjie Li
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Beatrix Bradford
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Chunyuan Jin
- Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
22
|
Neumann H, Wilkins BJ. Spanning the gap: unraveling RSC dynamics in vivo. Curr Genet 2021; 67:399-406. [PMID: 33484328 PMCID: PMC8139908 DOI: 10.1007/s00294-020-01144-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 11/17/2022]
Abstract
Multiple reports over the past 2 years have provided the first complete structural analyses for the essential yeast chromatin remodeler, RSC, providing elaborate molecular details for its engagement with the nucleosome. However, there still remain gaps in resolution, particularly within the many RSC subunits that harbor histone binding domains. Solving contacts at these interfaces is crucial because they are regulated by posttranslational modifications that control remodeler binding modes and function. Modifications are dynamic in nature often corresponding to transcriptional activation states and cell cycle stage, highlighting not only a need for enriched spatial resolution but also temporal understanding of remodeler engagement with the nucleosome. Our recent work sheds light on some of those gaps by exploring the binding interface between the RSC catalytic motor protein, Sth1, and the nucleosome, in the living nucleus. Using genetically encoded photo-activatable amino acids incorporated into histones of living yeast we are able to monitor the nucleosomal binding of RSC, emphasizing the regulatory roles of histone modifications in a spatiotemporal manner. We observe that RSC prefers to bind H2B SUMOylated nucleosomes in vivo and interacts with neighboring nucleosomes via H3K14ac. Additionally, we establish that RSC is constitutively bound to the nucleosome and is not ejected during mitotic chromatin compaction but alters its binding mode as it progresses through the cell cycle. Our data offer a renewed perspective on RSC mechanics under true physiological conditions.
Collapse
Affiliation(s)
- Heinz Neumann
- Department of Structural Biochemistry, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227, Dortmund, Germany. .,Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295, Darmstadt, Germany.
| | - Bryan J Wilkins
- Department of Chemistry and Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Bronx, NY, 10471, USA.
| |
Collapse
|
23
|
Hanasaki M, Yaku K, Yamauchi M, Nakagawa T, Masumoto H. Deletion of the GAPDH gene contributes to genome stability in Saccharomyces cerevisiae. Sci Rep 2020; 10:21146. [PMID: 33273685 PMCID: PMC7713361 DOI: 10.1038/s41598-020-78302-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 11/17/2020] [Indexed: 12/30/2022] Open
Abstract
Cellular metabolism is directly or indirectly associated with various cellular processes by producing a variety of metabolites. Metabolic alterations may cause adverse effects on cell viability. However, some alterations potentiate the rescue of the malfunction of the cell system. Here, we found that the alteration of glucose metabolism suppressed genome instability caused by the impairment of chromatin structure. Deletion of the TDH2 gene, which encodes glyceraldehyde 3-phospho dehydrogenase and is essential for glycolysis/gluconeogenesis, partially suppressed DNA damage sensitivity due to chromatin structure, which was persistently acetylated histone H3 on lysine 56 in cells with deletions of both HST3 and HST4, encoding NAD+-dependent deacetylases. tdh2 deletion also restored the short replicative lifespan of cells with deletion of sir2, another NAD+-dependent deacetylase, by suppressing intrachromosomal recombination in rDNA repeats increased by the unacetylated histone H4 on lysine 16. tdh2 deletion also suppressed recombination between direct repeats in hst3∆ hst4∆ cells by suppressing the replication fork instability that leads to both DNA deletions among repeats. We focused on quinolinic acid (QUIN), a metabolic intermediate in the de novo nicotinamide adenine dinucleotide (NAD+) synthesis pathway, which accumulated in the tdh2 deletion cells and was a candidate metabolite to suppress DNA replication fork instability. Deletion of QPT1, quinolinate phosphoribosyl transferase, elevated intracellular QUIN levels and partially suppressed the DNA damage sensitivity of hst3∆ hst4∆ cells as well as tdh2∆ cells. qpt1 deletion restored the short replicative lifespan of sir2∆ cells by suppressing intrachromosomal recombination among rDNA repeats. In addition, qpt1 deletion could suppress replication fork slippage between direct repeats. These findings suggest a connection between glucose metabolism and genomic stability.
Collapse
Affiliation(s)
- Miki Hanasaki
- Biomedical Research Support Center (BRSC), Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Keisuke Yaku
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Motohiro Yamauchi
- Department of Radiation Biology and Protection, Atomic Bomb Disease Institute, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan
| | - Takashi Nakagawa
- Department of Metabolism and Nutrition, Graduate School of Medicine and Pharmaceutical Sciences for Research, University of Toyama, 2630 Sugitani, Toyama, Toyama, 930-0194, Japan
| | - Hiroshi Masumoto
- Biomedical Research Support Center (BRSC), Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki, Nagasaki, 852-8523, Japan.
| |
Collapse
|
24
|
Ranganayaki S, Govindaraj P, Gayathri N, Srinivas Bharath MM. Exposure to the neurotoxin 3-nitropropionic acid in neuronal cells induces unique histone acetylation pattern: Implications for neurodegeneration. Neurochem Int 2020; 140:104846. [PMID: 32927024 DOI: 10.1016/j.neuint.2020.104846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
Mitochondrial dysfunction is critical for neurodegeneration in movement disorders. Neurotoxicological models recapitulating movement disorder involve mitochondrial damage including inhibition of mitochondrial complexes. Previously, we demonstrated that neurotoxic models of Parkinson's disease and Manganism showed distinct morphological, electrophysiological and molecular profile indicating disease-specific characteristics. In a recent study, we demonstrated that the transcriptomic changes triggered by the neurotoxic mitochondrial complex II inhibitor 3-nitropropionic acid (3-NPA), was significantly different from the profile induced by the neurotoxic mitochondrial complex I inhibitor 1-methyl-4- phenylpyridinium (MPP+) and mitochondrial toxin Manganese (Mn). Among the plausible pathways, we surmised that epigenetic mechanisms could contribute to 3-NPA specific transcriptomic profile. To address this, we assessed global and individual lys-specific acetylation profile of Histone H3 and H4 in the 3-NPA neuronal cell model. Our data revealed histone acetylation profile unique to the 3-NPA model that was not noted in the MPP+ and Mn models. Among the individual lys, Histone H3K56 showed robust dose and time-dependent hyperacetylation in the 3-NPA model. Chromatin Immunoprecipitation-sequencing (ChIP-seq) revealed that acetylated H3K56 was associated with 13072 chromatin sites, which showed increased occupancy in the transcription start site-promoter site. Acetylated histone H3K56 was associated with 1747 up-regulated and 263 down-regulated genes in the 3-NPA model, which included many up-regulated autophagy and mitophagy genes. Western analysis validated the involvement of PINK1-Parkin dependent mitophagy in the 3-NPA model. We propose that 3-NPA specific chromatin dynamics could contribute to the unique transcriptomic profile with implications for movement disorders.
Collapse
Affiliation(s)
- S Ranganayaki
- Department of Neurochemistry, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India
| | - Periyasamy Govindaraj
- Department of Neuropathology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India
| | - N Gayathri
- Department of Neuropathology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India
| | - M M Srinivas Bharath
- Department of Clinical Psychopharmacology and Neurotoxicology, NIMHANS, No. 2900, Hosur Road, Bangalore, 560029, Karnataka, India.
| |
Collapse
|
25
|
Jain N, Tamborrini D, Evans B, Chaudhry S, Wilkins BJ, Neumann H. Interaction of RSC Chromatin Remodeling Complex with Nucleosomes Is Modulated by H3 K14 Acetylation and H2B SUMOylation In Vivo. iScience 2020; 23:101292. [PMID: 32623337 PMCID: PMC7334588 DOI: 10.1016/j.isci.2020.101292] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/27/2020] [Accepted: 06/15/2020] [Indexed: 01/04/2023] Open
Abstract
Chromatin remodeling complexes are multi-subunit nucleosome translocases that reorganize chromatin in the context of DNA replication, repair, and transcription. To understand how these complexes find their target sites on chromatin, we use genetically encoded photo-cross-linker amino acids to map the footprint of Sth1, the catalytic subunit of the RSC complex, on nucleosomes in living yeast. We find that H3 K14 acetylation induces the interaction of the Sth1 bromodomain with the H3 tail and mediates the interaction of RSC with neighboring nucleosomes rather than recruiting it to chromatin. RSC preferentially resides on H2B SUMOylated nucleosomes in vivo and shows a moderately enhanced affinity due to this modification in vitro. Furthermore, RSC is not ejected from chromatin in mitosis, but changes its mode of nucleosome binding. Our in vivo analyses show that RSC recruitment to specific chromatin targets involves multiple histone modifications likely in combination with histone variants and transcription factors.
Collapse
Affiliation(s)
- Neha Jain
- Department of Structural Biochemistry, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Davide Tamborrini
- Department of Structural Biochemistry, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Brian Evans
- Department of Chemistry and Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Bronx, NY 10471, USA
| | - Shereen Chaudhry
- Department of Chemistry and Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Bronx, NY 10471, USA
| | - Bryan J Wilkins
- Department of Chemistry and Biochemistry, Manhattan College, 4513 Manhattan College Parkway, Bronx, NY 10471, USA.
| | - Heinz Neumann
- Department of Structural Biochemistry, Max-Planck-Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; Department of Chemical Engineering and Biotechnology, University of Applied Sciences Darmstadt, Stephanstrasse 7, 64295 Darmstadt, Germany.
| |
Collapse
|
26
|
Shen Y, Ha W, Zeng W, Queen D, Liu L. Exome sequencing identifies novel mutation signatures of UV radiation and trichostatin A in primary human keratinocytes. Sci Rep 2020; 10:4943. [PMID: 32188867 PMCID: PMC7080724 DOI: 10.1038/s41598-020-61807-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/03/2020] [Indexed: 12/03/2022] Open
Abstract
Canonical ultraviolet (UV) mutation type and spectra are traditionally defined by direct sequencing-based approaches to map mutations in a limited number of representative DNA elements. To obtain an unbiased view of genome wide UV mutation features, we performed whole exome-sequencing (WES) to profile single nucleotide substitutions in UVB-irradiated primary human keratinocytes. Cross comparison of UV mutation profiles under different UVB radiation conditions revealed that T > C transition was highly prevalent in addition to C > T transition. We also identified 5'-ACG-3' as a common sequence motif of C > T transition. Furthermore, our analyses uncovered several recurring UV mutations following acute UVB radiation affecting multiple genes including HRNR, TRIOBP, KCNJ12, and KMT2C, which are frequently mutated in skin cancers, indicating their potential role as founding mutations in UV-induced skin tumorigenesis. Pretreatment with trichostatin A, a pan-histone deacetylase inhibitor that renders chromatin decondensation, significantly decreased the number of mutations in UVB-irradiated keratinocytes. Unexpectedly, we found trichostatin A to be a mutagen that caused DNA damage and mutagenesis at least partly through increased reactive oxidation. In summary, our study reveals new UV mutation features following acute UVB radiation and identifies novel UV mutation hotspots that may potentially represent founding driver mutations in skin cancer development.
Collapse
Affiliation(s)
- Yao Shen
- Department of Systems Biology, Columbia University, New York, New York, USA
| | - Wootae Ha
- The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Wangyong Zeng
- Department of Dermatology, Columbia University, New York, USA
| | - Dawn Queen
- Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Liang Liu
- The Hormel Institute, University of Minnesota, Austin, MN, USA.
- Department of Dermatology, Columbia University, New York, USA.
| |
Collapse
|
27
|
Lambert IH, Nielsen D, Stürup S. Impact of the histone deacetylase inhibitor trichostatin A on active uptake, volume-sensitive release of taurine, and cell fate in human ovarian cancer cells. Am J Physiol Cell Physiol 2020; 318:C581-C597. [PMID: 31913698 DOI: 10.1152/ajpcell.00460.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The histone deacetylase inhibitor trichostatin A (TSA) reduces cell viability in cisplatin-sensitive (A2780WT) and cisplatin-resistant (A2780RES) human ovarian cancer cells due to progression of apoptosis (increased caspase-9 activity), autophagy (increased LC3-II expression), and cell cycle arrest (increased p21 expression). The TSA-mediated effect on p21 and caspase-9 is mainly p53 independent. Cisplatin increases DNA-damage (histone H2AX phosphorylation) in A2780WT cells, whereas cisplatin, due to reduced uptake [inductively coupled-plasma-mass spectrometry (Pt) analysis], has no DNA-damaging effect in A2780RES cells. TSA has no effect on cisplatin accumulation or cisplatin-induced DNA-damage in A2780WT/A2780RES cells. Tracer technique indicates that TSA inhibits the volume-sensitive organic anion channel (VSOAC) in A2780WT/A2780RES cells and that the activity is restored by exogenous H2O2. As TSA reduces NOX4 mRNA accumulation and concomitantly increases catalase mRNA/protein accumulation, we suggest that TSA increases the antioxidative defense in A2780 cells. Inhibition of the kinase mTOR (rapamycin, palomid, siRNA), which is normally associated with cell growth, reduces VSOAC activity synergistically to TSA. However, as TSA increases mTOR activity (phosphorylation of 4EBP1, S6 kinase, S6, ULK1, SGK1), the effect of TSA on VSOAC activity does not reflect the shift in mTOR signaling. Upregulation of the protein expression and activity of the taurine transporter (TauT) is a phenotypic characteristic of A2780RES cells. However, TSA reduces TauT protein expression in A2780RES cells and activity to values seen in A2780WT cells. It is suggested that therapeutic benefits of TSA in A2780 do not imply facilitation of cisplatin uptake but more likely a synergistic activation of apoptosis/autophagy and reduced TauT activity.
Collapse
Affiliation(s)
- Ian Henry Lambert
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Dorthe Nielsen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Stürup
- Department of Pharmacy, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Patel AB, Moore CM, Greber BJ, Luo J, Zukin SA, Ranish J, Nogales E. Architecture of the chromatin remodeler RSC and insights into its nucleosome engagement. eLife 2019; 8:e54449. [PMID: 31886770 PMCID: PMC6959994 DOI: 10.7554/elife.54449] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic DNA is packaged into nucleosome arrays, which are repositioned by chromatin remodeling complexes to control DNA accessibility. The Saccharomyces cerevisiae RSC (Remodeling the Structure of Chromatin) complex, a member of the SWI/SNF chromatin remodeler family, plays critical roles in genome maintenance, transcription, and DNA repair. Here, we report cryo-electron microscopy (cryo-EM) and crosslinking mass spectrometry (CLMS) studies of yeast RSC complex and show that RSC is composed of a rigid tripartite core and two flexible lobes. The core structure is scaffolded by an asymmetric Rsc8 dimer and built with the evolutionarily conserved subunits Sfh1, Rsc6, Rsc9 and Sth1. The flexible ATPase lobe, composed of helicase subunit Sth1, Arp7, Arp9 and Rtt102, is anchored to this core by the N-terminus of Sth1. Our cryo-EM analysis of RSC bound to a nucleosome core particle shows that in addition to the expected nucleosome-Sth1 interactions, RSC engages histones and nucleosomal DNA through one arm of the core structure, composed of the Rsc8 SWIRM domains, Sfh1 and Npl6. Our findings provide structural insights into the conserved assembly process for all members of the SWI/SNF family of remodelers, and illustrate how RSC selects, engages, and remodels nucleosomes.
Collapse
Affiliation(s)
- Avinash B Patel
- Biophysics Graduate GroupUniversity of California, BerkeleyBerkeleyUnited States
- Molecular Biophysics and Integrative Bio-Imaging DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
| | - Camille M Moore
- Molecular and Cell Biology DepartmentUniversity of California, BerkeleyBerkeleyUnited States
| | - Basil J Greber
- Molecular Biophysics and Integrative Bio-Imaging DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
- California Institute for Quantitative Biology (QB3)University of California, BerkeleyBerkeleyUnited States
| | - Jie Luo
- The Institute for Systems BiologySeattleUnited States
| | - Stefan A Zukin
- Chemistry DepartmentUniversity of California, BerkeleyBerkeleyUnited States
| | - Jeff Ranish
- The Institute for Systems BiologySeattleUnited States
| | - Eva Nogales
- Molecular Biophysics and Integrative Bio-Imaging DivisionLawrence Berkeley National LaboratoryBerkeleyUnited States
- Molecular and Cell Biology DepartmentUniversity of California, BerkeleyBerkeleyUnited States
- California Institute for Quantitative Biology (QB3)University of California, BerkeleyBerkeleyUnited States
- Howard Hughes Medical Institute, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
29
|
Cote JM, Kuo YM, Henry RA, Scherman H, Krzizike DD, Andrews AJ. Two factor authentication: Asf1 mediates crosstalk between H3 K14 and K56 acetylation. Nucleic Acids Res 2019; 47:7380-7391. [PMID: 31194870 DOI: 10.1093/nar/gkz508] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 05/27/2019] [Accepted: 06/07/2019] [Indexed: 12/18/2022] Open
Abstract
The ability of histone chaperone Anti-silencing factor 1 (Asf1) to direct acetylation of lysine 56 of histone H3 (H3K56ac) represents an important regulatory step in genome replication and DNA repair. In Saccharomyces cerevisiae, Asf1 interacts functionally with a second chaperone, Vps75, and the lysine acetyltransferase (KAT) Rtt109. Both Asf1 and Vps75 can increase the specificity of histone acetylation by Rtt109, but neither alter selectivity. However, changes in acetylation selectivity have been observed in histones extracted from cells, which contain a plethora of post-translational modifications. In the present study, we use a series of singly acetylated histones to test the hypothesis that histone pre-acetylation and histone chaperones function together to drive preferential acetylation of H3K56. We show that pre-acetylated H3K14ac/H4 functions with Asf1 to drive specific acetylation of H3K56 by Rtt109-Vps75. Additionally, we identified an exosite containing an acidic patch in Asf1 and show that mutations to this region alter Asf1-mediated crosstalk that changes Rtt109-Vps75 selectivity. Our proposed mechanism suggests that Gcn5 acetylates H3K14, recruiting remodeler complexes, allowing for the Asf1-H3K14ac/H4 complex to be acetylated at H3K56 by Rtt109-Vps75. This mechanism explains the conflicting biochemical data and the genetic links between Rtt109, Vps75, Gcn5 and Asf1 in the acetylation of H3K56.
Collapse
Affiliation(s)
- Joy M Cote
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Yin-Ming Kuo
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Ryan A Henry
- Department of Chemistry and Biochemistry, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Hataichanok Scherman
- The Histone Source, Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Daniel D Krzizike
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Andrew J Andrews
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
30
|
Chen G, Li W, Yan F, Wang D, Chen Y. The Structural Basis for Specific Recognition of H3K14 Acetylation by Sth1 in the RSC Chromatin Remodeling Complex. Structure 2019; 28:111-118.e3. [PMID: 31711754 DOI: 10.1016/j.str.2019.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/26/2019] [Accepted: 10/22/2019] [Indexed: 10/25/2022]
Abstract
The Saccharomyces cerevisiae RSC (Remodel the Structure of Chromatin) complex is a chromatin-remodeling complex and plays essential roles in transcription regulation and DNA repair. The acetylation of H3 Lysine14 (H3K14Ac) enhances the RSC retention on nucleosomes and increases the remodeling activity of RSC. However, which RSC component recognizes H3K14Ac remains unclear. Here, we discovered that the bromodomain of the catalytic subunit Sth1 (Sth1BD) possessed the strongest affinity to H3K14Ac among all RSC bromodomains. The Sth1BD specifically recognized the K(Ac)ΦΦR motif (Φ stands for any hydrophobic amino acid), including H3K14Ac and H4K20Ac. We determined the crystal structures of Sth1BD at 2.40 Å resolution and Sth1BD-H3K14Ac complex at 1.40 Å resolution. The extensive interfaces between Sth1BD and H36-21 facilitate the specific and robust binding of Sth1BD to H3K14Ac. Our studies provide insights into how the RSC complex recognizes H3K14Ac to orchestrate the crosstalk between histone acetylation and chromatin remodeling.
Collapse
Affiliation(s)
- Guochao Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Wei Li
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Fuxiang Yan
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Duo Wang
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China
| | - Yong Chen
- State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 333 Haike Road, Shanghai 201210, China; School of Life Science and Technology, Shanghai Tech University, 100 Haike Road, Shanghai 201210, P. R. China.
| |
Collapse
|
31
|
Li Y, Sun W, Sun D, Yin D. Retracted: Ras-ERK1/2 signaling promotes the development of uveal melanoma by downregulating H3K14ac. J Cell Physiol 2019; 234:16011-16020. [PMID: 30770563 DOI: 10.1002/jcp.28259] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Ras-extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) signaling has been proposed as the crucial regulators in the development of various cancers. Histone acetylation at H3 lysine 14 (H3K14ac) is closely associated with gene expression and DNA damage. However, whether H3K14ac participates in mediating Ras-ERK1/2-induced cell proliferation and migration in uveal melanoma cells remains unknown. The purpose of this study is to investigate the effect of H3K14ac on Ras-ERK1/2 affected uveal melanoma cell phenotypes. MP65 cells were transfected with Ras WT and Ras G12V/T35S , the unloaded plasmid of pEGFP-N1 served as a negative control. Protein levels of phosphorylated ERK1/2 Thr202 and H3K14ac were assessed by western blot assay. Cell viability, number of colonies, migration, and the downstream genes of ERK1/2 were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2-H-tetrazolium bromide, soft-agar colony formation, transwell, and chromatin immunoprecipitation assays. HA-tag vectors of CLR3 and TIP60 and the small interfering RNAs that specific for CLR3 and MDM2 were transfected into MP65 cells to uncover the effects of CLR3, TIP60, and MDM2 on Ras-ERK1/2 mediated H3K14ac expression and MP65 cell phenotypes. We found that, Ras-ERK1/2 decreased H3K14ac expression in MP65 cells, and H3K14ac significantly suppressed Ras-ERK1/2-induced cell viability, colony formation, and migration in MP65 cells. Moreover, the transcription of CYR61, IGFBP3, WNT16B, NT5E, GDF15, and CARD16 was regulated by H3K14ac. Additionally, CLR3 silence recovered H3K14ac expression and reversed the effect of Ras-ERK1/2 on MP65 cell proliferation, migration and the mRNAs of ERK1/2 downstream genes. Besides, Ras-ERK1/2 decreased H3K14ac expression by MDM2-mediated TIP60 degradation. In conclusion, Ras-ERK1/2 promoted uveal melanoma cells growth and migration by downregulating H3K14ac via MDM2-mediated TIP60 degradation.
Collapse
Affiliation(s)
- Yaping Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Weixuan Sun
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dajun Sun
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Dexin Yin
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
32
|
Mao P, Wyrick JJ. Organization of DNA damage, excision repair, and mutagenesis in chromatin: A genomic perspective. DNA Repair (Amst) 2019; 81:102645. [PMID: 31307926 DOI: 10.1016/j.dnarep.2019.102645] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genomic DNA is constantly assaulted by both endogenous and exogenous damaging agents. The resulting DNA damage, if left unrepaired, can interfere with DNA replication and be converted into mutations. Genomic DNA is packaged into a highly compact yet dynamic chromatin structure, in order to fit into the limited space available in the nucleus of eukaryotic cells. This hierarchical chromatin organization serves as both the target of DNA damaging agents and the context for DNA repair enzymes. Biochemical studies have suggested that both the formation and repair of DNA damage are significantly modulated by chromatin. Our understanding of the impact of chromatin on damage and repair has been significantly enhanced by recent studies. We focus on the nucleosome, the primary building block of chromatin, and discuss how the intrinsic structural properties of nucleosomes, and their associated epigenetic modifications, affect damage formation and DNA repair, as well as subsequent mutagenesis in cancer.
Collapse
Affiliation(s)
- Peng Mao
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - John J Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA; Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
33
|
Kim JJ, Lee SY, Miller KM. Preserving genome integrity and function: the DNA damage response and histone modifications. Crit Rev Biochem Mol Biol 2019; 54:208-241. [PMID: 31164001 DOI: 10.1080/10409238.2019.1620676] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modulation of chromatin templates in response to cellular cues, including DNA damage, relies heavily on the post-translation modification of histones. Numerous types of histone modifications including phosphorylation, methylation, acetylation, and ubiquitylation occur on specific histone residues in response to DNA damage. These histone marks regulate both the structure and function of chromatin, allowing for the transition between chromatin states that function in undamaged condition to those that occur in the presence of DNA damage. Histone modifications play well-recognized roles in sensing, processing, and repairing damaged DNA to ensure the integrity of genetic information and cellular homeostasis. This review highlights our current understanding of histone modifications as they relate to DNA damage responses (DDRs) and their involvement in genome maintenance, including the potential targeting of histone modification regulators in cancer, a disease that exhibits both epigenetic dysregulation and intrinsic DNA damage.
Collapse
Affiliation(s)
- Jae Jin Kim
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Seo Yun Lee
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| | - Kyle M Miller
- Department of Molecular Biosciences, LIVESTRONG Cancer Institute of the Dell Medical School, Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin , TX , USA
| |
Collapse
|
34
|
Porter EG, Dhiman A, Chowdhury B, Carter BC, Lin H, Stewart JC, Kazemian M, Wendt MK, Dykhuizen EC. PBRM1 Regulates Stress Response in Epithelial Cells. iScience 2019; 15:196-210. [PMID: 31077944 PMCID: PMC6514269 DOI: 10.1016/j.isci.2019.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 03/10/2019] [Accepted: 04/19/2019] [Indexed: 12/16/2022] Open
Abstract
Polybromo1 (PBRM1) is a chromatin remodeler subunit highly mutated in cancer, particularly clear cell renal carcinoma. PBRM1 is a member of the SWI/SNF subcomplex, PBAF (PBRM1-Brg1/Brm-associated factors), and is characterized by six tandem bromodomains. Here we establish a role for PBRM1 in epithelial cell maintenance through the expression of genes involved in cell adhesion, metabolism, stress response, and apoptosis. In support of a general role for PBRM1 in stress response and apoptosis, we observe that loss of PBRM1 results in an increase in reactive oxygen species generation and a decrease in cellular viability under stress conditions. We find that loss of PBRM1 promotes cell growth under favorable conditions but is required for cell survival under conditions of cellular stress. PBRM1 facilitates the expression of stress response genes in epithelial cells Deletion of PBRM1 promotes growth under low-stress conditions PBRM1 restrains ROS generation and induces apoptosis under high-stress conditions Under H2O2 stress, PBRM1 cooperates with cJun and NRF2 to induce gene expression
Collapse
Affiliation(s)
- Elizabeth G Porter
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Alisha Dhiman
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Basudev Chowdhury
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Benjamin C Carter
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Hang Lin
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Jane C Stewart
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN 47906, USA
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
35
|
Ren M, Cheng Y, Duan Q, Zhou C. Transesterification Reaction and the Repair of Embedded Ribonucleotides in DNA Are Suppressed upon the Assembly of DNA into Nucleosome Core Particles †. Chem Res Toxicol 2019; 32:926-934. [PMID: 30990021 DOI: 10.1021/acs.chemrestox.9b00059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Ribonucleotides can be incorporated into DNA through many different cellular processes, and abundant amounts of ribonucleotides are detected in genomic DNA. Embedded ribonucleotides lead to genomic instability through either spontaneous ribonucleotide cleavage via internal transesterification or by inducing mutagenesis, recombination, and chromosome rearrangements. Ribonucleotides misincorporated in genomic DNA can be removed by the ribonucleotide excision repair (RER) pathway in which RNase HII initiates the repair by cleaving the 5'-phosphate of the ribonucleotide. Herein, based on in vitro reconstituted nucleosome core particles (NCPs) containing a single ribonucleotide at different positions, we studied the kinetics of ribonucleotide cleavage via the internal transesterification reaction and repair of the ribonucleotides by RNase HII in NCPs. Our results show that ribonucleotide cleavage via the internal transesterification in NCPs is suppressed compared to that in free DNA. DNA bending and structural rigidity account for the suppressed ribonucleotide cleavage in NCPs. Ribonucleotide repair by RNase HII in NCPs exhibits a strong correlation between the translational and rotational positions of the ribonucleotides. An embedded ribonucleotide located at the entry site while facing outward in NCP is repaired as efficiently as that in free DNA. However, the repair of those located in the central part of NCPs and facing inward are inhibited by up to 273-fold relative to those in free dsDNA. The difference in repair efficiency appears to arise from their different accessibility to repair enzymes in NCPs. This study reveals that a ribonucleotide misincorporated in DNA assembled into NCPs is protected against cleavage. Hence, the spontaneous cleavage of the misincorporated ribonucleotides under physiological conditions is not an essential threat to the stability of chromatin DNA. Instead, their decreased repair efficiency in NCPs may result in numerous and persistent ribonucleotides in genomic DNA, which could exert other deleterious effects on DNA such as mutagenesis and recombination.
Collapse
Affiliation(s)
- Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yiran Cheng
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Qian Duan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| |
Collapse
|
36
|
Shafirovich V, Kolbanovskiy M, Kropachev K, Liu Z, Cai Y, Terzidis MA, Masi A, Chatgilialoglu C, Amin S, Dadali A, Broyde S, Geacintov NE. Nucleotide Excision Repair and Impact of Site-Specific 5',8-Cyclopurine and Bulky DNA Lesions on the Physical Properties of Nucleosomes. Biochemistry 2019; 58:561-574. [PMID: 30570250 PMCID: PMC6373774 DOI: 10.1021/acs.biochem.8b01066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The nonbulky 5',8-cyclopurine DNA lesions (cP) and the bulky, benzo[ a]pyrene diol epoxide-derived stereoisomeric cis- and trans- N2-guanine adducts (BPDE-dG) are good substrates of the human nucleotide excision repair (NER) mechanism. These DNA lesions were embedded at the In or Out rotational settings near the dyad axis in nucleosome core particles reconstituted either with native histones extracted from HeLa cells (HeLa-NCP) or with recombinant histones (Rec-NCP). The cP lesions are completely resistant to NER in human HeLa cell extracts. The BPDE-dG adducts are also NER-resistant in Rec-NCPs but are good substrates of NER in HeLa-NCPs. The four BPDE-dG adduct samples are excised with different efficiencies in free DNA, but in HeLa-NCPs, the efficiencies are reduced by a common factor of 2.2 ± 0.2 relative to the NER efficiencies in free DNA. The NER response of the BPDE-dG adducts in HeLa-NCPs is not directly correlated with the observed differences in the thermodynamic destabilization of HeLa-NCPs, the Förster resonance energy transfer values, or hydroxyl radical footprint patterns and is weakly dependent on the rotational settings. These and other observations suggest that NER is initiated by the binding of the DNA damage-sensing NER factor XPC-RAD23B to a transiently opened BPDE-modified DNA sequence that corresponds to the known footprint of XPC-DNA-RAD23B complexes (≥30 bp). These observations are consistent with the hypothesis that post-translational modifications and the dimensions and properties of the DNA lesions are the major factors that have an impact on the dynamics and initiation of NER in nucleosomes.
Collapse
Affiliation(s)
- Vladimir Shafirovich
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Marina Kolbanovskiy
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Konstantin Kropachev
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Zhi Liu
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Yuquin Cai
- Department of Biology, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Michael A. Terzidis
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Annalisa Masi
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, Via P. Gobetti 101, 40129 Bologna, Italy
| | - Shantu Amin
- Department of Pharmacology, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey, PA 17033, United States
| | - Alexander Dadali
- Bronx College of the City University of New York, Bronx, NY 10453, United States
| | - Suse Broyde
- Department of Biology, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| | - Nicholas E. Geacintov
- Department of Chemistry, New York University, 31 Washington Place, New York, NY 10003-5180, United States
| |
Collapse
|
37
|
Bennett SA, Tanaz R, Cobos SN, Torrente MP. Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease. Transl Res 2019; 204:19-30. [PMID: 30391475 PMCID: PMC6331271 DOI: 10.1016/j.trsl.2018.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common adult onset neurodegenerative disorder worldwide. It is generally characterized by progressive paralysis starting at the limbs ultimately leading to death caused by respiratory failure. There is no cure and current treatments fail to slow the progression of the disease. As such, new treatment options are desperately needed. Epigenetic targets are an attractive possibility because they are reversible. Epigenetics refers to heritable changes in gene expression unrelated to changes in DNA sequence. Three main epigenetic mechanisms include the methylation of DNA, microRNAs and the post-translational modification of histone proteins. Histone modifications occur in many amino acid residues and include phosphorylation, acetylation, methylation as well as other chemical moieties. Recent evidence points to a possible role for epigenetic mechanisms in the etiology of ALS. Here, we review recent advances linking ALS and epigenetics, with a strong focus on histone modifications. Both local and global changes in histone modification profiles are associated with ALS drawing attention to potential targets for future diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Seth A Bennett
- Department of Chemistry, Brooklyn College, Brooklyn, NewYork; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York
| | - Royena Tanaz
- Department of Chemistry, Brooklyn College, Brooklyn, NewYork
| | - Samantha N Cobos
- Department of Chemistry, Brooklyn College, Brooklyn, NewYork; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016
| | - Mariana P Torrente
- Department of Chemistry, Brooklyn College, Brooklyn, NewYork; Ph.D. Programs in Chemistry, Biochemistry, and Biology, The Graduate Center of the City University of New York, New York, New York.
| |
Collapse
|
38
|
Thakre PK, SV A, Golla U, Chauhan S, Tomar RS. Previously uncharacterized amino acid residues in histone H3 and H4 mutants with roles in
DNA
damage repair response and cellular aging. FEBS J 2018; 286:1154-1173. [DOI: 10.1111/febs.14723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/01/2018] [Accepted: 12/04/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Pilendra K. Thakre
- Laboratory of Chromatin Biology Department of Biological Sciences Indian Institute of Science Education and Research Bhopal India
| | - Athira SV
- Laboratory of Chromatin Biology Department of Biological Sciences Indian Institute of Science Education and Research Bhopal India
| | - Upendarrao Golla
- Laboratory of Chromatin Biology Department of Biological Sciences Indian Institute of Science Education and Research Bhopal India
| | - Sakshi Chauhan
- Laboratory of Chromatin Biology Department of Biological Sciences Indian Institute of Science Education and Research Bhopal India
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Bethesda MD USA
| | - Raghuvir S. Tomar
- Laboratory of Chromatin Biology Department of Biological Sciences Indian Institute of Science Education and Research Bhopal India
| |
Collapse
|
39
|
Bártová E, Lochmanová G, Legartová S, Suchánková J, Fedr R, Krejčí J, Zdráhal Z. Irradiation by γ-rays reduces the level of H3S10 phosphorylation and weakens the G2 phase-dependent interaction between H3S10 phosphorylation and γH2AX. Biochimie 2018; 154:86-98. [DOI: 10.1016/j.biochi.2018.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 07/31/2018] [Indexed: 10/28/2022]
|
40
|
Ray A, Khan P, Nag Chaudhuri R. Regulated acetylation and deacetylation of H4 K16 is essential for efficient NER in Saccharomyces cerevisiae. DNA Repair (Amst) 2018; 72:39-55. [PMID: 30274769 DOI: 10.1016/j.dnarep.2018.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/27/2018] [Accepted: 09/18/2018] [Indexed: 12/24/2022]
Abstract
Acetylation status of H4 K16, a residue in the histone H4 N-terminal tail plays a unique role in regulating chromatin structure and function. Here we show that, during UV-induced nucleotide excision repair H4 K16 gets hyperacetylated following an initial phase of hypoacetylation. Disrupting H4 K16 acetylation-deacetylation by mutating H4 K16 to R (deacetylated state) or Q (acetylated state) leads to compromised chromatin functions. In the silenced mating locus and telomere region H4 K16 mutants show higher recruitment of Sir proteins and spreading beyond the designated boundaries. More significantly, chromatin of both the H4 K16 mutants has reduced accessibility in the silenced regions and genome wide. On UV irradiation, the mutants showed higher UV sensitivity, reduced NER rate and altered H3 N-terminal tail acetylation, compared to wild type. NER efficiency is affected by reduced or delayed recruitment of early NER proteins and chromatin remodeller Swi/Snf along with lack of nucleosome rearrangement during repair. Additionally UV-induced expression of RAD and SNF5 genes was reduced in the mutants. Hindered chromatin accessibility in the H4 K16 mutants is thus non-conducive for gene expression as well as recruitment of NER and chromatin remodeller proteins. Subsequently, inadequate nucleosomal rearrangement during early phases of repair impeded accessibility of the NER complex to DNA lesions, in the H4 K16 mutants. Effectively, NER efficiency was found to be compromised in the mutants. Interestingly, in the transcriptionally active chromatin region, both the H4 K16 mutants showed reduced NER rate during early repair time points. However, with progression of repair H4 K16R repaired faster than K16Q mutants and rate of CPD removal became differential between the two mutants during later NER phases. To summarize, our results establish the essentiality of regulated acetylation and deacetylation of H4 K16 residue in maintaining chromatin accessibility and efficiency of functions like NER and gene expression.
Collapse
Affiliation(s)
- Anagh Ray
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Preeti Khan
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India
| | - Ronita Nag Chaudhuri
- Department of Biotechnology, St. Xavier's College, 30, Mother Teresa Sarani, Kolkata, 700016, India.
| |
Collapse
|
41
|
Mandemaker IK, Geijer ME, Kik I, Bezstarosti K, Rijkers E, Raams A, Janssens RC, Lans H, Hoeijmakers JH, Demmers JA, Vermeulen W, Marteijn JA. DNA damage-induced replication stress results in PA200-proteasome-mediated degradation of acetylated histones. EMBO Rep 2018; 19:embr.201745566. [PMID: 30104204 PMCID: PMC6172457 DOI: 10.15252/embr.201745566] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 07/06/2018] [Accepted: 07/16/2018] [Indexed: 12/21/2022] Open
Abstract
Histone acetylation influences protein interactions and chromatin accessibility and plays an important role in the regulation of transcription, replication, and DNA repair. Conversely, DNA damage affects these crucial cellular processes and induces changes in histone acetylation. However, a comprehensive overview of the effects of DNA damage on the histone acetylation landscape is currently lacking. To quantify changes in histone acetylation, we developed an unbiased quantitative mass spectrometry analysis on affinity‐purified acetylated histone peptides, generated by differential parallel proteolysis. We identify a large number of histone acetylation sites and observe an overall reduction of acetylated histone residues in response to DNA damage, indicative of a histone‐wide loss of acetyl modifications. This decrease is mainly caused by DNA damage‐induced replication stress coupled to specific proteasome‐dependent loss of acetylated histones. Strikingly, this degradation of acetylated histones is independent of ubiquitylation but requires the PA200‐proteasome activator, a complex that specifically targets acetylated histones for degradation. The uncovered replication stress‐induced degradation of acetylated histones represents an important chromatin‐modifying response to cope with replication stress.
Collapse
Affiliation(s)
- Imke K Mandemaker
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marit E Geijer
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Iris Kik
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Erikjan Rijkers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Anja Raams
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Roel C Janssens
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Hj Hoeijmakers
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,CECAD Forschungszentrum, Köln, Germany.,Princess Máxima Center for Pediatric Oncology, Bilthoven, The Netherlands
| | - Jeroen Aa Demmers
- Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jurgen A Marteijn
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
42
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
43
|
Chen K, Bennett SA, Rana N, Yousuf H, Said M, Taaseen S, Mendo N, Meltser SM, Torrente MP. Neurodegenerative Disease Proteinopathies Are Connected to Distinct Histone Post-translational Modification Landscapes. ACS Chem Neurosci 2018; 9:838-848. [PMID: 29243911 DOI: 10.1021/acschemneuro.7b00297] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD) are devastating neurodegenerative diseases involving the progressive degeneration of neurons. No cure is available for patients diagnosed with these diseases. A prominent feature of both ALS and PD is the accumulation of protein inclusions in the cytoplasm of degenerating neurons; however, the particular proteins constituting these inclusions vary: the RNA-binding proteins TDP-43 and FUS are most notable in ALS, while α-synuclein aggregates into Lewy bodies in PD. In both diseases, genetic causes fail to explain the occurrence of a large proportion of cases, and thus, both are considered mostly sporadic. Despite mounting evidence for a possible role of epigenetics in the occurrence and progression of ALS and PD, epigenetic mechanisms in the context of these diseases remain mostly unexplored. Here we comprehensively delineate histone post-translational modification (PTM) profiles in ALS and PD yeast proteinopathy models. Remarkably, we find distinct changes in histone modification profiles for each. We detect the most striking changes in the context of FUS aggregation: changes in several histone marks support a global decrease in gene transcription. We also detect more modest changes in histone modifications in cells overexpressing TDP-43 or α-synuclein. Our results highlight a great need for the inclusion of epigenetic mechanisms in the study of neurodegeneration. We hope our work will pave the way for the discovery of more effective therapies to treat patients suffering from ALS, PD, and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Karen Chen
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
| | - Seth A. Bennett
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
- Graduate Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Navin Rana
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
| | - Huda Yousuf
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
| | - Mohamed Said
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
| | - Sadiqa Taaseen
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
| | - Natalie Mendo
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
| | - Steven M. Meltser
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
| | - Mariana P. Torrente
- Chemistry Department of Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Programs in Chemistry, Biochemistry, and Biology, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
44
|
Sein H, Reinmets K, Peil K, Kristjuhan K, Värv S, Kristjuhan A. Rpb9-deficient cells are defective in DNA damage response and require histone H3 acetylation for survival. Sci Rep 2018; 8:2949. [PMID: 29440683 PMCID: PMC5811553 DOI: 10.1038/s41598-018-21110-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/29/2018] [Indexed: 11/09/2022] Open
Abstract
Rpb9 is a non-essential subunit of RNA polymerase II that is involved in DNA transcription and repair. In budding yeast, deletion of RPB9 causes several phenotypes such as slow growth and temperature sensitivity. We found that simultaneous mutation of multiple N-terminal lysines within histone H3 was lethal in rpb9Δ cells. Our results indicate that hypoacetylation of H3 leads to inefficient repair of DNA double-strand breaks, while activation of the DNA damage checkpoint regulators γH2A and Rad53 is suppressed in Rpb9-deficient cells. Combination of H3 hypoacetylation with the loss of Rpb9 leads to genomic instability, aberrant segregation of chromosomes in mitosis, and eventually to cell death. These results indicate that H3 acetylation becomes essential for efficient DNA repair and cell survival if a DNA damage checkpoint is defective.
Collapse
Affiliation(s)
- Henel Sein
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Kristina Reinmets
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Kadri Peil
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Kersti Kristjuhan
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia
| | - Signe Värv
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia.,Department of Biosciences, Section for Biochemistry and Molecular Biology, University of Oslo, Blindernveien 31, 0371, Oslo, Norway
| | - Arnold Kristjuhan
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010, Tartu, Estonia.
| |
Collapse
|
45
|
Guo Z, Zhang Z, Wang Q, Zhang J, Wang L, Zhang Q, Li H, Wu S. Manganese chloride induces histone acetylation changes in neuronal cells: Its role in manganese-induced damage. Neurotoxicology 2017; 65:255-263. [PMID: 29155171 DOI: 10.1016/j.neuro.2017.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/03/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022]
Abstract
Manganese neurotoxicity presents with Parkinson-like symptoms, with degeneration of dopaminergic neurons in the basal ganglia as the principal pathological feature. Manganese neurotoxicity studies may contribute to a better understanding of the mechanism of Parkinson's disease. Here, we examined the effects of manganese on histone acetylation, a major epigenetic change in chromatin that can regulate gene expression, chromatin remodelling, cell cycle progression, DNA repair and apoptosis. In this study, we found that manganese chloride (MnCl2) may significantly suppress the acetylation of histone H3 and H4 in PC12 cells and SHSY5Y cells in a time-dependent manner. Then we tested the role of manganese chloride on histone acetyltransferase (HAT) and histone deacetylase (HDAC). The results showed that MnCl2 increased the activity of HDAC but decreased that of HAT in PC12 cells. Further experiments showed that MnCl2 selectively increased the expression levels of HDAC3 and HDAC4 rather than HDAC1 and HDAC2, but decreased that of HAT in PC12 cells and SHSY5Y cells. Pretreatment with the HAT inhibitor anacardic acid (AA) enhanced manganese-induced decrease in cell viability and apoptosis, but HDAC inhibition by TSA drug had an opposite effect in PC12 cells. Collectively, MnCl2 inhibited the acetylation of core histones in cell culture models of PD, and that inhibition of HDAC activity by TSA protects against manganese-induced cell death, indicating that histone acetylation may represent key epigenetic changes in manganese-induced dopaminergic neurotoxicity.
Collapse
Affiliation(s)
- Zhenkun Guo
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Zhipeng Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qingqing Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jie Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lijin Wang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qunwei Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Environmental and Occupational Health Sciences, University of Louisville, Louisville, KY 40202, USA
| | - Huangyuan Li
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| | - Siying Wu
- Fujian Provincial Key Laboratory of Environmental Factors and Cancer, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
46
|
Limbeck E, Vanselow JT, Hofmann J, Schlosser A, Mally A. Linking site-specific loss of histone acetylation to repression of gene expression by the mycotoxin ochratoxin A. Arch Toxicol 2017; 92:995-1014. [PMID: 29098329 DOI: 10.1007/s00204-017-2107-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/26/2017] [Indexed: 11/30/2022]
Abstract
Ochratoxin A (OTA) is a potent renal carcinogen but its mechanism has not been fully resolved. In vitro and in vivo gene expression studies consistently revealed down-regulation of gene expression as the predominant transcriptional response to OTA. Based on the importance of specific histone acetylation marks in regulating gene transcription and our recent finding that OTA inhibits histone acetyltransferases (HATs), leading to loss of acetylation of histones and non-histone proteins, we hypothesized that OTA-mediated repression of gene expression may be causally linked to HAT inhibition and loss of histone acetylation. In this study, we used a novel mass spectrometry approach employing chemical 13C-acetylation of unmodified lysine residues for quantification of post-translational acetylation sites to identify site-specific alterations in histone acetylation in human kidney epithelial cells (HK-2) exposed to OTA. These results showed OTA-mediated hypoacetylation at almost all lysine residues of core histones, including loss of acetylation at H3K9 and H3K14, which are hallmarks of gene activation. ChIP-qPCR used to establish a possible link between H3K9 or H3K14 hypoacetylation and OTA-mediated down-regulation of selected genes (AMIGO2, CLASP2, CTNND1) confirmed OTA-mediated H3K9 hypoacetylation at promoter regions of these genes. Integrated analysis of OTA-mediated genome-wide changes in H3K9 acetylation identified by ChIP-Seq with published gene expression data further demonstrated that among OTA-responsive genes almost 80% of hypoacetylated genes were down-regulated, thus confirming an association between H3K9 acetylation status and gene expression of these genes. However, only 7% of OTA repressed genes showed loss of H3K9 acetylation within promoter regions. Interestingly, however, GO analysis and functional enrichment of down-regulated genes showing loss of H3K9 acetylation at their respective promoter regions revealed enrichment of genes involved in the regulation of transcription, including a number of transcription factors that are predicted to directly or indirectly regulate the expression of 98% of OTA repressed genes. Thus, it is possible that histone acetylation changes in a fairly small set of genes but with key function in transcriptional regulation may trigger a cascade of events that may lead to overall repression of gene expression. Taken together, our data provide evidence for a mechanistic link between loss of H3K9 acetylation as a consequence of OTA-mediated inhibition of HATs and repression of gene expression by OTA, thereby affecting cellular processes critical to tumorigenesis.
Collapse
Affiliation(s)
- Elisabeth Limbeck
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Jens T Vanselow
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97078, Würzburg, Germany
| | - Julian Hofmann
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany
| | - Andreas Schlosser
- Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, 97078, Würzburg, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Versbacher Str. 9, 97078, Würzburg, Germany.
| |
Collapse
|
47
|
Hassan S, Sidransky E, Tayebi N. The role of epigenetics in lysosomal storage disorders: Uncharted territory. Mol Genet Metab 2017; 122:10-18. [PMID: 28918065 DOI: 10.1016/j.ymgme.2017.07.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/30/2017] [Accepted: 07/31/2017] [Indexed: 12/18/2022]
Abstract
The study of the contribution of epigenetic mechanisms, including DNA methylation, histone modifications, and microRNAs, to human disease has enhanced our understanding of different cellular processes and diseased states, as well as the effect of environmental factors on phenotypic outcomes. Epigenetic studies may be particularly relevant in evaluating the clinical heterogeneity observed in monogenic disorders. The lysosomal storage disorders are Mendelian disorders characterized by a wide spectrum of associated phenotypes, ranging from neonatal presentations to symptoms that develop in late adulthood. Some lack a tight genotype/phenotype correlation. While epigenetics may explain some of the discordant phenotypes encountered in patients with the same lysosomal storage disorder, especially among patients sharing the same genotype, to date, few studies have focused on these mechanisms. We review three common epigenetic mechanisms, DNA methylation, histone modifications, and microRNAs, and highlight their applications to phenotypic variation and therapeutics. Three specific lysosomal storage diseases, Gaucher disease, Fabry disease, and Niemann-Pick type C disease are presented as prototypical disorders with vast clinical heterogeneity that may be impacted by epigenetics. Our goal is to motivate researchers to consider epigenetics as a mechanism to explain the complexities of biological functions and pathologies of these rare disorders.
Collapse
Affiliation(s)
- Shahzeb Hassan
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, United States
| | - Ellen Sidransky
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, United States.
| | - Nahid Tayebi
- Medical Genetics Branch, NHGRI, NIH, Bethesda, MD, United States
| |
Collapse
|
48
|
Phosphorylated HBO1 at UV irradiated sites is essential for nucleotide excision repair. Nat Commun 2017; 8:16102. [PMID: 28719581 PMCID: PMC5520108 DOI: 10.1038/ncomms16102] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
HBO1, a histone acetyl transferase, is a co-activator of DNA pre-replication complex formation. We recently reported that HBO1 is phosphorylated by ATM and/or ATR and binds to DDB2 after ultraviolet irradiation. Here, we show that phosphorylated HBO1 at cyclobutane pyrimidine dimer (CPD) sites mediates histone acetylation to facilitate recruitment of XPC at the damaged DNA sites. Furthermore, HBO1 facilitates accumulation of SNF2H and ACF1, an ATP-dependent chromatin remodelling complex, to CPD sites. Depletion of HBO1 inhibited repair of CPDs and sensitized cells to ultraviolet irradiation. However, depletion of HBO1 in cells derived from xeroderma pigmentosum patient complementation groups, XPE, XPC and XPA, did not lead to additional sensitivity towards ultraviolet irradiation. Our findings suggest that HBO1 acts in concert with SNF2H-ACF1 to make the chromosome structure more accessible to canonical nucleotide excision repair factors.
Collapse
|
49
|
Perera E, Yúfera M. Effects of soybean meal on digestive enzymes activity, expression of inflammation-related genes, and chromatin modifications in marine fish (Sparus aurata L.) larvae. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:563-578. [PMID: 27807713 DOI: 10.1007/s10695-016-0310-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/18/2016] [Indexed: 06/06/2023]
Abstract
The effects of soybean meal (SBM) in early diet of Sparus aurata larvae at two developmental windows were assessed. Prolonged (beyond 14 days post-hatch, dph) feeding with SBM decreased the activity of pancreatic enzymes of larvae. In the absence of SBM these larvae later resumed enzyme activities, but exhibited a significant delay in development. Larvae response to SBM involved up-regulation of extracellular matrix remodeling enzymes and pro-inflammatory cytokines, coupled with a drop in putative intestinal enzymes. Larvae receiving SBM at first feeding appear later to have lower expression of inflammation-related genes, especially those fed SBM until 14 dph. Multivariate analysis confirmed that the duration of the SBM early feeding period drives the physiology of larvae in different directions. Feeding larvae with SBM increased global histone H3 acetylation, whereas upon removal of SBM the process was reverted. A more in deep analysis revealed a dynamic interplay among several reversible histone modifications such as H3K14ac and H3K27m3. Finally, we showed that SBM feeding of larvae results in global hypomethylation that persist after SBM removal. This study is the first demonstrating an effect of diet on marine fish epigenetics. It is concluded that there are limitations for extending SBM feeding of S. aurata larvae beyond 14 dph even under co-feeding with live feed, affecting key physiological processes and normal growth. However, up to 14 dph, SBM does not affect normal development, and produces apparently lasting effects on some key enzymes, genes, and chromatin modifications.
Collapse
Affiliation(s)
- Erick Perera
- Departamento de Biología Marina y Acuicultura, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, 11510, Cádiz, Spain.
- Control of Food Intake Group, Department of Fish Physiology and Biotechnology, Institute of Aquaculture Torre de la Sal (IATS-CSIC), Castellón, Spain.
| | - Manuel Yúfera
- Departamento de Biología Marina y Acuicultura, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, 11510, Cádiz, Spain
| |
Collapse
|
50
|
Fu I, Cai Y, Geacintov NE, Zhang Y, Broyde S. Nucleosome Histone Tail Conformation and Dynamics: Impacts of Lysine Acetylation and a Nearby Minor Groove Benzo[a]pyrene-Derived Lesion. Biochemistry 2017; 56:1963-1973. [PMID: 28304160 DOI: 10.1021/acs.biochem.6b01208] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Histone tails in nucleosomes play critical roles in regulation of many biological processes, including chromatin compaction, transcription, and DNA repair. Moreover, post-translational modifications, notably lysine acetylation, are crucial to these functions. While the tails have been intensively studied, how the structures and dynamics of tails are impacted by the presence of a nearby bulky DNA lesion is a frontier research area, and how these properties are impacted by tail lysine acetylation remains unexplored. To obtain molecular insight, we have utilized all atom 3 μs molecular dynamics simulations of nucleosome core particles (NCPs) to determine the impact of a nearby DNA lesion, 10S (+)-trans-anti-B[a]P-N2-dG-the major adduct derived from the procarcinogen benzo[a]pyrene-on H2B tail behavior in unacetylated and acetylated states. We similarly studied lesion-free NCPs to investigate the normal properties of the H2B tail in both states. In the lesion-free NCPs, charge neutralization upon lysine acetylation causes release of the tail from the DNA. When the lesion is present, it stably engulfs part of the nearby tail, impairing the interactions between DNA and tail. With the tail in an acetylated state, the lesion still interacts with part of it, although unstably. The lesion's partial entrapment of the tail should hinder the tail from interacting with other nucleosomes, and other proteins such as acetylases, deacetylases, and acetyl-lysine binding proteins, and thus disrupt critical tail-governed processes. Hence, the lesion would impede tail functions modulated by acetylation or deacetylation, causing aberrant chromatin structures and impaired biological transactions such as transcription and DNA repair.
Collapse
Affiliation(s)
| | | | | | - Yingkai Zhang
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai , Shanghai 200062, China
| | | |
Collapse
|